
Citation: Tadhg O'Mahony. State of the art in carbon taxes: a review of the global conclusions[J]. Green Finance, 2020, 2(4): 409-423. doi: 10.3934/GF.2020022
[1] | Luca Spiridigliozzi, Grazia Accardo, Emilio Audasso, Barbara Bosio, Sung Pil Yoon, Gianfranco Dell’Agli . Synthesis of easily sinterable ceramic electrolytes based on Bi-doped 8YSZ for IT-SOFC applications. AIMS Materials Science, 2019, 6(4): 610-620. doi: 10.3934/matersci.2019.4.610 |
[2] | Muhammad Awwaluddin, Sri Hastuty, Djoko Hadi Prajitno, Makmuri, Budi Prasetiyo, Yudi Irawadi, Jekki Hendrawan, Harry Purnama, Eko Agus Nugroho . Effect of Yttrium on corrosion resistance of Zr-based alloys in Ringer's lactate solution for biomaterial applications. AIMS Materials Science, 2024, 11(3): 565-584. doi: 10.3934/matersci.2024028 |
[3] | ME Makhatha . Effect of titanium addition on sub-structural characteristics of low carbon copper bearing steel in hot rolling. AIMS Materials Science, 2022, 9(4): 604-616. doi: 10.3934/matersci.2022036 |
[4] | Hung Nguyen Manh, Oanh Le Thi Mai, Chung Pham Do, Mai Vu Thanh, Anh Nguyen Thi Diep, Dao La Bich, Hang Lam Thi, Duyen Pham Thi, Minh Nguyen Van . Effect of monobasic/dibasic phosphate salts on the crystallinity, physical properties and photocatalytic performance of Ag3PO4 material. AIMS Materials Science, 2022, 9(5): 770-784. doi: 10.3934/matersci.2022047 |
[5] | Tim Slawik, Anne Günther, Tassilo Moritz, Alexander Michaelis . Co-Sintering behaviour of zirconia-ferritic steel composites. AIMS Materials Science, 2016, 3(3): 1160-1176. doi: 10.3934/matersci.2016.3.1160 |
[6] | Nuriya Mukhamedova, Yernat Kozhakhmetov, Mazhyn Skakov, Sherzod Kurbanbekov, Nurzhan Mukhamedov . Microstructural stability of a two-phase (O + B2) alloy of the Ti-25Al-25Nb system (at.%) during thermal cycling in a hydrogen atmosphere. AIMS Materials Science, 2022, 9(2): 270-282. doi: 10.3934/matersci.2022016 |
[7] | Marek Konieczny . Transformation superplasticity of laminated CuAl10Fe3Mn2 bronze-intermetallics composites. AIMS Materials Science, 2020, 7(3): 312-322. doi: 10.3934/matersci.2020.3.312 |
[8] | Toshio Ogawa, Hiroyuki Dannoshita, Yoshitaka Adachi . Evaluation of tensile properties of ferrite single-phase low-carbon steel with different initial microstructures. AIMS Materials Science, 2019, 6(5): 798-805. doi: 10.3934/matersci.2019.5.798 |
[9] | Stefan Wagner, Astrid Pundt . Hydrogen as a probe for defects in materials: Isotherms and related microstructures of palladium-hydrogen thin films. AIMS Materials Science, 2020, 7(4): 399-419. doi: 10.3934/matersci.2020.4.399 |
[10] | Ravinder Kataria, Ravi Pratap Singh, Jatinder Kumar . An experimental study on ultrasonic machining of Tungsten carbide-cobalt composite materials. AIMS Materials Science, 2016, 3(4): 1391-1409. doi: 10.3934/matersci.2016.4.1391 |
Hirota and Ito [1] proposed the following Sawada-Kotera equation to theoretically study the resonances of solitons in one dimension,
ut+b(15u3+15uuxx+uxxxx)x=0, | (1.1) |
which has a non-vanishing boundary condition
u|x=∞=constant. | (1.2) |
Replace u by u+a15b and apply the Galilei transformation to remove ux, then Eq (1.1) changes to the KdV-Sawada-Kotera equation [2]
ut+a(3u2+uxx)x+b(15u3+15uuxx+uxxxx)x=0, | (1.3) |
where a, b are constants. It is a linear combination of the Sawada-Kotera equation and the KdV equation, with considering a=0, Eq (1.3) reduces to the Sawada-Kotera equation, when b=0, Eq (1.3) reduces to the KdV equation. In the past few years, many achievements have been made in the study of KdV-Sawada-Kotera equation. About this equation, conservation laws are investigated by Konno [3], and traveling wave solutions are discovered in [4]. Quasi-periodic wave and exact solitary wave solutions to the KdV-Sawada-Kotera equation are obtained [5].
As we know, nonlinear differential equations (NLDEs) are widely utilized in fluid dynamics, solid state physics, plasma physics, biology, nonlinear optics, chemistry and so on. The study to exact solutions of various NLDEs is extremely important in modern mathematics with ramifications to some areas of physics, mathematics and other sciences. There are many systematic methods to seek exact solutions of NLDEs, for example, Hirota bilinear method [6,7], modified simple equation method [8], generalized (G′/G)-expansion method [9,10], modified Kudryashov method [11,12], exp function method [13,14], modified extended tanh method [15,16], sine-Gordon expansion method [17,18], extended sine-Gordon expansion method [19,20], complex method [21,22,23,24] and exp(−ψ(z))-expansion method [25,26,27,28].
Eremenko showed that all meromorphic solutions of the Kuramoto Sivashinsky equation are elliptic function and its degeneration in [29]. After that, Laurent series were applied by Kudryashov et al. [30,31] to obtain meromorphic exact solutions to certain nonlinear differential equations. On the basis of their work, Yuan et al. [32,33] established the complex method combining the theories of complex analysis and complex differential equations. It is a powerful approach to obtain exact solutions for NLDEs that admit ⟨p,q⟩ condition or are Briot-Bouquet (BB) equations [34]. Following their work, we propose the extended complex method to get meromorphic exact solutions for NLDEs which neither admit ⟨p,q⟩ condition nor BB equations. Therefore, the extended complex method is an enhancement of the complex method and should deal with more NLDEs in applied sciences.
The exp(−ψ(z))-expansion approach is an effectual technique to seek analytical solutions for NLDEs. A lot of researchers, for instance, Jafari, Khan, Roshid, etc [25,26,27,28], made good use of this method to study NLDEs. In this article, we utilize two different systematic methods mentioned above to seek meromorphic exact solutions of the KdV-Sawada-Kotera equation. Dynamic behaviors of the solutions are shown by some graphs in which the profiles of Weierstrass elliptic function solutions have never been shown in former literatures.
Consider the following nonlinear PDE:
P(u,ux,ut,uxx,utt,⋯)=0, | (2.1) |
where P is a polynomial consisted by the unknown function u(x,t) as well as its partial derivatives.
Step 1. Reduce Eq (2.1) to the ODE
F(u,u′,u″,u‴,⋯)=0, | (2.2) |
by traveling wave transform
u(x,t)=u(z),z=kx+rt. |
Step 2. Assume that Eq (2.2) has exact solutions as follows:
u(z)=m∑τ=0Bτ(exp(−ψ(z)))τ, | (2.3) |
where Bτ(0≤τ≤m) are constants to be determined latter, such that Bm≠0 and ψ=ψ(z) admits the following ODE:
ψ′(z)=γ+exp(−ψ(z))+μexp(ψ(z)). | (2.4) |
The solutions of Eq (2.4) are given in the following.
When γ2−4μ>0, μ≠0,
ψ(z)=ln(−√(γ2−4μ)tanh(√γ2−4μ2(z+c))−γ2μ), | (2.5) |
ψ(z)=ln(−√(γ2−4μ)coth(√γ2−4μ2(z+c))−γ2μ). | (2.6) |
When γ2−4μ<0, μ≠0,
ψ(z)=ln(√(4μ−γ2)tan(√(4μ−γ2)2(z+c))−γ2μ), | (2.7) |
ψ(z)=ln(√(4μ−γ2)cot(√(4μ−γ2)2(z+c))−γ2μ). | (2.8) |
When γ2−4μ>0, γ≠0, μ=0,
ψ(z)=−ln(γexp(γ(z+c))−1). | (2.9) |
When γ2−4μ=0, γ≠0, μ≠0,
ψ(z)=ln(−2(γ(z+c)+2)γ2(z+c)). | (2.10) |
When γ2−4μ=0, γ=0, μ=0,
ψ(z)=ln(z+c). | (2.11) |
In Eqs (2.5)–(2.11), Bm≠0,γ,μ,c are constants. Taking the homogeneous balance between nonlinear terms and highest order derivatives of Eq (2.2) yields the positive integer m.
Step 3. Insert Eq (2.3) into Eq (2.2) and collect the function exp(−ψ(z)) to yield the polynomial to exp(−ψ(z)). Letting all coefficients with same power of exp(−ψ(z)) be zero to obtain a system of algebraic equations. Solving these equations, we achieve the values of Bm≠0,γ,μ and substitute them into Eq (2.3) as well as Eqs (2.5)–(2.11) to accomplish the determination for analytical solutions of the original PDE.
Substituting
u(x,t)=u(z),z=kx+rt, |
into Eq (1.3) and then integrating it we obtain
ru+3kau2+k3au″+15kbu3+15k3buu″+k5bu⁗+ζ=0. | (3.1) |
where ζ is the integration constant.
Taking the homogeneous balance between u⁗ and uu″ in Eq (3.1) to yields
u(z)=B0+B1exp(−ψ(z))+B2(exp(−ψ(z)))2, | (3.2) |
where B2≠0, B1 and B0 are constants.
Substituting u⁗,uu″,u″,u3,u2,u into Eq.(3.1) and equating the coefficients about exp(−ψ(z)) to zero, we obtain
e0(−ψ(z)): |
k5bB1γ3μ+14k5bB2γ2μ2+8k5bB1γμ2+16k5bB2μ3+15k3bB0B1μγ |
+30k3bB0B2μ2+ak3B1μγ+2ak3B22μ+15kbB03+3kaB20+rB0+ζ=0, |
e1(−ψ(z)): |
B1bγ4k5+30B2bγ3k5μ+22B1bγ2k5μ+120B2bγk5μ2+30k3bB0B1μ |
+15B0B1bγ2k3+90B0B2bγk3μ+15B12bγk3μ+30B1B2bk3μ2+16B1bk5μ2 |
+B1aγ2k3+6B2aγk3μ+2ak3B1μ+45B20B1bk+6B0B1ak+B1r=0, |
e2(−ψ(z)): |
16B2bγ4k5+15B1bγ3k5+232B2bγ2k5μ+60B1bγk5μ+136B2bk5μ2 |
+60B0B2bγ2k3+15B12bγ2k3+105B1B2bγk3μ+30B22bk3μ2+45B0B1bγk3 |
+120B0B2bk3μ+30B21bk3μ+4B2aγ2k3+3B1aγk3+8B2ak3μ+45B20B2bk |
+45B0B21bk+6B0B2ak+3B21ak+B2r=0, |
e3(−ψ(z)): |
130B2bγ3k5+50B1bγ2k5+440B2bγk5μ+75B1B2bγ2k3+40B1bk5μ |
+90B22bγk3μ+150B0B2bγk3+45B21bγk3+30B0B1bk3+10B2aγk3 |
+150B1B2bk3μ+90B0B1B2bk+15B31bk+2B1ak3+6B1B2ak=0, |
e4(−ψ(z)): |
330B2bγ2k5+60B1bγk5+60B22bγ2k3+240B2bk5μ+195B1B2bγk3 |
+90B0B2bk3+30B21bk3+45B0B22bk+45B21B2bk+6B2ak3+3B22ak |
+120B22bk3μ=0, |
e5(−ψ(z)): |
336B2bγk5+24B1bk5+150B22bγk3+120B1B2bk3+45B1B22bk=0, |
e6(−ψ(z)): |
120B2bk5+90B22bk3+15B32bk=0. |
We solve the above algebraic equations and derive two different families:
Family 1:
B2=−4k2,B1=−4γk2,B0=−5k2b(γ2+8μ)+a15b,r=−k(5k4b2(γ2−4μ)2−a2)5b, | (3.3) |
where γ and μ are arbitrary constants.
Substituting Eq (3.3) into Eq (3.2) yields
u(z)=−5k2b(γ2+8μ)+a15b−4k2γexp(−ψ(z))−4k2(exp(−ψ(z)))2. | (3.4) |
Applying Eqs (2.5)–(2.11) into Eq (3.4) respectively, we get the following exact solutions of the KdV-Sawada-Kotera equation.
Family 1.1: When γ2−4μ>0, μ≠0,
u11(z)=−5k2b(γ2+8μ)+a15b+8k2γμ√(γ2−4μ)tanh(√γ2−4μ2(z+c))+γ |
−16k2μ2(√(γ2−4μ)tanh(√γ2−4μ2(z+c))+γ)2, |
u12(z)=−5k2b(γ2+8μ)+a15b+8k2γμ√(γ2−4μ)coth(√γ2−4μ2(z+c))+γ |
−16k2μ2(√(γ2−4μ)coth(√γ2−4μ2(z+c))+γ)2. |
Family 1.2: When γ2−4μ<0, μ≠0,
u13(z)=−5k2b(γ2+8μ)+a15b−8k2γμ√(4μ−γ2)tan(√4μ−γ22(z+c))−γ |
−16k2μ2(√(4μ−γ2)tan(√4μ−γ22(z+c))−γ)2, |
u14(z)=−5k2b(γ2+8μ)+a15b−8k2γμ√(4μ−γ2)cot(√4μ−γ22(z+c))−γ |
−16k2μ2(√(4μ−γ2)cot(√4μ−γ22(z+c))−γ)2. |
Family 1.3: When γ2−4μ>0, γ≠0, μ=0,
u15(z)=−5k2bγ2+a15b−4k2γ2exp(γ(z+c))−1−4k2γ2(exp(γ(z+c))−1)2. |
Family 1.4: When γ2−4μ=0, γ≠0, μ≠0,
u16(z)=−60k2bμ+a15b+2k2γ3(z+c)γ(z+c)+2−k2γ4(z+c)2(γ(z+c)+2)2. |
Family 1.5: When γ2−4μ=0, γ=0, μ=0,
u17(z)=−a15b−4k2(z+c)2. |
Family 2:
B2=−2k2,B1=−2γk2,B0=−2a+5k2b(γ2+8μ)30b,r=−k(4a2+5k4b2(γ2−4μ)2)20b, | (3.5) |
where γ and μ are arbitrary.
Substituting Eq (3.5) into Eq (3.2) yields
u(z)=−2a+5k2b(γ2+8μ)30b−2k2γexp(−ψ(z))−2k2(exp(−ψ(z)))2. | (3.6) |
Applying Eqs (2.5)–(2.11) into Eq (3.6) respectively, we get the following exact solutions of the KdV-Sawada-Kotera equation.
Family 2.1: When γ2−4μ>0, μ≠0,
u21(z)=−2a+5k2b(γ2+8μ)30b+4k2γμ√(γ2−4μ)tanh(√γ2−4μ2(z+c))+γ |
−8k2μ2(√(γ2−4μ)tanh(√γ2−4μ2(z+c))+γ)2, |
u22(z)=−2a+5k2b(γ2+8μ)30b+4k2γμ√(γ2−4μ)coth(√γ2−4μ2(z+c))+γ |
−8k2μ2(√(γ2−4μ)coth(√γ2−4μ2(z+c))+γ)2. |
Family 2.2: When γ2−4μ<0, μ≠0,
u23(z)=−2a+5k2b(γ2+8μ)30b−4k2γμ√(4μ−γ2)tan(√4μ−γ22(z+c))−γ |
−8k2μ2(√(4μ−γ2)tan(√4μ−γ22(z+c))−γ)2, |
u24(z)=−2a+5k2b(γ2+8μ)30b−4k2γμ√(4μ−γ2)cot(√4μ−γ22(z+c))−γ |
−8k2μ2(√(4μ−γ2)cot(√4μ−γ22(z+c))−γ)2. |
Family 2.3: When γ2−4μ>0, γ≠0, μ=0,
u25(z)=−2a+5k2bγ230b−2k2γ2exp(γ(z+c))−1−2k2γ2(exp(γ(z+c))−1)2. |
Family 2.4: When γ2−4μ=0, γ≠0, μ≠0,
u26(z)=−a+30k2bμ15b+k2γ3(z+c)γ(z+c)+2−k2γ4(z+c)22(γ(z+c)+2)2. |
Family 2.5: When γ2−4μ=0, γ=0, μ=0,
u27(z)=−a15b−2k2(z+c)2. |
Figures 1–6 show the properties of the solutions.
Step 1. Substitute the transformation I:u(x,t)→U(z), (x,t)→z into a nonlinear PDE to yield an ODE
G(U,U′,U″,⋯)=0. | (4.1) |
Step 2. Determination of the weak ⟨p,q⟩ condition.
Assume that the meromorphic solutions U of Eq (4.1) have at least one pole and let q,p∈N. Substitute the Laurent series
U(z)=∞∑k=−qTkzk,T−q≠0,q>0, | (4.2) |
into Eq (4.1) to determine p distinct Laurent principal parts
−1∑k=−qTkzk, |
then we say that the weak ⟨p,q⟩ condition of Eq (4.1) holds.
It is know that Weierstrass elliptic function ℘(z):=℘(z,g2,g3) has double periods and satisfies:
(℘′(z))2=4℘(z)3−g2℘(z)−g3, |
and it admit an addition formula [35] as follows:
℘(z−z0)=−℘(z)+14[℘′(z)+℘′(z0)℘(z)−℘(z0)]2−℘(z0). |
Step 3. Substituting the indeterminate forms
U(z)=h−1∑i=1q∑j=2(−1)jβ−ij(j−1)!dj−2dzj−2(14(℘′(z)+Di℘(z)−Ci)2−℘(z))+h−1∑i=1β−i12℘′(z)+Di℘(z)−Ci |
+q∑j=2(−1)jβ−hj(j−1)!dj−2dzj−2℘(z)+β0, | (4.3) |
U(z)=h∑i=1q∑j=1βij(z−zi)j+β0, | (4.4) |
U(eαz)=h∑i=1q∑j=1βij(eαz−eαzi)j+β0, | (4.5) |
into Eq (4.1) respectively yields a set of algebraic equations, and then solving these equations, we achieve elliptic function solutions, simply periodic solutions and rational function solutions with a pole at z=0, in which D2i=4C3i−g2Ci−g3, β−ij are determined by (4.2), and h∑i=1β−i1=0, and R(z), R(eαz)(α∈C) have h(≤p) distinct poles of multiplicity q.
Step 4. Derive the meromorphic solutions at arbitrary pole, and insert the inverse transform I−1 back to the meromorphic solutions to obtain exact solutions of the given PDE.
Inserting (4.2) into Eq.(3.1) yields
T−2=−4k2,T−1=0,T0=−a15b,T1=0,T2=5rb−ka2300k3b2,⋯ |
and
T−2=−2k2,T−1=0,T0=−a15b,T1=0,T2=ka2−5rb150k3b2,⋯ |
Therefore we know that p=2,q=2, then the weak ⟨2,2⟩ condition of Eq (3.1) hold.
By the weak ⟨2,2⟩ condition and (4.3), we have the form of the elliptic solutions of Eq (3.1)
U10(z)=β−2℘(z)+β20, |
with pole at z=0.
Substituting U10(z) into Eq (3.1) yields
4∑i=1c1i℘i−1(z)=0, | (5.1) |
where
c11=−12k5bβ−2g3−152k3bβ−2β20g2+15kbβ320+3kaβ220−12ak3β−2g2+rβ20+ζ, |
c12=−18k5bβ−2g2−152k3bβ2−2g2+45kbβ−2β220+6kaβ−2β20+rβ−2, |
c13=90k3bβ−2β20+6ak3β−2+45bkβ2−2β20+3akβ2−2, |
c14=120bk5β−2+90bk3β2−2+15bkβ3−2. |
Equate the coefficients of all powers of ℘(z) in Eq (5.1) to zero to achieve one set of algebraic equations:
c11=0,c12=0,c13=0,c14=0. |
Solve the above equations, then
β−2=−4k2,β20=−a15b,g2=a2k−5br60b2k5,g3=−2a3k+225ζb2−15abr10800b3k7, |
and
β−2=−2k2,β20=−a15b,g2=5br−a2k15b2k5,g3=−2a3k+225ζb2−15abr5400b3k7, |
then
U11,0(z)=−4k2℘(z)−a15b, |
and
U12,0(z)=−2k2℘(z)−a15b. |
Thus, elliptic solutions of Eq (3.1) with arbitrary pole are
U11(z)=−4k2℘(z−z0)−a15b, |
and
U12(z)=−2k2℘(z−z0)−a15b, |
where z0∈C.
Use the addition formula to U11(z) and U12(z), then
U11(z)=4k2℘(z)−k2(℘′(z)+D℘(z)−C)2+60k2bC−a15b, |
and
U12(z)=2k2℘(z)−k22(℘′(z)+D℘(z)−C)2+30k2bC−a15b, |
where C2=4D3−g2D−g3. g2=a2k−5bμ60b2k5,g3=−2a3k+225ζb2−15abμ10800b3k7 in the former case, g2=5br−a2k15b2k5,g3=−2a3k+225ζb2−15abr5400b3k7 in the latter case.
By (4.4) and the weak ⟨2,2⟩ condition, we have the indeterminate form of rational solutions
U20(z)=β12z2+β11z+β10, |
with pole at z=0.
Substituting U20(z) into Eq (3.1) yields
7∑i=1c2izi−7=0, | (5.2) |
where
c21=120bk5β12+90bk3β122+15bkβ123, |
c22=24bk5β11+120bk3β11β12+45bkβ11β122, |
c23=90bk3β10β12+30bk3β112+6ak3β12+45bkβ10β122+45bkβ112β12+3akβ122, |
c24=30bk3β10β11+2ak3β11+90bkβ10β11β12+15bkβ113+6akβ11β12, |
c25=45bkβ102β12+45bkβ10β112+6akβ10β12+3akβ112+rβ12, |
c26=45bkβ102β11+6akβ10β11+rβ11, |
c27=15kbβ103+3kaβ102+rβ10+ζ. |
Equate the coefficients of all powers of z in Eq (5.2) to zero to achieve a system of algebraic equations:
c21=0,c22=0,c23=0,c24=0,c25=0,c26=0,c27=0. |
Solving the above equations, we get
β12=−4k2,β11=0,β10=−a15b, |
and
β12=−2k2,β11=0,β10=−a15b, |
then
U21,0(z)=−4k2z2−a15b, |
and
U22,0(z)=−2k2z2−a15b, |
where r=ka25b, ζ=ka3225b2.
Insert U(z)=R(η) into Eq (3.1) to yield
k5bα4(R(4)η4+6R‴η3+7R″η2+R′η)+15k3bα2R(ηR′+η2R″) |
+15kbR3+3kaR2+ak3α2(ηR′+η2R″)+rR+ζ=0, | (5.3) |
where η=eαz (α∈C).
Substituting
U30(z)=b12(eαz−1)2+b11eαz−1+b10, |
into the Eq (5.3), we have
7∑i=1c3iα2e(7−i)αz(eαz−1)−6=0, | (5.4) |
in which
c31=15bkb310+3akb210+rb10+ζ, |
c32=α4bk5b11+15α2bk3b10b11+aα2k3b11−90bkb310+45bkb210b11−18akb210 |
+6akb10b11−6rb10+rb11−6ζ, |
c33=10α4bk5b11+16α4bk5b12−30α2bk3b10b11+60α2bk3b10b12+15α2bk3b211 |
−2aα2k3b11+4aα2k3b12+225bkb103−225bkb102b11+45bkb102b12+45bkb10b211 |
+45akb210−30akb10b11+6akb10b12+3kab211+15rb10−5rb11+rb12+15ζ, |
c34=66α4bk5b12−90α2bk3b10b12−15α2bk3b112+75α2bk3b11b12−6aα2k3b12 |
−300bkb310+450bkb210b11−180bkb210b12−180bkb10b211+90bkb10b11b12+15kbb311 |
+60akb10b11−24akb10b12−12kab211+6akb11b12−20rb10+10rb11−4rb12−20ζ |
−60akb210, |
c35=−10α4bk5b11+36α4bk5b12+30α2bk3b10b11−15α2bk3b211−30α2bk3b11b12 |
+60α2bk3b212+2aα2k3b11+225bkb310−450bkb210b11+270bkb210b12+270bkb10b211 |
−270bkb10b11b12+45bkb10b212−45kbb311+45bkb211b12+45akb210−60akb10b11 |
+36akb10b12+18kab211−18akb11b12+3kab212+15rb10−10rb11+6rb12+15ζ, |
c36=−α4bk5b11+2α4bk5b12−15α2bk3b10b11+30α2bk3b10b12+15α2bk3b211 |
−45α2bk3b11b12+30α2bk3b212−aα2k3b11+2aα2k3b12−90bkb310+18akb11b12 |
+225bkb210b11−180bkb210b12−180bkb10b211+270bkb10b11b12+45kbb311−6rb10 |
−90bkb211b12+45bkb11b212−18akb210+30akb10b11−24akb10b12−6kab212+5rb11 |
−12kab211−90bkb10b212−4rb12−6ζ, |
c37=15bkb310−45bkb210b11+45bkb210b12+45bkb10b211−90bkb10b11b12+45bkb10b212 |
−15kbb311+45bkb211b12−45bkb11b212+15kbb312+3akb102−6akb10b11+6akb10b12 |
+3kab211−6akb11b12+3kab212+rb10−rb11+rb12+ζ. |
Equate the coefficients of all powers about eαz in Eq (5.4) to zero to achieve a system of algebraic equations:
c31=0,c32=0,c33=0,c34=0,c35=0,c36=0,c37=0. |
Solving the above equations, we get
b12=−4k2α2,b11=−4k2α2,b10=−5k2bα2+a15b, |
r=(−5α4b2k4+a2)k5b,ζ=(10α4b2k4−5aα2bk2+a2)k(5α2bk2+a)225b2, |
and
b12=−2k2α2,b11=−2k2α2,b10=−5k2bα2+a15b, |
r=(−5α4b2k4+a2)k5b,ζ=(10α4b2k4−5aα2bk2+a2)k(5α2bk2+a)225b2. |
So simply periodic solutions of Eq (3.1) with pole at z=0 are
U31,0(z)=−4k2α2(eαz−1)2−4k2α2(eαz−1)−5k2bα2+a15b |
=−4k2α2eαz(eαz−1)2−5k2bα2+a15b |
=−k2α2coth2αz2+10k2bα2−a15b, |
and
U32,0(z)=−2k2α2(eαz−1)2−2k2α2(eαz−1)−5k2bα2+a15b |
=−2k2α2eαz(eαz−1)2−5k2bα2+a15b |
=−k2α22coth2αz2+5k2bα2−2a30b. |
Similar to U30(z), we substitute
U40(z)=b12(eαz+1)2+b11eαz+1+b10, |
into the Eq (5.3) to yield
b12=−4k2α2,b11=4k2α2,b10=−5k2bα2+a15b, |
r=(−5α4b2k4+a2)k5b,ζ=(10α4b2k4−5aα2bk2+a2)k(5α2bk2+a)225b2, |
and
b12=−2k2α2,b11=2k2α2,b10=−5k2bα2+a15b, |
r=(−5α4b2k4+a2)k5b,ζ=(10α4b2k4−5aα2bk2+a2)k(5α2bk2+a)225b2, |
then
U41,0(z)=−4k2α2(eαz+1)2+4k2α2(eαz+1)−5k2bα2+a15b |
=4k2α2eαz(eαz+1)2−5k2bα2+a15b |
=−k2α2tanh2αz2−a−10k2bα215b, |
and
U42,0(z)=−2k2α2(eαz+1)2+2k2α2(eαz+1)−5k2bα2+a15b |
=2k2α2eαz(eαz+1)2−5k2bα2+a15b |
=−k2α22tanh2αz2−2a−5k2bα230b. |
Substituting
U50(z)=b14(eαz−1)2+b13(eαz+1)2+b12eαz−1+b11eαz+1+b10, |
into the Eq (5.3) to yield
b14−4k2α2,b13=−4k2α2,b12=−4k2α2,b11=4k2α2,b10=−2(5k2bα2+a)15b, |
r=(−5α4b2k4+a2)k5b,ζ=(10α4b2k4−5aα2bk2+a2)k(5α2bk2+a)225b2, |
and
b14−2k2α2,b13=−2k2α2,b12=−2k2α2,b11=2k2α2,b10=−2(5k2bα2+a)15b, |
r=(−5α4b2k4+a2)k5b,ζ=(10α4b2k4−5aα2bk2+a2)k(5α2bk2+a)225b2, |
then
U51,0(z)=−4k2α2(eαz−1)2−4k2α2(eαz+1)2−4k2α2(eαz−1)+4k2α2(eαz+1)−2(5k2bα2+a)15b |
=−4k2α2eαz(eαz−1)2+4k2α2eαz(eαz+1)2−2(5k2bα2+a)15b, |
and
U52,0(z)=−2k2α2(eαz−1)2−2k2α2(eαz+1)2−2k2α2(eαz−1)+2k2α2(eαz+1)−2(5k2bα2+a)15b |
=−2k2α2eαz(eαz−1)2+2k2α2eαz(eαz+1)2−2(5k2bα2+a)15b. |
Collecting meromorphic solutions of Eq (3.1) in above procedures, we have the following solutions with arbitrary pole:
(1)U11(z)=4k2℘(z)−k2(℘′(z)+D℘(z)−C)2+60k2bC−a15b, |
(2)U12(z)=2k2℘(z)−k22(℘′(z)+D℘(z)−C)2+30k2bC−a15b, |
where C2=4D3−g2D−g3, g2=a2k−5bμ60b2k5,g3=−2a3k+225ζb2−15abμ10800b3k7 in the former case, g2=5br−a2k15b2k5,g3=−2a3k+225ζb2−15abr5400b3k7 in the latter case;
(3)U21(z)=−4k2(z−z0)2−a15b, |
(4)U22(z)=−2k2(z−z0)2−a15b, |
where r=ka25b, ζ=ka3225b2;
(5)U31(z)=−k2α2coth2α(z−z0)2+10k2bα2−a15b, |
(6)U32(z)=−k2α22coth2α(z−z0)2+5k2bα2−2a30b, |
(7)U41(z)=−k2α2tanh2α(z−z0)2−a−10k2bα215b, |
(8)U42(z)=−k2α22tanh2α(z−z0)2−2a−5k2bα230b, |
(9)U51(z)=−4k2α2eα(z−z0)(eα(z−z0)−1)2+4k2α2eα(z−z0)(eα(z−z0)+1)2−2(5k2bα2+a)15b, |
(10)U52(z)=−2k2α2eα(z−z0)(eα(z−z0)−1)2+2k2α2eα(z−z0)(eα(z−z0)+1)2−2(5k2bα2+a)15b, |
where r=(−5α4b2k4+a2)k5b,ζ=(10α4b2k4−5aα2bk2+a2)k(5α2bk2+a)225b2.
Figures 7–11 show the properties of the solutions.
In this paper, we derive meromorphic exact solutions to the KdV-Sawada-Kotera equation via two different systematic methods. Five types of solutions are constructed, including hyperbolic, trigonometric, exponential, elliptic and rational function solutions. Dynamic behaviors of these solutions are given by some graphs. Observing from the figures, we know that the obtained solutions are soliton solutions. Among of them, figures 3, 7 and 8 show multiple soliton solutions, and others show singular soliton solutions. The graphs of Weierstrass elliptic function solutions U11(z) and U12(z) are more interesting and have never been shown in other literatures. We can use the ideas of this study to other differential equations in complexity and nonlinear science.
This research is supported by the NSFC (11901111); Visiting Scholar Program of Chern Institute of Mathematics.
The authors declare no conflict of interest.
[1] |
Bertram C, Luderer G, Pietzcker RC, et al. (2015) Complementing carbon prices with technology policies to keep climate targets within reach. Nat Clim Change 5: 235-239. doi: 10.1038/nclimate2514
![]() |
[2] | Brown MA, Li Y (2018) Carbon pricing and energy efficiency: pathways to deep decarbonization of the US electric sector. Energ Effic 12: 1-19. |
[3] | Bruckner T, Bashmakov IA, Mulugetta Y, et al. (2014) Energy Systems, In: Edenhofer O, Pichs-Madruga R, Sokona Y, et al., Climate Change 2014: Mitigation of Climate Change, eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. |
[4] |
Chen H, Wang L, Chen W (2018) Modeling on building sector's carbon mitigation in China to achieve the 1.5 ℃ climate target. Energ Effic 12: 483-496. doi: 10.1007/s12053-018-9687-8
![]() |
[5] |
Coase RH (1960) The Problem of Social Cost. J Law Econ 3: 1-44. doi: 10.1086/466560
![]() |
[6] | Coase RH (1991) The Institutional Structure of Production, Ronald H. Coase Prize Lecture to the memory of Alfred Nobel, December 9, 1991. Available from: https://www.nobelprize.org/prizes/economic-sciences/1991/coase/lecture/. |
[7] | de Coninck H, Revi A, Babiker M, et al. (2018) Strengthening and implementing the global response, In: Masson-Delmotte V, Zhai P, Pö rtner HO, et al., Global warming of 1.5 ℃. An IPCC Special Report on the impacts of global warming of 1.5 ℃ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, eds., [In Press]. |
[8] | EEA (European Environment Agency) (2019) The European Environment—State and Outlook 2020: Knowledge for Transition to a Sustainable Europe. European Environment Agency Copenhagen. Available from: https://www.eea.europa.eu/publications/soer-2020 (accessed 11 November 2020). |
[9] | Fleurbaey M, Kartha S, Bolwig S, et al. (2014) Sustainable Development and Equity, In: Edenhofer O, Pichs-Madruga R, Sokona Y, et al., Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. |
[10] | GCEC (2018) Unlocking the Inclusive Growth Story of the 21st Century. Global Commission on the Economy and Climate. Available from: https://newclimateeconomy.report/2018/wp-content/uploads/sites/6/2018/09/NCE_2018_FULL-REPORT.pdf. |
[11] |
Goulder L (1995) Environmental taxation and the double dividend: A reader's guide. Int Tax Public Financ 2: 157-183. doi: 10.1007/BF00877495
![]() |
[12] | IMF (2019) Putting a Price on Pollution. Financ Dev 56: 16-19. |
[13] | IPCC (Intergovernmental Panel on Climate Change) (1990) IPCC First Assessment Report. Climate Change. The IPCC Response Strategies. Available from: https://www.ipcc.ch/site/assets/uploads/2018/03/ipcc_far_wg_III_full_report.pdf. |
[14] | Kirby P, O'Mahony T (2018) The Political Economy of the Low-Carbon Transition: Pathways Beyond Techno-optimism, International Political Economy Series, Palgrave Macmillan, Cham, UK. |
[15] | Kolstad C, Urama K, Broome J, et al. (2014) Social, Economic and Ethical Concepts and Methods, In: Edenhofer O, Pichs-Madruga R, Sokona Y, et al., Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovern-mental Panel on Climate Change, eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. |
[16] |
Klenert D, Mattauch L, Combet E, et al. (2018) Making carbon pricing work for citizens. Nat Clim Change 8: 669-677. doi: 10.1038/s41558-018-0201-2
![]() |
[17] | Kriegler E, Bertram C, Kuramochi T, et al. (2018) Short term policies to keep the door open for Paris climate goals. Environ Res Lett 13: 074022. |
[18] |
Lefèvre J, Wills W, Hourcade JC (2018) Combining low-carbon economic development and oil exploration in Brazil? An energy—economy assessment. Clim Policy 18: 1-10. doi: 10.1080/14693062.2018.1431198
![]() |
[19] | Lucon O, Ü rge-Vorsatz D, Zain Ahmed A, et al. (2014) Buildings, In: Edenhofer O, Pichs-Madruga R, Sokona Y, et al., Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. |
[20] |
Méjean A, Guivarch C, Lefèvre J, et al. (2018) The transition in energy demand sectors to limit global warming to 1.5 ℃. Energ Effic 12: 441-462. doi: 10.1007/s12053-018-9682-0
![]() |
[21] | Morita T, Robinson J, Adegbulugbe A, et al. (2001) Greenhouse gas emission mitigation scenarios and implications, In: Metz B, Davidson O, Swart R, et al., (Eds.), Climate Change 2001: Mitigation, Contribution of Working Group III to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, 700. |
[22] |
Mundaca L, Ü rge-Vorsatz D, Wilson C (2019) Demand-side approaches for limiting global warming to 1.5 ℃. Energ Effic 12: 343-362. doi: 10.1007/s12053-018-9722-9
![]() |
[23] |
Newell P, Paterson M (2010) Climate Capitalism: Global Warming and the Transformation of the Global Economy, Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511761850
![]() |
[24] |
O'Mahony T (2014) Integrated Scenarios for Energy: A Methodology for the Short Term. Futures 55: 41-57. doi: 10.1016/j.futures.2013.11.002
![]() |
[25] |
O'Mahony T, Dufour J (2015) Tracking development paths: Monitoring driving forces and the impact of carbon-free energy sources in Spain. Environl Sci Policy 50: 62-73. doi: 10.1016/j.envsci.2015.02.005
![]() |
[26] | Rogelj J, Shindell D, Jiang K, et al. (2018) Mitigation pathways compatible with 1.5 ℃ in the context of sustainable development, In: Masson-Delmotte V, Zhai P, Pö rtner HO, et al., Global warming of 1.5 ℃. An IPCC Special Report on the impacts of global warming of 1.5 ℃ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, eds., [In Press]. |
[27] | Sathaye J, Najam A, Cocklin C, et al. (2007) Sustainable Development and Mitigation, In: Metz B, Davidson OR, Bosch PR, et al., Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. |
[28] | Sims R, Schaeffer R, Creutzig F, et al. (2014) Transport, In: Edenhofer O, Pichs-Madruga R, Sokona Y, et al., Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. |
[29] | Somanathan E, Sterner T, Sugiyama T, et al. (2014) National and Sub-national Policies and Institutions, In: Edenhofer O, Pichs-Madruga R, Sokona Y, et al., Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. |
[30] |
Sonnenschein J, Van Buskirk R, Richter JL, et al. (2018) Minimum energy performance standards for the 1.5 ℃ target: an effective complement to carbon pricing. Energ Effic 12: 387-402. doi: 10.1007/s12053-018-9669-x
![]() |
[31] | Stiglitz JE, Stern N (2017) Report of the High-Level Commission on Carbon Prices, World Bank. |
[32] |
Wakiyama T, Zusman E (2016) What would be the effects of a carbon tax in Japan: an historic analysis of subsidies and fuel pricing on the iron & steel, chemical, and machinery industries. AIMS Energ 4: 606-632. doi: 10.3934/energy.2016.4.606
![]() |
[33] | World Bank (2020) State and Trends of Carbon Pricing 2020. Available from: https://openknowledge.worldbank.org/handle/10986/33809. |