Research article Special Issues

Global existence and stability for the modified Mullins–Sekerka and surface diffusion flow

  • Received: 26 July 2021 Accepted: 10 November 2021 Published: 21 December 2021
  • In this survey we present the state of the art about the asymptotic behavior and stability of the modified MullinsSekerka flow and the surface diffusion flow of smooth sets, mainly due to E. Acerbi, N. Fusco, V. Julin and M. Morini. First we discuss in detail the properties of the nonlocal Area functional under a volume constraint, of which the two flows are the gradient flow with respect to suitable norms, in particular, we define the strict stability property for a critical set of such functional and we show that it is a necessary and sufficient condition for minimality under W2,p–perturbations, holding in any dimension. Then, we show that, in dimensions two and three, for initial sets sufficiently "close" to a smooth strictly stable critical set E, both flows exist for all positive times and asymptotically "converge" to a translate of E.

    Citation: Serena Della Corte, Antonia Diana, Carlo Mantegazza. Global existence and stability for the modified Mullins–Sekerka and surface diffusion flow[J]. Mathematics in Engineering, 2022, 4(6): 1-104. doi: 10.3934/mine.2022054

    Related Papers:

    [1] Nhung Thi-Tuyet Hoang, Anh Thi-Kim Tran, Nguyen Van Suc, The-Vinh Nguyen . Antibacterial activities of gel-derived Ag-TiO2-SiO2 nanomaterials under different light irradiation. AIMS Materials Science, 2016, 3(2): 339-348. doi: 10.3934/matersci.2016.2.339
    [2] Miguel García-Tecedor, Félix del Prado, Carlos Bueno, G. Cristian Vásquez, Javier Bartolomé, David Maestre, Tomás Díaz, Ana Cremades, Javier Piqueras . Tubular micro- and nanostructures of TCO materials grown by a vapor-solid method. AIMS Materials Science, 2016, 3(2): 434-447. doi: 10.3934/matersci.2016.2.434
    [3] Ahmed Al-Ramthan, Ruaa Al Mezrakchi . Investigation of cementitious composites reinforced with metallic nanomaterials, boric acid, and lime for infrastructure enhancement. AIMS Materials Science, 2024, 11(3): 495-514. doi: 10.3934/matersci.2024025
    [4] Ahmed Z. Abdullah, Adawiya J. Haider, Allaa A. Jabbar . Pure TiO2/PSi and TiO2@Ag/PSi structures as controllable sensor for toxic gases. AIMS Materials Science, 2022, 9(4): 522-533. doi: 10.3934/matersci.2022031
    [5] Iryna Markevich, Tetyana Stara, Larysa Khomenkova, Volodymyr Kushnirenko, Lyudmyla Borkovska . Photoluminescence engineering in polycrystalline ZnO and ZnO-based compounds. AIMS Materials Science, 2016, 3(2): 508-524. doi: 10.3934/matersci.2016.2.508
    [6] Anita Haeussler, Stéphane Abanades, Julien Jouannaux, Martin Drobek, André Ayral, Anne Julbe . Recent progress on ceria doping and shaping strategies for solar thermochemical water and CO2 splitting cycles. AIMS Materials Science, 2019, 6(5): 657-684. doi: 10.3934/matersci.2019.5.657
    [7] Akira Nishimura, Ryuki Toyoda, Daichi Tatematsu, Masafumi Hirota, Akira Koshio, Fumio Kokai, Eric Hu . Optimum reductants ratio for CO2 reduction by overlapped Cu/TiO2. AIMS Materials Science, 2019, 6(2): 214-233. doi: 10.3934/matersci.2019.2.214
    [8] Akira Nishimura, Tadaki Inoue, Yoshito Sakakibara, Masafumi Hirota, Akira Koshio, Fumio Kokai, Eric Hu . Optimum molar ratio of H2 and H2O to reduce CO2 using Pd/TiO2. AIMS Materials Science, 2019, 6(4): 464-483. doi: 10.3934/matersci.2019.4.464
    [9] Pham Van Viet, Le Van Hieu, Cao Minh Thi . The directed preparation of TiO2 nanotubes film on FTO substrate via hydrothermal method for gas sensing application. AIMS Materials Science, 2016, 3(2): 460-469. doi: 10.3934/matersci.2016.2.460
    [10] Khang Duy Vu Nguyen, Khoa Dang Nguyen Vo . Magnetite nanoparticles-TiO2 nanoparticles-graphene oxide nanocomposite: Synthesis, characterization and photocatalytic degradation for Rhodamine-B dye. AIMS Materials Science, 2020, 7(3): 288-301. doi: 10.3934/matersci.2020.3.288
  • In this survey we present the state of the art about the asymptotic behavior and stability of the modified MullinsSekerka flow and the surface diffusion flow of smooth sets, mainly due to E. Acerbi, N. Fusco, V. Julin and M. Morini. First we discuss in detail the properties of the nonlocal Area functional under a volume constraint, of which the two flows are the gradient flow with respect to suitable norms, in particular, we define the strict stability property for a critical set of such functional and we show that it is a necessary and sufficient condition for minimality under W2,p–perturbations, holding in any dimension. Then, we show that, in dimensions two and three, for initial sets sufficiently "close" to a smooth strictly stable critical set E, both flows exist for all positive times and asymptotically "converge" to a translate of E.



    Integrable systems have been studied for over 50 years in which there is an increasing interest in acquiring the nonlocal systems of integrable equations and analyzing their solutions and properties. The pioneering work for the nonlocal integrable system has been done by Ablowitz and Musslimani [1] when they investigated the nonlocal nonlinear Schr¨odinger (NLS) equation through inverse scattering transform. It should be noted that the NLS equation is parity-time-symmetric (PT-symmetry), which has become an interesting topic in quantum mechanics [2], optics [3,4,5,6] and Bose-Einstein condensates [7,8], etc. The nonlocal integrable systems are of important significance in the theoretical study of mathematical physics and applications in the fields of nonlinear science [9]. In the past few years, this research field started to attract a lot of attention [10,11,12,13,14]. For instance, Xu and Chow [15] derived the breathers and rogue waves solutions of a third order nonlocal partial differential equation by bilinear transformation. Lou [16] derived multi-place nonlocal integrable systems, especially for the two-place and four-place nonlocal NLS equations and Kadomtsev-Petviashvili (KP) equations. Chen et al. [17] collected the nonlocal NLS hierarchy, nonlocal modified Korteweg-de Vries (mKdV) hierarchy and nonlocal versions of the sine-Gordon equation in nonpotential form. Rao et al. [18,19] showed the PT-symmetric nonlocal Davey-Stewartson I equation by using the Kadomtsev-Petviashvili hierarchy reduction method. Yu and Fan [20] studied the coupled nonlocal nonlinear Schr¨odinger equations with the self-induced PT-symmetric potential using the Hirota bilinear method.

    The KdV equation [21,22,23] and the mKdV equation [24] describe the evolution of small amplitude and weakly dispersive waves which occur in the shallow water. The complex mKdV equation is the next member of the nonlinear Schr¨odinger hierarchy, which possesses all the basic characters of integrable models. In physical application, the nonlocal mKdV possesses the shifted parity and/or delayed time reversal symmetry, and thus it could be related to the Alice-Bob system [25]. For instance, a special solution of the nonlocal mKdV was applied to theoretically capture the salient features of two correlated dipole blocking events in atmospheric and oceanic dynamical systems [26]. Since the nonlocal NLS was found, the nonlocal mKdV equation has attracted much attention. Ablowitz and Musslimani analyzed Lax pairs, conservation laws, inverse scattering transform and obtained one-soliton solutions of many nonlocal nonlinear integrable equations, such as nonlocal nonlinear Schr¨odinger equation, cmKdV and mKdV equtions, sine-Gordon equation and so on [27,28]. B. Yang and J. K. Yang [29] proposed variable transformations between nonlocal and local integrable equations and derived new integrable equations. By constructing the DT for nonlocal complex mKdV equation, Ma, Shen and Zhu [30] derived dark soliton, W-type soliton, M-type soliton and periodic solutions. Li et al.[31] derived single soliton solution and two soliton solution using Hirota bilinear method for reverse space nonlocal cmKdV equation. G¨urses and Pekcan [32] studied the nonlocal mKdV equations obtained from AKNS scheme by Ablowitz-Musslimani type nonlocal reductions, and found soliton solutions of the coupled mKdV system by using the Hirota bilinear method. He, Fan and Xu formulated the Riemann-Hilbert problem associated with the Cauchy problem of the nonlocal mKdV equation and applied the Deift-Zhou nonlinear steepest-descent method analyzed the long-time asymptotics for the solution of the nonlocal mKdV equation [33]. Both focusing and defocusing nonlocal (reverse-space-time) mKdV equations were studied by using inverse scattering transform in [34]. The soliton solutions of nonlocal mKdV equations are derived though inverse scattering transform in[35,36,37,38]. However, there has been still not much work on the Hirota bilinear method to three types of the nonlocal cmKdV equations. Hirota bilinear method is an important and direct method to solve integrable equations. The advantage of the Hirota bilinear method [39,40] is an algebraic rather than analytical method, and it has been successfully applied to solve a large number of soliton equations.

    Based on the above mentioned works, we can structure reverse space cmKdV equation, reverse time cmKdV equation and reverse space-time cmKdV equation form classical cmKdV equation. Local cmKdV equation is given by

    ut(x,t)+uxxx(x,t)6σu(x,t)u(x,t)ux(x,t)=0, (1.1)

    where u(x,t) is a complex function and u(x,t) is its complex conjugation, σ=±1 denote the defocusing and focusing cases.

    Here we make three different variable transformations:

    a) x=iˆx,t=ˆt,u(x,t)=iˆu(ˆx,ˆt), (1.2)
    b) x=ˆx,t=iˆt,u(x,t)=iˆu(ˆx,ˆt), (1.3)
    c) x=iˆx,t=iˆt,u(x,t)=iˆu(ˆx,ˆt). (1.4)

    Then we put ˆxx, ˆtt, ˆuu. Through these transformations, local cmKdV equation transforms into reverse space cmKdV equation, reverse time cmKdV equation and reverse space-time cmKdV equation:

    ut(x,t)+iuxxx(x,t)+6iσu(x,t)u(x,t)ux(x,t)=0, (1.5)
    ut(x,t)+iuxxx(x,t)6iσu(x,t)u(x,t)ux(x,t)=0, (1.6)
    ut(x,t)+uxxx(x,t)+6σu(x,t)u(x,t)ux(x,t)=0. (1.7)

    These nonlocal equations are obviously different from local equations for their space and/or time coupling, which could induce new physical phenomena and thus inspire novel physical applications.

    The main purpose of this work is to search for the integrability of three types nonlocal cmKdV Eqs (1.5)–(1.7) and find their soliton solutions by the Hirota bilinear method. The rest of this paper is organized as follows. We study one-soliton solution and two-soliton solution of the nonlocal mKdV equations of all types by using the improved Hirota bilinear method, and provide some figures to describe the defocusing case and focusing case of nonlocal cmKdV equations. Then we analyse the difference of nonlinear wave structure of three types equations. Moreover, by applying the transformation relationship between local and nonlocal equations, we obtain the Lax pair of nonlocal equations. Some conclusions are given in the last section.

    The reverse space cmKdV equation is given by

    ut(x,t)+iuxxx(x,t)+6iσu(x,t)u(x,t)ux(x,t)=0, (2.1)

    where u=u(x,t) is a complex-valued function of x and t, the denotes complex conjugation.

    We first present the dependent variable transformations in order to take an Hirota bilinear method [31] to Eq (2.1). The transformations are

    u(x,t)=G(x,t)F(x,t),  u(x,t)=G(x,t)F(x,t), (2.2)

    where the G(x,t) and G(x,t) are complex functions, the F(x,t) and F(x,t) are also in general complex functions, and all of them are distinct.

    We substitute the transformations Eq (2.2) into Eq (2.1) and introduce bilinear operators of the functions F and G. We get a novel equation as follows

    1F2(Dt+iD3x)GF+(GxFGFx)[6iσGGF3F3iF4D2xFF]=0, (2.3)

    it can be decoupled into the following system of bilinear equations for the functions F and G,

    (Dt+iD3x)GF=0, (2.4)
    D2xFF=2σSF, (2.5)
    SF=GG, (2.6)

    the Dx and Dt are defined as

    DmxDnt(GF)=(xx1)m(tt1)nG(x,t)F(x1,t1)|(x=x1,t=t1). (2.7)

    Solving the above series of bilinear Eqs (2.4)–(2.6), and coupling with Eq (2.2), we can get some soliton solutions. In this section, we expand the unknown functions G(x,t), G(x,t), F(x,t) and F(x,t) in terms of a small parameter ϵ

    G(x,t)=ϵG1+ϵ3G3+...,G(x,t)=ϵG1+ϵ3G3+...,F(x,t)=1+ϵ2F2+ϵ4F4+...,F(x,t)=1+ϵ2F2+ϵ4F4+..., (2.8)

    where the G1, G3, F2, F4 are functions with spatial variable x and temporal variable t, and the fuctions G1, G3, F2, F4 have variables x and t. Substituting the above expansions into Eqs (2.4)–(2.6), and comparing the coefficients of ϵ, we obtain the unknown functions G(x,t), G(x,t), F(x,t) and F(x,t) by selecting the appropriate functions G1, G1, F2, F2, G3, G3, F4, F4, etc.

    Now we want to find one-soliton of Eq (2.1). First of all, we take the following expansions of the functions G, G, F and F:

    G(x,t)=ϵG1,G(x,t)=ϵG1,F(x,t)=1+ϵ2F2,F(x,t)=1+ϵ2F2. (2.9)

    Substituting the above expansions of Eq (2.9) into the bilinear Eqs (2.4)–(2.6), and comparing the coefficients of same powers of ϵ to zero, we obtain a set of equations

    G1t+iG1xxx=0, (2.10)
    F2xx=σG1G1, (2.11)

    where G1, G1, F2 and F2 are given rise to as follows

    G1=eη1,G1=eη1,F2=A1eη1+η1,F2=A1eη1+η1, (2.12)

    where η1=k1xω1t+η10, η1=k1xω1t+η10, and k1, k1, A1, A1 are arbitrary complex constants.

    From Eqs (2.10) and (2.11), we know the relation about ω1, k1 and A1 as follows

    ω1=ik31, (2.13)
    A1=σ(k1k1)2. (2.14)

    Since the ω1 is the complex conjugate of ω1, so

    ω1=ik31. (2.15)

    In the same way, we obtain

    A1=σ(k1k1)2. (2.16)

    Then, the general nonlocal one-soliton solution of the reverse space cmKdV Eq (2.1) is

    u(x,t)=eη11+A1eη1+η1. (2.17)

    According to the bilinear form of parity transformed complex conjugate equation, the parity transformed complex conjugate field is derived in the form

    u(x,t)=eη11+A1eη1+η1. (2.18)

    Here we provide some figures to describe the nonlocal single soliton solutions Eqs (2.17) and (2.18)(see Figure 1). Figure 1(a), (b) are the profiles of focusing cmKdV equation, and Figure 1(c), (d) are the profiles of defocusing cmKdV equation with the same parameters ϵ, k1, k1. Figure 1 shows that |u(x,t)| and |u(x,t)| have the same shapes as spatial evolution, but their enhancing shapes are antipodal.

    Figure 1.  Profiles (a) and (c), (b) and (d) are the intensity distributions of the module of solution (2.17) and (2.18), respectively. The parameters ϵ=1, k1=0.05+0.6i, k1=0.050.6i. (a)-(b): σ=1. (c)-(d): σ=1.

    The nonlocal two-soliton solution of the reverse space cmKdV Eq (2.1) can also be obtained with Hirota bilinear method. We consider the truncating of the following expansions G(x,t)=ϵG1+ϵ3G3, G(x,t)=ϵG1+ϵ3G3, F(x,t)=1+ϵ2F2+ϵ4F4, F(x,t)=1+ϵ2F2+ϵ4F4.

    Substituting these expansions into the bilinear Eqs (2.4)–(2.6), and collecting the coefficients of same powers of ϵ to zero, we obtain a set of equations

    G1t+iG1xxx=0, (2.19)
    G1tF2+G3tG1F2t+i(G1xxxF2+G3xxx3G1xxF2x+3G1xF2xxG1F2xxx)=0, (2.20)
    F2xx=σG1G1, (2.21)
    F4xx+F2F2xx+F2F2xxF22x=σG1G1F2+σG1G3+σG3G1, (2.22)

    where G1, G1, F2 and F2 are given rise to as follows

    G1=eη1+eη2,G1=eη1+eη2,F2=A1eη1+η1+A2eη1+η2+A3eη1+η2+A4eη2+η2,F2=A1eη1+η1+A2eη1+η2+A3eη1+η2+A4eη2+η2, (2.23)

    where η1=k1xω1t+η10, η1=k1xω1t+η10, η2=k2xω2t+η20, η2=k2xω2t+η20. And k1, k1, k2, k2, A1, A1, A2, A2, A3, A3, A4, A4 are arbitrary complex constants.

    From Eqs (2.19) and (2.21), we know

    ω1=ik31,  ω1=ik31,ω2=ik32,  ω2=ik32, (2.24)

    and

    A1=σ(k1k1)2,  A1=σ(k1k1)2,A2=σ(k1k2)2,  A2=σ(k1k2)2,A3=σ(k1+k2)2,  A3=σ(k1+k2)2,A4=σ(k2k2)2,  A4=σ(k2k2)2. (2.25)

    So, the functions G1(x,t), G1(x,t), F2(x,t) and F2(x,t) are obtained. Substituting the expressions of G1 and F2 into the Eq (2.20), we obtain the function G3 and the parity transformed complex conjugate G3 in the form

    G3=B1e2η1+η1+B2e2η1+η2+B3eη1+η2+η1+B4eη1+η2+η2+B5e2η2+η1+B6e2η2+η2, (2.26)
    G3=B1e2η1+η1+B2e2η1+η2+B3eη1+η2+η1+B4eη1+η2+η2+B5e2η2+η1+B6e2η2+η2, (2.27)

    where

    B1=0,  B2=0,B3=(i(k1k1+k2)3ω1+ω2ω1)A1+(i(k1+k1k2)3+ω1ω2ω1)A3i(k1k1k2)3ω1ω2ω1,B4=(i(k2k1+k2)3ω1+ω2ω2)A2+(i(k2+k1k2)3+ω1ω2ω2)A4i(k2k1k2)3ω1ω2ω2,B5=0,  B6=0,

    and

    B1=0,  B2=0,B3=(i(k1k1+k2)3ω1+ω2ω1)A1+(i(k1+k1k2)3+ω1ω2ω1)A3i(k1k1k2)3ω1ω2ω1,B4=(i(k2k1+k2)3ω1+ω2ω2)A2+(i(k2+k1k2)3+ω1ω2ω2)A4i(k2k1k2)3ω1ω2ω2,B5=0,  B6=0.

    Then we substitute the expressions for G1, G1, G3, G3, F2 and F2 into the Eq (2.22) and obtain the functions F4 and F4 as follows

    F4=C1e2η1+2η1+C2e2η2+2η2+C3eη1+2η1+η2+C4e2η1+η1+η2+C5eη1+η2+η2+η1+C6e2η1+2η2+C7eη1+η2+2η2+C8eη1+η2+2η2+C9e2η2+2η1, (2.28)
    F4=C1e2η1+2η1+C2e2η2+2η2+C3eη1+2η1+η2+C4e2η1+η1+η2+C5eη1+η2+η2+η1+C6e2η1+2η2+C7eη1+η2+2η2+C8eη1+η2+2η2+C9e2η2+2η1, (2.29)

    where

    C1=A1A1(k1k1)2σ(A1+B1+B1)4(k1k1)2,  C2=A4A4(k2k2)2σ(A4+B6+B6)4(k2k2)2,C3=A1A2(k1k1)2+A1A3(k1k2)2+A1A3(k1k2)2σ(A1+A3+B1+B2+B3)(k1+k22k1)2,C4=A1A2(k1k2)2+A1A3(k1k1)2+A1A2(k1k2)2σ(A1+A2+B1+B2+B3)(k1+k22k1)2,C5=A1A4a1+A2A3a2σa3+a4(k1k1+k2k2)2.

    In C5, a1, a2, a3, a4 are denoted as follows

    a1=(k1k1)2(k1+k2)2+(k1+k2)2+(k1+k2)2(k1+k2)2+(k2k2)2,a2=(k1+k1)2(k1+k2)2+(k1k2)2+(k1k2)2(k1+k2)2+(k2+k2)2,a3=A1+A2+A3+A4+B3+B3+B4+B4,a4=A1A4(k1k1)2+A1A4(k2k2)2+A2A2(k1k2)2+A3A3(k1k2)2.
    C6=A2A3(k1k2)2σ(A2+B2+B5)4(k1k2)2,C7=A2A4(k1k2)2+A2A4(k1k2)2+A3A4(k2k2)2σ(A2+A4+B4+B5+B6)(k1+k22k2)2,C8=A2A4(k2k2)2+A3A4(k1k2)2+A3A4(k1k2)2σ(A3+A4+B4+B5+B6)(k1+k22k2)2,C9=A2A3(k1k2)2σ(A3+B2+B5)4(k1k2)2,

    and

    C1=A1A1(k1k1)2σ(A1+B1+B1)4(k1k1)2,  C2=A4A4(k2k2)2σ(A4+B6+B6)4(k2k2)2,C3=A1A2(k1k1)2+A1A3(k1k2)2+A1A3(k1k2)2σ(A1+A3+B1+B2+B3)(k1+k22k1)2,C4=A1A2(k1k2)2+A1A3(k1k1)2+A1A2(k1k2)2σ(A1+A2+B1+B2+B3)(k1+k22k1)2,C5=A1A4a1+A2A3a2σa3+a4(k1k1+k2k2)2.

    In C5, a1, a2, a3, a4 are denoted as follows

    a1=(k1k1)2(k1+k2)2+(k1+k2)2+(k1+k2)2(k1+k2)2+(k2k2)2,a2=(k1+k1)2(k1+k2)2+(k1k2)2+(k1k2)2(k1+k2)2+(k2+k2)2,a3=A1+A2+A3+A4+B3+B3+B4+B4,a4=A1A4(k1k1)2+A1A4(k2k2)2+A2A2(k1k2)2+A3A3(k1k2)2.
    C6=A2A3(k1k2)2σ(A2+B2+B5)4(k1k2)2,C7=A2A4(k1k2)2+A2A4(k1k2)2+A3A4(k2k2)2σ(A2+A4+B4+B5+B6)(k1+k22k2)2,C8=A2A4(k2k2)2+A3A4(k1k2)2+A3A4(k1k2)2σ(A3+A4+B4+B5+B6)(k1+k2)24k2k1+4k224k2k2,C9=A2A3(k1k2)2σ(A3+B2+B5)4(k1k2)2.

    So, the general nonlocal two-soliton solution of the reverse space cmKdV Eq (2.1) is

    u(x,t)=G1+G31+F2+F4. (2.30)

    According to the bilinear form of parity transformed complex conjugate equation, the parity transformed complex conjugate field is derived in the form

    u(x,t)=G1+G31+F2+F4. (2.31)

    Here we provide some figures to describe the nonlocal two-soliton solutions Eqs (2.30) and (2.31) of the reverse space cmKdV Eq (2.1), see Figures 2 and 3. In Figure 2, the focusing and defocusing cmKdV equations have entirely different solitary wave structure with the same parameters ϵ=1, k1=0.7+0.7i, k2=0.640.8i, which are novel phenomenon in nonlocal cmKdV equation. Profiles Figure 2(a), (b) present the breather-like style only in the vicinity of t=0. Profiles Figure 2(c), (d) show the elastic interactions between two bright-bright solitons with different amplitudes. When the time t is near zero, amplitudes of the two solitary waves reach maximum, while the widths reach the minimum. Figure 3 shows the collision interactions between two breathers with parameters ϵ=1, k1=0.2+0.7i, k2=0.70.8i. The focusing and defocusing cmKdV equations have the same solitary wave structure, but with different amplitudes. The profiles of u(x,t) and u(x,t) are on x-axis symmetric.

    Figure 2.  Profiles (a) and (c), (b) and (d) are the intensity distributions of the module of solution (2.30) and (2.31), respectively. The parameters ϵ=1, k1=0.7+0.7i, k2=0.640.8i. (a)-(b): σ=1. (c)-(d): σ=1.
    Figure 3.  Profiles (a) and (c), (b) and (d) are the intensity distributions of the module of solution (2.30) and (2.31), respectively. The parameters ϵ=1, k1=0.2+0.7i, k2=0.70.8i. (a)-(b): σ=1. (c)-(d): σ=1.

    The reverse time cmKdV equation is given by

    ut(x,t)+iuxxx(x,t)6iσu(x,t)u(x,t)ux(x,t)=0, (3.1)

    where u=u(x,t) is a complex-valued function of x and t, the denotes complex conjugation.

    We present the dependent variable transformations which is similar to the previous section in order to take an Hirota bilinear method to Eq (3.1). The transformations are

    u(x,t)=G(x,t)F(x,t),  u(x,t)=G(x,t)F(x,t), (3.2)

    where the G(x,t), G(x,t), F(x,t) and F(x,t) are complex functions, and all of them are distinct.

    Substituting the transformations Eq (3.2) into Eq (3.1) and introducing bilinear operators of the functions f and g, we get a novel equation as follows

    1F2(Dt+iD3x)GF+(GxFGFx)[6iσGGF3F3iF4(2FxxF2FxFx)]=0, (3.3)

    it can be decoupled into the following system of bilinear equations for the functions F and G,

    (Dt+iD3x)GF=0, (3.4)
    D2xFF=2σSF, (3.5)
    SF=GG, (3.6)

    the Dx and Dt are defined as same as in the previous section. Solving the above series of bilinear Eqs (3.4)–(3.6) and coupling with Eq (3.2), some soliton solutions can be obtained.

    We expand the unknown functions G(x,t), G(x,t), F(x,t) and F(x,t) in terms of a small parameter ϵ

    G(x,t)=ϵG1+ϵ3G3+...,G(x,t)=ϵG1+ϵ3G3+...,F(x,t)=1+ϵ2F2+ϵ4F4+...,F(x,t)=1+ϵ2F2+ϵ4F4+..., (3.7)

    where the G1, G3, F2, F4 are functions with spatial variable x and temporal variable t, the functions G1, G3, F2, F4 have variables x and t. Substituting the above expansions into Eqs (3.4)–(3.6), and comparing the coefficients of ϵ, we obtain the unknown functions G(x,t), G(x,t), F(x,t) and F(x,t) by selecting the appropriate functions G1, G1, F2, F2, G3, G3, F4, F4, etc.

    For one-soliton of Eq (3.1), we take the following expansions of the functions G, G, F and F:

    G(x,t)=ϵG1,G(x,t)=ϵG1,F(x,t)=1+ϵ2F2,F(x,t)=1+ϵ2F2. (3.8)

    Substituting the above expansions of Eq (3.8) into the bilinear Eqs (3.4)–(3.6), and comparing the coefficients of same powers of ϵ to zero, we obtain a set of equations

    G1t+iG1xxx=0, (3.9)
    F2xx=σG1G1, (3.10)

    where G1, G1, F2 and F2 are given rise to as follows

    G1=eξ1,G1=eξ1,F2=A1eξ1+ξ1F2=A1eξ1+ξ1, (3.11)

    where ξ1=k1xω1t+ξ10, ξ1=k1x+ω1t+ξ10, and k1, k1, A1, A1 are arbitrary complex constants.

    From Eqs (3.9) and (3.10), we know the relation about ω1, k1 and A1 as follows

    ω1=ik31, (3.12)
    A1=σ(k1+k1)2. (3.13)

    Since the ω1 is the complex conjugate of ω1, so

    ω1=ik31. (3.14)

    In the same way, we have

    A1=σ(k1+k1)2. (3.15)

    So, the general nonlocal one-soliton solution of the reverse space cmKdV Eq (3.1) is

    u(x,t)=eξ11+A1eξ1+ξ1. (3.16)

    According to the bilinear form of parity transformed complex conjugate equation, the parity transformed complex conjugate field is derived in the form

    u(x,t)=eξ11+A1eξ1+ξ1. (3.17)

    The figures of nonlocal single soliton solutions Eqs (3.16) and (3.17) of the reverse time cmKdV equation Eq (3.1) are given in Figure 4. The results show that the defocusing and focusing cmKdV equations have the same solitary wave structure and enhancing shape as time envolution. However, they have different wavelengths. The wavelength of focusing cmKdV equation is longer than the defocusing one with the same parameters ϵ,k1,k1.

    Figure 4.  Profiles (a) and (c), (b) and (d) are the intensity distributions of the module of solution (3.16) and (3.17), respectively. The parameters ϵ=1, k1=1.55+0.02i, k1=1.550.02i. (a)-(b): σ=1. (c)-(d): σ=1.

    The nonlocal two-soliton solution of the reverse time cmKdV Eq (3.1) can also be obtained with Hirota bilinear method. We consider the truncating of the following expansions G(x,t)=ϵG1+ϵ3G3, G(x,t)=ϵG1+ϵ3G3, F(x,t)=1+ϵ2F2+ϵ4F4, F(x,t)=1+ϵ2F2+ϵ4F4.

    Substituting these expansions into the bilinear Eqs (3.4)–(3.6), and collecting the coefficients of same powers of ϵ to zero, we obtain a set of equations

    G1t+iG1xxx=0, (3.18)
    G1tF2+G3tG1F2t+i(G1xxxF2+G3xxx3G1xxF2x+3G1xF2xxG1F2xxx)=0, (3.19)
    F2xx=σG1G1, (3.20)
    F4xx+F2F2xx+F2F2xxF22x=σG1G1F2σG1G3σG3G1, (3.21)

    where G1, G1, F2 and F2 are given rise to as follows

    G1=eξ1+eξ2,G1=eξ1+eξ2,F2=A1eξ1+ξ1+A2eξ1+ξ2+A3eξ1+ξ2+A4eξ2+ξ2,F2=A1eξ1+ξ1+A2eξ1+ξ2+A3eξ1+ξ2+A4eξ2+ξ2, (3.22)

    where ξ1=k1xω1t+ξ10, ξ1=k1x+ω1t+ξ10, ξ2=k2xω2t+ξ20, ξ2=k2x+ω2t+ξ20. And k1, k1, k2, k2, A1, A1, A2, A2, A3, A3, A4, A4 are arbitrary complex constants.

    From Eqs (3.18) and (3.20), we know

    ω1=ik31,  ω1=ik31,ω2=ik32,  ω2=ik32, (3.23)

    and

    A1=σ(k1k1)2,  A1=σ(k1k1)2,A2=σ(k1k2)2,  A2=σ(k1k2)2,A3=σ(k1+k2)2,  A3=σ(k1+k2)2,A4=σ(k2k2)2,  A4=σ(k2k2)2. (3.24)

    So, the functions G1(x,t), G1(x,t), F2(x,t) and F2(x,t) are obtained. Substituting the expressions of G1 and F2 into Eq (3.19), we obtain the function G3 and the parity transformed complex conjugate G3 in the form

    G3=B1e2ξ1+ξ1+B2e2ξ1+ξ2+B3eξ1+ξ2+ξ1+B4eξ1+ξ2+ξ2+B5e2ξ2+ξ1+B6e2ξ2+ξ2, (3.25)
    G3=B1e2ξ1+ξ1+B2e2ξ1+ξ2+B3eξ1+ξ2+ξ1+B4eξ1+ξ2+ξ2+B5e2ξ2+ξ1+B6e2ξ2+ξ2, (3.26)

    where

    B1=0,  B2=0,B3=(i(k1+k1k2)3ω1+ω2+ω1)A1+(i(k1k1+k2)3+ω1ω2+ω1)A3i(k1+k1+k2)3ω1ω2+ω1,B4=(i(k2+k1k2)3ω1+ω2+ω2)A2+(i(k2k1+k2)3+ω1ω2+ω2)A4i(k2+k1+k2)3ω1ω2+ω2,B5=0,  B6=0,

    and

    B1=0,  B2=0,B3=(i(k1+k1k2)3ω1+ω2+ω1)A1+(i(k1k1+k2)3+ω1ω2+ω1)A3i(k1+k1+k2)3ω1ω2+ω1,B4=(i(k2+k1k2)3ω1+ω2+ω2)A2+(i(k2k1+k2)3+ω1ω2+ω2)A4i(k2+k1+k2)3ω1ω2+ω2,B5=0,  B6=0.

    Then we substitute the expressions for G1, G1, G3, G3, F2 and F2 into the Eq (3.21) and obtain the functions F4 and F4 as follows

    F4=C1e2ξ1+2ξ1+C2e2ξ2+2ξ2+C3eξ1+2ξ1+ξ2+C4e2ξ1+ξ1+ξ2+C5eξ1+ξ2+ξ2+ξ1+C6e2ξ1+2ξ2+C7eξ1+ξ2+2ξ2+C8eξ1+ξ2+2ξ2+C9e2ξ2+2ξ1, (3.27)
    F4=C1e2ξ1+2ξ1+C2e2ξ2+2ξ2+C3eξ1+2ξ1+ξ2+C4e2ξ1+ξ1+ξ2+C5eξ1+ξ2+ξ2+ξ1+C6e2ξ1+2ξ2+C7eξ1+ξ2+2ξ2+C8eξ1+ξ2+2ξ2+C9e2ξ2+2ξ1, (3.28)

    where

    C1=A1A1(k1+k1)2+σ(A1+B1+B1)4(k1+k1)2,  C2=A4A4(k2+k2)2+σ(A4+B6+B6)4(k2+k2)2,C3=A1A2(k1+k1)2+A1A3(k1k2)2+A1A3(k1+k2)2+σ(A1+A3+B1+B2+B3)(k1+k2+2k1)2,C4=A1A2(k1k2)2+A1A3(k1+k1)2+A1A2(k1+k2)2+σ(A1+A2+B1+B2+B3)(k1+k2+2k1)2,C5=A1A4b1+A2A3b2+σb3+b4(k1+k1+k2+k2)2.

    In C5, b1, b2, b3, b4 are denoted as follows

    b1=(k1+k1)2+(k1k2)2(k1+k2)2(k1+k2)2+(k1k2)2+(k2+k2)2,b2=(k1k1)2(k1+k2)2+(k1+k2)2+(k1+k2)2(k1+k2)2+(k2k2)2,b3=A1+A2+A3+A4+B3+B3+B4+B4,b4=A1A4(k1+k1)2+A1A4(k2+k2)2+A2A2(k1+k2)2+A3A3(k1+k2)2.
    C6=A2A3(k1+k2)2+σ(A2+B2+B5)4(k1+k2)2,C7=A2A4(k1k2)2+A2A4(k1+k2)2+A3A4(k2+k2)2+σ(A2+A4+B4+B5+B6)(k1+k2+2k2)2,C8=A2A4(k2+k2)2+A3A4(k1k2)2+A3A4(k1+k2)2+σ(A3+A4+B4+B5+B6)(k1+k2+2k2)2,
    C9=A2A3(k1+k2)2+σ(A3+B2+B5)4(k1+k2)2,

    and

    C1=A1A1(k1+k1)2+σ(A1+B1+B1)4(k1+k1)2,  C2=A4A4(k2+k2)2+σ(A4+B6+B6)4(k2+k2)2,C3=A1A2(k1+k1)2+A1A3(k1k2)2+A1A3(k1+k2)2+σ(A1+A3+B1+B2+B3)(k1+k2+2k1)2,C4=A1A2(k1k2)2+A1A3(k1+k1)2+A1A2(k1+k2)2+σ(A1+A2+B1+B2+B3)(k1+k2+2k1)2,C5=A1A4b1+A2A3b2+σb3+b4(k1+k1+k2+k2)2.

    In C5, b1, b2, b3, b4 are denoted as follows

    b1=(k1+k1)2+(k1k2)2(k1+k2)2(k1+k2)2+(k1k2)2+(k2+k2)2,b2=(k1k1)2(k1+k2)2+(k1+k2)2+(k1+k2)2(k1+k2)2+(k2k2)2,b3=A1+A2+A3+A4+B3+B3+B4+B4,b4=A1A4(k1+k1)2+A1A4(k2+k2)2+A2A2(k1+k2)2+A3A3(k1+k2)2.
    C6=A2A3(k1+k2)2+σ(A2+B2+B5)4(k1+k2)2,C7=A2A4(k1k2)2+A2A4(k1+k2)2+A3A4(k2+k2)2+σ(A2+A4+B4+B5+B6)(k1+k2+2k2)2,C8=A2A4(k2+k2)2+A3A4(k1k2)2+A3A4(k1+k2)2+σ(A3+A4+B4+B5+B6)(k1+k2+2k2)2,C9=A2A3(k1+k2)2+σ(A3+B2+B5)4(k1+k2)2.

    So, the general nonlocal two-soliton solution of the reverse time cmKdV Eq (3.1) is

    u(x,t)=G1+G31+F2+F4. (3.29)

    According to the bilinear form of parity transformed complex conjugate equation, the parity transformed complex conjugate field is derived in the form

    u(x,t)=G1+G31+F2+F4. (3.30)

    The figures of the nonlocal two-soliton solutions Eqs (3.29) and (3.30) of the reverse time cmKdV Eq (3.1) are given in Figures 5 and 6. Figure 5 shows X-type with longer stem interaction of two breather. In near the origin, the focusing cmKdV equation is triple parallel breather wave structure, while the defocusing cmKdV equation is double parallel breather wave structure. The profiles of u(x,t) and u(x,t) of defocusing and focusing cmKdV equations have opposite wave structure with time envolution, but they are all symmetric about the t-axis. From Figure 6, we see that the H-type interaction between two breather wave of defocusing and focusing cmKdV equations has different amplitudes, and the amplitudes reach zero in the vicinity of the crossing point.

    Figure 5.  Profiles (a) and (c), (b) and (d) are the intensity distributions of the module of solution (3.29) and (3.30), respectively. The parameters ϵ=1, k1=0.6+0.8i, k2=0.640.8i. (a)-(b): σ=1. (c)-(d): σ=1.
    Figure 6.  Profiles (a) and (c), (b) and (d) are the intensity distributions of the module of solution (3.29) and (3.30), respectively. The parameters ϵ=1, k1=0.9+0.18i, k2=0.70.18i. (a)-(b): σ=1. (c)-(d): σ=1.

    The reverse space-time cmKdV equation is given by

    ut(x,t)+uxxx(x,t)+6σu(x,t)u(x,t)ux(x,t)=0, (4.1)

    where u=u(x,t) is a complex-valued function of x and t, the denotes complex conjugation.

    We first present the dependent variable transformations in order to take an Hirota bilinear method to Eq (4.1). The transformations are

    u(x,t)=G(x,t)F(x,t),  u(x,t)=G(x,t)F(x,t), (4.2)

    where the G(x,t) and G(x,t) are complex functions, the F(x,t) and F(x,t) are also in general complex functions, and all of them are distinct.

    Substituting the transformations Eq (4.2) into Eq (4.1) and introducing bilinear operators of the functions F and G, we get a novel equation as follows

    1F2(Dt+D3x)GF+(GxFGFx)[6σGGF3F3F4(2FxxF2FxFx)]=0, (4.3)

    it can be decoupled into the following system of bilinear equations for the functions F and G,

    (Dt+D3x)GF=0, (4.4)
    D2xFF=2σSF, (4.5)
    SF=GG, (4.6)

    the Dx and Dt are defined as same as the Section 2. Solving the above series of bilinear Eqs (4.4)–(4.6) and coupling with Eq (4.2), the soliton solutions can be obtained.

    We expand the unknown functions G(x,t), G(x,t), F(x,t) and F(x,t) in terms of a small parameter ϵ

    G(x,t)=ϵG1+ϵ3G3+...,  G(x,t)=ϵG1+ϵ3G3+...,F(x,t)=1+ϵ2F2+ϵ4F4+...,  F(x,t)=1+ϵ2F2+ϵ4F4+..., (4.7)

    where the G1, G3, F2, F4 are functions with spatial variable x and temporal variable t, the functions G1, G3, F2, F4 have variables x and t. Substituting the above expansions into Eqs (4.4)–(4.6), and comparing the coefficients of ϵ, we obtain the unknown functions G(x,t), G(x,t), F(x,t) and F(x,t) by selecting the appropriate functions G1, G1, F2, F2, G3, G3, F4, F4, etc.

    In this section, one-soliton of Eq (4.1) can be obtained with Hirota bilinear method. First of all, we take the following expansions of the functions G, G, F and F:

    G(x,t)=ϵG1,G(x,t)=ϵG1,F(x,t)=1+ϵ2F2,F(x,t)=1+ϵ2F2. (4.8)

    Substituting the above expansions of Eq (4.8) into the bilinear Eqs (4.4)–(4.6), and comparing the coefficients of same powers of ϵ to zero, we obtain a set of equations

    G1t+G1xxx=0, (4.9)
    F2xx=σG1G1, (4.10)

    where G1, G1, F2 and F2 are given rise to as follows

    G1=eζ1,G1=eζ1,F2=A1eζ1+ζ1,F2=A1eζ1+ζ1, (4.11)

    where ζ1=k1xω1t+ζ10, ζ1=k1x+ω1t+ζ10, and k1, k1, A1, A1 are arbitrary complex constants.

    From Eqs (4.9) and (4.10), we know the relation about ω1, k1 and A1 as follows

    ω1=k31, (4.12)
    A1=σ(k1k1)2. (4.13)

    Since the ω1 is the complex conjugate of ω1, so

    ω1=k31. (4.14)

    In the same way, we can get

    A1=σ(k1k1)2. (4.15)

    Then, the general nonlocal one-soliton solution of the reverse space-time cmKdV Eq (4.1) is

    u(x,t)=eζ11+A1eζ1+ζ1. (4.16)

    According to the bilinear form of parity transformed complex conjugate equation, the parity transformed complex conjugate field is derived in the form

    u(x,t)=eζ11+A1eζ1+ζ1. (4.17)

    Here we provide some figures to describe the nonlocal single soliton solutions Eqs (4.16) and (4.17) of the reverse space-time cmKdV Eq (4.1) in the Figure 7. The results show that the solutions of focusing and defocusing nonlocal cmKdV equations are periodic, but the crests and troughs are located in different places, and u(x,t) and u(x,t) have the opposite enhancing directions as time envolution.

    Figure 7.  Profiles (a) and (c), (b) and (d) are the intensity distributions of the module of solution (4.16) and (4.17), respectively. The parameters ϵ=1, k1=0.003i, k1=0.003+i. (a)-(b): σ=1. (c)-(d): σ=1.

    The nonlocal two-soliton solution of the reverse space-time cmKdV Eq (4.1) can also be obtained with Hirota bilinear method. We consider the truncating of the following expansions G(x,t)=ϵG1+ϵ3G3, G(x,t)=ϵG1+ϵ3G3, F(x,t)=1+ϵ2F2+ϵ4F4, F(x,t)=1+ϵ2F2+ϵ4F4.

    Substituting these expansions into the bilinear Eqs (4.4)–(4.6), and collecting the coefficients of same powers of ϵ to zero, we obtain a set of equations

    G1t+G1xxx=0, (4.18)
    G1tF2+G3tG1F2t+G1xxxF2+G3xxx3G1xxF2x+3G1xF2xxG1F2xxx=0, (4.19)
    F2xx=σG1G1, (4.20)
    F4xx+F2F2xx+F2F2xxF22x=σG1G1F2+σG1G3+σG3G1, (4.21)

    where G1, G1, F2 and F2 are given rise to as follows

    G1=eζ1+eζ2,G1=eζ1+eζ2,F2=A1eζ1+ζ1+A2eζ1+ζ2+A3eζ1+ζ2+A4eζ2+ζ2,F2=A1eζ1+ζ1+A2eζ1+ζ2+A3eζ1+ζ2+A4eζ2+ζ2, (4.22)

    where ζ1=k1xω1t+ζ10, ζ1=k1x+ω1t+ζ10, ζ2=k2xω2t+ζ20, ζ2=k2x+ω2t+ζ20. And k1, k1, k2, k2, A1, A1, A2, A2, A3, A3, A4, A4 are arbitrary complex constants.

    From Eqs (4.18) and (4.20), we know

    ω1=k31,  ω1=k31,  ω2=k32,  ω2=k32,A1=σ(k1k1)2,  A1=σ(k1k1)2,  A2=σ(k1k2)2,  A2=σ(k1k2)2,A3=σ(k1+k2)2,  A3=σ(k1+k2)2,  A4=σ(k2k2)2,  A4=σ(k2k2)2. (4.23)

    So the functions G1(x,t), G1(x,t), F2(x,t) and F2(x,t) are obtained. When we substitute the expressions of G1 and F2 into Eq (4.19), and obtain the function G3 and the parity transformed complex conjugate G3 in the form

    G3=B1e2ζ1+ζ1+B2e2ζ1+ζ2+B3eζ1+ζ2+ζ1+B4eζ1+ζ2+ζ2+B5e2ζ2+ζ1+B6e2ζ2+ζ2, (4.24)
    G3=B1e2ζ1+ζ1+B2e2ζ1+ζ2+B3eζ1+ζ2+ζ1+B4eζ1+ζ2+ζ2+B5e2ζ2+ζ1+B6e2ζ2+ζ2, (4.25)

    where

    B1=0,  B2=0,B3=((k1+k1k2)3ω1+ω2+ω1)A1+((k1k1+k2)3+ω1ω2+ω1)A3(k1+k1+k2)3ω1ω2+ω1,B4=((k2+k1k2)3ω1+ω2+ω2)A2+((k2k1+k2)3+ω1ω2+ω2)A4(k2+k1+k2)3ω1ω2+ω2,B5=0,  B6=0,

    and

    B1=0,  B2=0,B3=((k1+k1k2)3ω1+ω2+ω1)A1+((k1k1+k2)3+ω1ω2+ω1)A3(k1+k1+k2)3ω1ω2+ω1,B4=((k2+k1k2)3ω1+ω2+ω2)A2+((k2k1+k2)3+ω1ω2+ω2)A4(k2+k1+k2)3ω1ω2+ω2,B5=0,  B6=0.

    Substituting the expressions of G1, G1, G3, G3, F2 and F2 into Eq (4.21), we obtain the functions F4 and F4 as follows

    F4=C1e2ζ1+2ζ1+C2e2ζ2+2ζ2+C3eζ1+2ζ1+ζ2+C4e2ζ1+ζ1+ζ2+C5eζ1+ζ2+ζ2+ζ1+C6e2ζ1+2ζ2+C7eζ1+ζ2+2ζ2+C8eζ1+ζ2+2ζ2+C9e2ζ2+2ζ1, (4.26)
    F4=C1e2ζ1+2ζ1+C2e2ζ2+2ζ2+C3eζ1+2ζ1+ζ2+C4e2ζ1+ζ1+ζ2+C5eζ1+ζ2+ζ2+ζ1+C6e2ζ1+2ζ2+C7eζ1+ζ2+2ζ2+C8eζ1+ζ2+2ζ2+C9e2ζ2+2ζ1, (4.27)

    where

    C1=A1A1(k1k1)2σ(A1+B1+B1)4(k1k1)2,  C2=A4A4(k2k2)2σ(A4+B6+B6)4(k2k2)2,C3=A1A2(k1k1)2+A1A3(k1k2)2+A1A3(k1k2)2σ(A1+A3+B1+B2+B3)(k1+k22k1)2,C4=A1A2(k1k2)2+A1A3(k1k1)2+A1A2(k1k2)2σ(A1+A2+B1+B2+B3)(k1+k22k1)2,C5=A1A4c1+A2A3c2σc3+c4(k1k1+k2k2)2.

    In C5, c1, c2, c3, c4 are denoted as follows

    c1=(k1k1)2(k1+k2)2+(k1+k2)2+(k1+k2)2(k1+k2)2+(k2k2)2,c2=(k1+k1)2(k1+k2)2+(k1k2)2+(k1k2)2(k1+k2)2+(k2+k2)2,c3=A1+A2+A3+A4+B3+B3+B4+B4,c4=A1A4(k1k1)2+A1A4(k2k2)2+A2A2(k1k2)2+A3A3(k1k2)2.
    C6=A2A3(k1k2)2σ(A2+B2+B5)4(k1k2)2,C7=A2A4(k1k2)2+A2A4(k1k2)2+A3A4(k2k2)2σ(A2+A4+B4+B5+B6)(k1+k22k2)2,C8=A2A4(k2k2)2+A3A4(k1k2)2+A3A4(k1k2)2σ(A3+A4+B4+B5+B6)(k1+k22k2)2,C9=A2A3(k1k2)2σ(A3+B2+B5)4(k1k2)2,

    and

    C1=A1A1(k1k1)2σ(A1+B1+B1)4(k1k1)2,  C2=A4A4(k2k2)2σ(A4+B6+B6)4(k2k2)2,C3=A1A2(k1k1)2+A1A3(k1k2)2+A1A3(k1k2)2σ(A1+A3+B1+B2+B3)(k1+k22k1)2,C4=A1A2(k1k2)2+A1A3(k1k1)2+A1A2(k1k2)2σ(A1+A2+B1+B2+B3)(k1+k22k1)2,C5=A1A4c1+A2A3c2σc3+c4(k1k1+k2k2)2,

    In C5, c1, c2, c3, c4 are denoted as follows

    c1=(k1k1)2(k1+k2)2+(k1+k2)2+(k1+k2)2(k1+k2)2+(k2k2)2,c2=(k1+k1)2(k1+k2)2+(k1k2)2+(k1k2)2(k1+k2)2+(k2+k2)2,c3=A1+A2+A3+A4+B3+B3+B4+B4,c4=A1A4(k1k1)2+A1A4(k2k2)2+A2A2(k1k2)2+A3A3(k1k2)2.
    C6=A2A3(k1k2)2σ(A2+B2+B5)4(k1k2)2,C7=A2A4(k1k2)2+A2A4(k1k2)2+A3A4(k2k2)2σ(A2+A4+B4+B5+B6)(k1+k22k2)2,C8=A2A4(k2k2)2+A3A4(k1k2)2+A3A4(k1k2)2σ(A3+A4+B4+B5+B6)(k1+k22k2)2,C9=A2A3(k1k2)2σ(A3+B2+B5)4(k1k2)2.

    Then, the general nonlocal two-soliton solution of the reverse space-time cmKdV Eq (4.1) is

    u(x,t)=G1+G31+F2+F4. (4.28)

    According to the bilinear form of parity transformed complex conjugate equation, the parity transformed complex conjugate field is derived in the form

    u(x,t)=G1+G31+F2+F4. (4.29)

    The figures of nonlocal two-soliton solutions Eqs (4.28) and (4.29) of the reverse space-time cmKdV Eq (4.1) are given in Figure 8. The results show that focusing and defocusing nonlocal cmKdV equations have different characteristics of solitary wave structure with the same parameters ϵ=1, k1=0.7+0.7i, k2=0.640.8i. The solution u(x,t) and u(x,t) of focusing cmKdV equations exhibit the periodic oscillations with exponential growth, while the defocusing ones show twisted solitons.

    Figure 8.  Profiles (a) and (c), (b) and (d) are the intensity distributions of the module of solution (4.28) and (4.29), respectively. The parameters ϵ=1, k1=0.7+0.7i, k2=0.640.8i. (a)-(b): σ=1. (c)-(d): σ=1.

    The local cmKdV Eq (1.1) is integrabel, which has the Lax pair as follows

    Φx=MΦ=(iλuσuiλ)Φ, (5.1)

    and

    Φt=NΦ=(4iλ32iλσ|u|2+σuxuσuux4λ2u+2iλux+2σu2uuxx4σλ2u2iλσux+2σ2uu2σuxx4iλ3+2iλσ|u|2σuxu+σuux)Φ. (5.2)

    The compatibility condition of the Lax pair, that is zero curvature equation MtNx+[M,N]=0, leads to Eq (1.1). These transformations Eqs (1.2)–(1.4) allow us to derive the Lax pair of the nonlocal equations from those of the local ones. The Lax pair of reverse space cmKdV Eq (1.5) as

    ΦS,x=(iλuσuiλ)Φ, (5.3)

    and

    ΦS,t=(4λ32λσ|u|2iσuxu+iσuux4iλ2u2λux2iσu2uiuxx4iσλ2u2λσux+2iσ2uu2+iσuxx4λ3+2λσ|u|2+iσuxuiσuux)Φ. (5.4)

    The Lax pair of reverse time cmKdV Eq (1.6) as

    ΦT,x=(λiuiσuλ)Φ, (5.5)

    and

    ΦT,t=(4iλ3+2iλσ|u|2+iσuxuiσuux4λ2u+2λux2σu2u+uxx4σλ2u+2λσux+2σ2uu2σuxx4iλ32iλσ|u|2iσuxu+iσuux)Φ. (5.6)

    The Lax pair of reverse space-time cmKdV Eq (1.7) as

    ΦST,x=(iλuσuiλ)Φ, (5.7)

    and

    ΦST,t=(4iλ3+2iλσ|u|2σuxu+σuux4λ2u+2iλux2σu2uuxx4σλ2u+2iσux+2σ2uu2+σuxx4iλ32iλσ|u|2+σuxuσuux)Φ. (5.8)

    The transformation relationship between local and nonlocal equations provides an effective method for us to study nonlocal equations. In fact, given the solutions of local equations, the solutions of nonlocal counterparts can be derived from the principle. However, if not, then the solutions of nonlocal equations may be derive desired solutions by other methods.

    In this paper, three types of nonlocal cmKdV equation were converted from local cmKdV equation. A variety of exact solutions are derived via constructing an improved Hirota bilinear method. We obtained various kinds of solitary waves by choosing appropriate parameters. The figures of the one- and two-soliton solutions of the reverse space cmKdV equation (see Figures 1 and 3), the reverse time cmKdV equation (see Figures 46) and the reverse space-time cmKdV equation(see Figures 7 and 8) shown the difference between defocusing case and focusing case. Furthermore, the Lax integrability of three types of nonlocal cmKdV equations are investigated using variable transformations from local equation. It should be pointed out that through the variable transformations, many integrable nonlocal equations can be converted from local equations. These results obtained in this paper might be useful to comprehend some physical phenomena and inspire some novel physical applications.

    This work is supported by the National Natural Science Foundation of China (Nos. 11905013 and 11772063), Qin Xin Talents Cultivation Program of Beijing Information Science and Technology University (QXTCP C202118), the Scientific Research Common Program of Beijing Municipal Commission of Education under Grant (No. KM201911232011).

    The authors declare no conflict of interest.



    [1] E. Acerbi, N. Fusco, V. Julin, M. Morini, Nonlinear stability results for the modified Mullins–Sekerka flow and the surface diffusion flow, J. Differential Geom., 113 (2019), 1–53.
    [2] E. Acerbi, N. Fusco, M. Morini, Minimality via second variation for a nonlocal isoperimetric problem, Commun. Math. Phys., 322 (2013), 515–557. doi: 10.1007/s00220-013-1733-y
    [3] R. A. Adams, J. F. Fournier, Sobolev spaces, 2 Eds., Amsterdam: Elsevier/Academic Press, 2013.
    [4] N. D. Alikakos, P. W. Bates, X. Chen, Convergence of the Cahn–Hilliard equation to the Hele–Shaw model, Arch. Rational Mech. Anal., 128 (1994), 165–205. doi: 10.1007/BF00375025
    [5] T. Aubin, Some nonlinear problems in Riemannian geometry, Berlin, Heidelberg: Springer, 1998.
    [6] F. Cagnetti, M. G. Mora, M. Morini, A second order minimality condition for the Mumford–Shah functional, Calc. Var., 33 (2008), 37–74. doi: 10.1007/s00526-007-0152-3
    [7] X. Chen, The Hele–Shaw problem and area–preserving curve–shortening motions, Arch. Rational Mech. Anal., 123 (1993), 117–151. doi: 10.1007/BF00695274
    [8] X. Chen, J. Hong, F. Yi, Existence, uniqueness, and regularity of classical solutions of the Mullins–Sekerka problem, Commun. Part. Diff. Eq., 21 (1996), 1705–1727. doi: 10.1080/03605309608821243
    [9] R. Choksi, P. Sternberg, On the first and second variations of a nonlocal isoperimetric problem, J. Reine Angew. Math., 611 (2007), 75–108.
    [10] M. Cicalese, G. P. Leonardi, F. Maggi, Sharp stability inequalities for planar double bubbles, Interfaces Free Bound., 19 (2017), 305–350. doi: 10.4171/IFB/384
    [11] J. Crank, Free and moving boundary problems, New York: The Clarendon Press, 1987.
    [12] R. Cristoferi, On periodic critical points and local minimizers of the Ohta–Kawasaki functional, Nonlinear Anal., 168 (2018), 81–109. doi: 10.1016/j.na.2017.11.004
    [13] S. Della Corte, A. Diana, C. Mantegazza, Uniform Sobolev, interpolation and geometric Calderón–Zygmund inequalities for graph hypersurfaces, unpublished work.
    [14] F. Demengel, G. Demengel, R. Erné, Functional spaces for the theory of elliptic partial differential equations, London: Springer, 2012.
    [15] C. M. Elliott, H. Garcke, Existence results for diffusive surface motion laws, Adv. Math. Sci. Appl., 7 (1997), 467–490.
    [16] J. Escher, U. F. Mayer, Loss of convexity for a modified Mullins–Sekerka model arising in diblock copolymer melts, Arch. Math., 77 (2001), 434–448. doi: 10.1007/PL00000515
    [17] J. Escher, U. F. Mayer, G. Simonett, The surface diffusion flow for immersed hypersurfaces, SIAM J. Math. Anal., 29 (1998), 1419–1433. doi: 10.1137/S0036141097320675
    [18] J. Escher, Y. Nishiura, Smooth unique solutions for a modified Mullins–Sekerka model arising in diblock copolymer melts, Hokkaido Math. J., 31 (2002), 137–149.
    [19] J. Escher, G. Simonett, On Hele–Shaw models with surface tension, Math. Res. Lett., 3 (1996), 467–474. doi: 10.4310/MRL.1996.v3.n4.a5
    [20] J. Escher, G. Simonett, Classical solutions for Hele–Shaw models with surface tension, Adv. Differential Equ., 2 (1997), 619–642.
    [21] J. Escher, G. Simonett, Classical solutions of multidimensional Hele–Shaw models, SIAM J. Math. Anal., 28 (1997), 1028–1047. doi: 10.1137/S0036141095291919
    [22] J. Escher, G. Simonett, A center manifold analysis for the Mullins–Sekerka model, J. Differ. Equations, 143 (1998), 267–292. doi: 10.1006/jdeq.1997.3373
    [23] L. C. Evans, Partial differential equations, AMS, 2010.
    [24] N. Fusco, V. Julin, M. Morini, The surface diffusion flow with elasticity in three dimensions, Arch. Rational Mech. Anal., 237 (2020), 1325–1382. doi: 10.1007/s00205-020-01532-4
    [25] E. Gagliardo, Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili, Rend. Sem. Mat. Univ. Padova, 27 (1957), 284–305.
    [26] S. Gallot, D. Hulin, J. Lafontaine, Riemannian geometry, Berlin, Heidelberg: Springer, 1990.
    [27] H. Garcke, Curvature driven interface evolution, Dtsch. Math. Ver., 115 (2013), 63–100. doi: 10.1365/s13291-013-0066-2
    [28] Y. Giga, K. Ito, On pinching of curves moved by surface diffusion, Comm. Appl. Anal., 2 (1998), 393–405.
    [29] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Berlin, Heidelberg: Springer, 1983.
    [30] H. Groemer, Geometric applications of Fourier series and spherical harmonics, Cambridge: Cambridge University Press, 1996.
    [31] K. Grosse-Brauckmann, Gyroids of constant mean curvature, Exp. Math., 6 (1997), 33–50. doi: 10.1080/10586458.1997.10504349
    [32] K. Grosse-Brauckmann, M. Wohlgemuth, The gyroid is embedded and has constant mean curvature companions, Calc. Var., 4 (1996), 499–523. doi: 10.1007/BF01261761
    [33] M. E. Gurtin, Thermomechanics of evolving phase boundaries in the plane, New York: The Clarendon Press, 1993.
    [34] M. E. Gurtin, M. E. Jabbour, Interface evolution in three dimensions with curvature–dependent energy and surface diffusion: Interface–controlled evolution, phase transitions, epitaxial growth of elastic films, Arch. Rational Mech. Anal., 163 (2002), 171–208. doi: 10.1007/s002050200193
    [35] C. Imbert, Level set approach for fractional mean curvature flows, Interfaces Free Bound., 11 (2009), 153–176.
    [36] K. Ito, The surface diffusion flow equation does not preserve the convexity, RIMS Kokyuroku, 1105 (1999), 10–21.
    [37] D. S. Jerison, C. E. Kenig, The Neumann problem on Lipschitz domains, Bull. Amer. Math. Soc., 4 (1981), 203–207. doi: 10.1090/S0273-0979-1981-14884-9
    [38] V. Julin, D. A. La Manna, Short time existence of the classical solution to the fractional mean curvature flow, Ann. Inst. H. Poincaré Anal. Non Linéaire, 37 (2020), 983–1016. doi: 10.1016/j.anihpc.2020.02.007
    [39] V. Julin, G. Pisante, Minimality via second variation for microphase separation of diblock copolymer melts, J. Reine Angew. Math., 2017 (2017), 81–117.
    [40] H. Knüpfer, C. B. Muratov, On an isoperimetric problem with a competing nonlocal term Ⅱ: The general case, Commun. Pure Appl. Math., 66 (2013), 1129–1162. doi: 10.1002/cpa.21451
    [41] N. Q. Le, On the convergence of the Ohta–Kawasaki equation to motion by nonlocal Mullins–Sekerka law, SIAM J. Math. Anal., 42 (2010), 1602–1638. doi: 10.1137/090768643
    [42] C. Mantegazza, Lecture notes on mean curvature flow, Basel: Birkhäuser/Springer Basel AG, 2011.
    [43] C. Mantegazza, A. C. Mennucci, Hamilton–Jacobi equations and distance functions on Riemannian manifolds, Appl. Math. Optim., 47 (2003), 1–25.
    [44] M. Morini, P. Sternberg, Cascade of minimizers for a nonlocal isoperimetric problem in thin domains, SIAM J. Math. Anal., 46 (2014), 2033–2051. doi: 10.1137/130932594
    [45] W. W. Mullins, Theory of thermal grooving, J. Appl. Phys., 28 (1975), 333–339.
    [46] W. W. Mullins, R. F. Sekerka, Morphological stability of a particle growing by diffusion or heat flow, J. Appl. Phys., 34 (1963), 323–329. doi: 10.1063/1.1702607
    [47] C. B. Muratov, A. Zaleski, On an isoperimetric problem with a competing nonlocal term: quantitative results, Ann. Glob. Anal. Geom., 47 (2015), 63–80. doi: 10.1007/s10455-014-9435-z
    [48] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. doi: 10.1016/j.bulsci.2011.12.004
    [49] T. Ohta, K. Kawasaki, Equilibrium morphology of block copolymer melts, Macromolecules, 19 (1986), 2621–2632. doi: 10.1021/ma00164a028
    [50] R. L. Pego, Front migration in the nonlinear Cahn–Hilliard equation, Proc. Roy. Soc. London Ser. A, 422 (1989), 261–278.
    [51] P. Petersen, Riemannian geometry, 2 Eds., New York: Springer, 2006.
    [52] L. C. Piccinini, G. Stampacchia, G. Vidossich, Equazioni differenziali ordinarie in Rn (problemi e metodi), Serie di Matematica e Fisica, Napoli: Liguori Editore, 1979.
    [53] X. Ren, J. Wei, Concentrically layered energy equilibria of the di–block copolymer problem, Eur. J. Appl. Math., 13 (2002), 479–496. doi: 10.1017/S0956792502004928
    [54] X. Ren, J. Wei, Stability of spot and ring solutions of the diblock copolymer equation, J. Math. Phys., 45 (2004), 4106–4133. doi: 10.1063/1.1782280
    [55] X. Ren, J. Wei, Wriggled lamellar solutions and their stability in the diblock copolymer problem, SIAM J. Math. Anal., 37 (2005), 455–489. doi: 10.1137/S0036141003433589
    [56] X. Ren, J. Wei, Many droplet pattern in the cylindrical phase of diblock copolymer morphology, Rev. Math. Phys., 19 (2007), 879–921. doi: 10.1142/S0129055X07003139
    [57] X. Ren, J. Wei, Single droplet pattern in the cylindrical phase of diblock copolymer morphology, J. Nonlinear Sci., 17 (2007), 471–503. doi: 10.1007/s00332-007-9005-7
    [58] X. Ren, J. Wei, Spherical solutions to a nonlocal free boundary problem from diblock copolymer morphology, SIAM J. Math. Anal., 39 (2008), 1497–1535. doi: 10.1137/070690286
    [59] A. Ros, Stable periodic constant mean curvature surfaces and mesoscopic phase separation, Interfaces Free Bound., 9 (2007), 355–365.
    [60] M. Ross, Schwarz' P and D surfaces are stable, Differ. Geom. Appl., 2 (1992), 179–195. doi: 10.1016/0926-2245(92)90032-I
    [61] T. Runst, W. Sickel, Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, Walter de Gruyter and Co., 1996.
    [62] A. H. Schoen, Infinite periodic minimal surfaces without self–intersections, NASA Tech. Report D-5541, 1970.
    [63] L. Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematics and its Applications, Canberra: Australian National University, 1983.
    [64] P. Sternberg, I. Topaloglu, On the global minimizers of a nonlocal isoperimetric problem in two dimensions, Interfaces Free Bound., 13 (2011), 155–169.
  • This article has been cited by:

    1. Yang Cao, Hongte Wu, Preparation and performance analysis of polycarboxylate superplasticizer modified with fluorine-containing monomer and silicon dioxide nanoparticles, 2024, 14, 2158-5849, 605, 10.1166/mex.2024.2665
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2545) PDF downloads(124) Cited by(2)

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog