Research article Special Issues Export file:

Format

• RIS(for EndNote,Reference Manager,ProCite)
• BibTex
• Text

Content

• Citation Only
• Citation and Abstract

The ergodic limit for weak solutions of elliptic equations with Neumann boundary condition

1 Laboratoire Jacques-Louis Lions, Sorbonne Université, Boîte courrier 187, 4 place Jussieu, 75252 Paris cedex 05, France
2 Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy

This contribution is part of the Special Issue: Critical values in nonlinear pdes – Special Issue dedicated to Italo Capuzzo Dolcetta
Guest Editor: Fabiana Leoni

## Abstract    Full Text(HTML)    Figure/Table    Related pages

We consider the so-called it ergodic problem for weak solutions of elliptic equations in divergence form, complemented with Neumann boundary conditions. The simplest example reads as the following boundary value problem in a bounded domain of $\mathbb{R}^N$ \begin{cases} -div(A(x)\nabla u) + \lambda = H(x, \nabla u) \qquad \hbox{in $\Omega$,} & \\ A(x) \nabla u\cdot \vec n=0\qquad \hbox{on $\partial \Omega$,} & \end{cases} where A(x) is a coercive matrix with bounded coefficients, and $H(x,\nabla u)$ has Lipschitz growth in the gradient and measurable $x$-dependence with suitable growth in some Lebesgue space (typically, $|H(x,\nabla u)|\leq b(x) |\nabla u|+ f(x)$ for functions b(x)∈ LN(Ω) and f (x) ∈ Lm(Ω), $m\geq 1$). We prove that there exists a unique real value $\lambda$ for which the problem is solvable in Sobolev spaces and the solution is unique up to addition of a constant. We also characterize the ergodic limit, say the singular limit obtained by adding a vanishing zero order term in the equation. Our results extend to weak solutions and to data in Lebesgue spaces LN(Ω) (or in the dual space (H1(Ω))'), previous results which were proved in the literature for bounded solutions and possibly classical or viscosity formulations.
Figure/Table
Supplementary
Article Metrics

Citation: François Murat, Alessio Porretta. The ergodic limit for weak solutions of elliptic equations with Neumann boundary condition. Mathematics in Engineering, 2021, 3(4): 1-20. doi: 10.3934/mine.2021031

References

• 1. Arisawa M, Lions PL (1998) On ergodic stochastic control. Commun Part Diff Eq 23: 2187-2217. • 2. Bensoussan A, Frehse J (1987) On Bellman equation of ergodic type with quadratic growth Hamiltonian, In: Contributions to Modern Calculus of Variations, Wiley, 13-26.
• 3. Bardi M, Capuzzo-Dolcetta I (1997) Optimal Control and Viscosity Solutions of Hamilton-JacobiBellman Equations, Boston: Birkhäuser.
• 4. Bensoussan A, Lions JL, Papanicolaou G (1978) Asymptotic Analysis for Periodic Structures, Amsterdam: North-Holland.
• 5. Betta F, Mercaldo A, Murat F, et al. (2003) Existence of renormalized solutions to nonlinear elliptic equations with a lower-order term and right-hand side a measure. J Math Pure Appl 82: 90-124. • 6. Betta F, Mercaldo A, Murat F, et al. (2005) Uniqueness results for nonlinear elliptic equations with a lower order term. Nonlinear Anal 63: 153-170. • 7. Boccardo L, Gallouët T (1992) Nonlinear elliptic equations with right hand side measures. Commun Part Diff Eq 17: 641-655.
• 8. Capuzzo Dolcetta I, Menaldi JL (1988) Asymptotic behavior of the first order obstacle problem. J Differ Equations 75: 303-328. • 9. Davini A, Fathi A, Iturriaga R, et al. (2016) Convergence of the solutions of the discounted equation. Invent Math 206: 29-55. • 10. Droniou J, Vazquez JL (2009) Noncoercive convection-diffusion elliptic problems with Neumann boundary conditions. Calc Var 34: 413-434. • 11. Gilbarg D, Trudinger N (1983) Partial Differential Equations of Second Order, 2 Eds., BerlinNew-York: Springer-Verlag.
• 12. Gimbert F (1985) Problèmes de Neumann quasilineaires. J Funct Anal 68: 65-72.
• 13. Ishii H, Mitake H, Tran HV (2017) The vanishing discount problem and viscosity Mather measures. Part 1: the problem on a torus. J Math Pure Appl 108: 125-149.
• 14. Leone C, Porretta A (1998) Entropy solutions for nonlinear elliptic equations in L1. Nonlinear Anal Theor 32: 325-334. • 15. Lions PL (1985) Quelques remarques sur les problèmes elliptiques quasilinéaires du second ordre. J Anal Math 45: 234-254. • 16. Lions PL (1996) Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models, New York: The Clarendon Press.
• 17. Mitake H, Tran HV (2017) Selection problems for a discounted degenerate viscous HamiltonJacobi equation. Adv Math 306: 684-703. • 18. Murat F, Soluciones renormalizadas de EDP elipticas no lineales, Preprint 93023 of Laboratoire d'Analyse Numérique, Université Paris VI, 1993. Available from: http://archive.schools.cimpa.info/anciensite/NotesCours/PDF/2009/Alexandrie_Murat_2.pdf.
• 19. Porretta A (2008) On the comparison principle for p-Laplace type operators with first order terms, In: On the Notion of Solutions to Nonlinear Elliptic Problems: Results and Developments, Quaderni di Matematica 23, Dept. Math. Seconda Univ. Napoli, Caserta, 459-497.
• 20. Porretta A, Elliptic equations with first-order terms, notes of the CIMPA School, Alexandria, 2009. Available from: http://archive.schools.cimpa.info/anciensite/NotesCours/PDF/2009/Alexandrie_Porretta.pdf.
• 21. Stampacchia G (1965) Le problème de Dirichlet pour les equations élliptiques du second ordre à coefficients discontinus, Ann I Fourier 15: 189-258.
• 22. Ziemer WP (1989) Weakly Differentiable Functions, New York: Springer-Verlag. Download full text in PDF Export Citation