We consider the 1D transport equation with nonlocal velocity field:
$ θt+uθx+νΛγθ=0,u=N(θ), $
where
Citation: Hantaek Bae, Rafael Granero-Belinchón, Omar Lazar. On the local and global existence of solutions to 1d transport equations with nonlocal velocity[J]. Networks and Heterogeneous Media, 2019, 14(3): 471-487. doi: 10.3934/nhm.2019019
[1] | Hantaek Bae, Rafael Granero-Belinchón, Omar Lazar . On the local and global existence of solutions to 1d transport equations with nonlocal velocity. Networks and Heterogeneous Media, 2019, 14(3): 471-487. doi: 10.3934/nhm.2019019 |
[2] | François James, Nicolas Vauchelet . One-dimensional aggregation equation after blow up: Existence, uniqueness and numerical simulation. Networks and Heterogeneous Media, 2016, 11(1): 163-180. doi: 10.3934/nhm.2016.11.163 |
[3] | Young-Pil Choi, Seok-Bae Yun . A BGK kinetic model with local velocity alignment forces. Networks and Heterogeneous Media, 2020, 15(3): 389-404. doi: 10.3934/nhm.2020024 |
[4] | Raffaele Scandone . Global, finite energy, weak solutions to a magnetic quantum fluid system. Networks and Heterogeneous Media, 2025, 20(2): 345-355. doi: 10.3934/nhm.2025016 |
[5] | Hyeontae Jo, Hwijae Son, Hyung Ju Hwang, Eun Heui Kim . Deep neural network approach to forward-inverse problems. Networks and Heterogeneous Media, 2020, 15(2): 247-259. doi: 10.3934/nhm.2020011 |
[6] | Leonid Berlyand, Mykhailo Potomkin, Volodymyr Rybalko . Sharp interface limit in a phase field model of cell motility. Networks and Heterogeneous Media, 2017, 12(4): 551-590. doi: 10.3934/nhm.2017023 |
[7] | Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn . Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks and Heterogeneous Media, 2018, 13(3): 479-491. doi: 10.3934/nhm.2018021 |
[8] | Verónica Anaya, Mostafa Bendahmane, David Mora, Ricardo Ruiz Baier . On a vorticity-based formulation for reaction-diffusion-Brinkman systems. Networks and Heterogeneous Media, 2018, 13(1): 69-94. doi: 10.3934/nhm.2018004 |
[9] | José Antonio Carrillo, Yingping Peng, Aneta Wróblewska-Kamińska . Relative entropy method for the relaxation limit of hydrodynamic models. Networks and Heterogeneous Media, 2020, 15(3): 369-387. doi: 10.3934/nhm.2020023 |
[10] | Young-Pil Choi, Seung-Yeal Ha, Jeongho Kim . Propagation of regularity and finite-time collisions for the thermomechanical Cucker-Smale model with a singular communication. Networks and Heterogeneous Media, 2018, 13(3): 379-407. doi: 10.3934/nhm.2018017 |
We consider the 1D transport equation with nonlocal velocity field:
$ \begin{equation*} \label{intro eq} \begin{split} &\theta_t+u\theta_x+\nu \Lambda^{\gamma}\theta = 0, \\ & u = \mathcal{N}(\theta), \end{split} \end{equation*} $
where
In this paper, we study transport equations with nonlocal velocity. One of the most well-known equation is the two dimensional Euler equation in vorticity form,
$ \omega_{t}+u\cdot \nabla \omega = 0, $ |
where the velocity
$ u = \nabla^\perp(-\Delta)^{-1}\omega \quad \text{or equivalently} \quad \widehat{u}(\xi) = \frac{i\xi^{\perp}\;\;}{|\xi|^{2}\;\;}\widehat{\omega}(\xi). $ |
Other nonlocal and quadratically nonlinear equations, such as the surface quasi-geostrophic equation, the incompressible porous medium equation, Stokes equations, magneto-geostrophic equation in multi-dimensions, have been studied intensively as one can see in [1,2,5,6,7,8,9,13,14,15,16,19,20,23,24,25] and references therein.
We here consider the 1D transport equations with nonlocal velocity field of the form
$ θt+uθx+νΛγθ=0,x∈R, $ | (1a) |
$ u=N(θ), $ | (1b) |
where
$ Λγf(x)=cγp.v.∫Rf(x)−f(y)|x−y|1+γdy, $ | (2) |
where
$ θt+uθx=0, $ | (3a) |
$ u=−Hθ,(H: the Hilbert transform) $ | (3b) |
for the 2D surface quasi-geostrophic equation and proved the finite time blow-up of smooth solutions. In this paper, we deal with 3a-3b and its variations with the following objectives.
(1) The existence of weak solution with rough initial data. The existence of global-in-time solutions is possible even if strong solutions blow up in finite time, as in the case of the Burgers' equation.
(2) The existence of strong solution when the velocity
More specifically, the topics covered in this paper can be summarized as follows.
● The model 1:
● The model 2:
● The model 3:
We will give detailed statements and proofs of our results in Section 3–5.
All constants will be denoted by
$ C_{T}X = C([0, T]:X), \quad L^{p}_{T}X = L^{p}(0, T:X). $ |
The spatial derivatives are defined as
$ \partial^{l}f(t, x) = \frac{\partial^{l} f}{\partial x^{l}}(t, x), \quad l\in \mathbb{N}. $ |
For
$ f_{x}, \quad f_{xx} = \partial_{xx}f, \quad f_{xxx}. $ |
We now give some properties of the Hilbert transform and related function spaces. The Hilbert transform is defined by
$ \mathcal{H}f(x) = \text{p.v.} \int_{\mathbb{R}} \frac{f(y)}{x-y}dy. $ |
We will use the BMO space and its dual which is the Hardy space
$ 2H(fHf)=(Hf)2−f2, $ | (4) |
we have
$ ‖fHf‖H1≤‖f‖2L2. $ | (5) |
We have
Since we are dealing with equations on
Let
$ \widehat{f}(\xi) = \int_{\mathbb{R}}f(x)e^{-2\pi i x\xi}dx. $ |
Let
$ H^{s}(\mathbb{R}) = \left\{f\in \mathcal{S}': \left\|f\right\|^{2}_{H^{s}} = \int_{\mathbb{R}}(1+|\xi|^{2})^{s}\left|\widehat{f}(\xi)\right|^{2}d\xi < \infty\right\}. $ |
We also define homogeneous spaces:
$ \dot{H}^{s}(\mathbb{R}) = \left\{f\in \mathcal{S}': \left\|f\right\|^{2}_{\dot{H}^{s}} = \int_{\mathbb{R}}|\xi|^{2s}\left|\widehat{f}(\xi)\right|^{2}d\xi < \infty\right\}. $ |
We note that for
$ ˙H−s⊂H−s−σ $ | (6) |
because
$ \left\|f\right\|^{2}_{H^{-(s+\sigma)}} = \int_{\mathbb{R}}\frac{\left|\widehat{f}(\xi)\right|^{2}}{(1+|\xi|^{2})^{s+\sigma}}d\xi = \int_{\mathbb{R}}\frac{|\xi|^{2s}}{(1+|\xi|^{2})^{s+\sigma}}\frac{\left|\widehat{f}(\xi)\right|^{2}}{|\xi|^{2s}}d\xi\leq C \left\|f\right\|^{2}_{\dot{H}^{-s}}. $ |
In this paper, we also use two estimations in [18].
(1) Fractional product rule. For
$ \frac{1}{p} = \frac{1}{p_{1}}+\frac{1}{q_{1}} = \frac{1}{p_{2}}+\frac{1}{q_{2}}, \quad 1\leq p < \infty, \ \ p_{i}, q_{i} \ne 1, $ |
we have the following estimations:
$ ‖Λs(fg)‖Lp≤C[‖Λsf‖Lp1‖g‖Lq1+‖f‖Lp2‖Λsg‖Lq2], $ | (7) |
and
$ ‖(I−Λ)s(fg)‖Lp≤C[‖(I−Λ)sf‖Lp1‖g‖Lq1+‖f‖Lp2‖(I−Λ)sg‖Lq2], $ | (8) |
where
(2) Commutator estimate.
$ ∑|l|≤2‖∂l(fg)−f∂lg‖L2≤C(‖fx‖L∞‖gx‖L2+‖fxx‖L2‖g‖L∞). $ | (9) |
We here briefly introduce the Littlewood-Paley theory based on [4]. We first provide notation and definitions in the Littlewood-Paley theory. Let
$ χ(ξ)+∞∑j=0ϕ(2−jξ)=1 ∀ ξ∈Rd,∞∑j=−∞ϕ(2−jξ)=1 ∀ ξ∈Rd∖{0},|j−j′|≥2 ⟹ supp ϕ(2−j⋅)⋂supp ϕ(2−j′⋅)=∅,j≥1 ⟹ supp χ⋂supp ϕ(2−j⋅)=∅. $ | (10) |
From now on, we use the notation
$ \phi_{j}(\xi) = \phi\left(2^{-j}\xi\right). $ |
We define dyadic blocks and lower frequency cut-off functions.
$ h=F−1ϕ,˜h=F−1χ,Δjf=ϕj(D)f=2jd∫Rdh(2jy)f(x−y)dy,Sjf=χ(2−jD)f=2jd∫Rd˜h(2jy)f(x−y)dy,Δ−1f=χ(D)f=∫Rd˜h(y)f(x−y)dy. $ | (11) |
Then, the homogeneous Littlewood-Paley decomposition is given by
$ f = \sum\limits_{j\in \mathbb{Z}} \Delta_{j}f \ \ \text{in} \ \ \mathcal{S}^{'}_{h}, $ |
where
$ \lim\limits_{j\rightarrow -\infty}S_{j}u = 0\quad \text{in $\mathcal{S}'$}. $ |
We now define the homogeneous Besov spaces:
$ \dot{B}^{s}_{p, q} = \left\{f\in \mathcal{S}^{'}_{h}: \ \left\|f\right\|_{\dot{B}^{s}_{p, q}} = \left\|2^{js}\left\|\Delta_{j}f\right\|_{L^{p}}\right\|_{l^{q}(\mathbb{Z})} < \infty \right\}. $ |
We recall Bernstein's inequality in 1D : for
$ sup|α|=k‖∂αΔjf‖Lp≤C2jk‖Δjf‖Lp,‖Δjf‖Lq≤C2j(1p−1q)‖Δjf‖Lp. $ | (12) |
Moreover, the Besov spaces enjoy nice scaling properties. Let
$ C−1‖fλ‖˙Bsp,r≤λs−3p‖f‖˙Bsp,r≤C‖fλ‖˙Bsp,r. $ | (13) |
We also have the following commutator estimate.
Lemma 2.1 (Commutator estimate). For
$ \left\|[f, \Delta_{j}]g_{x}\right\|_{L^{2}}\leq Cc_{j}2^{-\frac{3}{2}j} \left\|f_{x}\right\|_{\dot{B}^{\frac{1}{2}}_{2, 1}} \left\|g\right\|_{\dot{B}^{\frac{3}{2}}_{2, 1}}, \quad \sum\limits^{\infty}_{j = -\infty}c_{j}\leq 1. $ |
We finally introduce Simon's compactness.
Lemma 2.2. [26] Let
We now study 1a-1b with
$ θt−(Hθ)θx=0, $ | (14a) |
$ θ(0,x)=θ0(x). $ | (14b) |
The local well-posedness of 14a-14b is established in
$ \theta_{0}(x)\mapsto \theta_{\lambda 0}(x) = \theta_{0}(\lambda x). $ |
In this paper, we take the space
$ C^{-1} \left\|\theta_{\lambda 0}\right\|_{\dot{B}^{\frac{3}{2}}_{2, 1}} \leq \|\theta_{0}\|_{\dot{B}^{\frac{3}{2}}_{2, 1}} \leq C \left\|\theta_{\lambda 0}\right\|_{\dot{B}^{\frac{3}{2}}_{2, 1}} $ |
by taking
Theorem 3.1. For any
Proof. We only provide a priori estimates of
We apply
$ 12ddt‖Δjθ‖2L2=∫RΔj((Hθ)θx)Δjθdx=∫R((Hθ)Δjθx)Δjθdx+∫RΔj((Hθ)θx)Δjθdx−∫R((Hθ)Δjθx)Δjθdx=∫R((Hθ)Δjθx)Δjθdx+∫R{[Δj,Hθ]Δjθx}Δjθdx=−12∫R(Hθ)x|Δjθ|2dx+∫R{[Δj,Hθ]Δjθx}Δjθdx. $ | (15) |
By the Bernstein inequality, we have
$ ‖Hθx‖L∞≤C‖θ‖˙B322,1. $ | (16) |
We then apply Lemma 2.1 to the second term in the right-hand side of 15 to obtain
$ ∫R[Δj,Hθ]ΔjθxΔjθdx≤Ccj2−32j‖θ‖2˙B322,1‖Δjθ‖L2. $ | (17) |
By 15, 16, and 17, we have
$ \frac{d}{dt}\|\theta\|^{2}_{\dot{B}^{\frac{3}{2}}_{2, 1}}\leq C\|\theta\|^{3}_{\dot{B}^{\frac{3}{2}}_{2, 1}}, $ |
from which we deduce
This completes the proof.
We next consider 14a-14b with rough initial data. More precisely, we assume that
$ θ0≥0,θ0∈L1∩L∞. $ | (18) |
Since
$ θ(t,x)≥0,θ∈L∞(R)for all time. $ | (19) |
If we follow the usual weak formulation of 14a-14b, for all
$ ∫T0∫R[−θψt+(Hθ)θψx+(Λθ)θψ]dxdt=∫Rθ0(x)ψ(x,0)dx. $ | (20) |
For
$ ‖θ(t)‖L1+∫t0‖Λ12θ(s)‖2L2ds=‖θ0‖L1. $ | (21) |
So, we can rewrite the left-hand side of 20 as
$ \int^{T}_{0}\int_{\mathbb{R}} \left[-\theta \psi_{t} + \left(\mathcal{H}\theta\right)\theta \psi_{x}+\Lambda^{\frac{1}{2}}\theta \left[\Lambda^{\frac{1}{2}}, \psi\right]\theta +\left|\Lambda^{\frac{1}{2}}\theta\right|^{2}\psi\right] dxdt = \int_{\mathbb{R}}\theta_{0}(x)\psi(x, 0)dx. $ |
However, the
$ \int^{T}_{0}\int_{\mathbb{R}} \left|\Lambda^{\frac{1}{2}}\theta^{\epsilon}\right|^{2}\psi dxdt $ |
from the
$ \mathcal{A}_{T} = L^{\infty}_{T}\left(L^{1}\cap L^{\infty}\right)\cap L^{2}_{T}H^{\frac{1}{2}}. $ |
Definition 3.2. We say
$ ∫T0∫R[−θψt+(Hθ)θψx+Λ12θ[Λ12,ψ]θ+|Λ12θ|2ψ]dxdt≥∫Rθ0(x)ψ(x,0)dx. $ | (22) |
To deal with the third term in 22, we use the following Lemma.
Lemma 3.3. [3] For
$ \left\| \left[\Lambda^{\frac{1}{2}}, \psi \right]f- \left[\Lambda^{\frac{1}{2}}, \psi \right]g\right\|_{L^{6}}\leq C\|\psi\|_{W^{1, \infty}} \left\|f-g\right\|_{L^{\frac{3}{2}}}. $ |
The second result in our paper is the following theorem.
Theorem 3.4. For any
Proof. We first regularize initial data as
$ θϵt−Hθϵθϵx=ϵθϵxx. $ | (23) |
For the proof of the existence of a global-in-time smooth solution we refer to [21]. Moreover,
$ ‖θϵ(t)‖L1+‖θϵ(t)‖L∞+∫t0‖Λ12θϵ(s)‖2L2ds≤‖θ0‖L1+‖θ0‖L∞. $ | (24) |
Therefore,
The first two terms on the left-hand side of 24 imply
$ \left\|\theta^{\epsilon}\right\|_{L^{p}_{T}L^{q}}\leq \left\|\theta_{0}\right\|_{L^{1}} + \left\|\theta_{0}\right\|_{L^{\infty}} $ |
for any
$ \mathcal{H}\theta^{\epsilon}\in L^{4}_{T}L^{2}, \quad \theta^{\epsilon}\in L^{2}_{T}L^{\infty}. $ |
These two bounds imply
$ \left(\left(\mathcal{H}\theta^{\epsilon}\right)\theta^{\epsilon}\right)_x\in L^{\frac{4}{3}}_{T}\dot{H}^{-1}\subset L^{\frac{4}{3}}_{T}H^{-2} $ |
by the embedding 6. From
$ \epsilon \theta^{\epsilon}_{xx}\in L^{2}_{T}\dot{H}^{-\frac{3}{2}}\subset L^{2}_{T}H^{-2} $ |
by the embedding 6. Moreover, for any
$ \int_{\mathbb{R}}\left|\theta^{\epsilon} \Lambda\theta^{\epsilon} \phi \right| dx \leq \left\|\Lambda^{\frac{1}{2}}\theta^{\epsilon}\right\|^{2}_{L^{2}} \left\|\phi\right\|_{L^{\infty}} + \left\|\Lambda^{\frac{1}{2}}\theta^{\epsilon}\right\|_{L^{2}} \left\|\theta^{\epsilon}\right\|_{L^{\infty}} \left\|\Lambda^{\frac{1}{2}}\phi\right\|_{L^{\infty}} $ |
which implies that
$ \theta^{\epsilon} \Lambda\theta^{\epsilon} \in L^{1}_{T}H^{-2}. $ |
Combining all together, we obtain
$ \theta^{\epsilon}_{t} = \mathcal{H}\theta^{\epsilon}\theta^{\epsilon}_x +\epsilon \theta^{\epsilon}_{xx} = \left(\mathcal{H}\theta^{\epsilon}\theta^{\epsilon}\right)_x -\theta^{\epsilon} \Lambda\theta^{\epsilon}+\epsilon \theta^{\epsilon}_{xx}\in L^{1}_{T}H^{-2}. $ |
To pass to the limit into the weak super-solution formulation, we extract a subsequence of
$ θϵ⇀θinLpTLqfor all p,q∈(1,∞),θϵ⇀θinL2TH12,θϵ→θin L2TLploc for all 1<p<∞, $ | (25) |
where we use Lemma 2.2 for the strong convergence with
$ X_0 = L^2_{T}H^{\frac{1}{2}}, \quad X_{1} = L^2_{T}L^p_{\text{loc}}, \quad X_2 = L^1_{T}H^{-2}. $ |
We now multiply 23 by a nonnegative test function
$ ∫T0∫R[−θϵψt+(Hθϵ)θϵψx⏟I+ϵθϵψxx]dxdt−∫Rθϵ0(x)ψ(0,x)dx=−∫T0∫RΛ12θϵ[Λ12,ψ]θϵ⏟IIdxdt−∫T0∫R|Λ12θϵ|2ψ⏟IIIdxdt. $ | (26) |
We note that we are able to rearrange terms in the usual weak formulation into 26 since
$ \left[\Lambda^{\frac{1}{2}}, \psi \right]\theta^{\epsilon} \rightarrow \left[\Lambda^{\frac{1}{2}}, \psi \right]\theta $ |
strongly in
$ g^\epsilon = \Lambda^{\frac{1}{2}}\theta^{\epsilon}\sqrt{\psi} \quad \text{and} \quad g = \Lambda^{\frac{1}{2}}\theta\sqrt{\psi}. $ |
We then have that
$ \liminf\limits_{\epsilon\rightarrow 0}\|g^\epsilon\|_{L^2([0, T]\times\mathbb{R})}\geq\|g\|_{L^2([0, T]\times\mathbb{R})}, $ |
or, equivalently,
$ \liminf\limits_{\epsilon\rightarrow 0}\int^{T}_{0}\int_{\mathbb{R}} \left|\Lambda^{\frac{1}{2}}\theta^{\epsilon}\right|^{2}\psi dxdt \ge \int^{T}_{0}\int_{\mathbb{R}} \left|\Lambda^{\frac{1}{2}}\theta\right|^{2}\psi dxdt. $ |
Combining all the limits together, we obtain that
$ ∫T0∫R[−θψt+(Hθ)θψx+Λ12θ[Λ12,ψ]θ+|Λ12θ|2ψ]dxdt≥∫Rθ0(x)ψ(x,0)dx. $ | (27) |
This completes the proof.
We now consider the following equation:
$ θt−(H(∂xx)−αθ)θx+Λγθ=0, $ | (28a) |
$ θ(0,x)=θ0(x), $ | (28b) |
where
$ θ0≥0,θ0∈L1∩L∞. $ | (29) |
Let
$ \mathcal{B}_{T} = L^{\infty}_{T}\left(L^{1}\cap L^{\infty}\right)\cap L^{2}_{T}H^{\frac{\gamma}{2}}. $ |
Definition 4.1. We say
$ ∫T0∫R[θψt−(H(∂xx)−αθ)θψx−Λ1−γ2(∂xx)−αθΛγ2(θψ)−θΛγψ]dxdt=∫Rθ0(x)ψ(x,0)dx. $ |
The third result in the paper is the following.
Theorem 4.2. Suppose that two positive numbers
$ 0<γ<1,12−γ2<α<12. $ | (30) |
Then, for any
Proof. As in the proof of Theorem 3.4, we regularize
$ θϵ0=ρϵ∗θ0,θϵt−(H(∂xx)−αθϵ)θϵx+Λγθϵ=ϵθϵxx. $ | (31) |
Then, the corresponding
$ θϵ(t,x)≥0,‖θϵ(t)‖L∞≤‖θ0‖L∞for all time $ | (32) |
and
$ ‖θϵ(t)‖L1+∫t0‖Λ12(∂xx)−α2θϵ(s)‖2L2ds≤‖θ0‖L1. $ | (33) |
We next multiply 31 by
$ 12ddt‖θϵ(t)‖2L2+‖Λγ2θϵ(t)‖2L2+ϵ‖θϵx‖2L2=−12∫R{Λ(∂xx)−αθϵ(t)}(θϵ(t))2dx=−12∫R{(1−Δ)−γ4Λ(∂xx)−αθϵ(t)}(1−Δ)γ4(θϵ(t))2dx≤C‖(1−Δ)−γ4Λ(∂xx)−αθϵ(t)‖L2‖(1−Δ)γ4θϵ(t)‖L2‖θϵ(t)‖L∞, $ |
where we use the fractional product rule 8 to obtain
$ \left\|(1-\Delta)^{\frac{\gamma}{4}}\left(\theta^{\epsilon}(t)\right)^{2}\right\|_{L^{2}}\leq C \|\theta^{\epsilon}(t)\|_{L^{\infty}}\left\|(1-\Delta)^{\frac{\gamma}{4}}\theta^{\epsilon}(t)\right\|_{L^{2}}. $ |
By this bound and 32, we have
$ ‖(1−Δ)γ4(θϵ(t))2‖L2≤C‖θ0‖L∞(‖θϵ(t)‖L2+‖Λγ2θϵ(t)‖L2). $ | (34) |
We now consider
For
So,
$ ‖(1−Δ)−γ4Λ(∂xx)−αθϵ(t)‖L2≤C(‖θϵ(t)‖L2+‖Λ12(∂xx)−α2θϵ(t)‖L2). $ | (35) |
By 34 and 35, we obtain
$ ddt‖θϵ(t)‖2L2+‖Λγ2θϵ(t)‖2L2+ϵ‖θϵx‖2L2≤C‖θ0‖L∞(‖θϵ(t)‖L2+‖Λγ2θϵ(t)‖L2)(‖θϵ(t)‖L2+‖Λ12(∂xx)−α2θϵ(t)‖L2)≤C(‖θ0‖L∞+‖θ0‖2L∞)‖θϵ(t)‖2L2+C(1+‖θ0‖2L∞)‖Λ12(∂xx)−α2θϵ(t)‖2L2+12‖Λγ2θϵ(t)‖2L2 $ | (36) |
and so
$ ddt‖θϵ(t)‖2L2+‖Λγ2θϵ(t)‖2L2+ϵ‖θϵx‖2L2≤C(‖θ0‖L∞+‖θ0‖2L∞)‖θϵ(t)‖2L2+C(1+‖θ0‖2L∞)‖Λ12(∂xx)−α2θϵ(t)‖2L2. $ |
By Gronwall's inequality,
$ \left\|\theta^{\epsilon}(t)\right\|^{2}_{L^{2}}\leq \left(\|\theta_{0}\|^{2}_{L^{2}} +C(1+\|\theta_{0}\|^{2}_{L^{\infty}})\|\theta_{0}\|_{L^{1}}\right)e^{C\left(\|\theta_{0}\|_{L^{\infty}}+\|\theta_{0}\|^{2}_{L^{\infty}}\right)t}, $ |
where we use 33 to bound the time integral of
$ ‖θϵ(t)‖2L2+∫t0‖Λγ2θϵ(s)‖2L2ds+ϵ∫t0‖θϵx(s)‖2L2ds≤‖θ0‖2L2+(‖θ0‖2L2+C(1+‖θ0‖2L∞)‖θ0‖L1)eC(‖θ0‖L∞+‖θ0‖2L∞)tC(‖θ0‖L∞+‖θ0‖2L∞). $ | (37) |
Therefore,
By 32 and 33,
$ θϵ∈L∞T(L1∩L∞). $ | (38) |
We next consider
$ 2α−12<β≤2α+γ2. $ | (39) |
Then,
$ ∫R|ξ|2(β−2α)|^θϵ(ξ)|2dξ=∫|ξ|≤1|ξ|2(β−2α)|^θϵ(ξ)|2dξ+∫|ξ|≥1|ξ|2(β−2α)|^θϵ(ξ)|2dξ≤‖^θϵ‖2L∞+‖Λγ2θϵ‖2L2≤‖θϵ‖2L1+‖Λγ2θϵ‖2L2 $ |
and so
$ \mathcal{H}(\partial_{xx})^{-\alpha}\theta^{\epsilon}\in L^{2}_{T}\dot{H}^{\beta}. $ |
Moreover, by Sobolev embedding,
$ H(∂xx)−αθϵ∈L2TLp,1p=12−β $ | (40) |
where
$ \Lambda^{\gamma}\theta^{\epsilon}+\epsilon \theta^{\epsilon}_{xx}\in L^{2}_{T}H^{-2}. $ |
Combining all together, we derive that
$ \theta^{\epsilon}_{t}\in L^{1}_{T}H^{-2}. $ |
Finally, 7 and 38 imply that
$ Λγ2(θϵψ)∈L2TL2. $ | (41) |
To pass the limit to this formulation, we extract a subsequence of
$ θϵ⇀θinL2THγ2, $ | (42a) |
$ θϵ→θin L2TLploc for all 1<p<21−γ, $ | (42b) |
$ θϵ→θin L2TH1−γ2−2α,. $ | (42c) |
Here, we use Lemma 2.2 with
$ X_0 = L^2_{T}H^{\frac{\gamma}{2}}, \quad X_{1} = L^2_{T}L^p_{\text{loc}}, \quad X_2 = L^1_{T}H^{-2} $ |
to obtain 42b. Similarly, we use Lemma 2.2 with the condition 30 and
$ X_0 = L^2_{T}H^{\frac{\gamma}{2}}, \quad X_{1} = L^{2}_{T}H^{1-\frac{\gamma}{2}-2\alpha}, \quad X_2 = L^1_{T}H^{-2} $ |
to obtain 42c.
We now multiply 31 by a test function
$ ∫T0∫[θϵψt−(H(∂xx)−αθϵ)θϵψx⏟I+Λγθϵψ+ϵθϵψxx]dxdt−∫θϵ0(x)ψ(0,x)dx=∫T0∫Λ1−γ2H(∂xx)−αθϵΛγ2(θϵψ)⏟IIdxdt. $ | (43) |
By 40 and the strong convergence in 42b, we can pass to the limit to
$ ∫T0∫R[θψt−(H(∂xx)−αθ)θψx−Λ1−γ2(∂xx)−αθΛγ2(θψ)−θΛγψ]dxdt=∫Rθ0(x)ψ(x,0)dx. $ |
This completes the proof of Theorem 4.2.
Remark 1. Theorem 4.2 improves Theorem 1.4 in [3], where
In this section, we consider the following equation
$ θt−(H(∂xx)βθ)θx+Λγθ=0, $ | (44a) |
$ θ(0,x)=θ0(x) $ | (44b) |
where
We begin with the local well-posedness result.
Theorem 5.1. Let
$ limsupt↗T∗‖θ(t)‖H2=∞ if and only if ∫T∗0(‖ux(s)‖L∞+‖θx(s)‖2L∞)ds=∞, $ | (45) |
where
Proof. Operating
$ 12ddt‖θ(t)‖2H2+‖Λγ2θ‖2H2=−2∑l=0∫∂l(uθx)∂lθdx=−2∑l=0∫(∂l(uθx)−u∂lθx)∂lθdx−2∑l=0∫u∂lθx∂lθdx=I1+I2. $ | (46) |
Using the commutator estimate 9, we have
$ I1≤2∑l=0‖∂l(uθx)−u∂lθx‖L2‖θ‖H2≤C(‖ux‖L∞‖θ‖H2+‖u‖H2‖θx‖L∞)‖θ‖H2≤Cκ(‖ux‖L∞+‖θx‖2L∞)‖θ‖2H2+κ‖u‖2H2. $ | (47) |
And by integration by parts,
$ I2=−122∑l=0∫u∂x|∂lθ|2dx=122∑l=0∫ux|∂lθ|2dx≤C‖ux‖L∞‖θ‖2H2. $ | (48) |
Since
$ \kappa\|u\|^{2}_{H^2}\leq \frac{1}{2}\left\|\Lambda^{\frac{\gamma}{2}}\theta\right\|_{H^2}^2. $ |
By 47 and 48, we obtain
$ ddt‖θ‖2H2+‖Λγ2θ‖2H2≤C(‖ux‖L∞+‖θx‖2L∞)‖θ‖2H2≤C‖θ‖3H2+C‖θ‖4H2, β≤γ4 $ | (49) |
from which we deduce that there is
$ \|\theta(t)\|_{H^2}\leq 2 \|\theta_0\|_{H^2} \quad \text{for}\ \ \text{all}~ \ t < T. $ |
49 also implies 45.
To show the uniqueness, let
$ \theta_t+u_{1}\theta_x-u\theta_{2x} = -\Lambda^{\gamma}\theta, \quad u = -\mathcal{H}(\partial_{xx} )^{\beta} \theta, \quad \theta(0, x) = 0. $ |
By taking the
$ ddt‖θ‖2L2+2‖Λγ2θ‖2L2≤C(‖u1x‖L∞+‖θ2x‖2L∞)‖θ‖2L2≤C(‖Λγ2θ1‖H2+‖θ2‖2H2)‖θ‖2L2. $ |
So,
Theorem 5.1 provides a local existence result for
Theorem 5.2. Let
Proof. We begin the
$ \frac{1}{2}\frac{d}{dt}\left\|\theta\right\|^{2}_{L^{2}}+ \left\|\theta_{x}\right\|^{2}_{L^{2}}\leq \|\theta\|_{L^{\infty}} \left\|\mathcal{H}(\partial_{xx})^{\beta}\theta\right\|_{L^{2}} \left\|\theta_{x}\right\|_{L^{2}}\leq C\|\theta\|^{3}_{H^{2}}. $ |
We next estimate
$ 12ddt‖θ‖2˙H2+‖θ‖2˙H3=−∫{H(∂xx)βθx}θxθxxxdx+12∫{H(∂xx)βθx}θxxθxxdx=I1+I2. $ |
When
$ |I1|≤‖θx‖L∞‖H(∂xx)βθx‖L2‖θxxx‖L2=‖θx‖L∞‖Λ2β+1θ‖L2‖θxxx‖L2≤C‖θ‖H2‖θx‖1−βL2‖θxxx‖1+βL2≤C‖θ‖4H2+C‖θ‖4−2β1−βH2+14‖θxxx‖2L2. $ |
And
$ |I2|≤‖H(∂xx)βθx‖L2‖θxx‖2L4≤C‖H(∂xx)βθx‖L2‖θxx‖32L2‖θxxx‖12L2≤C‖θ‖4H2+14‖θxxx‖2L2. $ |
Therefore, we obtain
$ ddt‖θ‖2H2+‖θx‖2H2≤C‖θ‖4H2+C‖θ‖4−2β1−βH2. $ | (50) |
This implies that there exists
We may lower the regularity of the initial data to prove a local existence result of a weak solution by considering initial data in
$ θt+(H(−∂xx)βθ)θx+Λγθ=0, $ | (51a) |
$ θ(0,x)=θ0(x). $ | (51b) |
This can be obtained from 51a-51b via
Theorem 5.3. Let
Proof. By recalling that
$ 12ddt‖θ‖2˙H12+‖Λ1+γ2θ‖2L2=−∫Λ12θΛ12{(H(−∂xx)βθ)θx}dx=−∫θxΛθ H(−∂xx)βθdx=−∫θxHθxH(−∂xx)βθdx. $ |
We now use the
$ \Vert \theta_{x} \mathcal{H} \theta_{x} \Vert_{\mathcal{H}^1} \leq \Vert \theta \Vert^{2}_{\dot H^{1}}, \quad \left\|\mathcal{H}(-\partial_{xx})^{\beta}\theta\right\|_{{BMO}}\leq C\Vert \theta \Vert_{\dot H^{2\beta +\frac{1}{2}}} $ |
and thus we have
$ \frac{1}{2} \frac{d}{dt} \Vert \theta \Vert^{2}_{\dot H^{\frac{1}{2}}} +\left\Vert \Lambda^{\frac{1+\gamma}{2}} \theta \right\Vert^{2}_{L^{2}} \leq C\Vert \theta \Vert^{2}_{\dot H^{1}} \Vert \theta \Vert_{\dot H^{2\beta +\frac{1}{2}}}. $ |
By fixing
$ \Vert \theta \Vert^{2}_{\dot H^1} \leq \Vert \theta \Vert_{\dot H^{\frac{3}{2}}}\Vert \theta \Vert_{\dot H^{\frac{1}{2}}}, \quad \Vert \theta \Vert_{\dot H^{2\beta +\frac{1}{2}}} \leq \Vert \theta \Vert^{2\beta}_{\dot H^{\frac{3}{2}}} \Vert \theta \Vert^{1-2\beta}_{\dot H^{\frac{1}{2}}}, $ |
where we use
$ 12ddt‖θ‖2˙H12+‖Λ32θ‖2L2≤‖θ‖2˙H1‖θ‖˙H2β+12≤‖θ‖1+2β˙H32‖θ‖2−2β˙H12≤12‖θ‖2˙H32+2‖θ‖41−β1−2β˙H12, $ |
where we use the condition
Remark 2. In the case
$ \theta_{t} - \theta_{x}^2 +\Lambda^{\gamma}\theta = 0. $ |
For this equation, it seems that a naive approach based in energy methods cannot work. Indeed, if we multiply by
$ \int \theta_x^2\Lambda \theta dx = \int \theta_x^2\mathcal{H} \theta_xdx = -\frac{1}{2}\int \theta_x [\mathcal{H}, \theta_x]\theta_x \ dx . $ |
However, it seems that, at this level of regularity, this commutator is comparable to an energy estimate:
$ \int \theta_x^2\Lambda \theta dx\leq c\|\theta_x\|_{L^3}^3\leq c\|\theta\|_{H^{1+\frac{1}{6}}}^3\leq c\|\theta\|_{H^{1}}^2\|\theta\|_{H^{\frac{3}{2}}} $ |
which is also equivalent to the use of Hardy-BMO duality:
$ \int \theta_x^2\mathcal{H} \theta_xdx \leq \Vert \theta_{x} \Vert_{BMO} \Vert \theta_x \mathcal{H} \theta_x \Vert_{\mathcal{H}^{1}} \leq \|\theta\|_{H^{1}}^2\|\theta\|_{H^{\frac{3}{2}}}. $ |
Also, the best estimate that one has for the commutator
Remark 3. It is also unclear whether the local solution starting from an arbitrary initial data becomes smooth. However, for smooth initial data satisfying size restriction in appropriate spaces, one can prove the desired smoothing effect.
We finally deal with 51a-51b with
Theorem 5.4. Let
Proof. By Theorem 5.1, we only need to control the quantities in 45. Let
$ \left\|\theta(t)\right\|_{L^{\infty}}\leq \left\|\theta_{0}\right\|_{L^{\infty}}\leq C \|\theta_{0}\|_{H^{2}}. $ |
We take the
$ 12ddt‖θ‖2L2+‖θx‖2L2=−∫uθxθdx≤‖θ0‖L∞‖u‖L2‖θx‖L2. $ | (52) |
Since
$ \|u\|_{L^{2}} \leq C\|\theta\|^{1-2\beta}_{L^{2}} \|\theta_{x}\|^{2\beta}_{L^{2}} \quad \text{for $\beta < \frac{1}{2}$}, $ |
we have
$ ‖θ(t)‖2L2+∫t0‖θx(s)‖2L2ds≤C(t,‖θ0‖H2). $ | (53) |
We next take
$ 12ddt‖θx‖2L2+‖θxx‖2L2=∫uθxθxxdx≤2‖u‖2L∞‖θx‖2L2+12‖θxx‖2L2. $ |
Since
$ \|u\|^{2}_{L^{\infty}} \leq C\|\theta\|^{2}_{L^{2}}+C\|\theta_{x}\|^{2}_{L^{2}} \quad \text{when $\beta < \frac{1}{4}$}, $ |
we obtain
$ ‖θx(t)‖2L2+∫t0‖θxx(s)‖2L2ds≤C(t,‖θ0‖L1,‖θ0‖H2)when β<14. $ | (54) |
We also obtain
$ ‖θx‖2L∞≤C(‖θx‖2L2+‖θxx‖2L2),‖ux‖L∞≤C(‖θx‖L2+‖θxx‖L2)when β<14 $ | (55) |
By 53, 54 and 55, we finally obtain
$ ∫t0(‖θx(s)‖2L∞+‖ux(s)‖L∞)ds≤C∫t0(‖θx(s)‖2L2+‖θxx(s)‖2L2+‖θx(s)‖L2+‖θxx(s)‖L2)ds≤C(t,‖θ0‖L1,‖θ0‖H2) $ |
and so we complete the proof of Theorem 5.4.
The authors acknowledge the referees for their valuable comments and suggestions that highly improved the manuscript.
H.B. was supported by NRF-2018R1D1A1B07049015.
R.G.B. was supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program "Investissements d'Avenir" (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR), and by the Universidad de Cantabria.
O.L. was partially supported by the Marie-Curie Grant, acronym: TRANSIC, from the FP7-IEF program and by the ERC through the Starting Grant project H2020-EU.1.1.-63922.
Both O. L. and R.G.B. were partially supported by the Grant MTM2014-59488-P from the former Ministerio de Economía y Competitividad (MINECO, Spain).
1. | Lucas C.F. Ferreira, Valter V.C. Moitinho, Global well-posedness, regularity and blow-up for the β-CCF model, 2023, 344, 00220396, 230, 10.1016/j.jde.2022.10.032 | |
2. | Lucas Ferreira, Valter Moitinho, Global smoothness for a 1D supercritical transport model with nonlocal velocity, 2020, 148, 0002-9939, 2981, 10.1090/proc/14984 | |
3. | Martina Magliocca, On a fourth order equation describing single-component film models, 2024, 79, 14681218, 104137, 10.1016/j.nonrwa.2024.104137 |