Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Interaction between magnetic nanoparticles in clusters

1 Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
2 Institute of Physics—Center for Science and Education, Silesian University of Technology, 44-100 Gliwice, Poland

Topical Section: Nanomaterials, nanoscience and nanotechnology

Micromagnetic simulations are often used to model the magnetic properties of nanoparticles, depending on their shape and dimension as well as other parameters. Due to the significant increase in computing time for large-scale models, simulations are regularly restricted to a single magnetic nanoparticle. Applications in bit-patterned media etc., however, necessitate large clusters of nanostructures. In our recent works, the deviations of magnetic properties and magnetization reversal processes, comparing single nanoparticles and small clusters, were investigated using the micromagnetic simulation OOMMF. The studies concentrated on a special fourfold shape which has been shown before to offer four stable states at remanence, allowing for creating quaternary bit-patterned media with two bits storable in one position. The influence of downscaling was examined by varying the sample dimensions without changing the particle shape. The results show that in case of the special square nanostructures under investigation, the largest nanoparticles experience the strongest effect by being included in a cluster, while the technologically more relevant smaller nanoparticles have similar magnetic properties and identical magnetization reversal processes for single and clustered particles.
  Article Metrics

Keywords micromagnetic simulation; magnetic nanoparticles; nanoparticle cluster; OOMMF; stable intermediate state; lithography

Citation: Andrea Ehrmann, Tomasz Blachowicz. Interaction between magnetic nanoparticles in clusters. AIMS Materials Science, 2017, 4(2): 383-390. doi: 10.3934/matersci.2017.2.383


  • 1. Terris BD, Thomson TJ (2005) Nanofabricated and self-assembled magnetic structures as data storage media. J Phys D Appl Phys 38: R199-R222.    
  • 2. Cowburn RP, Welland ME (2000) Room temperature magnetic quantum cellular automata. Science 287: 1466-1468.    
  • 3. Akerman J (2005) Toward a universal memory. Science 308: 508-510.    
  • 4. Bader SD (2006) Colloquium: Opportunities in nanomagnetism. Rev Mod Phys 78: 1.    
  • 5. Bowden SR, Gibson U (2009) Optical Characterization of All-Magnetic NOT Gate Operation in Vortex Rings. IEEE T Magn 45: 5326-5332.    
  • 6. Richter H, Dobin A, Heinonen O, et al. (2006) Recording on bit-patterned media at densities of 1Tb/in2 and beyond. IEEE T Magn 42: 2255-2260.    
  • 7. Cowburn RP, Koltsov DK, Adeyeye AO, et al. (1999) Single-Domain Circular Nanomagnets. Phys Rev Lett 83: 1042.    
  • 8. Zhang W, Haas S (2010) Phase diagram of magnetization reversal processes in nanorings. Phys Rev B 81: 064433.    
  • 9. He K, Smith DJ, McCartney MR (2010) Effects of vortex chirality and shape anisotropy on magnetization reversal of Co nanorings. J Appl Phys 107: 09D307.
  • 10. Wang RH, Jiang JS, Hu M (2009) Metallic cobalt microcrystals with flowerlike architectures: Synthesis, growth mechanism and magnetic properties. Mater Res Bull 44: 1468-1473.    
  • 11. Huang L, Schofield MA, Zhu Y (2010) Control of Double-Vortex Domain Configurations in a Shape-Engineered Trilayer Nanomagnet System. Adv Mater 22: 492-495.    
  • 12. Thevenard L, Zeng HT, Petit D, et al. (2010) Macrospin limit and configurational anisotropy in nanoscale permalloy triangles. J Magn Magn Mater 322: 2152-2156.    
  • 13. Moritz J, Vinai G, Auffret S, et al. (2011) Two-bit-per-dot patterned media combining in-plane and perpendicular-to-plane magnetized thin films. J Appl Phys 109: 083902.    
  • 14. Blachowicz T, Ehrmann A, Steblinski P, et al. (2013) Directional-dependent coercivities and magnetization reversal mechanisms in fourfold ferromagnetic systems of varying sizes. J Appl Phys 113: 013901.
  • 15. Blachowicz T, Ehrmann A (2013) Six-state, three-level, six-fold ferromagnetic wire system. J Magn Magn Mater 331: 21-23.
  • 16. Blachowicz T, Ehrmann A (2013) Micromagnetic Simulations of Anisotropies in Coupled and Uncoupled Ferromagnetic Nanowire Systems. Sci World J 2013: 472597.
  • 17. Blachowicz T, Ehrmann A (2011) Fourfold nanosystems for quaternary storage devices. J Appl Phys 110: 073911.
  • 18. Blachowicz T, Ehrmann A (2015) Magnetization reversal modes in fourfold Co nan-wire systems. J Phys: Conf Ser 633: 012100.    
  • 19. Blachowicz T, Ehrmann A (2016) Stability of magnetic nano-structures with respect to shape modifications. J Phys: Conf Ser 738: 012058.    
  • 20. Ma CT, Li X, Poon SJ (2016) Micromagnetic simulation of ferrimagnetic TbFeCo films with exchange coupled nanophases. J Magn Magn Mater 417: 197-202.
  • 21. Tillmanns A, Oertker S, Beschoten B, et al. (2006) Magneto-optical study of magnetization reversal asymmetry in exchange bias. Appl Phys Lett 89: 202512.
  • 22. Donahue MJ, Porter DG (1999) OOMMF User's Guide, Version 1.0. Interagency Report NISTIR 6376, National Institute of Standards and Technology, Gaithersburg, MD.
  • 23. Gilbert TL (2004) A phenomenological theory of damping in ferromagnetic materials. IEEE T Magn 40: 3443-3449.    
  • 24. Smith N, Markham D, LaTourette J (1989) Magnetoresistive measurement of the exchange constant in varied-thickness permalloy films. J Appl Phys 65: 4362.    
  • 25. Kneller EF, Hawig R (1991) The exchange-spring magnet: A new material principle for permanent magnets. IEEE T Magn 27: 3588-3600.    
  • 26. Michea S, Briones J, Palma JL, et al. (2014) Magnetization reversal mechanism in patterned (square to wave-like) Py antidot lattices. J Phys D Appl Phys 47: 335001.    
  • 27. Ehrmann A, Blachowicz T, Komraus S, et al. (2015) Magnetic properties of square Py nanowires: Irradiation dose and geometry dependence. J Appl Phys 117: 173903.    
  • 28. Ehrmann A, Komraus S, Blachowicz T, et al. (2016) Pseudo exchange bias due to rotational anisotropy. J Magn Magn Mater 412: 7-10.
  • 29. Blachowicz T, Ehrmann A (2016) Square nano-magnets as bit-patterned media with doubled possible data density. Mater Today: Proceedings, submitted for publication.


This article has been cited by

  • 1. Andrea Ehrmann, Tomasz Blachowicz, Influence of the Distance between Nanoparticles in Clusters on the Magnetization Reversal Process, Journal of Nanomaterials, 2017, 2017, 1, 10.1155/2017/5046076
  • 2. Tomasz Blachowicz, Andrea Ehrmann, Square nano-magnets as bit-patterned media with doubled possible data density, Materials Today: Proceedings, 2017, 4, S226, 10.1016/j.matpr.2017.09.191
  • 3. Andrea Ehrmann, Tomasz Blachowicz, Systematic study of magnetization reversal in square Fe nanodots of varying dimensions in different orientations, Hyperfine Interactions, 2018, 239, 1, 10.1007/s10751-018-1523-1
  • 4. Andrea Ehrmann, Tomasz Blachowicz, Vortex and double-vortex nucleation during magnetization reversal in Fe nanodots of different dimensions, Journal of Magnetism and Magnetic Materials, 2019, 475, 727, 10.1016/j.jmmm.2018.12.031
  • 5. Philip Kern, Christoph Döpke, Tomasz Blachowicz, Pawel Steblinski, Andrea Ehrmann, Magnetization reversal in ferromagnetic Fibonacci nano-spirals, Journal of Magnetism and Magnetic Materials, 2019, 484, 37, 10.1016/j.jmmm.2019.03.123
  • 6. Tomasz Blachowicz, Dorota Kosmalska, Christoph Döpke, Harald Leiste, Lothar Hahn, Andrea Ehrmann, Varying steps in hysteresis loops of Co square nano-frames, Journal of Magnetism and Magnetic Materials, 2019, 491, 165619, 10.1016/j.jmmm.2019.165619
  • 7. Devika Sudsom, Irén Juhász Junger, Christoph Döpke, Tomasz Blachowicz, Lothar Hahn, Andrea Ehrmann, Micromagnetic Simulation of Vortex Development in Magnetic Bi-Material Bow-Tie Structures, Condensed Matter, 2020, 5, 1, 5, 10.3390/condmat5010005

Reader Comments

your name: *   your email: *  

Copyright Info: 2017, Andrea Ehrmann, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved