The Kuramoto-Sinelshchikov equation describes the evolution of a phase turbulence in reaction-diffusion systems or the evolution of the plane flame propagation, taking in account the combined influence of diffusion and thermal conduction of the gas on the stability of a plane flame front. In this paper, we prove the well-posedness of the classical solutions for the initial-boundary value problem for this equation, under appropriate boundary conditions.
Citation: Giuseppe Maria Coclite, Lorenzo di Ruvo. On the initial-boundary value problem for a Kuramoto-Sinelshchikov type equation[J]. Mathematics in Engineering, 2021, 3(4): 1-43. doi: 10.3934/mine.2021036
The Kuramoto-Sinelshchikov equation describes the evolution of a phase turbulence in reaction-diffusion systems or the evolution of the plane flame propagation, taking in account the combined influence of diffusion and thermal conduction of the gas on the stability of a plane flame front. In this paper, we prove the well-posedness of the classical solutions for the initial-boundary value problem for this equation, under appropriate boundary conditions.
| [1] |
Amiranashvili S, Vladimirov AG, Bandelow U (2008) Solitary-wave solutions for few-cycle optical pulses. Phys Rev A 77: 063821. doi: 10.1103/PhysRevA.77.063821
|
| [2] |
Amiranashvili S, Vladimirov AG, Bandelow U (2010) A model equation for ultrashort optical pulses around the zero dispersion frequency. Eur Phys J D 58: 219-226. doi: 10.1140/epjd/e2010-00010-3
|
| [3] |
Armaou A, Christofides PD (2000) Feedback control of the Kuramoto-Sivashinsky equation. Phys D 137: 49-61. doi: 10.1016/S0167-2789(99)00175-X
|
| [4] |
Benney DJ (1966) Long waves on liquid films. J Math Phys 45: 150-155. doi: 10.1002/sapm1966451150
|
| [5] | Biagioni HA, Bona JL, Iório Jr RJ, et al. (1996) On the Korteweg-de Vries-Kuramoto-Sivashinsky equation. Adv Differ Equ 1: 1-20. |
| [6] |
Cerpa E (2010) Null controllability and stabilization of the linear Kuramoto-Sivashinsky equation. Commun Pure Appl Anal 9: 91-102. doi: 10.3934/cpaa.2010.9.91
|
| [7] | Chen LH, Chang HC (1986) Nonlinear waves on liquid film surfaces-II. Bifurcation analyses of the long-wave equation. Chem Eng Sci 41: 2477-2486. |
| [8] |
Christofides PD, Armaou A (2000) Global stabilization of the Kuramoto-Sivashinsky equation via distributed output feedback control. Syst Control Lett 39: 283-294. doi: 10.1016/S0167-6911(99)00108-5
|
| [9] |
Coclite GM, di Ruvo L (2014) Convergence of the Ostrovsky equation to the Ostrovsky-Hunter one. J Differ Equations 256: 3245-3277. doi: 10.1016/j.jde.2014.02.001
|
| [10] |
Coclite GM, di Ruvo L (2015) Dispersive and diffusive limits for Ostrovsky-Hunter type equations. NoDEA Nonlinear Diff 22: 1733-1763. doi: 10.1007/s00030-015-0342-1
|
| [11] |
Coclite GM, di Ruvo L (2015) Well-posedness of bounded solutions of the non-homogeneous initial-boundary value problem for the Ostrovsky-Hunter equation. J Hyperbolic Differ Equ 12: 221-248. doi: 10.1142/S021989161550006X
|
| [12] |
Coclite GM, di Ruvo L (2016) Convergence of the Kuramoto-Sinelshchikov equation to the Burgers one. Acta Appl Math 145: 89-113. doi: 10.1007/s10440-016-0049-2
|
| [13] |
Coclite GM, di Ruvo L (2016) Convergence of the solutions on the generalized Korteweg-de Vries equation. Math Model Anal 21: 239-259. doi: 10.3846/13926292.2016.1150358
|
| [14] | Coclite GM, di Ruvo L (2017) A singular limit problem for conservation laws related to the Rosenau equation. J Abstr Differ Equ Appl 8: 24-47. |
| [15] |
Coclite GM, di Ruvo L (2019) Discontinuous solutions for the generalized short pulse equation. Evol Equ Control The 8: 737-753. doi: 10.3934/eect.2019036
|
| [16] | Coclite GM, di Ruvo L (2020) Convergence of the Rosenau-Korteweg-de Vries equation to the Korteweg-de Vries one. Contemporary Mathematics. |
| [17] | Coclite GM, di Ruvo L (2020) A note on the non-homogeneous initial boundary problem for an Ostrovsky-Hunter1 type equation. Discrete Contin Dyn Syst Ser S 13: 3357-3389. |
| [18] |
Coclite GM, di Ruvo L (2020) On classical solutions for a Kuramoto-Sinelshchikov-Velarde-type equation. Algorithms 13: 77. doi: 10.3390/a13040077
|
| [19] |
Coclite GM, di Ruvo L (2020) On the solutions for an Ostrovsky type equation. Nonlinear Anal Real 55: 103141. doi: 10.1016/j.nonrwa.2020.103141
|
| [20] |
Cohen BI, Krommes JA, Tang WM, et al. (1976) Non-linear saturation of the dissipative trappedion mode by mode coupling. Nucl Fusion 16: 971-992. doi: 10.1088/0029-5515/16/6/009
|
| [21] | Foias C, Nicolaenko B, Sell GR, et al. (1988) Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimension. J Math Pure Appl 67: 197-226. |
| [22] |
Giacomelli L, Otto F (2005) New bounds for the Kuramoto-Sivashinsky equation. Commun Pure Appl Math 58: 297-318. doi: 10.1002/cpa.20031
|
| [23] |
Hooper AP, Grimshaw R (1985) Nonlinear instability at the interface between two viscous fluids. Phys Fluids 28: 37-45. doi: 10.1063/1.865160
|
| [24] | Hu C, Temam R (2001) Robust control of the Kuramoto-Sivashinsky equation. Dyn Contin Discrete Impuls Syst Ser B Appl Algorithms 8: 315-338. |
| [25] |
Kenig CE, Ponce G, Vega L (1993) Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Commun Pure Appl Math 46: 527-620. doi: 10.1002/cpa.3160460405
|
| [26] | Khalique C (2012) Exact solutions of the generalized kuramoto-sivashinsky equation. CJMS 1: 109-116. |
| [27] | Korteweg DDJ, de Vries DG (1895) XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 39: 422-443. |
| [28] |
Kudryashov NA (1990) Exact solutions of the generalized Kuramoto-Sivashinsky equation. Phys Lett A 147: 287-291. doi: 10.1016/0375-9601(90)90449-X
|
| [29] |
Kudryashov NA (2009) On "new travelling wave solutions" of the KdV and the KdV-Burgers equations. Commun Nonlinear Sci Numer Simul 14: 1891-1900. doi: 10.1016/j.cnsns.2008.09.020
|
| [30] |
Kuramoto Y (1978) Diffusion-induced chaos in reaction systems. Prog Theor Phys Supp 64: 346- 367. doi: 10.1143/PTPS.64.346
|
| [31] |
Kuramoto Y, Tsuzuki T (1975) On the formation of dissipative structures in reaction-diffusion systems: Reductive perturbation approach. Prog Theor Phys 54: 687-699. doi: 10.1143/PTP.54.687
|
| [32] |
Kuramoto Y, Tsuzuki T (1976) Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Prog Theor Phys 55: 356-369. doi: 10.1143/PTP.55.356
|
| [33] |
LaQuey RE, Mahajan SM, Rutherford PH, et al. (1975) Nonlinear saturation of the trapped-ion mode. Phys Rev Lett 34: 391-394. doi: 10.1103/PhysRevLett.34.391
|
| [34] |
Leblond H, Mihalache D (2009) Few-optical-cycle solitons: Modified Korteweg-de vries sinegordon equation versus other non-slowly-varying-envelope-approximation models. Phys Rev A 79: 063835. doi: 10.1103/PhysRevA.79.063835
|
| [35] |
Leblond H, Mihalache D (2013) Models of few optical cycle solitons beyond the slowly varying envelope approximation. Phys Rep 523: 61-126. doi: 10.1016/j.physrep.2012.10.006
|
| [36] |
Leblond H, Sanchez F (2003) Models for optical solitons in the two-cycle regime. Phys Rev A 67: 013804. doi: 10.1103/PhysRevA.67.013804
|
| [37] |
LeFloch PG, Natalini R (1999) Conservation laws with vanishing nonlinear diffusion and dispersion. Nonlinear Anal 36: 213-230. doi: 10.1016/S0362-546X(98)00012-1
|
| [38] | Li C, Chen G, Zhao S (2004) Exact travelling wave solutions to the generalized kuramotosivashinsky equation. Lat Am Appl Res 34: 65-68. |
| [39] |
Li J, Zhang BY, Zhang Z (2017) A nonhomogeneous boundary value problem for the KuramotoSivashinsky equation in a quarter plane. Math Method Appl Sci 40: 5619-5641. doi: 10.1002/mma.4413
|
| [40] |
Li J, Zhang BY, Zhang Z (2020) A non-homogeneous boundary value problem for the KuramotoSivashinsky equation posed in a finite interval. ESAIM Control Optim Calc Var 26: 43. doi: 10.1051/cocv/2019027
|
| [41] |
Lin SP (1974) Finite amplitude side-band stability of a viscous film. J Fluid Mech 63: 417-429. doi: 10.1017/S0022112074001704
|
| [42] |
Liu WJ, Krstić M (2001) Stability enhancement by boundary control in the Kuramoto-Sivashinsky equation. Nonlinear Anal 43: 485-507. doi: 10.1016/S0362-546X(99)00215-1
|
| [43] |
Nicolaenko B, Scheurer B, Temam R (1985) Some global dynamical properties of the kuramotosivashinsky equations: Nonlinear stability and attractors. Physica D 16: 155-183. doi: 10.1016/0167-2789(85)90056-9
|
| [44] |
Nicolaenko B, Scheurer B (1984) Remarks on the kuramoto-sivashinsky equation. Physica D 12: 391-395. doi: 10.1016/0167-2789(84)90543-8
|
| [45] | Sajjadian M (2014) The shock profile wave propagation of Kuramoto-Sivashinsky equation and solitonic solutions of generalized Kuramoto-Sivashinsky equation. Acta Univ Apulensis Math Inform 38: 163-176. |
| [46] |
Schonbek ME (1982) Convergence of solutions to nonlinear dispersive equations. Commun Part Diff Eq 7: 959-1000. doi: 10.1080/03605308208820242
|
| [47] | Sivashinsky G (1977) Nonlinear analysis of hydrodynamic instability in laminar flamesâ-I. Derivation of basic equations. Acta Astronaut 4: 1177-1206. |
| [48] |
Tadmor E (1986) The well-posedness of the Kuramoto-Sivashinsky equation. SIAM J Math Anal 17: 884-893. doi: 10.1137/0517063
|
| [49] | Taylor ME (2011) Partial Differential Equations I. Basic Theory, 2 Eds., New York: Springer. |
| [50] |
Topper J, Kawahara T (1978) Approximate equations for long nonlinear waves on a viscous fluid. J Phys Soc JPN 44: 663-666. doi: 10.1143/JPSJ.44.663
|
| [51] | Xie Y (2013) Solving the generalized Benney equation by a combination method. Int J Nonlinear Sci 15: 350-354. |