A note on dynamics of an age-of-infection cholera model

  • Received: 01 March 2014 Accepted: 29 June 2018 Published: 01 October 2015
  • MSC : Primary: 92D30, 92B05; Secondary: 35B35.

  • A recent paper [F. Brauer, Z. Shuai and P. van den Driessche, Dynamics of an age-of-infection cholera model, Math. Biosci. Eng., 10, 2013, 1335--1349.] presented a model for the dynamics of cholera transmission. The model is incorporated with both the infection age of infectious individuals and biological age of pathogen in the environment. The basic reproduction number is proved to be a sharp threshold determining whether or not cholera dies out. The global stability for disease-free equilibrium and endemic equilibrium is proved by constructing suitable Lyapunov functionals. However, for the proof of the global stability of endemic equilibrium, we have to show first the relative compactness of the orbit generated by model in order to make use of the invariance principle. Furthermore, uniform persistence of system must be shown since the Lyapunov functional is possible to be infinite ifi(a,t)/i(a)=0 on some age interval.In this note, we give a supplement to above paper with necessary mathematical arguments.

    Citation: Jinliang Wang, Ran Zhang, Toshikazu Kuniya. A note on dynamics of an age-of-infection cholera model[J]. Mathematical Biosciences and Engineering, 2016, 13(1): 227-247. doi: 10.3934/mbe.2016.13.227

    Related Papers:

    [1] Jianxin Yang, Zhipeng Qiu, Xue-Zhi Li . Global stability of an age-structured cholera model. Mathematical Biosciences and Engineering, 2014, 11(3): 641-665. doi: 10.3934/mbe.2014.11.641
    [2] Fred Brauer, Zhisheng Shuai, P. van den Driessche . Dynamics of an age-of-infection cholera model. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1335-1349. doi: 10.3934/mbe.2013.10.1335
    [3] Lu Gao, Yuanshun Tan, Jin Yang, Changcheng Xiang . Dynamic analysis of an age structure model for oncolytic virus therapy. Mathematical Biosciences and Engineering, 2023, 20(2): 3301-3323. doi: 10.3934/mbe.2023155
    [4] Jiazhe Lin, Rui Xu, Xiaohong Tian . Transmission dynamics of cholera with hyperinfectious and hypoinfectious vibrios: mathematical modelling and control strategies. Mathematical Biosciences and Engineering, 2019, 16(5): 4339-4358. doi: 10.3934/mbe.2019216
    [5] Suxia Zhang, Hongbin Guo, Robert Smith? . Dynamical analysis for a hepatitis B transmission model with immigration and infection age. Mathematical Biosciences and Engineering, 2018, 15(6): 1291-1313. doi: 10.3934/mbe.2018060
    [6] Mostafa Adimy, Abdennasser Chekroun, Claudia Pio Ferreira . Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase. Mathematical Biosciences and Engineering, 2020, 17(2): 1329-1354. doi: 10.3934/mbe.2020067
    [7] Xiaohong Tian, Rui Xu, Jiazhe Lin . Mathematical analysis of an age-structured HIV-1 infection model with CTL immune response. Mathematical Biosciences and Engineering, 2019, 16(6): 7850-7882. doi: 10.3934/mbe.2019395
    [8] Zhiping Liu, Zhen Jin, Junyuan Yang, Juan Zhang . The backward bifurcation of an age-structured cholera transmission model with saturation incidence. Mathematical Biosciences and Engineering, 2022, 19(12): 12427-12447. doi: 10.3934/mbe.2022580
    [9] Kazuo Yamazaki, Xueying Wang . Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model. Mathematical Biosciences and Engineering, 2017, 14(2): 559-579. doi: 10.3934/mbe.2017033
    [10] Jinliang Wang, Xiu Dong . Analysis of an HIV infection model incorporating latency age and infection age. Mathematical Biosciences and Engineering, 2018, 15(3): 569-594. doi: 10.3934/mbe.2018026
  • A recent paper [F. Brauer, Z. Shuai and P. van den Driessche, Dynamics of an age-of-infection cholera model, Math. Biosci. Eng., 10, 2013, 1335--1349.] presented a model for the dynamics of cholera transmission. The model is incorporated with both the infection age of infectious individuals and biological age of pathogen in the environment. The basic reproduction number is proved to be a sharp threshold determining whether or not cholera dies out. The global stability for disease-free equilibrium and endemic equilibrium is proved by constructing suitable Lyapunov functionals. However, for the proof of the global stability of endemic equilibrium, we have to show first the relative compactness of the orbit generated by model in order to make use of the invariance principle. Furthermore, uniform persistence of system must be shown since the Lyapunov functional is possible to be infinite ifi(a,t)/i(a)=0 on some age interval.In this note, we give a supplement to above paper with necessary mathematical arguments.


    [1] Math. Biosci. Eng., 10 (2013), 1335-1349.
    [2] Mathematical Surveys and Monographs 25, American Mathematical Society, Providence, RI, 1988.
    [3] SIAM J. Appl. Math., 72 (2012), 25-38.
    [4] Appl. Anal., 89 (2010), 1109-1140.
    [5] Math. Biosci. Eng., 9 (2012), 819-841.
    [6] Princeton University Press, 2003.
    [7] Amer. Math. Soc., Providence, RI, 2011.
    [8] Plenum Press, New York and London, 1980.
    [9] J. Biol. Dyna., 9 (2015), 73-101.
    [10] Electron. J. Diff. Equ., 2015 (2015), 1-19.
    [11] J. Math. Anal. Appl., 432 (2015), 289-313.
    [12] Marcel Dekker, New York and Basel, 1985.
    [13] Math. Biosci. Eng., 11 (2014), 641-665.
  • This article has been cited by:

    1. Jinliang Wang, Fanglin Xie, Toshikazu Kuniya, Analysis of a reaction-diffusion cholera epidemic model in a spatially heterogeneous environment, 2020, 80, 10075704, 104951, 10.1016/j.cnsns.2019.104951
    2. Jinliang Wang, Jiying Lang, Yuming Chen, Global threshold dynamics of an SVIR model with age-dependent infection and relapse, 2017, 11, 1751-3758, 427, 10.1080/17513758.2016.1226436
    3. Lianwen Wang, Zhijun Liu, Xingan Zhang, Global dynamics for an age-structured epidemic model with media impact and incomplete vaccination, 2016, 32, 14681218, 136, 10.1016/j.nonrwa.2016.04.009
    4. Shaoli Wang, Jianhong Wu, Libin Rong, A note on the global properties of an age-structured viral dynamic model with multiple target cell populations, 2017, 14, 1551-0018, 805, 10.3934/mbe.2017044
    5. Jiazhe Lin, Rui Xu, Xiaohong Tian, Global dynamics of an age-structured cholera model with both human-to-human and environment-to-human transmissions and saturation incidence, 2018, 63, 0307904X, 688, 10.1016/j.apm.2018.07.013
    6. ZHIPING WANG, RUI XU, GLOBAL DYNAMICS OF AN SVIR EPIDEMIOLOGICAL MODEL WITH INFECTION AGE AND NONLINEAR INCIDENCE, 2017, 25, 0218-3390, 419, 10.1142/S0218339017500206
    7. Mohammad A. Safi, Mahmoud H. DarAssi, Mathematical analysis of an age-structured HSV-2 model, 2019, 19, 14727978, 841, 10.3233/JCM-181111
    8. J. Wang, M. Guo, T. Kuniya, Mathematical analysis for a multi-group SEIR epidemic model with age-dependent relapse, 2018, 97, 0003-6811, 1751, 10.1080/00036811.2017.1336545
    9. Jinliang Wang, Di Wu, Hongquan Sun, Analysis of an SVIC model with age-dependent infection and asymptomatic carriers, 2018, 97, 0003-6811, 1467, 10.1080/00036811.2017.1313409
    10. Junyuan Yang, Yuming Chen, Toshikazu Kuniya, Threshold dynamics of an age-structured epidemic model with relapse and nonlinear incidence, 2017, 82, 0272-4960, 629, 10.1093/imamat/hxx006
    11. Yuji Li, Rui Xu, Jiazhe Lin, The stability analysis of an epidemic model with saturating incidence and age-structure in the exposed and infectious classes, 2018, 2018, 1687-1847, 10.1186/s13662-018-1635-6
    12. Jinliang Wang, Jing Wang, Analysis of a Reaction–Diffusion Cholera Model with Distinct Dispersal Rates in the Human Population, 2021, 33, 1040-7294, 549, 10.1007/s10884-019-09820-8
    13. Shanjing Ren, Global stability in a tuberculosis model of imperfect treatment with age-dependent latency and relapse, 2017, 14, 1551-0018, 1337, 10.3934/mbe.2017069
    14. Yuji Li, Rui Xu, Jiazhe Lin, Global dynamics for a class of infection-age model with nonlinear incidence, 2018, 24, 1392-5113, 47, 10.15388/NA.2019.1.4
    15. Jiazhe Lin, Rui Xu, Xiaohong Tian, Global dynamics of an age-structured cholera model with multiple transmissions, saturation incidence and imperfect vaccination, 2019, 13, 1751-3758, 69, 10.1080/17513758.2019.1570362
    16. Chang-Yuan Cheng, Yueping Dong, Yasuhiro Takeuchi, An age-structured virus model with two routes of infection in heterogeneous environments, 2018, 39, 14681218, 464, 10.1016/j.nonrwa.2017.07.013
    17. Pierre Magal, Shigui Ruan, 2018, Chapter 8, 978-3-030-01505-3, 357, 10.1007/978-3-030-01506-0_8
    18. WEIWEI LIU, JINLIANG WANG, RAN ZHANG, Dynamics of an infection age-space structured cholera model with Neumann boundary condition, 2021, 0956-7925, 1, 10.1017/S095679252100005X
    19. Xin Jiang, Global Dynamics for an Age-Structured Cholera Infection Model with General Infection Rates, 2021, 9, 2227-7390, 2993, 10.3390/math9232993
    20. Wei Yang, Jinliang Wang, Analysis of a diffusive cholera model incorporating latency and bacterial hyperinfectivity, 2021, 20, 1534-0392, 3921, 10.3934/cpaa.2021138
    21. Guoqiang Wang, Junyuan Yang, Xuezhi Li, An age-space structured cholera model linking within- and between-host dynamics with Neumann boundary condition, 2023, 74, 0044-2275, 10.1007/s00033-022-01910-w
    22. Zhongzhong Xie, Xiuxiang Liu, Global dynamics in an age-structured HIV model with humoral immunity, 2021, 14, 1793-5245, 2150047, 10.1142/S1793524521500479
    23. Ruqi Li, Yurong Song, Haiyan Wang, Guo-Ping Jiang, Min Xiao, Reactive–diffusion epidemic model on human mobility networks: Analysis and applications to COVID-19 in China, 2023, 609, 03784371, 128337, 10.1016/j.physa.2022.128337
    24. Shanjing Ren, Lingling Li, Global stability mathematical analysis for virus transmission model with latent age structure, 2022, 19, 1551-0018, 3337, 10.3934/mbe.2022154
    25. Chin-Lung Li, Chun-Hsien Li, Chang-Yuan Cheng, Analysis of an epidemiological model with age of infection, vaccination, quarantine and asymptomatic transmission, 2023, 360, 00160032, 657, 10.1016/j.jfranklin.2022.06.036
    26. Wenjing Wu, Tianli Jiang, Weiwei Liu, Jinliang Wang, Threshold dynamics of a reaction-diffusion cholera model with seasonality and nonlocal delay, 2022, 21, 1534-0392, 3263, 10.3934/cpaa.2022099
    27. Xin Jiang, Ran Zhang, Global dynamics on a class of age-infection structured cholera model with immigration, 2023, 14173875, 1, 10.14232/ejqtde.2023.1.6
    28. Rui Xu, Ning Bai, Spatio-temporal dynamics of an age-space structured cholera model with bacterial hyperinfectivity and imperfect vaccination, 2023, 0, 1531-3492, 0, 10.3934/dcdsb.2023071
    29. Wenjie Li, Ying Zhang, Jinchen Ji, Lihong Huang, Dynamics of a diffusion epidemic SIRI system in heterogeneous environment, 2023, 74, 0044-2275, 10.1007/s00033-023-02002-z
    30. Xin Jiang, Ran Zhang, Age-dependent immunity effect in a cholera model with double transmission modes: Hopf bifurcation analysis, 2023, 1598-5865, 10.1007/s12190-023-01933-0
    31. Xinxin Cheng, Yi Wang, Gang Huang, Dynamical analysis of an age-structured cholera transmission model on complex networks, 2024, 531, 0022247X, 127833, 10.1016/j.jmaa.2023.127833
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3289) PDF downloads(672) Cited by(31)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog