Citation: Ernest Greene. New encoding concepts for shape recognition are needed[J]. AIMS Neuroscience, 2018, 5(3): 162-178. doi: 10.3934/Neuroscience.2018.3.162
[1] | Ernest Greene, Michael J. Hautus . Demonstrating Invariant Encoding of Shapes Using A Matching Judgment Protocol. AIMS Neuroscience, 2017, 4(3): 120-147. doi: 10.3934/Neuroscience.2017.3.120 |
[2] | Hannah Nordberg, Michael J Hautus, Ernest Greene . Visual encoding of partial unknown shape boundaries. AIMS Neuroscience, 2018, 5(2): 132-147. doi: 10.3934/Neuroscience.2018.2.132 |
[3] | Ernest Greene, Michael J. Hautus . Evaluating persistence of shape information using a matching protocol. AIMS Neuroscience, 2018, 5(1): 81-96. doi: 10.3934/Neuroscience.2018.1.81 |
[4] | Sherry Zhang, Jack Morrison, Wei Wang, Ernest Greene . Recognition of letters displayed as successive contour fragments. AIMS Neuroscience, 2022, 9(4): 491-515. doi: 10.3934/Neuroscience.2022028 |
[5] | Mirela Dubravac, Beat Meier . Stimulating the parietal cortex by transcranial direct current stimulation (tDCS): no effects on attention and memory. AIMS Neuroscience, 2021, 8(1): 33-46. doi: 10.3934/Neuroscience.2021002 |
[6] | Robert Friedman . Themes of advanced information processing in the primate brain. AIMS Neuroscience, 2020, 7(4): 373-388. doi: 10.3934/Neuroscience.2020023 |
[7] | Ernest Greene . Comparing methods for scaling shape similarity. AIMS Neuroscience, 2019, 6(2): 54-59. doi: 10.3934/Neuroscience.2019.2.54 |
[8] | Paul G. Nestor, Toshiyuki Ohtani, James J. Levitt, Dominick T. Newell, Martha E. Shenton, Margaret Niznikiewicz, Robert W. McCarley . Prefrontal Lobe Gray Matter, Cognitive Control and Episodic Memory in Healthy Cognition. AIMS Neuroscience, 2016, 3(3): 338-355. doi: 10.3934/Neuroscience.2016.3.338 |
[9] | Siri-Maria Kamp, Melissa Lehman, Kenneth J. Malmberg, Emanuel Donchin . A Buffer Model Account of Behavioral and ERP Patterns in the Von Restorff Paradigm. AIMS Neuroscience, 2016, 3(2): 181-202. doi: 10.3934/Neuroscience.2016.2.181 |
[10] | Timothy J. Ricker . The Role of Short-term Consolidation in Memory Persistence. AIMS Neuroscience, 2015, 2(4): 259-279. doi: 10.3934/Neuroscience.2015.4.259 |
We study the hydrodynamic limit for a Fokker-Planck equation that arises in the modeling of a system of large particles immersed in a much larger number of micromolecules. Examples of such particle systems include dilute solutions of polymers that arise often in industrial settings [2,7,8,21,24]. Typically, macromolecules (or more precisely, the monomer parts they are comprised of) are modeled by ideal spheres whose interactions are mediated by interactions with the micromolecules. We model the micromolecules as an incompressible fluid governed by Stokes flow. The interactions of these idealized particles with the fluid are modeled by admissible boundary conditions, Brownian noise and the introduction of damping.
The dynamics of particle motion is described by a phase-space vector
$ \partial_{t}f +v \cdot \nabla_{x}f+\frac{1}{m} \nabla_{v}\cdot (F f)=\frac{1}{m^{2}} \nabla_{v}\cdot (G(x)\nabla_{v}f) ,$ | (1) |
with the particle mass represented by
The Fokker-Planck equation (1) is naturally associated to the phase-space stochastic differential system
${˙x(t)=v,˙v(t)=−1m(G(x)v+∇V(x))+√2mG1/2(x)˙W(t),$ |
where
Equation (1) is very important in the description of polymer models when inertial effects are involved. This is reminiscent of the inertial kinetic models in the work by P. Degond and H. Liu [6]. Therein, the authors introduce novel kinetic models for Dumbell-like and rigid-rod polymers in the presence of inertial forces and show formally that when inertial effects vanish the limit is consistent with well accepted macroscopic models in polymer rheology. A direct quote from [6] reasons on the importance of kinetic models involving inertial effects in describing polymer sedimentation: ''In current kinetic theory models for polymers, the inertia of molecules is often neglected. However, neglect of inertia in some cases leads to incorrect predictions of the behavior of polymers. The forgoing considerations indicate that the inertial effects are of importance in practical applications, e.g., for short time characteristics of materials based on the relevant underlying phenomena''.
One of the differences with the theory in the Degond & Liu work is that we take into account hydrodynamic interactions between
Before we proceed with the details of the limiting approximation, we should note the difficulties in computing the exact formula for friction
The first non-trivial approximation to mobility is the Oseen tensor that corresponds to Green's kernel solution of a Stokes problem for point particles [8,23]. For
$ \mu_{ij}^{OS}=\left \{ 18πη|Rij|(I+ˆRij⊗ˆRij),i≠j16πηaI,i=j, \right. $ |
where
The Rotne-Prager-Yamakawa approximation of the mobility tensor [33,36] is a nonnegative correction to the Oseen tensor that applies to all particle configurations. In addition, Rotne and Prager [33] obtained a way to calculate mobilities for overlapping spheres. The expression for the RPY
$ \mu_{ij}^{RPY}=\left \{ 18πη|Rij|[(1+2a23|Rij|2)I+(1−2a2|Rij|2)ˆRij⊗ˆRij],|Rij|>2a16πηa[(1−9|Rij|32a)I+3|Rij|32aˆRij⊗ˆRij],|Rij|≤2a. \right. $ |
Eigenvalues of the tensor depend continuously on the particles' positions, they are bounded and the RPY mobility is locally integrable in space. On the other hand, the tensor is still not strictly positive. In more detail, when two spheres (of radius
We should note that the exact computation of the eigenvalues of the RPY mobility for
We now turn our focus to the study of the diffusion limit for kinetic equation (1) which begins by introducing the appropriate scaling to separate conservative and dissipative terms. We repeat the scaling procedure in [6] that involves the change of variables,
$ m=\epsilon^{2}, \quad v'=\epsilon v, \quad x'=x .$ |
Thus, (1) becomes (after we re-introduce the notation for
$ ∂tfϵ+Lϵfϵ=0,fϵ(0,x,v)=f0,ϵ(x,v),withLϵ=1ϵ(v⋅∇xfϵ−∇V(x)⋅∇vfϵ)−1ϵ2∇v⋅(G(x)(∇vfϵ+vfϵ)). $ | (2) |
Our main objective is to study the (zero mass) limit
$ \mathcal{M}(v)= e^{-\frac{|v|^{2}}{2}}/(2 \pi)^{\frac{n}{2}} $ | (3) |
and
We give two results of convergence which are discussed in Section 1.2. First, we show in Theorem 1.1 that
We mention that similar macroscopic limits in the parabolic scaling regime have been considered by many authors in the past, and for various collision operators that lie in the fast scale
$F(x,v)\int \sigma (x,v,\omega)\, d\mu (\omega)=\int \sigma(x,v,\omega)F(x,\omega)\, d\mu(\omega) \text{a.e.}$ |
The collision kernel
Finally, we mention that the particle system described here without the inclusion of Brownian motion has also been studied in relevant works (see e.g. [19,20]). In this present work, the derivation of a convection-diffusion limit is carried out for a linear Fokker-Planck equation with dominating friction and Brownian forcing terms governed by an anisotropic tensor
We now bring our attention to the two main results of hydrodynamic convergence. In both of the results we are about to give, we assume that the solution to equation (2) is weak (in the sense that will be explained in Section 2) thus allowing for quite irregular coefficients. We make two assumptions. First, we assume a non-degenerate, nonnegative definite friction such that
$ \mathcal{M}_{eq}(x,v)=e^{-V(x)}\mathcal{M}(v)/Z ,\quad \text{with} \quad Z=(2 \pi)^{\frac{n}{2}}\int e^{-V(x)}\, dx. $ | (4) |
We also consider
In the first theorem, we establish weak convergence of the hydrodynamic variable
$ \| f_{\epsilon}(0,x,v)\|_{L^{2}_{\mathcal{M}_{eq}}} < C \quad \forall \epsilon > 0, \, \text{for some} \quad C > 0 . $ | (5) |
We prove in Section 3 the following theorem.
Theorem 1.1. Let
$ \rho_{\epsilon} \rightharpoonup \rho \quad \mathit{in} \quad C([0,T],w-L^{2}(dx)), $ |
where
$ \partial_{t}\rho=\nabla_{x}\cdot (G^{-1}(\nabla_{x}\rho+ \nabla V(x)\rho)) \quad \mathit{in} \quad C([0,T],\mathcal{D}'(\mathbb{R}^{n}_{x})).$ | (6) |
In the second theorem, we use the relative entropy functional to prove an
$ H(f|g)=\iint f \log \frac{f}{g}\, dv \, dx ,$ | (7) |
and in the present work it will be used to control the distance of a solution
The relative entropy has been used in the study of many asymptotic problems. The earliest example appears to be in the study of the hydrodynamic limit for the Ginzburg-Landau problem in [37]. In [34], the author takes a probabilistic approach to the use of relative entropy. Other more elaborate cases include the Vlasov-Navier-Stokes system [17], hydrodynamic limits for the Boltzmann equation [13].
To prove Theorem 1.2, we make the following assumptions. First, we need conditions that give control of the hydrodynamical tensor
$ \|\nabla^{k}G^{-1}\|_{L^{\infty}(\mathbb{R}_{x}^{n})} < \infty, \quad \|\nabla^{k}(G^{-1}\nabla V(x))\|_{L^{\infty}(\mathbb{R}_{x}^{n})} < \infty, \quad 1 \leq k \leq 3. $ | (A1) |
We also assume that the initial condition
$ae−V(x)≤ρ(0,x)≤Ae−V(x)for someA>a>0andρ(0,x)/e−V(x)∈W3,∞(Rnx).} $ | (A2) |
Finally, the use of the maximum principle for the parabolic equation (6) in
$sup0≤t≤Tlim supx→∞|∇kρ(t,x)e−V(x)|≤CkforCk>0,0≤k≤3,$ | (A3) |
where
Theorem 1.2. Let
$ \sup \limits_{\epsilon > 0} \iint f_{\epsilon}(0,x,v)(1+V(x)+|v|^{2}+\log f_{\epsilon}(0,x,v))\, dv \, dx < C < \infty .$ | (8) |
Moreover, we assume that
$ \int \rho(0,x)\, dx=\iint f_{\epsilon}(0,x,v)\, dv \, dx =1, $ |
as well as condition (A2). We finally make the assumption that the initial data are prepared so that
$ H(f_{\epsilon}(0,\cdot,\cdot)|\rho(0,\cdot)\mathcal{M}(v))\to 0 \quad \mathit{as} \quad \epsilon \to 0 .$ |
Then, for any
$ \sup \limits_{0 \leq t \leq T}H(f_{\epsilon}(t,\cdot,\cdot)|\rho(t,\cdot)\mathcal{M}(v))\to 0 \quad \mathit{as} \quad \epsilon \to 0 .$ |
The rest of the paper is organized as follows. In the next section, we give a formal derivation of the macroscopic limit and present the main steps in the proof of the two theorems mentioned above. We also give an exact description of the type of solutions we assume for problem (2) in each theorem. Sections 3 & 4 are devoted to the proof of each theorem with all the a priori estimates.
We begin by writing the collision operator in form
$ \nabla_{v} \cdot (G(x)(\nabla_{v}f_{\epsilon}+vf_{\epsilon}))=\nabla_{v}\cdot \left(\mathcal{M}(v)G(x)\nabla_{v}\left( \frac{f_{\epsilon}}{\mathcal{M}(v)}\right)\right).$ |
This form is indicative of why the collision part of
$ \rho_{\epsilon}(t,x):=\int f_{\epsilon}\, dv, \quad J_{\epsilon}(t,x):=\int v f_{\epsilon}\, dv, \quad \mathbb{P}_{\epsilon}(t,x):=\int v \otimes v f_{\epsilon}\, dv .$ | (9) |
In the study of the limit
First, integrating (2) in velocity space, we obtain
$ \partial_{t}\rho_{\epsilon}+\frac{1}{\epsilon}\nabla_{x}\cdot J_{\epsilon}=0 .$ | (10) |
We want to derive an expression for the evolution of
$ \epsilon^{2} \partial_{t}J_{\epsilon}(t,x)+\epsilon (\nabla_{x}\cdot\mathbb{P}_{\epsilon}(t,x)+ \nabla V(x)\rho_{\epsilon}(t,x))=-G(x)J_{\epsilon}(t,x).$ | (11) |
As we show in our proof, the main contributions in (11) come from the rhs term and the second and third terms in the lhs. Indeed, rewriting the pressure tensor we have
$ \int v_{i}v_{j}f_{\epsilon}\, dv=-\int \partial_{v_{i}}(\mathcal{M}) v_{j}\frac{f_{\epsilon}}{\mathcal{M}}\, dv=\int \delta_{ij}f_{\epsilon}\, dv+ \int \mathcal{M}\partial_{v_{i}}\left( \frac{f_{\epsilon}}{\mathcal{M}}\right)v_{j}\, dv ,$ |
which implies
$ \mathbb{P}_{\epsilon}(t,x)= \rho_{\epsilon}I+\int \mathcal{M} \nabla_{v}\left( \frac{f_{\epsilon}}{\mathcal{M}} \right)\otimes v \, dv .$ | (12) |
With the help of (12), equation (11) now gives
$ Jϵ=−ϵG−1(x)(∇xρϵ+∇V(x)ρϵ)−ϵ2G−1(x)∂tJϵ−ϵG−1(x)∇x⋅∫M∇v(fϵM)⊗vdv.$ | (13) |
The last term in (13) contains the part
$ J_{\epsilon}(t,x)=-\epsilon G^{-1}(x)(\nabla_{x}\rho_{\epsilon}+\nabla V(x)\rho_{\epsilon}) + \epsilon^{2}\ldots .$ | (14) |
Finally, as we let
$∂tρ+∇x⋅J=0J=−G−1(x)(∇xρ+∇V(x)ρ),$ |
where
It is now time to give a brief step by step outline of the proof of Theorems 1.1 & 1.2. We begin with the first result, in which we show weak convergence to the solution of the limiting problem.
In the first step of the proof, we decompose
In terms of the type of solutions we work with, we shall assume that the operator
Definition 2.1. A mild-weak solution
$ f_{\epsilon} \in C(\mathbb{R}_{+};\mathcal{D}'(\mathbb{R}_{x}^{n}\times \mathbb{R}^{n}_{v}))\cap L^{\infty}_{loc}(\mathbb{R}_{+};L^{2}_{\mathcal{M}_{eq}}\cap L^{\infty}) $ | (15) |
and satisfies
$∬fϵ(T,⋅,⋅)φ(⋅,⋅)dvdx−∬fϵ(0,⋅,⋅)φ(⋅,⋅)dvdx−1ϵ∫T0∬(v⋅∇xφ−∇V(x)⋅∇vφ)fϵdvdxds+1ϵ2∫T0∬∇vφ⋅G(x)(∇vfϵ+vfϵ)dvdxds=0,$ |
for any test function
For the second result, we use the relative entropy of
$ \| f-g\|_{L^{1}}\leq \sqrt{2H(f|g)} .$ |
Thus, by finding
We work with weak solutions of equation (2). Such solutions have been shown to exist in [27] for coefficients that have a Sobolev type of regularity and satisfy certain growth assumptions (see Proposition 1 below).
Definition 2.2. A weak solution
$ X:=\{f_{\epsilon} | \, f_{\epsilon} \in L^{\infty}([0,T];L^{1}\cap L^{\infty}) \quad \& \quad G^{1/2}\nabla_{v}f_{\epsilon} \in (L^{2}([0,T],L^{2}))^{n} \} , $ | (16) |
for all times
$∬fϵ(T,⋅,⋅)φ(T,⋅,⋅)dvdx−∬fϵ(0,⋅,⋅)φ(0,⋅,⋅)dvdx−∫T0∬fϵ∂tφdvdxds−1ϵ∫T0∬(v⋅∇xφ−∇V(x)⋅∇vφ)fϵdvdxds+1ϵ2∫T0∬∇vφ⋅G(x)(∇vfϵ+vfϵ)dvdxds=0,$ |
for any test function
Notice that the definition of a mild-weak solution (given earlier) is similar to the one for weak solutions presented above. Main difference is that in the case of weak solutions, the weak formulation requires that test functions are also functions of time
Proposition 1. (see [27]) Assume that the potential
$ (\mathit{ⅰ}) \quad G(x)v+\nabla V(x) \in (W^{1,1}_{loc}(\mathbb{R}^{n}_{x}\times \mathbb{R}^{n}_{v}))^{n} \qquad (\mathit{ⅱ}) \quad tr(G) \in L^{\infty}(\mathbb{R}^{n}_{x}) $ |
$ (\mathit{ⅲ}) \quad \frac{G(x)v+\nabla V(x)} {1+|x|+|v|} \in (L^{\infty}(\mathbb{R}^{n}_{x}\times \mathbb{R}^{n}_{v}))^{n} $ |
$ (\mathit{ⅳ}) \quad G^{1/2}(x) \in (W^{1,2}_{loc}(\mathbb{R}^{n}_{x}))^{n \times n} \qquad (\mathit{ⅴ})\quad \frac{G^{1/2}(x)}{1+|x|} \in (L^{\infty}(\mathbb{R}^{n}_{x}))^{n \times n}. $ |
Then, given initial data
In this section we collect all the convergence results needed for the proof of Theorem 1.1. We begin with the decomposition of
$ f_{\epsilon}=\mathcal{M}(v)(\rho_{\epsilon}+\tilde{g}_{\epsilon}), $ |
where the hydrodynamic variable
$ \int \tilde{g}_{\epsilon} \mathcal{M}(v) \, dv =0.$ |
We also note that integrating (2) in velocity we obtain the hydrodynamic equation for
$ \partial_{t}\rho_{\epsilon}+\frac{1}{\epsilon} \nabla_{x} \cdot \int \mathcal{M}(v) \nabla_{v}\tilde{g}_{\epsilon} \, dv =0. $ | (17) |
We prove the following.
Lemma 3.1. Assume a mild-weak solution
$ρϵi⇀ρweaklyinL2(dx)∀t≥0,˜gϵi⇀˜gweaklyinL2(M(v)dvdx)∀t≥0,1ϵiG1/2∇v˜gϵi⇀JweaklyinL2(M(v)dvdxdt).$ |
Proof. In order to study the limit
$ \frac{1}{2} \int h^{2}_{\epsilon}(t,x,v) \, d\mu + \frac{1}{\epsilon^{2}} \int_{0}^{t}\!\!\! \int \Big| G^{1/2}(x) \nabla_{v} h_{\epsilon}(s,x,v) \Big|^{2} \, d\mu \, ds= \frac{1}{2} \int h^{2}_{\epsilon}(0,x,v) \, d\mu .$ | (18) |
To simplify the analysis, we consider the basic assumption
$ \int \rho^{2}_{\epsilon} \, dx < \infty ,\quad \iint \tilde{g}^{2}_{\epsilon} \mathcal{M}(v) \, dv \, dx < \infty \quad \forall t\geq 0 . $ | (19) |
For the first bound in (19) we used a simple Jensen inequality on the
$ \frac{1}{\epsilon^2}\int_{0}^{T} \!\!\!\! \iint |G^{1/2}\nabla_{v}\tilde{g}_{\epsilon}|^{2} \mathcal{M}(v) \, dv \, dx \,ds < \infty \quad \text{for any} \quad T > 0.$ | (20) |
Based on equations (19) & (20), and after picking a sequence
It is important to comment that we want something stronger than just
Lemma 3.2. Under the assumptions of Theorem 1.1,
$ \rho_{\epsilon} \rightharpoonup \rho \quad \mathit{in} \quad C([0,T],\text{w}-L^{2}(dx)). $ |
Proof Consider the functional
Now, if we consider
$ H(t2)−H(t1)=∫ϕ(x)ρϵ(t,x)|t=t2t=t1dx(Use weak form of (17))=1ϵ∫t2t1∬∇xϕ(x)⋅∇v˜gϵM(v)dvdxds≤(∫t2t1∬|G−1/2∇xϕ(x)|2M(v)dvdxds)12(∫t2t1∬|G1/2∇v˜gϵ|2ϵ2M(v)dvdxds)12≤(t2−t1)12(∫|G−1/2∇xϕ(x)|2dx)12(∫t2t1∬|G1/2∇v˜gϵ|2ϵ2M(v)dvdxds)12≤C(t2−t1)12. $ |
The Arzelá-Ascoli theorem states that pointwise boundedness and equicontinuity suffice to show that the family
Next, we use a standard density argument to show that
$ \int \phi(x)\rho_{\epsilon_{j}}(t,x) \, dx \to \int \phi(x)\rho(t,x) \, dx \quad \text{as} \quad j \to \infty, $ |
for any
We close by approximating any function
$ \int \rho_{\epsilon}(t,x)(\phi(x)-\phi_{m}(x))\, dx \to 0 \quad \text{as} \quad m \to 0,$ |
uniformly in
Now that weak compactness of
$ϵ∂t˜gϵ−∇x⋅∫M∇v˜gϵdv+v⋅(∇x(ρϵ+˜gϵ)+∇V(x)(ρϵ+˜gϵ))−∇V(x)⋅∇v˜gϵ=1ϵ1M∇v⋅(MG(x)∇v˜gϵ).$ | (21) |
A mild solution of (21) will be in
$ ϵ∬M(v)φ(˜gϵ(t2)−˜gϵ(t1))dvdx+∫t2t1∬M(v)∇xφ⋅(∫M(v′)∇v′˜gϵdv′)dvdxds+∫t2t1∬M(v)v⋅(−∇xφρϵ+φ∇V(x)ρϵ)dvdxds+∫t2t1∬M(v)(−∇xφ⋅∇v˜gϵ+φ∇V(x)⋅∇v˜gϵ)dvdxds−∫t2t1∬M(v)φ∇V(x)⋅∇v˜gϵdvdxds=−1ϵ∫t2t1∬M(v)∇vφ⋅G∇v˜gϵdvdxds, $ | (22) |
where
Lemma 3.3. Under the assumptions of Theorem 1.1, in the limit
$ ∫t2t1∬M(v)v⋅(−∇xφρ+φ∇V(x)ρ)dvdxds=−∫t2t1∬M(v)∇vφ⋅G1/2Jdvdxds∀φ∈C∞c(Rnx×Rnv). $ | (23) |
Proof We use the notation
$I1=ϵ∬M(v)φ(˜gϵ(t2)−˜gϵ(t1))dvdx≤ϵ(∬φ2M(v)dvdx)1/2(∬(|˜gϵ(t2)|2+|˜gϵ(t1)|2)M(v)dvdx)1/2≤Cϵ=O(ϵ).$ |
$I2=∫t2t1∭M(v)M(v′)∇xφ(x,v,s)⋅∇v′˜gϵ(x,v′,s)dv′dvdxds≤ϵ∫t2t1∭M(v)M(v′)|G−1/2∇xφ||G1/2∇v′˜gϵ|ϵdv′dvdxds≤ϵ(∫t2t1∬M(v)|G−1/2∇xφ|2dvdxds)1/2×(1ϵ2∫t2t1∬M(v′)|G1/2∇v′˜gϵ|2dv′dxds)1/2≤Cϵ=O(ϵ).$ |
$I3=∫t2t1∬M(v)v⋅(−∇xφρϵ+φ∇V(x)ρϵ)dvdxds≤(∫t2t1∬M(v)|v|2(|∇xφ|2+|φ∇V(x)|2)dvdxds)1/2(∫t2t1∫ρ2ϵdxds)1/2≤C(∬M(v)|v|2(|∇xφ|2+|φ∇V(x)|2)dx)1/2(∫t2t1∫ρ2ϵdxds)1/2=O(1).$ |
$I4=∫t2t1∬M(v)(−∇xφ⋅∇v˜gϵ+φ∇V(x)⋅∇v˜gϵ)dvdxds≤ϵ(∫t2t1∬M(v)(|G−1/2∇xφ|2+|φG−1/2∇V(x)|2)dvdxds)1/2×(∫t2t1∬1ϵ2|G1/2∇v˜gϵ|2M(v)dvdxds)1/2≤Cϵ=O(ϵ).$ |
$I5=−∫t2t1∬M(v)φ∇V(x)⋅∇v˜gϵdvdxds≤ϵ(∫t2t1∬M(v)|φG−1/2∇V(x)|2dvdxds)1/2×(∫t2t1∬1ϵ2|G1/2∇v˜gϵ|2M(v)dvdxds)1/2≤Cϵ=O(ϵ).$ |
$I6=1ϵ∫t2t1∬M(v)∇vφ⋅G∇v˜gϵdvdxds≤(∫t2t1∬|G1/2∇vφ|2M(v)dvdxds)1/2×(∫t2t1∬1ϵ2|G1/2∇v˜gϵ|2M(v)dvdxds)1/2=O(1).$ |
Now that we have established all the above bounds, we take
Proof of Theorem 1.1. We write the hydrodynamic equation (17) for
$ \int \phi(\cdot) \rho(t,\cdot) \Big|_{t=t_{1}}^{t=t_{2}} \, dx = \int_{t_{1}}^{t_{2}} \!\!\!\! \iint \mathcal{M}(v) \nabla_{x}\phi \cdot G^{-1/2} J \, dv \, dx \, ds \quad \forall \phi \in C^{\infty}_{c}(\mathbb{R}^{n}_{x}). $ | (24) |
In order to give the limiting equation for
We begin by taking the cut-off function
$\eta_{\delta_{2}}(v)=\frac{1}{\delta^{n}_{2}}\eta \left( \frac{v}{\delta_{2}} \right) \quad \text{for} \quad \eta \in C^{\infty}_{c}(\mathbb{R}^{n}_{v}) \, \, \text{such that} \,\, \int \eta(v) \, dv=1 . $ |
We now take the function
By the substitution of
$∫t2t1∬M(v)v⋅(−∇xφδ1,δ2ρ+φδ1,δ2∇V(x)ρ)dvdxds=−∫t2t1∬M(v)∇vφδ1,δ2⋅G1/2Jdvdxds.$ |
We also have
$∇vφδ1,δ2(x,v)=∇v((∇xϕ⋅G−1vχδ1(v))⋆ηδ2)=∇v(∇xϕ⋅G−1vχδ1(v))⋆ηδ2=(∇xϕ⋅G−1χδ1(v)+∇xϕ⋅G−1v∇vχδ1(v))⋆ηδ2,$ |
where we use the fact that
A typical estimate for
$\int \phi(\cdot) \rho(t,\cdot) \Big|_{t=t_{1}}^{t=t_{2}} \, dx =\int_{t_{1}}^{t_{2}}\!\!\!\! \int \left( \nabla_{x} \cdot (G^{-1}\nabla_{x}\phi)+\nabla_{x}\phi \cdot G^{-1}\nabla V(x) \right) \rho \, dx \, ds , $ |
which is the weak form of (6). This completes the proof of Theorem 1.1.
To prove Theorem 1.2, we begin with the a priori estimates that will be used later to show that the remainder term
The following proposition contains all the estimates needed for a solution
Proposition 2. Assume
(ⅰ)
(ⅱ)
(ⅲ)
Proof. (ⅰ) We introduce the free energy associated with the F-P equation (2),
$ \mathcal{E}(f_{\epsilon}):= \iint f_{\epsilon} \left( \ln{f_{\epsilon}} +\frac{|v|^{2}}{2}+V(x) \right)\, dv \, dx .$ |
The free energy is dissipated since
$ \frac{d}{dt}\mathcal{E}(f_{\epsilon})= -\frac{1}{\epsilon^{2}}\iint |d_{\epsilon}|^{2} \, dv \, dx , $ |
where
$ d_{\epsilon}= G^{1/2}(x)(v \sqrt{f_{\epsilon}} +2\nabla_{v}\sqrt{f_{\epsilon}})=2 \sqrt{\mathcal{M}} G^{1/2}(x)\nabla_{v} \sqrt{\frac{f_{\epsilon}}{\mathcal{M}}}. $ |
The dissipation of energy implies
$ \mathcal{E}(f_{\epsilon}(T,\cdot,\cdot)) +\frac{1}{\epsilon^{2}} \int_{0}^{T}\!\!\!\! \iint |d_{\epsilon}|^{2} \, dv \, dx \, ds = \mathcal{E}(f_{\epsilon}(0,\cdot,\cdot)) .$ | (25) |
(ⅱ) It also follows from (25) that
$ \int_{0}^{T}\!\!\!\! \iint |d_{\epsilon}|^{2} \, dv \, dx \, dt \leq C \epsilon^{2} , \quad T > 0 .$ |
(ⅲ) We now give the bound for
$ ab \leq h(a)+h^{*}(b),$ |
where
$ \frac{1}{4}\iint |v|^{2}f_{\epsilon}\, dv \, dx \leq \iint f_{\epsilon}\log \frac{f_{\epsilon}}{\mathcal{M}_{eq}} \, dv \, dx + \iint e^{\frac{|v|^{2}}{4}-1} \mathcal{M}_{eq}\, dv \, dx .$ |
This implies that
$ \iint |v|^{2}f_{\epsilon}(t,v,x) \, dv \, dx \leq C \quad \text{for some} \, \, C > 0, \, \, \, \forall t \in [0,T],$ |
since
We now prove the following result for the evolution of the relative entropy.
Lemma 4.1. Assume a sufficiently regular solution
$ H(f_{\epsilon}(t,\cdot,\cdot)|\rho(t,\cdot) \mathcal{M}) \leq H(f_{\epsilon}(0,\cdot,\cdot)|\rho(0,\cdot) \mathcal{M}) +\int_{0}^{t}r_{\epsilon}(s) \, ds , $ | (26) |
for a remainder term
$ r_{\epsilon}(t)=- \int \left( \epsilon \partial_{t}J_{\epsilon} + \nabla_{x}\cdot \left( \int \mathcal{M} \nabla_{v} \left( \frac{f_{\epsilon}}{\mathcal{M}}\right) \otimes v \, dv \right)\right) \cdot G^{-1} \left( \frac{\nabla \rho}{\rho} +\nabla V(x)\right)\, dx . $ | (27) |
Proof. We start with the computation of the evolution of the
$ ddtH(ρϵ|ρ)=ddt∫ρϵlogρϵρdx=ddt∫ρϵlogρϵdx−ddt∫ρϵlogρdx=∫∂tρϵ(logρϵ+1)dx−∫∂tρϵlogρdx−∫ρϵρ∂tρdx(Use (10),(6))=1ϵ∫Jϵ⋅∇ρϵρϵdx−1ϵ∫Jϵ⋅∇ρρdx−∫ρϵρ∇⋅(G−1(∇ρ+∇V(x)ρ))dx=1ϵ∫Jϵ⋅(∇ρϵρϵ−∇ρρ)dx+∫ρ∇(ρϵρ)⋅G−1(∇ρρ+∇V(x))dx=1ϵ∫Jϵ⋅(∇ρϵρϵ−∇ρρ)dx+∫(∇ρϵρϵ−∇ρρ)⋅G−1(∇ρρ+∇V(x))ρϵdx=∫(∇ρϵρϵ−∇ρρ)⋅(1ϵJϵρϵ+G−1(∇ρρ+∇V(x)))ρϵdx=−∫G(1ϵJϵρϵ+G−1(∇ρρ+∇V(x)))⋅(1ϵJϵρϵ+G−1(∇ρρ+∇V(x)))ρϵdx+r′ϵ=−∫|1ϵG1/2Jϵρϵ+G−1/2(∇ρρ+∇V(x))|2ρϵdx+r′ϵ. $ |
In the second to last equality, we made use of
$ ∇ρϵρϵ−∇ρρ=−1ϵGJϵρϵ−∇ρρ−∇V(x)−ϵ∂tJϵρϵ−1ρϵ∇x⋅∫M∇v(fϵM)⊗vdv, $ | (28) |
which is derived directly from (13). The remainder term
$ r'_{\epsilon}= \! - \! \int \!\! \left( \epsilon \partial_{t}J_{\epsilon} +\nabla_{x}\! \cdot \!\! \int \mathcal{M} \nabla_{v}\left( \frac{f_{\epsilon}}{\mathcal{M}}\right) \otimes v \, dv \right) \! \cdot \! \left( \frac{1}{\epsilon}\frac{J_{\epsilon}}{\rho_{\epsilon}}+ G^{-1} \left( \frac{\nabla \rho}{\rho} + \nabla V(x) \right)\!\! \right) dx .$ |
Remark 1. Notice that
At this point, we compute the evolution of
$ H(fϵ|ρM)=∬fϵlogfϵdvdx−∬fϵlog(ρM)dvdx=∬fϵlogfϵMeqdvdx+∬fϵlogMeqρMdvdx=∬fϵlogfϵMeqdvdx+∫ρϵloge−V(x)ρdx=H(fϵ|Meq)−∫ρϵlogρdx−∫ρϵV(x)dx.$ | (29) |
The reason we introduced
$ ddt∬fϵlogfϵMeqdvdx=−1ϵ2∬fϵ|G1/2∇vlogfϵM|2dvdx=−1ϵ2∬fϵ|G1/2(∇vfϵfϵ+v)|2dvdx≤−1ϵ2∫|G1/2Jϵ|2ρϵdx.$ | (30) |
The last inequality in (30) is in fact due to Hölder,
$∫|G1/2Jϵ|2ρϵdx=∫(∫G1/2(v+∇vfϵfϵ)fϵdv)2ρϵdx≤∬|G1/2(∇vfϵfϵ+v)|2fϵdvdx.$ |
Combining equations (29) & (30), we obtain
$ddtH(fϵ|ρM)=ddtH(fϵ|Meq)−ddt∫ρϵlogρdx−ddt∫ρϵV(x)dx≤−1ϵ2∫|G1/2Jϵ|2ρϵdx−ddt∫ρϵlogρdx−1ϵ∫Jϵ⋅∇V(x)dx.$ |
The computation of
$ ddtH(fϵ|ρM)≤−1ϵ2∫|G1/2Jϵ|2ρϵdx−1ϵ∫Jϵ⋅∇V(x)dx−1ϵ∫Jϵ⋅∇ρρdx+∫(∇ρϵρϵ−∇ρρ)⋅G−1(∇ρρ+∇V(x))ρϵdx(Use (28))=−∫1ϵJϵ⋅(1ϵGJϵρϵ+∇ρρ+∇V(x))dx−∫(1ϵGJϵρϵ+∇ρρ+∇V(x))⋅G−1(∇ρρ+∇V(x))ρϵdx+rϵ=−∫(1ϵGJϵρϵ+∇ρρ+∇V(x))⋅(1ϵJϵρϵ+G−1(∇ρρ+∇V(x)))ρϵdx+rϵ=−∫|1ϵG1/2Jϵρϵ+G−1/2(∇ρρ+∇V(x))|2ρϵdx+rϵ, $ | (31) |
with a remainder term
We already gave the formal computation for
$ \int_{0}^{T}r_{1,\epsilon} \, dt =-\epsilon \int_{0}^{T}\!\!\!\! \iint \partial_{t}f_{\epsilon} \, v \cdot G^{-1}\left( \frac{\nabla \rho}{\rho} +\nabla V(x)\right) \, dv \, dx \, dt ,$ |
$ \int_{0}^{T} r_{2,\epsilon} \, dt =\int_{0}^{T}\!\!\!\! \iint \left(\mathcal{M}\, v \otimes \nabla_{v} \left( \frac{f_{\epsilon}}{\mathcal{M}}\right)\right) : \nabla \left( G^{-1}\left( \frac{\nabla \rho}{\rho} +\nabla V(x)\right)\right) \, dv \, dx \, dt .$ |
Our task is to show that both integrals vanish as
In the process of controlling the two terms, we introduce a new notation for expressions involving the hydrodynamic variable
$ |∫T0r2,ϵdt|=|∫T0∬Mv⊗∇v(fϵM):Ddvdxdt|≤∫T0∬|√fϵ(v⊗G−1/2(x)dϵ):D|dvdxdt≤Cϵ‖D‖∞(∫T0∬|G−1/2(x)dϵ|2ϵ2dvdxdt)1/2(∫T0∬|v|2fϵdvdxdt)1/2.$ | (32) |
Finally, for the first term we have
$ |∫T0r1,ϵdt|=|−ϵ∬(fϵ(T,v,x)−fϵ(0,v,x))v⋅Edvdx+ϵ∫T0∬fϵv⋅Fdvdxdt|≤ϵ‖E‖∞((∬fϵ(T,x,v)|v|2dvdx)1/2+(∬fϵ(0,x,v)|v|2dvdx)1/2)+ϵT1/2‖F‖∞(∫T0∬fϵ(s,x,v)|v|2dvdxds)1/2. $ | (33) |
We now show why the terms
Stability estimates for the terms
The control of terms
Lemma 4.2. Let
Proof. First, we define
The time evolution of
$∂t(ρe−V(x))=∇⋅(e−V(x)G−1(x)∇ρe−V(x))e−V(x)=∇⋅(G−1(x)∇ρe−V(x))−∇V(x)⋅G−1(x)∇ρe−V(x).$ |
In the notation we introduced for
$ \partial_{t}h_{0}=\nabla \cdot (G^{-1}(x) \nabla h_{0}) -\nabla V(x)\cdot G^{-1}(x)\nabla h_{0} .$ | (34) |
Differentiating equation (34)
For instance, for
$ddt∫hp0dx+p(p−1)∫hp−20∇h0⋅G−1(x)∇h0dx−∫hp0∇⋅(G−1(x)∇V(x))dx=0,p>1,$ |
which under the assumption
With a bit more work we obtain (see [27])
$ \partial_{t}\left( \frac{|h_{1}|^{2}}{2}\right)-\nabla \cdot \left( G^{-1}(x)\nabla \left( \frac{|h_{1}|^{2}}{2}\right)\right) +\nabla V(x)\cdot G^{-1}(x)\nabla \left(\frac{|h_{1}|^{2}}{2} \right)\leq C|h_{1}|^{2},$ | (35) |
where the constant
Remark 2. The careful reader has already noticed that Lemma 4.2 is the only part in the proof of Theorem 1.2 where we made use of conditions (A1)-(A3). These conditions appear to be optimal, at least when the diffusion limit is considered in unbounded space. For instance, the control of coefficients in (A1) is necessary for showing the propagation of Lipschitz regularity by deriving (35).
Proof of Theorem 1.2. In Lemma 4.1 we have shown that the evolution of the relative entropy is controlled by the term
The computations involving the relative entropy in this Section have been so far performed at a formal level, i.e., by assuming smooth solutions with derivatives vanishing polynomially fast. It is not a hard task to give a rigorous derivation of the results by performing a standard regularization argument which amounts to regularizing all the involved functions e.g. by convoluting with a mollifier, perform all the computations with the regularized ones, and finally pass to the limit. In fact, the whole procedure we present here follows closely the steps of the regularization argument in [27].
The regularization procedure will be presented here for the simpler case
The equation for the regularized
$ \partial_{t}f_{\epsilon,\delta}+L_{\epsilon}f_{\epsilon,\delta}=U^{1}_{\epsilon,\delta} +\nabla_{v}\cdot (G^{1/2}R^{1}_{\epsilon,\delta}) ,$ | (36) |
where the expressions
$U1ϵ,δ=−1ϵ[ηδ,v⋅∇x−∇V(x)⋅∇v](fϵ)+1ϵ2[ηδ,(Gv)⋅∇v](fϵ)+1ϵ2[ηδ,∇v⋅(Gv)](fϵ)+1ϵ2[ηδ,G1/2∇v](G1/2∇vfϵ),R1ϵ,δ=1ϵ2[ηδ,G1/2∇v](fϵ).$ |
The notation we follow for commutators is
$ [\eta_{\delta},c](f)=\eta_{\delta}\star (cf)-c(\eta_{\delta} \star f) \;\; \text{and} \;\; [\eta_{\delta},c_{1}](c_{2}f)=\eta_{\delta}\star (c_{1}\cdot c_{2}f)-c_{1}\cdot(\eta_{\delta} \star c_{2}f),$ |
where
$ \partial_{t}\rho_{\epsilon,\delta}+\frac{1}{\epsilon}\nabla_{x} \cdot J_{\epsilon,\delta}= \int U^{1}_{\epsilon,\delta}\, dv ,$ | (37) |
where
The regularized limiting equation for
$ \partial_{t}\rho_{\delta}=\nabla_{x} \cdot (G^{-1}(\nabla_{x} \rho_{\delta} +\nabla V(x)\rho_{\delta}))+U^{2}_{\delta}+\nabla_{x} \cdot (G^{-1/2}R^{2}_{\delta}) ,$ | (38) |
with
$U2δ=[ηδ,∇x⋅(G−1∇V(x))](ρ)+[ηδ,G−1∇V(x)⋅∇x](ρ)+[ηδ,∇x⋅G−1/2](G−1/2∇xρ)+[ηδ,G−1/2∇x](G−1/2∇xρ),R2δ=[ηδ,G−1/2∇x](ρ).$ |
It has be shown (see Section 5.3 in [27]) that
$U1ϵ,δ,U2δδ→0→0L∞+L2([0,T],L1loc)R1ϵ,δ,R2δδ→0→0L∞([0,T],L2loc),$ |
for fixed
Next, multiplying (36) by
$ ϵ2∂tJϵ,δ+ϵ(∇xρϵ,δ+∇V(x)ρϵ,δ)+ϵ∇x⋅∫M∇v(fϵ,δM)⊗vdv+GJϵ,δ=ϵ2∫vU1ϵ,δdv−ϵ2∫G1/2R1ϵ,δdv.$ | (39) |
Since we want to take advantage of the fact that commutators vanish (as
For this reason, we introduce a relative entropy integral with a cut-off
$ddtHR(ρϵ,δ|ρδ)=∫∂tρϵ,δ(logρϵ,δ+1)ϕRdx−∫∂tρϵ,δlogρδϕRdx−∫ρϵ,δρδ∂tρδϕRdx=…=I1+I2+I3.$ |
The expressions
$I1(ϵ,δ,R)=∬U1ϵ,δ(logρϵ,δ+1)ϕRdvdx−∬U1ϵ,δlogρδϕRdvdx−∬(U2δ+∇x⋅(G−1/2R2δ))ρϵ,δρδϕRdvdx,$ |
$I2(ϵ,δ,R)=1ϵ∫Jϵ,δ⋅∇ϕR(logρϵ,δ+1)dx−1ϵ∫Jϵ,δ⋅∇ϕRlogρδdx+∫ρϵ,δ∇ϕR⋅G−1(∇xρδρδ+∇V(x))dx,$ |
and
$ I_{3}(\epsilon,\delta,R)=-\int \Big| \frac{1}{\epsilon}G^{1/2} \frac{J_{\epsilon,\delta}}{\rho_{\epsilon,\delta}}+G^{-1/2} \left( \frac{\nabla \rho_{\delta}}{\rho_{\delta}}+\nabla V(x)\right)\Big|^{2}\rho_{\epsilon,\delta}\phi_{R}\, dx+r'_{\epsilon,\delta,R} ,$ |
with the remainder term being
$r′ϵ,δ,R=−∫(ϵ∂tJϵ,δ+∇x⋅∫M∇v(fϵ,δM)⊗vdv−ϵ∫vU1ϵ,δdv+ϵ∫G1/2R1ϵ,δdv)⋅(1ϵJϵ,δρϵ,δ+G−1(∇ρδρδ+∇V(x)))ϕRdx.$ |
The trick is to take both
If we consider
A bound for the first term in
$ \Big| \frac{1}{\epsilon}\! \int_{0}^{T}\!\!\!\!\int \!\! J_{\epsilon,\delta} \cdot \nabla \phi_{R}(\log \rho_{\epsilon,\delta}+1)\, dx dt \Big| \leq \frac{1}{R} \| \nabla \phi\|_{L^{\infty}} \!\! \int_{0}^{T}\!\!\!\!\int_{|x| > R}\!\!\! \frac{|J_{\epsilon,\delta}|} {\epsilon} |(\log \rho_{\epsilon,\delta}+1)| \, dx dt.$ |
The exact same treatment holds for the second term in
$|∫T0∫ρϵ,δ∇ϕR⋅G−1(∇xρδρδ+∇V(x))dxdt|≤C‖G−1(x)1+|x|‖L∞‖∇ϕ‖L∞⋅∫T0∫|x|>R|ρϵ,δ||∇xρδρδ+∇V(x)|dxdt,$ |
which vanishes as
The last term in
$ \iint G^{-1/2}R^{2}_{\delta}\cdot \nabla_{x}\left(\frac{\rho_{\epsilon,\delta}}{\rho_{\delta}}\right)\phi_{R}\, dv dx +\iint G^{-1/2}R^{2}_{\delta}\cdot \nabla \phi_{R} \, \frac{\rho_{\epsilon,\delta}}{\rho_{\delta}} \, dv dx , $ |
contains two terms. The first one is treated like the terms in
In the last step, we send
$ \lim \limits_{\epsilon \to 0}H_{R(\epsilon)}(\rho_{\epsilon,\delta(\epsilon)}(T,\cdot)|\rho_{\delta(\epsilon)}(T)) \leq \lim \limits_{\epsilon \to 0}H_{R(\epsilon)}(\rho_{\epsilon,\delta(\epsilon)}(0,\cdot)|\rho_{\delta(\epsilon)}(0)) + \!\! \int_{0}^{T}\!\!\!\lim \limits_{\epsilon \to 0} r'_{\epsilon,\delta,R} \, dt. $ |
We finish with the estimates of previous subsection that prove that the remainder term vanishes as
$ \lim \limits_{\epsilon \to 0}H(\rho_{\epsilon}(T,\cdot)|\rho(T,\cdot)) \leq \lim \limits_{\epsilon \to 0}H(\rho_{\epsilon}(0,\cdot)|\rho(0,\cdot)) .$ |
Finally, we can remove the assumption on the smoothness of coefficients by regularizing them in
Remark 3. The regularization procedure above was carried out for the
$ f_{\epsilon}-\rho \mathcal{M}=f_{\epsilon}- \rho_{\epsilon}\mathcal{M}+(\rho_{\epsilon}-\rho)\mathcal{M} .$ |
It is trivial to show that the second term
$‖fϵ−ρϵM‖L1≤√2(∬fϵlogfϵρϵMdvdx)1/2≤√2ϵ(∬|G−1/2dϵ|2ϵ2dvdx)1/2≤√2ϵC→0asϵ→0.$ |
The inequalities used in the first line are the Csiszár-Kullback-Pinsker and log-Sobolev in that order. Finally, the a priori energy bound (used in second line) concludes the argument.
The author is indebted to C. David Levermore and P-E Jabin for the discussions that led to the birth of this work. Special thanks to Athanasios Tzavaras for the initial motivation that led to the consideration of this problem. Manoussos Grillakis and Julia Dobrosotskaya helped by proofreading this article.
[1] | Boorstein DJ (1983) The Discoverers, New York: Random House. |
[2] |
Hubel DH, Wiesel TN (1959) Receptive fields of single neurons in the cat's striate cortex. J Physiol 148: 574–591. doi: 10.1113/jphysiol.1959.sp006308
![]() |
[3] |
Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195: 215–243. doi: 10.1113/jphysiol.1968.sp008455
![]() |
[4] |
Sceniak MP, Hawken MJ, Shapley R (2001) Visual spatial characterization of macaque V1 neurons. J Neurophysiol 85: 1873–1887. doi: 10.1152/jn.2001.85.5.1873
![]() |
[5] |
Greene E (2007) Recognition of objects displayed with incomplete sets of discrete boundary dots. Perceptual Mot Skills 104: 1043–1059. doi: 10.2466/pms.104.4.1043-1059
![]() |
[6] |
Greene E (2007) The integration window for shape cues as a function of ambient illumination. Behav Brain Funct 3: 15. doi: 10.1186/1744-9081-3-15
![]() |
[7] |
Greene E (2015) Evaluating letter recognition, flicker fusion, and the talbot-plateau law using microsecond-duration flashes. PLoS One 10: e0123458. doi: 10.1371/journal.pone.0123458
![]() |
[8] |
Greene E (2016) Recognizing words and reading sentences with microsecond flash displays. PLoS One 11: e0145697. doi: 10.1371/journal.pone.0145697
![]() |
[9] |
Greene E (2008) Additional evidence that contour attributes are not essential cues for object recognition. Behav Brain Funct 4: e26. doi: 10.1186/1744-9081-4-26
![]() |
[10] | Greene E (2016) How do we know whether three dots form an equilateral triangle? JSM Brain Sci 1: 1002. |
[11] |
Fukushima K (1980) Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern 36: 193–202. doi: 10.1007/BF00344251
![]() |
[12] |
Rolls ET (1992) Neurophysiological mechanisms underlying face processing within and beyond the temporal cortical visual areas. Phil Trans R Soc 335: 11–21. doi: 10.1098/rstb.1992.0002
![]() |
[13] |
Wallis G, Rolls ET (1997) Invariant face and object recognition in the visual system. Prog Neurobiol 51: 167–194. doi: 10.1016/S0301-0082(96)00054-8
![]() |
[14] |
Rodríguezsánchez AJ, Tsotsos JK (2012) The roles of endstopped and curvature tuned computations in a hierarchical representation of 2D shape. PLoS One 7: e42058. doi: 10.1371/journal.pone.0042058
![]() |
[15] |
Riesenhuber M, Poggio T (2000) Models of object recognition. Nature Neurosci Suppl 3: 1199–1204. doi: 10.1038/81479
![]() |
[16] |
Pasupathy A, Connor CE (2001) Shape representation in area V4: Position-specific tuning for boundary conformation. J Neurophysiol 86: 2505–2519. doi: 10.1152/jn.2001.86.5.2505
![]() |
[17] |
Suzuki N, Hashimoto N, Kashimori Y, et al. (2004) A neural model of predictive recognition in form pathway of visual cortex. Bio Systems 76: 33–42. doi: 10.1016/j.biosystems.2004.05.004
![]() |
[18] |
Pinto N, Cox DD, DeCarlo JJ (2008) Why is real-world visual object recognition hard? PLoS Comput Biol 4: e27. doi: 10.1371/journal.pcbi.0040027
![]() |
[19] |
Greene E, Hautus MJ (2017) Demonstrating invariant encoding of shapes using a matching judgment protocol. AIMS Neurosci 4: 120–147. doi: 10.3934/Neuroscience.2017.3.120
![]() |
[20] |
Greene E, Hautus MJ (2018) Evaluating persistence of shape information using a matching protocol. AIMS Neurosci 5:81-96. doi: 10.3934/Neuroscience.2018.1.81
![]() |
[21] | Greene E, Onwuzulike O (2017) What constitutes elemental shape information for biological vision? Trends Artif Intell 1: 22–26. |
[22] | Greene E (2018) Rapid de novo shape encoding: A challenge to connectionist modeling. arXiv: 1801.02256v1 |
[23] | Karplus I, Goren M, Algorn D (1982) A preliminary experimental analysis of predator face recognition by Chromis caenuleus (Pisces, Pomacentridae). Z Tierpsychol 58: 53–65. |
[24] |
Siebeck UE, Parker AN, Sprenger D, et al. (2010) A species of reef fish that uses untraviolet pattterns for covert face recognition. Curr Biol 20: 407–410. doi: 10.1016/j.cub.2009.12.047
![]() |
[25] |
Karplus I (2006) Predator recognition and social facilitation of predator avoidance in coral reef fish Dascyllus marginatus juveniles. Mar Ecol Prog Ser 319: 215–223. doi: 10.3354/meps319215
![]() |
[26] |
Siebeck UE, Litherland L, Wallis GM (2009) Shape learning and discrimination in reef fish. J Exp Biol 212: 2113–2119. doi: 10.1242/jeb.028936
![]() |
[27] |
Newport C, Wallis G, Reshitnyk Y, et al. (2016) Discrimination of human faces by archerfish (Toxotes catareus). Sci Rep 6: 27523. doi: 10.1038/srep27523
![]() |
[28] |
Abbas F, Martin MP (2014) Fish vision: Size selectivity in the zebrafish retinotectal pathway. Curr Biol 24: 1048–1050. doi: 10.1016/j.cub.2014.09.043
![]() |
[29] |
Greene E, Waksman P (1987) Grid analysis: Continuing the search for a metric of shape. J Math Psychol 31: 338–365. doi: 10.1016/0022-2496(87)90020-4
![]() |
[30] | Waksman P, Greene E (1988) Optical image encoding and comparing using scan autocorrelation. United States Patent 4745633. |
[31] | Greene E (2010) Encoding system providing discrimination, classification, and recognition of shapes and patterns. United States Patent 7809195. |
[32] | Greene E (2016) Retinal encoding of shape boundaries. JSM Anat Physiol 1: e1002. |
[33] |
Dacey DM (1989) Axon-bearing amacrine cells of the Macaque monkey retina. J Comp Neurol 284: 275–293. doi: 10.1002/cne.902840210
![]() |
[34] | Rodieck RW, (1998) The primate retina, In: Steklis HD, Erwin J (eds), Comparative Primate Biology, Vol. 4, Neuroscience, New York, 203–278. |
[35] | Ammermuller J, Weller R (1988) Physiological and morphological characterization of OFF-center amacrine cells in the turtle retina. J Comp Physiol 273: 137–148. |
[36] |
Famiglietti EV (1992) Polyaxonal amacrine cells of rabbit retina: Morphology and stratification of PA1 cells. J Comp Neurol 316: 391–405. doi: 10.1002/cne.903160402
![]() |
[37] |
Famiglietti EV (1992) Polyaxonal amacrine cells of rabbit retina: Size and distribution of PA1 cells. J Comp Neurol 316: 406–421. doi: 10.1002/cne.903160403
![]() |
[38] |
Freed MA, Pflug R, Kolb H, et al. (1996) ON-OFF amacrine cells in cate retina. J Comp Neural 364: 556–566. doi: 10.1002/(SICI)1096-9861(19960115)364:3<556::AID-CNE12>3.0.CO;2-N
![]() |
[39] |
Volgi B, Xin D, Amarillo Y, et al. (2001) Morphology and physiology of the polyaxonal amacrine cells in the rabbit retina. J Comp Neurol 440: 109–125. doi: 10.1002/cne.1373
![]() |
[40] |
Wright LL, Vaney DI (2004) The type 1 polyaxonal amacrine cells of the rabbit retina: A tracer-coupled study. Visual Neurosci 21: 145–155. doi: 10.1017/S0952523804042063
![]() |
[41] |
Greene E (2007) Retinal encoding of ultrabrief shape recognition cues. PLoS One 2: e871. doi: 10.1371/journal.pone.0000871
![]() |
[42] |
Nordberg H, Hautus M, Greene E (2018) Visual encoding of partial unknown shape boundaries. AIMS Neurosci 5: 132–147. doi: 10.3934/Neuroscience.2018.2.132
![]() |
[43] |
Bullock TH (1993) Integrative systems research in the brain: Resurgence and new opportunities. Ann Rev Neurosci 16: 1–15. doi: 10.1146/annurev.ne.16.030193.000245
![]() |
[44] |
Hopfield JJ (1995) Pattern recognition computation using action potential timing for stimulus representation. Nature 376: 33–36. doi: 10.1038/376033a0
![]() |
[45] |
Thorpe S, Fize D, Marlot C (1996) Speed of processing in the human visual system. Nature 381: 520–522. doi: 10.1038/381520a0
![]() |
[46] |
Thorpe S, Delorme A, VanRullen R (2001) Spike-based strategies for rapid processing. Neural Net 14: 715–725. doi: 10.1016/S0893-6080(01)00083-1
![]() |
[47] | Vanrullen R, Thorpe SJ (2001) Is it a bird? Is it a plane? Ultra-rapid visual categorisation of natural and artifactual objects. Perception 30: 655–688. |
[48] |
Vanrullen R, Thorpe SJ (2002) Surfing a spike wave down the ventral stream. Vision Res 42: 2593–2615. doi: 10.1016/S0042-6989(02)00298-5
![]() |
[49] | Ahissar E, Arieli A (2012) Seeing via miniature eye movements: A dynamic hypothesis for vision. Front Comput Neurosci 6: e89. |
[50] |
Rucci M, Victor JD (2015) The unsteady eye: An information-processing stage, not a bug. Trends Neurosci 38: 195–205. doi: 10.1016/j.tins.2015.01.005
![]() |
[51] |
Gollisch T, Meister M (2008) Rapid neural coding in the retina with relative spike latencies. Science 319: 1108–1111. doi: 10.1126/science.1149639
![]() |
[52] | Greene E, Patel Y (2018) Scan encoding of two-dimensional shapes as an alternative neuromorphic concept. Trends Artific Intell 1: 27–33. |
1. | Francesca Anceschi, Yuzhe Zhu, On a spatially inhomogeneous nonlinear Fokker–Planck equation : Cauchy problem and diffusion asymptotics, 2024, 17, 1948-206X, 379, 10.2140/apde.2024.17.379 |