
AIMS Mathematics, 2021, 6(1): 362377. doi: 10.3934/math.2021022
Research article
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Refined inequalities of perturbed Ostrowski type for higherorder absolutely continuous functions and applications
1 Department of Mathematics, Faculty of Science, Bartin University, Bartin, Turkey
2 Department of Mathematics, Faculty of Science, Gebze Technical University, Kocaeli, Turkey
3 Department of Mathematics, Huzhou University, Huzhou 313000, China
4 Department of Mathematics, University of Peshawar, Peshawar 25000, Pakistan
Received: , Accepted: , Published:
References
1. M. A. Khan, S. Begum, Y. Khurshid, Y. Chu, Ostrowski type inequalities involving conformable fractional integrals, J. Inequal. Appl., 2018 (2018), 114.
2. D. Bongiorno, Absolutely continuous functions with values in a Banach space, J. Math. Anal. Appl., 451 (2017), 12161223.
3. D. Bongiorno, On the Hencl's notion of absolute continuity, J. Math. Anal. Appl., 350 (2008), 562567.
4. D. Bongiorno, Absolutely continuous functions in $\mathbb{R}^n$, J. Math. Anal. Appl., 303 (2005), 119134.
5. H. Budak, M. Z. Sarikaya, A companion of Ostrowski type inequalities for mappings of bounded variation and some applications, Trans. A. Razmadze Math. Inst., 171 (2017), 136143.
6. H. Budak, M. Z. Sarikaya, A. Qayyum, Improvement in companion of Ostrowski type inequalities for mappings whose first derivatives are of bounded variation and application, Filomat, 31 (2017), 53055314.
7. H. Budak, M. Z. Sarikaya, S. S. Dragomir, Some perturbed Ostrowski type inequality for twice differentiable functions, Adv. Math. Inequal. Appl., (2018), 279294.
8. P. Cerone, S. S. Dragomir, J. Roumeliotis, An inequality of Ostrowski type for mappings whose second derivatives are bounded and applications, RGMIA Res. Rep. Coll., 1 (1998), 79.
9. P. Cerone, S. S. Dragomir, J. Roumeliotis, Some Ostrowski type inequalities for ntime differentiable mappings and applications, Demonstratio Math., 32 (1999), 697712.
10. S. S. Dragomir, N. S. Barnett, An Ostrowski type inequality for mappings whose second derivatives are bounded and applications, RGMIA Res. Rep. Coll., 1 (1998), 6775.
11. S. S. Dragomir, P. Cerone, J. Roumeliotis, A new generalization of Ostrowski's integral inequality for mappings whose derivatives are bounded and applications in numerical integration and for special means, Appl. Math. Lett., 13 (2000), 1925.
12. S. S. Dragomir, Some perturbed Ostrowski type inequalities for absolutely continuous functions (I), Acta Univ. M. Belii Ser. Math., 23 (2015), 7186.
13. S. S. Dragomir, Some perturbed Ostrowski type inequalities for absolutely continuous functions (II), Acta Univ. Apulensis Math. Inform., 43 (2015), 209228.
14. S. S. Dragomir, Perturbed companions of Ostrowski's inequality for absolutely continuous functions (I), An. Univ. Timis., Ser. mat.inform., LIV (2016), 119138.
15. S. Erden, H. Budak, M. Z. Sarıkaya, Some perturbed inequalities of Ostrowski type for twice differentiable functions, Math. Clu., 62 (2020), In press.
16. S. Erden, Perturbed Companions of Ostrowski type inequalities for Ntimes differentiable functions and applications, Probl. Anal. Issues Anal., 9 (2020), 4557.
17. S. Erden, Companions of Perturbed type inequalities for higher order differentiable functions, Cumhuriyet Sci. J., 40 (2019), 819829.
18. S. Hencl, On the notion of absolute continuity for functions of several variables, Fund. Math., 173 (2002), 175189.
19. Y. Khurshid, M. A. Khan, Y. M. Chu, Ostrowski type inequalities involving conformable integrals via preinvex functions, AIP Adv., 10 (2020), 19.
20. W. Liu, Y. Zhu, J. Park, Some compenians of perturbed Ostrowskitype inequalities based on the quasratic kernel function with three sections and applications, J. Inequal. Appl., 2013 (2013), 914.
21. J. Maly, Absolutely continuous functions of several variables, J. Math. Anal. Appl., 231 (1999), 492508.
22. A. M. Ostrowski, Über die absolutabweichung einer differentiebaren funktion von ihrem integralmitelwert, Comment. Math. Helv., 10 (1938), 226227.
23. M. Z. Sarikaya, E. Set, On new Ostrowski type Integral inequalities, Thai J. Math., 12 (2014), 145154.
24. M. Z. Sarikaya, H. Budak, T. Tunc, S. Erden, H. Yaldız, Perturbed companion of Ostrowski type inequality for twice differentiable functions, Facta Univ. Ser. Math. Inform., 31 (2016), 595608.
25. A. Sofo, Integral inequalities for ntimes differentiable mappings with multiple branches on the L_{p} norm, Soochow J. Math., 28 (2002), 179222.
26. A. Qayyum, M. Shoaib, I. Faye, Companion of Ostrowskitype inequality based on 5step quadratic kernel and applications, J. Nonlinear Sci. Appl., 9 (2016), 537552.
27. A. Qayyum, M. Shoaib, I. Faye, On new refinements and applications of efficient quadrature rules using ntimes differentiable mappings, J. Comput. Anal. Appl., 23 (2017), 723739.
28. M. Wang, X. Zhao, Ostrowski type inequalities for higherorder derivatives, J. Inequal. Appl., 2009 (2009), 18.
© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)