Citation: Keiji Sakakibara, Takashi Kanamura. Risk of temperature differences in geothermal wells and generation strategies of geothermal power[J]. Green Finance, 2020, 2(4): 424-436. doi: 10.3934/GF.2020023
[1] | Lisa Bigler, Malgorzata Peszynska, Naren Vohra . Heterogeneous Stefan problem and permafrost models with P0-P0 finite elements and fully implicit monolithic solver. Electronic Research Archive, 2022, 30(4): 1477-1531. doi: 10.3934/era.2022078 |
[2] | Jianxia He, Qingyan Li . On the global well-posedness and exponential stability of 3D heat conducting incompressible Navier-Stokes equations with temperature-dependent coefficients and vacuum. Electronic Research Archive, 2024, 32(9): 5451-5477. doi: 10.3934/era.2024253 |
[3] | Dandan Song, Xiaokui Zhao . Large time behavior of strong solution to the magnetohydrodynamics system with temperature-dependent viscosity, heat-conductivity, and resistivity. Electronic Research Archive, 2025, 33(2): 938-972. doi: 10.3934/era.2025043 |
[4] | Lanfang Zhang, Jijun Ao, Na Zhang . Eigenvalue properties of Sturm-Liouville problems with transmission conditions dependent on the eigenparameter. Electronic Research Archive, 2024, 32(3): 1844-1863. doi: 10.3934/era.2024084 |
[5] | Qingcong Song, Xinan Hao . Positive solutions for fractional iterative functional differential equation with a convection term. Electronic Research Archive, 2023, 31(4): 1863-1875. doi: 10.3934/era.2023096 |
[6] | Hami Gündoğdu . RETRACTED ARTICLE: Impact of damping coefficients on nonlinear wave dynamics in shallow water with dual damping mechanisms. Electronic Research Archive, 2025, 33(4): 2567-2576. doi: 10.3934/era.2025114 |
[7] | Ismail T. Huseynov, Arzu Ahmadova, Nazim I. Mahmudov . Perturbation properties of fractional strongly continuous cosine and sine family operators. Electronic Research Archive, 2022, 30(8): 2911-2940. doi: 10.3934/era.2022148 |
[8] | Xi Liu, Huaning Liu . Arithmetic autocorrelation and pattern distribution of binary sequences. Electronic Research Archive, 2025, 33(2): 849-866. doi: 10.3934/era.2025038 |
[9] | Rong Chen, Shihang Pan, Baoshuai Zhang . Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29(1): 1691-1708. doi: 10.3934/era.2020087 |
[10] | Yixin Sun, Lei Wu, Peng Chen, Feng Zhang, Lifeng Xu . Using deep learning in pathology image analysis: A novel active learning strategy based on latent representation. Electronic Research Archive, 2023, 31(9): 5340-5361. doi: 10.3934/era.2023271 |
Since Hirsch and Smale[1] proposed the necessity of structural stability, this topic has received sufficient attention from scholars. This type of research focuses on whether small disturbances in the coefficients, initial data, and geometric models in the equations will cause significant disturbances in the solutions. At the beginning, people were mainly keen on dealing with the continuous dependence and convergence of fluid in porous media defined in two-dimensional or three-dimensional bounded regions. Freitas et al. [2] studied the long-term behavior of porous-elastic systems and proved that solutions depend continuously on the initial data. Payne and Straughan[3] established a prior bounds and maximum principles for the solutions and obtained the structural stability of Darcy fluid in porous media, where they assumed that the temperature satisfies Newton's cooling conditions at the boundary. Scott[4] considered the situation where Darcy fluid undergoes exothermic reactions at the boundary and obtained the continuous dependence of the solutions on the boundary parameters. Li et al.[5] studied the interface connection between Brinkman–Forchheimer fluid and Darcy fluid in a bounded region, and obtained the continuous dependence on the heat source and Forchheimer coefficient. For more papers, on can see [6,7,8,9,10].
With the continuous development of technology and progress in the field of engineering, the necessity of studying the structural stability of fluid equations on a semi-infinite cylinder is even more urgent. The semi-infinite cylinder refers to a cylinder whose generatrix is parallel to the coordinate axis and its base is located on the coordinate plane, i.e.,
R={(x1,x2,x3)|(x1,x2)∈D, x3≥0}, |
where D is a bounded domain on x1Ox2.
Li et al. have already done some work on this topic. Li and Lin[11] proved the continuous dependence on the Forchheimer coefficient of the Brinkman–Forchheimer equations in R. Papers [12] and [13] obtained structural stability for Forchheimer fluid and temperature-dependent bidispersive flow in R, respectively.
In this paper, we introduce a new cylinder with a disturbed base, which has been considered in [14]. Let D(f) represent the disturbed base, i.e.,
D(f)={(x1,x2,x3)|x3=f(x1,x2)≥0, (x1,x2)∈D}, |
where the given function f satisfies
|f(x1,x2)|<ϵ, ϵ>0. |
ϵ is called the perturbation parameter. The cylinder with a disturbed base is defined as
R(f)={(x1,x2,x3)|(x1,x2)∈D, x3≥f(x1,x2)≥0}. |
Different from [14], we study the heat conduction equation applicable to the study of layered composite materials in binary mixtures[15]
b1ut=k1△u−γ(u−v), in R×{t>0}, | (1.1) |
b2vt=k2△v+γ(u−v), in R×{t>0}, | (1.2) |
u=v=0, on ∂D×{x3>0}×{t>0}, | (1.3) |
u=v=0, in R×{t=0}, | (1.4) |
where k1,k2,b1,b2 and γ are positive constants. u and v are the temperature fields in each constituent. Papers [16,17,18] further discussed and generalized the application of Eqs (1.1) and (1.2).
In this paper, we shall also use the notations
R(z)={(x1,x2,x3)|(x1,x2)∈D,x3≥z≥0}, |
D(z)={(x1,x2,x3)|(x1,x2)∈D,x3=z≥0}. |
The main work of this article investigates the continuous dependence of solutions to Eqs (1.1)–(1.4) on perturbation parameters and base data. Due to many practical constraints, it is very common for the base of the cylinder to experience minor disturbance. Therefore, studying the effects of these disturbances is essential. To this end, we assume that u∗ and v∗ are perturbed solutions of Eqs (1.1)–(1.4) on R(f), and then prove that the difference between the unperturbed solutions and the perturbed solutions satisfies a first-order differential inequality. By solving this inequality, we can obtain the continuous dependence of the solution.
On the finite end D, we assume that the solutions to (1.1)–(1.4) satisfy
u(t,x)=L11(t,x1,x2), v(t,x)=L12(t,x1,x2),t>0, x3=0, (x1,x2)∈D(0), | (2.1) |
u∗(t,x)=L21(t,x1,x2), v∗(t,x)=L22(t,x1,x2),t>0, x3=f(x1,x2), (x1,x2)∈D(0). | (2.2) |
In (2.1) and (2.2), the known functions Lij(i,j=1,2) satisfy the compatibility conditions on ∂D.
We let that H1(t,x) and H2(t,x) are specific functions who have the same boundary conditions as u∗ and v∗, respectively. That is
H1(t,x)=L21(t,x1,x2)exp{−σ(x3−f)}, H2(t,x)=L22(t,x1,x2)exp{−σ(x3−f)}, | (2.3) |
where σ>0.
We now derive some lemmas.
Lemma 2.1. If L21,L22∈H1([0,∞)×D(f)), then
∫t0exp{−η1τ}[k1||∇u∗(τ)||2L2(R(f))+k2||∇v∗(τ)||2L2(R(f))]dτ≤d1(t), |
where
d1(t)=∫t0exp{−η1τ}[k1||∇H1||2L2(R(f))+k2||∇H2||2L2(R(f))]dτ+exp{−η1t}[b1||H1(t)||2L2(R(f))+b2||H2(t)||2L2(R(f))]+12∫t0exp{−η1τ}[b1η1||H1,τ(τ)||2L2(R(f))+b2η1||H2,τ(τ)||2L2(R(f))]dτ+12γ∫t0exp{−η1τ}||(H1−H2)(τ)||2L2(R(f))dτ. | (2.4) |
Proof. Using (1.1)–(1.4), we begin with
∫t0∫R(f)exp{−η1τ}[b1u∗τ−k1△u∗+γ(u∗−v∗)]u∗dxdτ=0,∫t0∫R(f)exp{−η1τ}[b2v∗τ−k2△v∗−γ(u∗−v∗)]v∗dxdτ=0. |
We compute
12exp{−η1t}[b1||u∗(t)||2L2(R(f))+b2||v∗(t)||2L2(R(f))]+∫t0exp{−η1τ}[b1η1||u∗(τ)||2L2(R(f))+b2η1||v∗(τ)||2L2(R(f))]dτ+∫t0exp{−η1τ}[k1||∇u∗(τ)||2L2(R(f))+k2||∇v∗(τ)||2L2(R(f))]dτ+γ∫t0exp{−η1τ}||(u∗−v∗)(τ)||2L2(R(f))dτ=−∫t0∫D(f)exp{−η1τ}[k1∂u∗∂x3u∗+k2∂v∗∂x3v∗]dAdτ. | (2.5) |
On the other hand, we use (2.3) to compute
−∫t0∫D(f)exp{−η1τ}[k1∂u∗∂x3u∗+k2∂v∗∂x3v∗]dAdτ=−∫t0∫D(f)exp{−η1τ}[k1∂u∗∂x3H1+k2∂v∗∂x3H2]dAdτ=∫t0∫R(f)exp{−η1τ}[k1∇⋅(∇u∗H1)+k2∇⋅(∇v∗H2)dxdτ=∫t0∫R(f)exp{−η1τ}[k1∇u∗⋅∇H1+k2∇v∗⋅∇H2]dxdτ+exp{−η1t}∫R(f)[b1u∗H1+b2v∗H2]dx+η1∫t0∫R(f)exp{−η1τ}[b1u∗H1,τ+b2v∗H2,τ]dxdτ+γ∫t0∫R(f)exp{−η1τ}(u∗−v∗)(H1−H2)dxdτ≐F1+F2+F3+F4. | (2.6) |
An application of the Schwarz inequality leads to
F1≤12∫t0exp{−η1τ}[k1||∇u∗(τ)||2L2(R(f))+k2||∇v∗(τ)||2L2(R(f))]dτ+12∫t0exp{−η1τ}[k1||∇H1||2L2(R(f))+k2||∇H2||2L2(R(f))]dτ, | (2.7) |
F2≤12exp{−η1t}[b1||u∗(t)||2L2(R(f))+b2||v∗(t)||2L2(R(f))]+12exp{−η1t}[b1||H1(t)||2L2(R(f))+b2||H2(t)||2L2(R(f))], | (2.8) |
F3≤∫t0exp{−η1τ}[b1η1||u∗(τ)||2L2(R(f))+b2η1||v∗(τ)||2L2(R(f))]dτ+14∫t0exp{−η1τ}[b1η1||H1,τ(τ)||2L2(R(f))+b2η1||H2,τ(τ)||2L2(R(f))]dτ, | (2.9) |
F4≤γ∫t0exp{−η1τ}||(u∗−v∗)(τ)||2L2(R(f))dτ+14γ∫t0exp{−η1τ}||(H1−H2)(τ)||2L2(R(f))dτ. | (2.10) |
Inserting Eqs (2.7)–(2.10) into (2.6) and combining (2.5), it can be obtained
∫t0exp{−η1τ}[k1||∇u∗(τ)||2L2(R(f))+k2||∇v∗(τ)||2L2(R(f))]dτ≤∫t0exp{−η1τ}[k1||∇H1||2L2(R(f))+k2||∇H2||2L2(R(f))]dτ+exp{−η1t}[b1||H1(t)||2L2(R(f))+b2||H2(t)||2L2(R(f))]+12∫t0exp{−η1τ}[b1η1||H1,τ(τ)||2L2(R(f))+b2η1||H2,τ(τ)||2L2(R(f))]dτ+12γ∫t0exp{−η1τ}||(H1−H2)(τ)||2L2(R(f))dτ. | (2.11) |
From (2.11), we can conclude that Lemma 2.1 holds.
We not only need a prior bounds for v and v∗, but also for u and u∗. Since u and u∗ are undisturbed solutions of Eqs (1.1)–(1.4), in Lemma 2.1 we only need to set f=0 and replace L21 and L22 with L11 and L12, respectively, and then we can obtain the a prior bounds for u and u∗.
Lemma 2.2. If L11,L12∈H1([0,∞)×D), then
∫t0exp{−η1τ}[k1||∇u(τ)||L2(R)+k2||∇v(τ)||L2(R)]dτ≤d2(t), |
where
d2(t)=∫t0exp{−η1τ}[k1||∇H3||2L2(R)+k2||∇H4||2L2(R)]dτ+exp{−η1t}[b1||H3(t)||2L2(R)+b2||H4(t)||2L2(R)]+12∫t0exp{−η1τ}[b1η1||H3,τ(τ)||2L2(R)+b2η1||H4,τ(τ)||2L2(R)]dτ+12γ∫t0exp{−η1τ}||(H3−H4)(τ)||2L2(R)dτ |
and
H3(t,x)=L11(t,x1,x2)exp{−σx3}, H4(t,x)=L12(t,x1,x2)exp{−σx3}. |
Remark 2.1. Lemmas 2.1 and 2.2 will provide a priori estimates for the proof of the lemmas in the next section.
Let w and s represent the difference between the perturbed solutions and the unperturbed solutions, i.e.,
w=u−u∗, s=v−v∗, | (3.1) |
then w and s satisfy
b1wt=k1△w−γ(w−s), in R(ϵ)×{t>0}, | (3.2) |
b2st=k2△s+γ(w−s), in R(ϵ)×{t>0}, | (3.3) |
w=s=0, on ∂D×{x3>ϵ}×{t>0}, | (3.4) |
w=s=0, in R(ϵ)×{t=0}. | (3.5) |
To obtain the continuous dependence of the solution on the perturbation parameter, we establish a new energy function
V(t,x3)=∫t0[||w(τ)||2L2(R(x3))+||s(τ)||2L2(R(x3))]dτ, x3≥ϵ. | (3.6) |
Noting the definition of R(x3), we can obtain the derivative of V(t,x3) as follows:
−∂∂x3V(t,x3)=∫t0[||w(τ)||2L2(D(x3))+||s(τ)||2L2(D(x3))]dτ. |
We introduce two auxiliary functions φ and ψ such that
b1φτ+k1△φ=−w, b2ψτ+k2△ψ=−s, in R(x3),0<τ<t, | (3.7) |
φ(τ,x1,x2,x3)=ψ(τ,x1,x2,x3)=0, on ∂D×{x3},0<τ<t, | (3.8) |
φ(τ,x1,x2,x3)=ψ(τ,x1,x2,x3)=0, (x1,x2)∈D,0<τ<t, | (3.9) |
φ(t,x)=ψ(t,x)=0, in R(x3), | (3.10) |
φ,∇φ,ψ,∇ψ→0(uniformly in x1,x2,τ) as x3→∞, | (3.11) |
where x3>ϵ.
Next, we will derive some necessary properties of the auxiliary functions, which will play a crucial role in proving the continuous dependence of the solutions.
Lemma 3.1. If φ,ψ∈H1([0,t]×R(x3)), then
∫t0[b1||φτ(τ)||2L2(R(x3))+b2||ψτ(τ)||2L2(R(x3))]dτ≤a1V(t,x3), x3≥ϵ, |
where a1=max{b−11,b−12}.
Proof. We begin with
∫t0∫R(x3)φτ[b1φτ+k1△φ+w]dxdτ=0,∫t0∫R(x3)ψτ[b2ψτ+k2△ψ+s]dxdτ=0. |
Using the divergence theorem ∮∂R(x3)Fds=∫R(x3)divFdx and (3.8)–(3.11), we have
b1∫t0||φτ(τ)||2L2(R(x3))dτ=−12k1||∇φ(0)||2L2(R(x3))+∫t0∫R(x3)wφτdxdτ≤[∫t0||φτ(τ)||2L2(R(x3))dτ∫t0||w(τ)||2L2(R(x3))dτ]12, | (3.12) |
and
b2∫t0||ψτ(τ)||2L2(R(x3))dτ≤[∫t0||ψτ(τ)||2L2(R(x3))dτ∫t0||s(τ)||2L2(R(x3))dτ]12. | (3.13) |
Using the Schwarz inequality, (3.12) and (3.13), Lemma 3.1 can be obtained.
Lemma 3.2. If φ,ψ∈H1(R(x3)), then
∫t0[k1||∇φ(τ)||2L2(R(x3))+k2||∇ψ(τ)||2L2(R(x3))]dτ≤a2V(t,x3), |
where a2=1λmax{k−11,k−12}.
Proof. We begin with
∫t0∫R(x3)φ[b1φτ+k1△φ+w]dxdτ=0,∫t0∫R(x3)φ[b2ψτ+k2△ψ+s]dxdτ=0. |
Using the divergence theorem and Lemma 2.2, we have
k1∫t0||∇φ(τ)||2L2(R(x3))dτ=−12b1||φ(0)||2L2(R(x3))+∫t0∫R(x3)wφdxdτ≤[∫t0||φ(τ)||2L2(R(x3))dτ∫t0||w(τ)||2L2(R(x3))dτ]12≤1√λ[∫t0||∇2φ(τ)||2L2(R(x3))dτ∫t0||w(τ)||2L2(R(x3))dτ]12 | (3.14) |
and
k2∫t0||∇ψ(τ)||2L2(R(x3))dτ≤1√λ[∫t0||∇2ψ(τ)||2L2(R(x3))dτ∫t0||s(τ)||2L2(R(x3))dτ]12. | (3.15) |
Using the following inequality
√ab+√cd≤√(a+c)(b+d), for a,b,c,d>0, | (3.16) |
the Young inequality and Lemma 3.1, we can have from (3.14) and (3.15)
∫t0[k1||∇φ(τ)||2L2(R(x3))+k2||∇ψ(τ)||2L2(R(x3))]dτ≤1√λ{∫t0[k1||∇2φ(τ)||2L2(R(x3))+k2||∇2ψ(τ)||2L2(R(x3))]dτ⋅∫t0[k−11||w(τ)||2L2(R(x3))+k−12||s(τ)||2L2(R(x3))]dτ}12. | (3.17) |
From (3.17) we can obtain Lemma 3.2.
Lemma 3.3. If φ,ψ∈H1(R(x3)), then
k1∫t0||∂φ∂x3(τ)||2L2(D(x3))dτ+k2∫t0||∂ψ∂x3(τ)||2L2(D(x3))dτ≤a3V(t,x3), |
where a3 is a positive constant.
Proof. Letting δ be a positive constant. We compute
∫t0∫R(x3)[∂φ∂x3−δφτ][b1φτ+k1△φ+w]dxdτ=0, | (3.18) |
∫t0∫R(x3)[∂ψ∂x3−δψτ][b2ψτ+k2△ψ+s]dxdτ=0. | (3.19) |
Using the divergence theorem and (3.8)–(3.10) in (3.18) and (3.19), we obtain
12k1δ||∇φ(0)||2L2(R(x3))dτ+b1δ∫t0||φτ(τ)||2L2(R(x3))dτ+12k1∫t0||∂φ∂x3(τ)||2L2(D(x3))dτ=∫t0∫R(x3)∂φ∂x3φτdxdτ+∫t0∫R(x3)[∂φ∂x3−δφτ]wdxdτ. | (3.20) |
Using the Schwarz inequality, we obtain
∫t0∫R(x3)∂φ∂x3φτdxdτ≤[∫t0||∂φ∂x3(τ)||2L2(R(x3))dτ∫t0||φτ(τ)||2L2(R(x3))dτ]12, | (3.21) |
∫t0∫R(x3)∂φ∂x3wdxdτ≤[∫t0||∂φ∂x3(τ)||2L2(R(x3))dτ∫t0||w(τ)||2L2(R(x3))dτ]12, | (3.22) |
−δ∫t0∫R(x3)φτwdxdτ≤δ[∫t0||φτ(τ)||2L2(R(x3))dτ∫t0||w(τ)||2L2(R(x3))dτ]12. | (3.23) |
Inserting (3.21)–(3.23) into (3.20) and dropping the first two terms in the left of (3.20), we have
12k1∫t0||∂φ∂x3(τ)||2L2(D(x3))dτ≤[∫t0||∂φ∂x3(τ)||2L2(R(x3))dτ∫t0||φτ(τ)||2L2(R(x3))dτ]12+[∫t0||∂φ∂x3(τ)||2L2(R(x3))dτ∫t0||w(τ)||2L2(R(x3))dτ]12+δ[∫t0||φτ(τ)||2L2(R(x3))dτ∫t0||w(τ)||2L2(R(x3))dτ]12. | (3.24) |
Similar, we can also have from (3.19)
12k2∫t0||∂ψ∂x3(τ)||2L2(D(x3))dτ≤[∫t0||∂ψ∂x3(τ)||2L2(R(x3))dτ∫t0||ψτ(τ)||2L2(R(x3))dτ]12+[∫t0||∂ψ∂x3(τ)||2L2(R(x3))dτ∫t0||s(τ)||2L2(R(x3))dτ]12+δ[∫t0||ψτ(τ)||2L2(R(x3))dτ∫t0||s(τ)||2L2(R(x3))dτ]12. | (3.25) |
Using (3.16) and Lemmas 3.1 and 3.2, we obtain
k1∫t0||∂φ∂x3(τ)||2L2(D(x3))dτ+k2∫t0||∂ψ∂x3(τ)||2L2(D(x3))dτ≤2a1a2{∫t0[b1||∂φ∂x3(τ)||2L2(R(x3))+b2||∂ψ∂x3(τ)||2L2(R(x3))]dτ⋅∫t0[k1||φτ(τ)||2L2(R(x3))+k2||ψτ(τ)||2L2(R(x3))]dτ}12+2a2{∫t0[b1||∂φ∂x3(τ)||2L2(R(x3))+b2||∂ψ∂x3(τ)||2L2(R(x3))]dτ⋅∫t0[||w(τ)||2L2(R(x3))+||s(τ)||2L2(R(x3))]dτ}12+2a1δ{∫t0[k1||φτ(τ)||2L2(R(x3))+k2||ψτ(τ)||2L2(R(x3))]dτ⋅∫t0[||w(τ)||2L2(R(x3))+||s(τ)||2L2(R(x3))]dτ}12≤a3V(t,x3), | (3.26) |
where a3=2a21a22+2a22+2a21.
In the next section, we will use Lemma 3.3 to derive the continuous dependence of the solutions.
In this section, we first derive a bound for V(t,ϵ). To do this, we define
u(t,x)=L11(t,x1,x2), v(t,x)=L12(t,x1,x2), −ϵ≤x3≤0,(x1,x2)∈D,t∈[0,+∞), | (4.1) |
u∗(t,x)=L21(t,x1,x2), v∗(t,x)=L22(t,x1,x2), −ϵ≤x3≤f(x1,x2),(x1,x2)∈D,t∈[0,+∞). | (4.2) |
When −ϵ≤x3≤ϵ, we let
w(t,x)=u(t,x)−u∗(t,x), s(t,x)=v(t,x)−v∗(t,x),(x1,x2)∈D,t∈[0,+∞). | (4.3) |
In view of (3.1) and (4.3), using the triangle inequality, it can be obtained that
k1∫t0∫R(−ϵ)(∂w∂x3)2dxdτ+k2∫t0∫R(−ϵ)(∂s∂x3)2dxdτ≤∫t0∫R(−ϵ)[k1(∂u∂x3)2+k2(∂v∂x3)2]dxdτ+∫t0∫R(−ϵ)[k1(∂u∗∂x3)2+k2(∂v∗∂x3)2]dxdτ. | (4.4) |
Using Lemmas 2.1 and 2.2, (4.1) and (4.2), from (4.4), we obtain
k1∫t0∫R(−ϵ)(∂w∂x3)2dxdτ+k2∫t0∫R(−ϵ)(∂s∂x3)2dxdτ≤∫t0∫R[k1(∂u∂x3)2+k2(∂v∂x3)2]dxdτ+∫t0∫R(f)[k1(∂u∗∂x3)2+k2(∂v∗∂x3)2]dxdτ.≤eη1t[d1(t)+d2(t)]≐d3(t). | (4.5) |
Now, we write the main theorem as:
Theorem 4.1. If L11,L12∈H1([0,∞)×R),L21,L22∈H1([0,∞)×R(f)) and t<π4a1γ, then
V(t,x3)≤exp{−d4(x3−ϵ)}{32d4πmax{1k1,1k2}d3(t)ϵ+d5∫t0[||(L11−L21)(τ)||2L2(D)+||(L12−L22)(τ)||2L2(D)]dτ},x3≥ϵ |
holds, where d4=a−13max{k1,k2}−1 and d5=d4π2+2d4.
Proof. Let x3≥ϵ be a fixed point on the coordinate axis x3. Using (3.7)–(3.11) and the divergence theorem, we can have
V(x3,t)=−∫t0∫R(x3)w[b1φτ+k1△φ]dxdτ−∫t0∫R(x3)s[b2ψτ+k2△ψ]dxdτ=−∫t0∫R(x3)[b1φτw+b2ψτs]dxdτ+∫t0∫R(x3)[k1∇w⋅∇φ+k2∇s⋅∇ψ]dxdτ+∫t0∫D(x3)[k1w∂φ∂x3+k2s∂ψ∂x3]dAdτ=−∫t0∫R(x3)[b1φτw+b2ψτs]dxdτ−∫t0∫R(x3)[k1△wφ+k2△sψ]dxdτ+∫t0∫D(x3)[k1w∂φ∂x3+k2s∂ψ∂x3]dAdτ=−∫t0∫R(x3)[b1φτw+b2ψτs]dxdτ−∫t0∫R(x3)[b1φwτ+b2ψsτ]dxdτ+∫t0∫D(x3)[k1w∂φ∂x3+k2s∂ψ∂x3]dAdτ−γ∫t0∫R(x3)(φ−ψ)(w−s)dxdτ. | (4.6) |
In light of (1.4) and (3.10), it is clear that
∫t0∫R(x3)[b1φτw+b1φwτ]dxdτ=0, ∫t0∫R(x3)[b2ψτs+b2ψsτ]dxdτ=0. | (4.7) |
A combination of the Hölder inequality, (3.16) and Lemma 3.3 leads to
∫t0∫D(x3)[k1w∂φ∂x3+k2s∂ψ∂x3]dAdτ≤k1[∫t0||∂φ∂x3(τ)||2L2(D(x3))dτ∫t0||w(τ)||2L2(D(x3))dτ]12+k2[∫t0||∂ψ∂x3(τ)||2L2(D(x3))dτ∫t0||s(τ)||2L2(D(x3))dτ]12≤max{√k1,√k2}[∫t0(k1||∂φ∂x3(τ)||2L2(D(x3))+k2||∂ψ∂x3(τ)||2L2(D(x3)))dτ]12⋅[∫t0(||w(τ)||2L2(D(x3))+||s(τ)||2L2(D(x3)))dτ]12≤√a3max{√k1,√k2}√V(t,x3)[−∂∂x3V(t,x3)]12. | (4.8) |
For the fourth term in the right of (4.6), we compute
−γ∫t0∫R(x3)(φ−ψ)(w−s)dxdτ≤γ[∫t0(||φ(τ)||2L2(R(x3))+||ψ(τ)||2L2(R(x3)))dτ⋅∫t0(||w(τ)||2L2(R(x3))+||s(τ)||2L2(R(x3)))dτ]12. | (4.9) |
Using the inequality (see p182 in [19])
∫10ϕ2dx≤4π2∫10(ϕ′)2dx, for ϕ(0)=0, | (4.10) |
we have from (4.9)
−γ∫t0∫R(x3)(φ−ψ)(w−s)dxdτ≤γ2tπ[∫t0(||φτ(τ)||2L2(R(x3))+||ψτ(τ)||2L2(R(x3)))dτV(t,x3)]12≤γ2tπa1V(t,x3), | (4.11) |
where we have also used Lemma 3.1. Combining (4.6), (4.7), (4.8) and (4.11) and choosing t<π4a1γ, we can have
V(t,x3)≤−1d4∂∂x3V(t,x3),x3>ϵ. | (4.12) |
Integrating (4.12) from ϵ to x3, we have
V(t,x3)≤V(t,ϵ)exp{−d4(x3−ϵ)},x3≥ϵ. | (4.13) |
Equation (4.13) only indicates that the solutions to (1.1)–(1.4) decay exponentially as x3→∞. This decay result is not rigorous because we do not yet know whether V(t,ϵ) depends on the perturbation parameter ϵ. Therefore, we derive the explicit bound of V(t,ϵ) in terms of ϵ and Lij(ij=1,2).
After letting x3=ϵ in (4.12), we have
V(ϵ,t)≤1d4∫t0[||w(τ)||2L2(D(ϵ))+||s(τ)||2L2(D(ϵ))]dAdτ=2d4∫t0∫ϵ−ϵ∫D(x3)[w∂w∂x3+s∂s∂x3]dxdτ+2d4∫t0[||(L11−L21)(τ)||2L2(D)+||(L12−L22)(τ)||2L2(D)]dτ≤2d4[∫t0||w(τ)||2L2(D(x3)×[−ϵ,ϵ])dτ∫t0||∂w∂x3(τ)||2L2(D(x3)×[−ϵ,ϵ])dτ]12+2d4[∫t0||s(τ)||2L2(D(x3)×[−ϵ,ϵ])dτ∫t0||∂s∂x3(τ)||2L2(D(x3)×[−ϵ,ϵ])dτ]12+2d4∫t0[||(L11−L21)(τ)||2L2(D)+||(L12−L22)(τ)||2L2(D)]dτ. | (4.14) |
Using (4.10) again, we have
∫t0||w(τ)||2L2(D(x3)×[−ϵ,ϵ])dτ≤16ϵ2π2∫t0||∂w∂x3(τ)||2L2(D(x3)×[−ϵ,ϵ])dτ+2ϵ∫t0||(L11−L21)(τ)||2L2(D)dτ, | (4.15) |
∫t0||s(τ)||2L2(D(x3)×[−ϵ,ϵ])dτ≤16ϵ2π2∫t0||∂s∂x3(τ)||2L2(D(x3)×[−ϵ,ϵ])dτ+2ϵ∫t0||(L12−L22)(τ)||2L2(D)dτ. | (4.16) |
Inserting (4.15) into (4.16) and combining the Schwarz inequality, we obtain
V(ϵ,t)≤32d4πϵ∫t0[||∂w∂x3(τ)||2L2(D(x3)×[−ϵ,ϵ])+||∂s∂x3(τ)||2L2(D(x3)×[−ϵ,ϵ])]dτ+[d4π2+2d4]∫t0[||(L11−L21)(τ)||2L2(D)+||(L12−L22)(τ)||2L2(D)]dτ≤32d4πmax{1k1,1k2}ϵ∫t0[k1||∂w∂x3(τ)||2L2(R(−ϵ))+k2||∂s∂x3(τ)||2L2(R(−ϵ))]dτ+[d4π2+2d4]∫t0[||(L11−L21)(τ)||2L2(D)+||(L12−L22)(τ)||2L2(D)]dτ. | (4.17) |
In view of (4.5) and (4.13), from (4.17) we have Theorem 4.1.
Remark 4.1. Theorem 4.1 indicates that V(t,x3) continuously depends on ϵ and the base data. That is, when ϵ approaches 0, then u(t,x3) and v(t,x3) approach 0. If ϵ=0, Theorem 4.1 is the Saint-Venant's principle type decay result.
Remark 4.2. In any cross-section of R, the continuous dependence result can still be obtained. We compute
∫t0[||w(τ)||2L2(D(x3))+||s(τ)||2L2(D(x3))]dτ=−2∫t0∫R(x3)[w∂w∂x3+s∂s∂x3]dxdτ≤2√V(x3)[∫t0[k1||∂w∂x3(τ)||2L2(R(−ϵ))+k2||∂s∂x3(τ)||2L2(R(−ϵ))]dτ]12. | (4.18) |
Using (4.18) and Theorem 4.1, we can obtain the continuous dependence result.
This article adopts the methods of the a prior estimates and energy estimate to obtain the continuous dependence of the solution on the base. This method can be further extended to other linear partial differential equation systems, such as pseudo-parabolic equation
ut=Δu+δΔut, |
where δ is a positive constant. However, for nonlinear equations (e.g., the Darcy equations), due to the inability to control nonlinear terms and derive a prior bounds for nonlinear terms, Lemma 3.3 will be difficult to obtain. This is a difficult problem we need to solve next.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This work is supported by the Research Team Project of Guangzhou Huashang College (2021HSKT01).
The author declares there is no conflict of interest.
[1] |
Alexander GB, Heston WM, Iler RK (1954) The solubility of amorphous silica in water. J Phys Chem 58: 453-455. doi: 10.1021/j150516a002
![]() |
[2] |
Anderson A, Rezaie B (2019) Geothermal technology: Trends and potential role in a sustainable future. Appl Energ 248: 18-34. doi: 10.1016/j.apenergy.2019.04.102
![]() |
[3] | Bilqist RA, Dachyar M, Farizal (2018) The valuation of geothermal power projects in Indonesia using real options valuation, In: MATEC Web of Conferences, EDP Sciences, 248: 03004. |
[4] |
Chen S, Zhang Q, Tang Y, et al. (2019) Investment strategy for shallow geothermal resource based on real option model. Energ Procedia 158: 6118-6125. doi: 10.1016/j.egypro.2019.01.500
![]() |
[5] |
Compernolle T, Welkenhuysen K, Petitclerc E, et al. (2019) The impact of policy measures on profitability and risk in geothermal energy investments. Energ Econ 84: 104524. doi: 10.1016/j.eneco.2019.104524
![]() |
[6] | Thermal Nuclear Power Technology Association (2018) Current Status and Trends in Geothermal Power Generation 2017. 3: 43-44 (in Japanese). |
[7] |
Feili HR, Akar N, Lotfizadeh H, et al. (2013) Risk analysis of geothermal power plants using failure modes and effects analysis (FMEA) technique. Energ Convers Manage 72: 69-76. doi: 10.1016/j.enconman.2012.10.027
![]() |
[8] | Founier RO, Rowe JJ (1977) The solubility of amorphous silica in water at high temperatures and high pressures. Am Mineral 62: 1052-1056. |
[9] | Gazheli A, van den Bergh J (2018) Real options analysis of investment in solar vs. wind energy: Diversification strategies under uncertain prices and costs. Renew Sust Energ Rev 82: 2693-2704. |
[10] | Goto K (1955) Studies on the State of Silicate in Water (Part 2) Solubility in Amorphous Calculations. Jpn J Chem 76: 1364-1366 (in Japanese). |
[11] | Hirowatari K (1990) Experimental study on scale prevention method using exhausted gases from geothermal power station. J Geotherm Res Soc Japan 12: 347-362 (in Japanese). |
[12] | Hosoi M, Imai H (1982) Study on precipitation and prevention of the silica scale from the geothermal hot water. J Geotherm Res Soc Japan 4: 127-142 (in Japanese). |
[13] | Huttrer GW (2020) Geothermal Power Generation in the World 2015-2020 Update Report. Proceedings World Geothermal Congress 2020 Reykjavik, Iceland. |
[14] | IEA Geothermal (2020) Annual Report 2019. Available from: https://drive.google.com/file/d/1hqz5BB391z_LcaeVERQ_YU5zJbhm-2Ok/view. |
[15] | Itoi R, Maekawa H, Fukuda M, et al. (1986) Study on decrease of reservoir permeability due to deposition of silica dissolved in reinjection water. J Geotherm Res Soc Japan 8: 229-241 (in Japanese). |
[16] | Itoi R, Mekawa H, Fukuda M, et al. (1987) Decrease in reservoir permeability due to deposition of silica dissolved in geothermal injection water numerical simulation in one dimensional flow system. J Geother Res Soc Japan 9: 285-306 (in Japanese). |
[17] |
Karadas M, Celik HM, Serpen U, et al. (2015) Multiple regression analysis of performance parameters of a binary cycle geothermal power plant. Geothermics 54: 68-75. doi: 10.1016/j.geothermics.2014.11.003
![]() |
[18] | Kimbara K (1999) Geothermal resources survey in the volcanic fields of Japan: a review. Earth Sci (Chikyu Kagaku) 53: 325-399 (in Japanese). |
[19] |
Kitzing L, Juul N, Drud M, et al. (2017) A real options approach to analyse wind energy investments under different support schemes. Appl Energ 188: 83-96. doi: 10.1016/j.apenergy.2016.11.104
![]() |
[20] | Knaut A, Madlener R, Rosen C, et al. (2012) Effects of temperature uncertainty on the valuation of geothermal projects: a real options approach. FCN Working Paper 11. |
[21] |
Kojima Y, Kawanabe A, Yasue T, et al. (1993) Synthesis of amorphous calcium carbonate and its crystallization. J Ceramic Soc Japan 101: 1145-1152 (in Japanese). doi: 10.2109/jcersj.101.1145
![]() |
[22] |
Loncar D, Milovanovic I, Rakic B, et al. (2017) Compound real options valuation of renewable energy projects: The case of a wind farm in Serbia. Renew Sust Energ Rev 75: 354-367. doi: 10.1016/j.rser.2016.11.001
![]() |
[23] | Ministry of the Environment (2010) Study on the Method of Reviewing Environmental Impact Related to Geothermal Power Generation (in Japanese). Available from: https://www.env.go.jp/nature/geothermal_power/conf/h2304/ref02.pdf. |
[24] |
Mo J, Schleich J, Fan Y (2018) Getting ready for future carbon abatement under uncertainty—Key factors driving investment with policy implications. Energ Econ 70: 453-464. doi: 10.1016/j.eneco.2018.01.026
![]() |
[25] | New Energy and Industrial Technology Development Organization (2014) Renewable Energy Technology White Paper (in Japanese). Available from: https://www.nedo.go.jp/content/100544822.pdf. |
[26] |
Ritzenhofen I, Spinler S (2016) Optimal design of feed-in-tariffs to stimulate renewable energy investments under regulatory uncertainty—A real options analysis. Energ Econ 53: 76-89. doi: 10.1016/j.eneco.2014.12.008
![]() |
[27] | Sasaki M (2018) Classification of water types of acid hot-spring waters in Japan. J Geotherm Res Soc Japan 40: 235-243. |
[28] | Sato K, Odanaka K, Shakunaga N, et al. (1996) How to inject water into the geothermal fluid transport pipe. Japan Metals and Chemicals Co., Ltd. Jan30th, 1996, Patent Number: 1996-028432 (in Japanese). |
[29] | SPATECH Shinshu (2015) (in Japanese). Available from: http://spatec-shinshu.jp/c3b.html. Access on: Dec 3, 2020. |
[30] | Snyder DM, Beckers KF, Young KR, et al. (2017) Analysis of geothermal reservoir and well operational conditions using monthly production reports from Nevada and California. GRC Trans 41: 2844-2856. |
[31] |
Shiozaki A (2019) Geothermal power generation development in Japan. Japan Soc Eng Geol 60: 120-124 (In Japanese). doi: 10.5110/jjseg.60.120
![]() |
[32] | Yu S, Li Z, Wei Y, et al. (2019) A real option model for geothermal heating investment decision making: Considering carbon trading and resource taxes. Energy 189: 116252. |
[33] | Zhang M, Liu L, Wang Q, et al. (2020) Valuing investment decisions of renewable energy projects considering changing volatility. Energ Econ 92: 104954. |
![]() |
![]() |
1. | Aliya Fahmi, Rehan Ahmed, Muhammad Aslam, Thabet Abdeljawad, Aziz Khan, Disaster decision-making with a mixing regret philosophy DDAS method in Fermatean fuzzy number, 2023, 8, 2473-6988, 3860, 10.3934/math.2023192 | |
2. | Dongmei Jing, Mohsen Imeni, Seyyed Ahmad Edalatpanah, Alhanouf Alburaikan, Hamiden Abd El-Wahed Khalifa, Optimal Selection of Stock Portfolios Using Multi-Criteria Decision-Making Methods, 2023, 11, 2227-7390, 415, 10.3390/math11020415 | |
3. | Aliya Fahmi, Fazli Amin, Sayed M Eldin, Meshal Shutaywi, Wejdan Deebani, Saleh Al Sulaie, Multiple attribute decision-making based on Fermatean fuzzy number, 2023, 8, 2473-6988, 10835, 10.3934/math.2023550 | |
4. | Ruijuan Geng, Ying Ji, Shaojian Qu, Zheng Wang, Data-driven product ranking: A hybrid ranking approach, 2023, 10641246, 1, 10.3233/JIFS-223095 | |
5. | Revathy Aruchsamy, Inthumathi Velusamy, Prasantha Bharathi Dhandapani, Suleman Nasiru, Christophe Chesneau, Ghous Ali, Modern Approach in Pattern Recognition Using Circular Fermatean Fuzzy Similarity Measure for Decision Making with Practical Applications, 2024, 2024, 2314-4785, 1, 10.1155/2024/6503747 | |
6. | Tarun Kumar, M. K. Sharma, 2024, Chapter 30, 978-981-97-2052-1, 403, 10.1007/978-981-97-2053-8_30 | |
7. | S. Niroomand, A. Mahmoodirad, A. Ghaffaripour, T. Allahviranloo, A. Amirteimoori, M. Shahriari, A bi-objective carton box production planning problem with benefit and wastage objectives under belief degree-based uncertainty, 2024, 9, 2364-4966, 10.1007/s41066-023-00423-9 | |
8. | Yanfeng Miao, Xuefei Gao, Weiye Jiang, Wei Xu, Ateya Megahed Ibrahim El-eglany, An evaluation model for interactive gaming furniture design based on parent-child behavior, 2024, 19, 1932-6203, e0302713, 10.1371/journal.pone.0302713 | |
9. | Noppasorn Sutthibutr, Navee Chiadamrong, Kunihiko Hiraishi, Suttipong Thajchayapong, A five-phase combinatorial approach for solving a fuzzy linear programming supply chain production planning problem, 2024, 11, 2331-1916, 10.1080/23311916.2024.2334566 | |
10. | Awdhesh Kumar Bind, Deepika Rani, Ali Ebrahimnejad, J.L. Verdegay, New strategy for solving multi-objective green four dimensional transportation problems under normal type-2 uncertain environment, 2024, 137, 09521976, 109084, 10.1016/j.engappai.2024.109084 | |
11. | Nilima Akhtar, Sahidul Islam, Linear fractional transportation problem in bipolar fuzzy environment, 2024, 17, 26667207, 100482, 10.1016/j.rico.2024.100482 | |
12. | Qianwei Zhang, Zhihua Yang, Binwei Gui, Two-stage network data envelopment analysis production games, 2024, 9, 2473-6988, 4925, 10.3934/math.2024240 | |
13. | Gourav Gupta, Deepika Rani, Neutrosophic goal programming approach for multi-objective fixed-charge transportation problem with neutrosophic parameters, 2024, 61, 0030-3887, 1274, 10.1007/s12597-024-00747-3 | |
14. | Ali N. A. Koam, Ali Ahmad, Ibtisam Masmali, Muhammad Azeem, Mehwish Sarfraz, Naeem Jan, Several intuitionistic fuzzy hamy mean operators with complex interval values and their application in assessing the quality of tourism services, 2024, 19, 1932-6203, e0305319, 10.1371/journal.pone.0305319 | |
15. | Muhammad Akram, Sundas Shahzadi, Syed Muhammad Umer Shah, Tofigh Allahviranloo, An extended multi-objective transportation model based on Fermatean fuzzy sets, 2023, 1432-7643, 10.1007/s00500-023-08117-9 | |
16. | Daud Ahmad, Kiran Naz, Mariyam Ehsan Buttar, Pompei C. Darab, Mohammed Sallah, Extremal Solutions for Surface Energy Minimization: Bicubically Blended Coons Patches, 2023, 15, 2073-8994, 1237, 10.3390/sym15061237 | |
17. | Nurdan Kara, Fatma Tiryaki, SOLVING THE MULTI-OBJECTIVE FRACTIONAL SOLID TRANSPORTATION PROBLEM BY USING DIFFERENT OPERATORS, 2024, 1072-3374, 10.1007/s10958-024-07140-x | |
18. | Muhammad Kamran, Manal Elzain Mohamed Abdalla, Muhammad Nadeem, Anns Uzair, Muhammad Farman, Lakhdar Ragoub, Ismail Naci Cangul, A Systematic Formulation into Neutrosophic Z Methodologies for Symmetrical and Asymmetrical Transportation Problem Challenges, 2024, 16, 2073-8994, 615, 10.3390/sym16050615 | |
19. | Aayushi Chachra, Akshay Kumar, Mangey Ram, A Markovian approach to reliability estimation of series-parallel system with Fermatean fuzzy sets, 2024, 190, 03608352, 110081, 10.1016/j.cie.2024.110081 | |
20. | R. Venugopal, C. Veeramani, V. T. Dhanaraj, E. Kungumaraj, 2024, Chapter 6, 978-981-97-6971-1, 125, 10.1007/978-981-97-6972-8_6 | |
21. | Muhammad Akram, Sundas Shahzadi, Syed Muhammad Umer Shah, Tofigh Allahviranloo, A fully Fermatean fuzzy multi-objective transportation model using an extended DEA technique, 2023, 8, 2364-4966, 1173, 10.1007/s41066-023-00399-6 | |
22. | Aakanksha Singh, Ritu Arora, Shalini Arora, A new Fermatean fuzzy multi‐objective indefinite quadratic transportation problem with an application to sustainable transportation, 2024, 0969-6016, 10.1111/itor.13513 | |
23. | Gülçin Büyüközkan, Deniz Uztürk, Öykü Ilıcak, Fermatean fuzzy sets and its extensions: a systematic literature review, 2024, 57, 1573-7462, 10.1007/s10462-024-10761-y | |
24. | Thiziri Sifaoui, Méziane Aïder, Beyond green borders: an innovative model for sustainable transportation in supply chains, 2024, 58, 0399-0559, 2185, 10.1051/ro/2024053 | |
25. | Tarun Kumar, Mukesh Kumar Sharma, Neutrosophic decision-making for allocations in solid transportation problems, 2024, 0030-3887, 10.1007/s12597-024-00819-4 | |
26. | Muhammad Waheed Rasheed, Abid Mahboob, Anfal Nabeel Mustafa, Israa Badi, Zainab Abdulkhaleq Ahmed Ali, Zainb H. Feza, Enhancing breast cancer treatment selection through 2TLIVq-ROFS-based multi-attribute group decision making, 2024, 7, 2624-8212, 10.3389/frai.2024.1402719 | |
27. | Ömer Faruk Görçün, Sarfaraz Hashemkhani Zolfani, Hande Küçükönder, Jurgita Antucheviciene, Miroslavas Pavlovskis, 3D Printer Selection for the Sustainable Manufacturing Industry Using an Integrated Decision-Making Model Based on Dombi Operators in the Fermatean Fuzzy Environment, 2023, 12, 2075-1702, 5, 10.3390/machines12010005 | |
28. | Jayanta Pratihar, Arindam Dey, Abhinandan Khan, Pritha Banerjee, Rajat Kumar Pal, Computing with words for solving the fuzzy transportation problem, 2023, 1432-7643, 10.1007/s00500-023-08958-4 | |
29. | Arunodaya Raj Mishra, Pratibha Rani, Dragan Pamucar, Abhijit Saha, An integrated Pythagorean fuzzy fairly operator-based MARCOS method for solving the sustainable circular supplier selection problem, 2024, 342, 0254-5330, 523, 10.1007/s10479-023-05453-9 | |
30. | Kshitish Kumar Mohanta, Deena Sunil Sharanappa, A novel method for solving neutrosophic data envelopment analysis models based on single-valued trapezoidal neutrosophic numbers, 2023, 27, 1432-7643, 17103, 10.1007/s00500-023-08872-9 | |
31. | Kshitish Kumar Mohanta, Deena Sunil Sharanappa, Development of the neutrosophic two-stage network data envelopment analysis to measure the performance of the insurance industry, 2023, 1432-7643, 10.1007/s00500-023-09294-3 | |
32. | Li Ji, Dalei Zhang, Zhijia Wang, Mingling Liu, Meiling Sun, Hong Zhang, Naoufel Kraiem, Mohd Anjum, Paradigm shift in implementing smart technologies for machinery optimisation in manufacturing using decision support system, 2025, 114, 11100168, 526, 10.1016/j.aej.2024.11.106 | |
33. | Peng Liu, Tieyan Zhang, Furui Tian, Yun Teng, Miaodong Yang, Hybrid Decision Support Framework for Energy Scheduling Using Stochastic Optimization and Cooperative Game Theory, 2024, 17, 1996-1073, 6386, 10.3390/en17246386 | |
34. | Pholoso Lebepe, Tebello N. D. Mathaba, Enhancing energy resilience in enterprises: a multi-criteria approach, 2025, 12, 2731-9237, 10.1186/s40807-025-00148-0 | |
35. | Wajahat Ali, Shakeel Javaid, A solution of mathematical multi-objective transportation problems using the fermatean fuzzy programming approach, 2025, 0975-6809, 10.1007/s13198-025-02716-5 | |
36. | Tarishi Baranwal, A. Akilbasha, Economical heuristics for fully interval integer multi-objective fuzzy and non-fuzzy transportation problems, 2024, 34, 0354-0243, 743, 10.2298/YJOR240115035B | |
37. | Monika Bisht, Ali Ebrahimnejad, Four-dimensional green transportation problem considering multiple objectives and product blending in Fermatean fuzzy environment, 2025, 11, 2199-4536, 10.1007/s40747-025-01829-5 | |
38. | P. Anukokila, R. Nisanthini, B. Radhakrishnan, An application of multi-objective transportation problem in type-2 Fermatean fuzzy number incorporating the RS-MABAC technique, 2025, 27731863, 100264, 10.1016/j.fraope.2025.100264 | |
39. | Ziyan Xiang, Xiuzhen Zhang, An integrated decision support system for supplier selection and performance evaluation in global supply chains, 2025, 15684946, 113325, 10.1016/j.asoc.2025.113325 | |
40. | Asghar Khan, Saeed Islam, Muhammad Ismail, Abdulaziz Alotaibi, Development of a triangular Fermatean fuzzy EDAS model for remote patient monitoring applications, 2025, 15, 2045-2322, 10.1038/s41598-025-00914-6 |