Research article

$ L^{p} $ compactness criteria with an application to variational convergence of some nonlocal energy functionals

  • Received: 13 July 2023 Revised: 10 August 2023 Accepted: 14 August 2023 Published: 14 September 2023
  • Motivated by some variational problems from a nonlocal model of mechanics, this work presents a set of sufficient conditions that guarantee a compact inclusion in the function space of $ L^{p} $ vector fields defined on a domain $ \Omega $ that is either a bounded domain in $ \mathbb{R}^{d} $ or $ \mathbb{R}^{d} $ itself. The criteria are nonlocal and are given with respect to nonlocal interaction kernels that may not be necessarily radially symmetric. Moreover, these criteria for vector fields are also different from those given for scalar fields in that the conditions are based on nonlocal interactions involving only parts of the components of the vector fields. The $ L^{p} $ compactness criteria are utilized in demonstrating the convergence of minimizers of parameterized nonlocal energy functionals.

    Citation: Qiang Du, Tadele Mengesha, Xiaochuan Tian. $ L^{p} $ compactness criteria with an application to variational convergence of some nonlocal energy functionals[J]. Mathematics in Engineering, 2023, 5(6): 1-31. doi: 10.3934/mine.2023097

    Related Papers:

  • Motivated by some variational problems from a nonlocal model of mechanics, this work presents a set of sufficient conditions that guarantee a compact inclusion in the function space of $ L^{p} $ vector fields defined on a domain $ \Omega $ that is either a bounded domain in $ \mathbb{R}^{d} $ or $ \mathbb{R}^{d} $ itself. The criteria are nonlocal and are given with respect to nonlocal interaction kernels that may not be necessarily radially symmetric. Moreover, these criteria for vector fields are also different from those given for scalar fields in that the conditions are based on nonlocal interactions involving only parts of the components of the vector fields. The $ L^{p} $ compactness criteria are utilized in demonstrating the convergence of minimizers of parameterized nonlocal energy functionals.



    加载中


    [1] B. Aksoylu, T. Mengesha, Results on non-local boundary-value problems, Numer. Func. Anal. Optim., 31 (2010), 1301–1317. https://doi.org/10.1080/01630563.2010.519136 doi: 10.1080/01630563.2010.519136
    [2] G. Barles, E. Chasseigne, C. Imbert, On the Dirichlet problem for second-order elliptic integro-differential equations, Indiana Univ. Math. J., 57 (2008), 213–246.
    [3] J. C. Bellido, C. Mora-Corral, Existence for nonlocal variational problems in peridynamics, SIAM J. Math. Anal., 46 (2014), 890–916. https://doi.org/10.1137/130911548 doi: 10.1137/130911548
    [4] J. C. Bellido, C. Mora-Corral, P. Pedregal, Hyperelasticity as a $\Gamma$-limit of peridynamics when the horizon goes to zero, Calc. Var., 54 (2015), 1643–1670. https://doi.org/10.1007/s00526-015-0839-9 doi: 10.1007/s00526-015-0839-9
    [5] A. Bonito, J. P. Borthagaray, R. H. Nochetto, E. Otárola, A. J. Salgado, Numerical methods for fractional diffusion, Comput. Visual. Sci., 19 (2018), 19–46. https://doi.org/10.1007/s00791-018-0289-y doi: 10.1007/s00791-018-0289-y
    [6] J. Bourgain, H. Brezis, P. Mironescu, Another look at Sobolev spaces, In: J. L. Menaldi, E. Rofman, A. Sulem, Optimal control and partial differential equations: in honor of professor Alain Bensoussan's 60th anniversary, IOS Press, 2001,439–455.
    [7] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, New York: Springer, 2010. https://doi.org/10.1007/978-0-387-70914-7
    [8] A. Coclite, G. M. Coclite, F. Maddalena, T. Politi, A numerical framework for nonlinear peridynamics on two-dimensional manifolds based on implicit P-(EC$)^{k}$ schemes, arXiv, 2022. https://doi.org/10.48550/arXiv.2207.06022 doi: 10.48550/arXiv.2207.06022
    [9] G. M. Coclite, S. Dipierro, F. Maddalena, E. Valdinoci, Wellposedness of a nonlinear peridynamic model, Nonlinearity, 32 (2018), 1. https://doi.org/10.1088/1361-6544/aae71b doi: 10.1088/1361-6544/aae71b
    [10] Q. Du, M. Gunzburger, R. B. Lehoucq, K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Rev., 54 (2012), 667–696. https://doi.org/10.1137/110833294 doi: 10.1137/110833294
    [11] Q. Du, M. Gunzburger, R. B. Lehoucq, K. Zhou, A nonlocal vector calculus, nonlocal volume constrained problems, and nonlocal balance laws, Math. Mod. Meth. Appl. Sci., 23 (2013), 493–540. https://doi.org/10.1142/S0218202512500546 doi: 10.1142/S0218202512500546
    [12] Q. Du, M. Gunzburger, R. B. Lehoucq, K. Zhou, Analysis of the volume-constrained peridynamic Navier equation of linear elasticity, J. Elast., 113 (2013), 193–217. https://doi.org/10.1007/s10659-012-9418-x doi: 10.1007/s10659-012-9418-x
    [13] Q. Du, K. Zhou, Mathematical analysis for the peridynamic non-local continuum theory, ESIAM: Math. Modell. Numer. Anal., 45 (2011), 217–234. https://doi.org/10.1051/m2an/2010040 doi: 10.1051/m2an/2010040
    [14] E. Emmrich, D. Puhst, Well-posedness of the peridynamic model with Lipschitz continuous pairwise force function, Commun. Math. Sci., 11 (2013), 1039–1049. https://doi.org/10.4310/CMS.2013.v11.n4.a7 doi: 10.4310/CMS.2013.v11.n4.a7
    [15] E. Emmrich, O. Weckner, On the well-posedness of the linear peridynamic model and its convergence towards the Navier equation of linear elasticity, Commun. Math. Sci., 5 (2007), 851–864. https://doi.org/10.4310/CMS.2007.v5.n4.a6 doi: 10.4310/CMS.2007.v5.n4.a6
    [16] M. Felsinger, M. Kassmann, P. Voigt, The Dirichlet problem for nonlocal operators, Math. Z., 279 (2015), 779–809. https://doi.org/10.1007/s00209-014-1394-3 doi: 10.1007/s00209-014-1394-3
    [17] F. G. G. Fabrice, $L^{2}$-theory for nonlocal operators on domains, PhD Thesis, Bielefeld University, 2020. https://doi.org/10.4119/unibi/2946033
    [18] S. Jarohs, T. Weth, Local compactness and nonvanishing for weakly singular nonlocal quadratic forms, Nonlinear Anal., 193 (2020), 111431. https://doi.org/10.1016/j.na.2019.01.021 doi: 10.1016/j.na.2019.01.021
    [19] R. Lipton, Dynamic brittle fracture as a small horizon limit of peridynamics, J. Elast., 117 (2014), 21–50. https://doi.org/10.1007/s10659-013-9463-0 doi: 10.1007/s10659-013-9463-0
    [20] T. Mengesha, Nonlocal Korn-type characterization of Sobolev vector fields, Commun. Contemp. Math., 14 (2012), 1250028. https://doi.org/10.1142/S0219199712500289 doi: 10.1142/S0219199712500289
    [21] G. Maso, An introduction to $\Gamma $-convergence: progress in nonlinear differential equations and their applications, Vol. 8, Boston: Birkhäuser Boston, Inc., 1993. https://doi.org/10.1007/978-1-4612-0327-8
    [22] T. Mengesha, Q. Du, Analysis of a scalar nonlocal peridynamic model with a sign changing kernel, Discrete Cont. Dyn. Syst.-B, 18 (2013), 1415–1437. https://doi.org/10.3934/dcdsb.2013.18.1415 doi: 10.3934/dcdsb.2013.18.1415
    [23] T. Mengesha, Q. Du, Nonlocal constrained value problems for a linear peridynamic Navier equation, J. Elast., 116 (2014), 27–51. https://doi.org/10.1007/s10659-013-9456-z doi: 10.1007/s10659-013-9456-z
    [24] T. Mengesha, Q. Du, The bond-based peridynamic system with Dirichlet-type volume constraint, Proc. R. Soc. Edinburgh Sect. A: Math., 144 (2014), 161–186. https://doi.org/10.1017/S0308210512001436 doi: 10.1017/S0308210512001436
    [25] T. Mengesha, Q. Du, On the variational limit of a class of nonlocal functionals related to peridynamics, Nonlinearity, 28 (2015), 3999. https://doi.org/10.1088/0951-7715/28/11/3999 doi: 10.1088/0951-7715/28/11/3999
    [26] T. Mengesha, D. Spector, Localization of nonlocal gradients in various topologies, Calc. Var., 52 (2015), 253–279. https://doi.org/10.1007/s00526-014-0711-3 doi: 10.1007/s00526-014-0711-3
    [27] T. Mengesha, J. M. Scott, A fractional Korn-type inequality for smooth domains and a regularity estimate for nonlinear nonlocal systems of equations, Commun. Math. Sci., 20 (2022), 405–423. https://doi.org/10.4310/CMS.2022.v20.n2.a5 doi: 10.4310/CMS.2022.v20.n2.a5
    [28] A. C. Ponce, An estimate in the spirit of Poincaré's inequality, J. Eur. Math. Soc., 6 (2004), 1–15. https://doi.org/10.4171/JEMS/1 doi: 10.4171/JEMS/1
    [29] A. C. Ponce, A new approach to Sobolev spaces and connections to $\Gamma$-convergence, Calc. Var., 19 (2004), 229–255. https://doi.org/10.1007/s00526-003-0195-z doi: 10.1007/s00526-003-0195-z
    [30] J. Scott, T. Mengesha, A fractional Korn-type inequality, Discrete Cont. Dyn. Syst., 39 (2019), 3315–3343. https://doi.org/10.3934/dcds.2019137 doi: 10.3934/dcds.2019137
    [31] S. A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, 48 (2000), 175–209. https://doi.org/10.1016/S0022-5096(99)00029-0 doi: 10.1016/S0022-5096(99)00029-0
    [32] S. A. Silling, Linearized theory of peridynamic states, J. Elast., 99 (2010), 85–111. https://doi.org/10.1007/s10659-009-9234-0 doi: 10.1007/s10659-009-9234-0
    [33] S. A. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, Peridynamic states and constitutive modeling, J. Elast., 88 (2007), 151–184. https://doi.org/10.1007/s10659-007-9125-1 doi: 10.1007/s10659-007-9125-1
    [34] X. Tian, Q. Du, Nonconforming discontinuous Galerkin methods for nonlocal variational roblems, SIAM J. Numer. Anal., 53 (2015), 762–781. https://doi.org/10.1137/140978831 doi: 10.1137/140978831
    [35] X. Tian, Q. Du, Asymptotically compatible schemes and applications to robust discretization of nonlocal models, SIAM J. Numer. Anal., 52 (2014), 1641–1665. https://doi.org/10.1137/130942644 doi: 10.1137/130942644
    [36] X. Tian, Q. Du, M. Gunzburger, Asymptotically compatible schemes for the approximation of fractional Laplacian and related nonlocal diffusion problems on bounded domains, Adv. Comput. Math., 42 (2016), 1363–1380. https://doi.org/10.1007/s10444-016-9466-z doi: 10.1007/s10444-016-9466-z
    [37] K. Zhou, Q. Du, Mathematical and numerical analysis of linear peridynamic models with non-local boundary, SIAM J. Numer. Anal., 48 (2010), 1759–1780. https://doi.org/10.1137/090781267 doi: 10.1137/090781267
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(872) PDF downloads(116) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog