The incompressible Boussinesq system plays an important role in modelling geophysical fluids and studying the Raleigh-Bernard convection. We consider the regularized model (also named as Boussinesq-
Citation: Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two[J]. Electronic Research Archive, 2020, 28(4): 1375-1393. doi: 10.3934/era.2020073
[1] | Hua Qiu, Zheng-An Yao . The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28(4): 1375-1393. doi: 10.3934/era.2020073 |
[2] | Xiaoju Zhang, Kai Zheng, Yao Lu, Huanhuan Ma . Global existence and long-time behavior of solutions for fully nonlocal Boussinesq equations. Electronic Research Archive, 2023, 31(9): 5406-5424. doi: 10.3934/era.2023274 |
[3] | Chang-Jian Wang, Yuan-Hao Zang . Boundedness of solutions in a two-species chemotaxis system. Electronic Research Archive, 2025, 33(5): 2862-2880. doi: 10.3934/era.2025126 |
[4] | Huanhuan Li, Lei Kang, Meng Li, Xianbing Luo, Shuwen Xiang . Hamiltonian conserved Crank-Nicolson schemes for a semi-linear wave equation based on the exponential scalar auxiliary variables approach. Electronic Research Archive, 2024, 32(7): 4433-4453. doi: 10.3934/era.2024200 |
[5] | Guenbo Hwang, Byungsoo Moon . Global existence and propagation speed for a Degasperis-Procesi equation with both dissipation and dispersion. Electronic Research Archive, 2020, 28(1): 15-25. doi: 10.3934/era.2020002 |
[6] | Xiuli Xu, Lian Yang . Global well-posedness of the 3D nonlinearly damped Boussinesq magneto-micropolar system without heat diffusion. Electronic Research Archive, 2025, 33(4): 2285-2294. doi: 10.3934/era.2025100 |
[7] | Jorge A. Esquivel-Avila . Blow-up in damped abstract nonlinear equations. Electronic Research Archive, 2020, 28(1): 347-367. doi: 10.3934/era.2020020 |
[8] | Dan-Andrei Geba, Evan Witz . Revisited bilinear Schrödinger estimates with applications to generalized Boussinesq equations. Electronic Research Archive, 2020, 28(2): 627-649. doi: 10.3934/era.2020033 |
[9] | Yazhou Wang, Yuzhu Wang . Regularity criterion of three dimensional magneto-micropolar fluid equations with fractional dissipation. Electronic Research Archive, 2024, 32(7): 4416-4432. doi: 10.3934/era.2024199 |
[10] | Jie Qi, Weike Wang . Global solutions to the Cauchy problem of BNSP equations in some classes of large data. Electronic Research Archive, 2024, 32(9): 5496-5541. doi: 10.3934/era.2024255 |
The incompressible Boussinesq system plays an important role in modelling geophysical fluids and studying the Raleigh-Bernard convection. We consider the regularized model (also named as Boussinesq-
The Boussinesq equations describe the influence of the convection (or convection-diffusion) phenomenon in a viscous or inviscid fluid, which are used as modelling many geophysical flows, such as atmospheric fronts and ocean circulations [18,22]. The standard two-dimensional Boussinesq equations read as:
{∂tu+(u⋅∇)u−μΔu+∇P=θe2,∂tθ+(u⋅∇)θ−κΔθ=0,∇⋅u=0,u(x,y,0)=u0,θ(x,y,0)=θ0, | (1) |
where
{∂tu1+u1∂xu1+u2∂yu1+∂xP=μ1∂xxu1+μ2∂yyu1,∂tu2+u1∂xu2+u2∂yu2+∂yP=ν1∂xxu2+ν2∂yyu2+θ,∂tθ+u1∂xθ+u2∂yθ=κ1∂xxθ+κ2∂yyθ,∂xu1+∂yu2=0, | (2) |
where
Most of the kinetic energy in turbulent fluid flows lies in the large scales, whereas the mathematical and computational difficulties lie in understanding the dynamical interaction between the significantly wide range of relevant scales in this multiscale phenomenon. To overcome this obstacle, much effort is being made to produce reliable turbulence models which parameterize the effect of the active small scales in terms of the large scales. Over the last years, the viscous Camassa-Holm equations have been proposed as a subgrid turbulence model (also known as the Lagrangian-averaged Navier-Stokes-
An extension of the LANS-
{∂tv+(u⋅∇)v+∑nj=1vj∇uj+∇P−μΔv=θen,∂tθ+(u⋅∇)θ−κΔθ=0,v=(1−α2Δ)u,∇⋅v=∇⋅u=0,(v(x,0),u(x,0),θ(x,0))=(v0,u0,θ0),x∈Rn,n=2,3, | (3) |
where
{∂tv1+(u⋅∇)v1+∑2j=1vj∂xuj+∂xP=μ1∂xxv1+μ2∂yyv1,∂tv2+(u⋅∇)v2+∑2j=1vj∂yuj+∂yP=ν1∂xxv2+ν2∂yyv2+θ,∂tθ+(u⋅∇)θ=κ1∂xxθ+κ2∂yyθ,v=(1−α2Δ)u,∇⋅v=∇⋅u=0,(v(x,y,0),u(x,y,0),θ(x,y,0))=(v0,u0,θ0),(x,y,t)∈R2×R+, | (4) |
where
In this paper, we consider the anisotropic Lagrangian averaged Boussinesq equations with partial dissipations. Firstly, we study the Cauchy problem of the Boussinesq-
{∂tv1+(u⋅∇)v1+∑2j=1vj∂xuj+∂xP=μ2∂yyv1,∂tv2+(u⋅∇)v2+∑2j=1vj∂yuj+∂yP=ν1∂xxv2+θ,∂tθ+(u⋅∇)θ=0,v=(1−α2Δ)u,∂xv1+∂yv2=∂xu1+∂yu2=0,(u(x,y,0),θ(x,y,0))=(u0,θ0),(x,y,t)∈R2×R+. | (5) |
We obtain the global existence of smooth solution to the above system (5), which is stated as follows.
Theorem 1.1. Consider the 2D Boussinesq-
(v,θ)∈L∞([0,T];H3(R2))×L∞([0,T];H3(R2)),v∈L2([0,T];H4(R2)), |
for any given
Remark 1. As
{∂tu1+u1∂xu1+u2∂yu1+∂xP=μ2∂yyu1,∂tu2+u1∂xu2+u2∂yu2+∂yP=ν1∂xxu2+θ,∂tθ+u1∂xθ+u2∂yθ=κ1∂xxθ+κ2∂yyθ,∂xu1+∂yu2=0, |
which is considered in [1] and the global regularity of classical solution is established. From this standpoint, our result in Theorem 1.1 can be viewed as an improvement for the regularization version of the Boussinesq equations to the anisotropic Boussinesq equations.
Remark 2. For the proof of Theorem 1.1, we adapt the approach of "weakly nonlinear" energy estimate approach introduced by Lei and Zhou in [17].
Next, let us revisit (3). When
∇θ∈L1(0,T;L∞(R2)). | (6) |
Now we consider the following 2D anisotropic Boussinesq-
{∂tv1+(u⋅∇)v1+∑2j=1vj∂xuj+∂xP=0,∂tv2+(u⋅∇)v2+∑2j=1vj∂yuj+∂yP=θ,∂tθ+(u⋅∇)θ=κ2∂yyθ,v=(1−α2Δ)u,∇⋅v=∇⋅u=0,(v(x,y,0),u(x,y,0),θ(x,y,0))=(v0,u0,θ0),(x,y,t)∈R2×R+. | (7) |
We establish a Beale-Kata-Majda type regularity criterion to the system (7). More precisely, our second main result in this paper is stated as follows:
Theorem 1.2. Assume
M(T)≡∫T0‖∂xθ(t)‖L∞dt<∞, | (8) |
then the solution can be extended to
Remark 3. Compared to (6), our result in (8) is dependent of the derivative of
Remark 4. As
In this section, we provide some notation and basic facts used in the proof.
Notation. Throughout the paper,
Now, we start with the well-known Gagliardo-Nirenberg inequality.
Lemma 2.1. Suppose that
1p=jn+θ(1r−mn)+(1−θ)1q, |
there exists a constant
‖∇jf‖Lp≤C‖f‖1−θLq‖∇mf‖θLr. |
Let us introduce the well-known commutator estimates proved by Kato-Ponce [16].
Lemma 2.2. Let
‖Λs(fg)−fΛsg‖Lp≤C(‖∇f‖Lp1‖Λs−1g‖Lq1+‖Λsf‖Lp2‖g‖Lq2), |
‖Λs(fg)‖Lp≤C(‖Λsf‖Lp1‖g‖Lq1+‖f‖Lp2‖Λsg‖Lq2), |
where
We recall the well-known Calderon-Zygmund operators, which will be used to get the control between the gradient of velocity and the vorticity (see [10]).
Lemma 2.3. (Biot-Savart law). There exists a universally positive constant
‖∇u‖Lp≤Cp2p−1‖∇×u‖Lp. |
Next, let us recall the following logarithmic Sobolev inequality (see [3,4]).
Lemma 2.4. Let
‖∇f‖L∞(Rn)≤C(1+‖f‖L2(Rn)+‖Δf‖L2(Rn)log(1+‖f‖˙Ws,p(Rn))). |
We also need the following well-known Osgood lemma [2], which will be a crucial ingredient to establish the global in time a priori estimates in the proof of Theorem 1.1.
Lemma 2.5. Let
ϕ(t)≤c+∫tt0γ(s)μ(ϕ(s))ds. |
If
−M(ϕ(t))+M(c)≤∫tt0γ(s)ds with M(s)=∫1sdrμ(r). |
If
The following lemma, which has been firstly introduced in [6] to deal with the 2D MHD equations with partial viscosity, will play an important role in the proof of our second main result.
Lemma 2.6. Assume that
∫R2|fgh|dx≤C‖f‖2‖g‖122‖∂yg‖122‖h‖122‖∂xh‖122. |
Proof. This section is devoted to the proof of Theorem 1.1. For simplicity, without loss of generality, we assume
Firstly, for the third equation of (5), according to the divergence free condition
‖θ(t)‖Lp≤‖θ0‖Lp,∀p∈[1,∞], | (9) |
for any
Multiplying both sides of the first and second equations of (5) by
12ddt(‖u(t)‖2L2+α2‖∇u(t)‖2L2)+‖∂yu1‖2L2+‖∂xu2‖2L2+α2‖∇∂yu1‖2L2+α2‖∇∂xu2‖2L2≤‖θ‖L2‖u2‖L2, | (10) |
where we used the fact:
∫R2(u⋅∇)u⋅udx=0, |
∫R2(u⋅∇)v⋅udx+∑j∫R2vj∇uj⋅udx=0, |
by the incompressible condition
Integrating in time and using (9), then for any
‖u(t)‖2L2+α2‖∇u(t)‖2L2+∫t0(‖∂yu1(τ)‖2L2+‖∂xu2(τ)‖2L2+α2‖∇∂yu1(τ)‖2L2+α2‖∇∂xu2(τ)‖2L2)dτ≤C, | (11) |
where
So we obtain
∫T0∫R2|v|2dxdt≤C. | (12) |
The first and second equations of (5) can be rewritten as:
∂tv+(u⋅∇)v+∑jvj∇uj−(∂yyv1∂xxv2)+∇P=(0θ). | (13) |
Applying the operator
curl(u⋅∇)v+curl(∑jvj∇uj)=(u⋅∇)curlv, |
then we have
∂tcurlv+(u⋅∇)curlv−(∂xxxv2−∂yyyv1)=∂xθ. | (14) |
Testing (14) by
12ddt‖curlv(t)‖2L2=∫R2(∂xxxv2−∂yyyv1)⋅curlvdx+∫R2∂xθcurlvdx=I1+I2. | (15) |
For the first term
I1=∫R2curl(∂yyv1∂xxv2)⋅curlvdx=∫R2(∂yyv1∂xxv2)⋅curlcurlvdx=−∫R2(∂yyv1∂xxv2)⋅Δvdx=−∫R2∂yyv1Δv1dx−∫R2∂xxv2Δv2dx=−∫R2∂yyv1∂xxv1dx−∫R2∂yyv1∂yyv1dx−∫R2∂xxv2∂xxv2dx−∫R2∂xxv2∂yyv2dx=−∫R2(∂xyv1)2dx−∫R2(∂yyv1)2dx−∫R2(∂xxv2)2dx−∫R2(∂xyv2)2dx=−∫R2(∂yyv2)2dx−∫R2(∂yyv1)2dx−∫R2(∂xxv2)2dx−∫R2(∂xxv1)2dx, |
which implies that
−I1=∫R2(∂yyv2)2dx+∫R2(∂yyv1)2dx+∫R2(∂xxv2)2dx+∫R2(∂xxv1)2dx≥12∫R2(∂xxv1+∂yyv1)2dx+12∫R2(∂xxv2+∂yyv2)2dx=12‖Δv‖2L2. |
For the second term
I2=∫R2curl(0θ)⋅curlvdx=∫R2(0θ)⋅curlcurlvdx≤‖θ‖L2‖curlcurlv‖L2≤14‖Δv‖2L2+C‖θ‖2L2. |
Inserting the above estimates for
ddt‖curlv(t)‖2L2+‖Δv‖2L2≤C‖θ0‖2L2. | (16) |
Integrating in time, then it follows from (16) that
‖curlv(T)‖2L2+∫T0‖Δv(t)‖2L2dt≤C. |
Hence, according to Lemma 2.3, at last we have
‖v‖L∞([0,T];H1)+‖v‖L2([0,T];H2)≤C, | (17) |
‖u‖L∞([0,T];H3)+‖u‖L2([0,T];H4)≤C. | (18) |
Here, we should point out that we can't obtain a global bound for the
12ddt‖∇θ(t)‖2L2=−∫R2∇[(u⋅∇)θ]⋅∇θdx=∫R2((u⋅∇)⋅∇θ−∇[(u⋅∇)θ])⋅∇θ≤‖∇[(u⋅∇)θ]−(u⋅∇)⋅∇θ‖L2‖∇θ‖L2≤C‖∇u‖L∞‖∇θ‖2L2≤C‖∇u‖12L2‖∇3u‖12L2⋅‖∇θ‖2L2≤C‖∇θ‖2L2. | (19) |
Here we used the following Gagliardo-Nirenberg inequality in Lemma 2.1
‖u‖L∞≤C‖u‖12L2‖∇2u‖12L2 | (20) |
in the third inequality of (19). Then we get
‖∇θ(t)‖L2≤eCt‖∇θ0‖L2=C(t,θ0). |
Now, we apply "weakly nonlinear" energy estimate approach introduced firstly by Lei and Zhou [17] to obtain the higher global regularity. For any
Φ(t)=sup0≤τ≤t(‖∇3v(τ)‖2L2+‖∇3θ(τ)‖2L2)<∞, |
and assume that
Φ(t)<∞. | (21) |
It follows from the equation of
‖∇θ(t)‖L∞≤C‖∇θ(s)‖L∞exp(∫ts‖∇u(τ)‖L∞dτ). | (22) |
Then, choose
‖∇θ(t)‖L∞≤C‖∇θ(T0)‖L∞exp(C∫tT0(1+‖u‖L2+‖Δu‖L2log(1+‖∇3u‖L2)))≤C‖∇θ(T0)‖L∞exp(C∫tT0‖Δu(τ)‖L2log(1+‖∇3v(τ)‖L2)dτ)≤C‖∇θ(T0)‖L∞exp(C∫tT0‖Δu(τ)‖L2log(1+Φ(t))dτ)≤C‖∇θ(T0)‖L∞exp(C∫tT0‖Δu(τ)‖L2dτlog(1+Φ(t))). | (23) |
According to (18), we know that
∫T0‖Δu(t)‖2L2dt<∞, |
then we can choose
∫tT0‖Δu(t)‖2L2dt<ε. |
It then follows from (23) that, for
‖∇θ(t)‖L∞≤C(1+Φ(t))ε. | (24) |
Now applying the operator
12ddt‖Δcurlv(t)‖L2=∫R2Δ(∂xxxv2−∂yyyv1)⋅Δcurlvdx−∫R2Δ[(u⋅∇)curlv]⋅Δcurlvdx+∫R2Δ∂x⋅Δcurlvdx=II1+II2+II3. | (25) |
For the first term
II1=∫R2Δ(∂xxxv2−∂yyyv1)⋅Δcurlvdx=∫R2curlΔ(∂yyv1∂xxv2)⋅Δcurlvdx=∫R2Δ(∂yyv1∂xxv2)⋅Δcurlcurlvdx=−∫R2Δ(∂yyv1∂xxv2)⋅Δ2vdx=−∫R2Δ∂yyv1Δ2v1dx−∫R2Δ∂xxv2Δ2v2dx=II11+II12. | (26) |
Integrating by parts and using the condition
II11=−∫R2∂yyΔv1(∂xxΔv1+∂yyΔv1)dx=−∫R2(∂yyΔv1)2dx−∫R2∂xxΔv1∂yyΔv1dx=−∫R2(∂yyΔv1)2dx−∫R2∂xyΔv1∂xyΔv1dx=−∫R2(∂yyΔv1)2dx−∫R2∂yyΔv2∂yyΔv2dx=−∫R2(∂yyΔv1)2dx−∫R2(∂yyΔv2)2dx | (27) |
and
II12=−∫R2∂xxΔv2(∂xxΔv2+∂yyΔv2)dx=−∫R2(∂xxΔv2)2dx−∫R2∂xxΔv2∂yyΔv2dx |
=−∫R2(∂xxΔv2)2dx−∫R2∂xyΔv2∂xyΔv2dx=−∫R2(∂xxΔv2)2dx−∫R2∂xxΔv1∂xxΔv1dx=−∫R2(∂xxΔv2)2dx−∫R2(∂xxΔv1)2dx. | (28) |
Inserting (27) and (28) into (26) implies that
−II1≥12‖Δ2v‖2L2. | (29) |
Next we estimate the term
II2=−∫R2Δ[(u⋅∇)curlv]⋅Δcurlvdx=∫R2((u⋅∇)Δcurlv−Δ[(u⋅∇)curlv])⋅Δcurlvdx≤‖(u⋅∇)Δcurlv−Δ[(u⋅∇)curlv]‖L2‖Δcurlv‖L2≤C‖∇u‖L∞‖∇2curlv‖2L2+C‖∇2u‖L∞‖∇curlv‖L2‖Δcurlv‖L2≤C‖∇u‖12L2‖∇3u‖12L2⋅‖∇2curlv‖2L2+C‖∇2u‖12L2‖∇4u‖12L2⋅‖∇curlv‖L2‖Δcurlv‖L2≤C‖∇2curlv‖2L2+C‖∇2curlv‖L2. | (30) |
Here we used the Gagliardo-Nirenberg inequality (20) and (18) in the third and fourth inequalities of (30), respectively.
For the term
II3≤‖Δ∂xθ‖L2‖Δcurlv‖L2≤C(‖∇3θ‖2L2+‖Δcurlv‖2L2). | (31) |
Inserting the estimates (29)-(31) for
ddt‖Δcurlv(t)‖2L2+‖Δ2v‖2L2≤C(‖∇3θ‖2L2+‖Δcurlv‖2L2)+C‖Δcurlv‖L2. | (32) |
Applying the operator
12ddt‖∇3θ(t)‖22=−∫R2∇3[(u⋅∇)θ]⋅∇3θdx=∫R2((u⋅∇)∇3θ−∇3[(u⋅∇)θ])⋅∇3θdx≤C(‖∇u‖L∞‖∇3θ‖L2+‖∇θ‖L∞‖∇3u‖L2)‖∇3θ‖L2≤C‖∇u‖L∞‖∇3θ‖2L2+C‖∇θ‖L∞⋅‖∇u‖13L2‖∇4u‖23L2⋅‖∇3θ‖L2≤14‖∇4u‖2L2+C‖∇θ‖32L∞‖∇u‖12L2‖∇3θ‖32L2+C‖∇u‖L∞‖∇3θ‖2L2≤14‖∇4v‖2L2+C‖∇u‖L∞‖∇3θ‖2L2+C‖∇θ‖32L∞‖∇u‖12L2‖∇3θ‖32L2≤14‖∇4v‖2L2+C‖∇u‖L∞‖∇3θ‖2L2+C‖∇θ‖32L∞‖∇3θ‖32L2, | (33) |
where we used the following Gagliardo-Nirenberg inequality of Lemma 2.1 in the first inequality of (33):
‖∇3f‖L2≤C‖∇f‖13L2‖∇4f‖23L2. |
Combining (32) with (33), it gives that
12ddt(‖Δcurlv(t)‖2L2+‖∇3θ(t)‖22)+‖Δ2v‖2L2≤C(1+‖∇u‖L∞)(‖Δcurlv‖2L2+‖∇3θ‖22)+C‖Δcurlv‖L2+C‖∇θ‖32L∞‖∇3θ‖32L2. |
Thanks to Lemma 2.3 and Lemma 2.4 and by the definition of
12ddt(‖Δcurlv(t)‖2L2+‖∇3θ(t)‖22)+‖Δ2v‖2L2≤C(1+‖∇u‖L∞)Φ(t)+CΦ(t)12+C(1+Φ(t))3ε2Φ(t)34≤C(1+‖u‖L2+‖Δu‖L2log(1+Φ(t)))Φ(t)+CΦ(t)12+C(1+Φ(t))3ε2Φ(t)34≤C(1+‖u‖L2+‖Δu‖L2log(1+Φ(t)))Φ(t)+C(1+Φ(t))3ε2Φ(t)34≤C(1+‖u‖L2+‖Δu‖L2log(1+Φ(t)))(1+Φ(t))≤C(1+‖Δu‖L2log(1+Φ(t)))(1+Φ(t)), | (34) |
where we have taken
Integrating in time over
1+Φ(t)≤C+C∫tT0(1+‖Δ(τ)‖L2log(1+Φ(τ)))(1+Φ(τ))dτ. |
Using Lemma 2.5, namely the Osgood inequality, one can conclude that
Φ(T)≤Cexpexp(Cε)−1<∞, |
which (21) holds. This completes the proof of Theorem 1.1.
Proof. This section is devoted to the proof of Theorem 1.2. For simplicity, without loss of generality, we assume
The existence and uniqueness of local smooth solutions can be done without any difficulty as in the case of the Euler (see, e.g., [19]), thus it is sufficient to establish a priori estimates for
‖(v(t),θ(t))‖Hs(R2)≤C, |
under the condition (8). Here the constant
Firstly, multiplying both sides of the first, second and third equations of (7) by
‖θ(t)‖2L2+∫t0‖∂yθ(τ)‖2L2dτ=‖θ0‖2L2 | (35) |
and
‖u(t)‖2L2+α2‖∇u(t)‖2L2≤‖u0‖2L2+α2‖∇u0‖2L2+t‖θ0‖L2. | (36) |
Applying the operator
∂tv+(u⋅∇)v+∑jvj∇uj+∇P=(0θ), |
then, one has
∂tcurlv+(u⋅∇)curlv=∂xθ, | (37) |
where we used the fact that
curl[(u⋅∇)v]+curl(∑jvj∇uj)=(u⋅∇)curlv. |
Then, from (37) and under the condition (8), we have that, for
‖curlv(t)‖L∞≤‖curlv0‖L∞+∫t0‖∂xθ(τ)‖L∞dτ<∞. | (38) |
Using Lemma 2.1, Lemma 2.3 and (36), one has
‖v‖L∞≤‖v‖122‖curlv‖12L∞<∞. | (39) |
As a consequence, according to (39),
‖u‖L∞≤‖v‖L∞. | (40) |
Multiplying both sides of (37) by
12ddt‖curlv(t)‖2L2≤‖curlv‖L2‖∂xθ‖L2≤‖curlv‖2L2+‖∇θ‖2L2. | (41) |
On the other hand, we multiplying the third equation by
12ddt(‖∂xθ(t)‖2L2+‖∂yθ(t)‖2L2)+‖∂xyθ‖2L2+‖∂yyθ‖2L2=∫R2(u⋅∇)θ⋅∂xxθdx+∫R2(u⋅∇)θ⋅∂yyθdx=−∫R2∂x[(u⋅∇)θ]∂xθdx−∫R2∂y[(u⋅∇)θ]∂yθdx=−∫R2∂xu1(∂xθ)2dx−∫R2∂xu2∂yθ∂xθdx−∫R2∂yu1∂yθ∂xθdx−∫R2∂yu2(∂yθ)2dx=J1+J2+J3+J4. | (42) |
Using the incompressible condition
J1=−∫R2∂xu1(∂xθ)2dx=∫R2∂yu2(∂xθ)2dx=−2∫R2u2∂xyθ∂xθdx≤C‖u2‖L∞‖∂xyθ‖L2‖∂xθ‖L2≤14‖∂xyθ‖2L2+C‖u2‖2L∞‖∂xθ‖2L2≤14‖∂xyθ‖2L2+C‖u‖2L∞‖∂xθ‖2L2, | (43) |
J2=−∫R2∂xu2∂yθ∂xθdx≤‖∂xθ‖L∞‖∂xu2‖L2‖∂yθ‖L2≤C‖∂xθ‖L∞‖curlu‖L2‖∂yθ‖L2≤C‖∂xθ‖L∞‖curlv‖L2‖∂yθ‖L2≤C‖∂xθ‖L∞(‖curlv‖2L2+‖∂yθ‖2L2), | (44) |
J3=−∫R2∂yu1∂yθ∂xθdx≤‖∂xθ‖L∞‖∂yu1‖L2‖∂yθ‖L2≤C‖∂xθ‖L∞‖curlu‖L2‖∂yθ‖L2≤C‖∂xθ‖L∞‖curlv‖L2‖∂yθ‖L2≤C‖∂xθ‖L∞(‖curlv‖2L2+‖∂yθ‖2L2). | (45) |
For the last term
J4=−∫R2∂yu2(∂yθ)2dx≤C‖∂yu2‖L2‖∂yθ‖12L2‖∂yxθ‖12L2‖∂yθ‖12L2‖∂yyθ‖12L2≤C‖curlu‖L2‖∂yθ‖L2⋅‖∂xyθ‖12L2⋅‖∂yyθ‖12L2≤14‖∂xyθ‖2L2+12‖∂yyθ‖2L2+C‖curlu‖2L2‖∂yθ‖2L2≤14‖∂xyθ‖2L2+12‖∂yyθ‖2L2+C‖curlv‖2L2‖∂yθ‖2L2. | (46) |
Inserting the above estimates (43)-(46) into (42), it gives that
ddt(‖curlv(t)‖2L2+‖∇θ(t)‖2L2)+‖∂y∇θ‖2L2≤C(1+‖∂xθ‖L∞+‖u‖L∞+‖∂yθ‖2L2)(‖curlv‖2L2+‖∇θ‖2L2). | (47) |
Using the Gronwall inequality and according to (8), (35) and (39), it follows from (47) that, for any
‖curlv(t)‖2L2+‖∇θ(t)‖2L2+∫t0‖∂y∇θ(τ)‖2L2<∞. | (48) |
Next, we establish the
‖Δcurlv(t)‖2L2+‖∇3θ(t)‖2L2<∞. |
Applying the operator
12ddt‖Δcurlv(t)‖2L2=−∫R2Δ[(u⋅∇)curlv]⋅Δcurlvdx+∫R2Δ∂xθ⋅Δcurlvdx=K1+K2. | (49) |
Using the incompressible condition
K1=∫R2[(u⋅∇)Δcurlv−Δ((u⋅∇)curlv)]⋅Δcurlvdx≤‖Δ((u⋅∇)curlv)−(u⋅∇)Δcurlv‖L2‖Δcurlv‖L2≤C‖∇u‖L∞‖Δcurlv‖2L2+C‖Δu‖L∞‖Δcurlv‖2L2 |
≤C‖∇u‖12L2‖∇3u‖12L2⋅‖Δcurlv‖2L2+C‖v‖L∞‖Δcurlv‖2L2≤C‖Δcurlv‖2L2, | (50) |
where we used the following Gagliardo-Nirenberg inequality in Lemma 2.1
‖f‖L∞≤C‖f‖12L2‖∇2f‖12L2 |
in the third inequality, and (36), (40) and (48) in the fourth inequality.
For the term
K2≤‖∂xΔθ‖L2‖Δcurlv‖L2≤C(‖∂xΔθ‖2L2+‖Δcurlv‖2L2)≤C(‖∇3θ‖2L2+‖Δcurlv‖2L2). | (51) |
Plugging (50) and (51) into (49), one has
ddt‖Δcurlv(t)‖2L2≤C(‖∇3θ‖2L2+‖Δcurlv‖2L2). | (52) |
Applying the operator
12ddt‖∇3θ(t)‖2L2+‖∂y∇3θ‖2L2=−∫R2∇3[(u⋅∇)θ]⋅∇3θdx=−∫R2∂xΔ[(u⋅∇)θ]∂xΔθdx−∫R2∂yΔ[(u⋅∇)θ]∂yΔθdx=L1+L2. | (53) |
The term
L1=−∫R2∂xΔ(u1∂xθ+u2∂yθ)∂xΔθdx=−∫R2∂xΔu1∂xθ∂xΔθdx−∫R2∂xΔu2∂yθ∂xΔθdx−∫R2Δu1∂xxθ∂xΔθdx−∫R2Δu2∂xyθ∂xΔθdx−2∫R2∂xxu1∂xxθ∂xΔθdx−2∫R2∂xyu1∂xyθ∂xΔθdx−2∫R2∂xxu2∂xyθ∂xΔθdx−2∫R2∂xyu2∂yyθ∂xΔθdx−∫R2[2(∂xu1∂xxxθ+∂yu1∂xxyθ+∂xu2∂xxyθ+∂yu2∂xyyθ)+∂xu1∂xΔθ+∂xu2∂yΔθ]∂xΔθdx=M1+⋯+M9. | (54) |
Now we bound the terms of
M1=−∫R2∂xΔu1∂xθ∂xΔθdx≤C‖∂xθ‖L∞‖Δ∂xu1‖L2‖∂xΔθ‖L2≤C‖∂xθ‖L∞‖Δ∇u‖L2‖∇3θ‖L2 |
≤C‖∂xθ‖L∞‖Δcurlv‖L2‖∇3θ‖L2≤C‖∂xθ‖L∞(‖Δcurlv‖2L2+‖∇3θ‖2L2). | (55) |
Thanks to Lemma 2.6 and the Young inequality, it gives that
M2=−∫R2∂xΔu2∂yθ∂xΔθdx≤C‖Δ∂xu2‖L2‖∂yθ‖12L2‖∂xyθ‖12L2‖∂xΔθ‖12L2‖∂xyΔθ‖12L2≤C‖Δcurlu‖L2‖∂yθ‖12L2‖∂xyθ‖12L2‖∂xΔθ‖12L2⋅‖∂xyΔθ‖12L2≤132‖∂xyΔθ‖2L2+C‖∂yθ‖23L2‖∂xyθ‖23L2⋅‖Δcurlu‖43L2‖∂xΔθ‖23L2≤132‖∂xyΔθ‖2L2+C‖∂yθ‖23L2‖∂xyθ‖23L2(‖Δcurlu‖2L2+‖∂xΔθ‖2L2)≤132‖∂xyΔθ‖2L2+C‖∂yθ‖23L2‖∂xyθ‖23L2(‖Δcurlv‖2L2+‖∂xΔθ‖2L2). | (56) |
Noting that by
Δu1=∂xxu1+∂yyu1=−∂xyu2+∂yyu1=−∂ycurlu, |
then, integrating by parts and using the Hölder inequality and Lemma 2.6, one has
M3=−∫R2Δu1∂xxθ∂xΔθdx=∫R2∂ycurlu∂xxθ∂xΔθdx=−∫R2curlu∂xxyθ∂xΔθdx−∫R2curlu∂xxθ∂xyΔθdx≤C‖curlu‖L∞‖∂y∂xxθ‖L2‖∂xΔθ‖L2+C‖curlu‖L∞‖∂xxθ‖L2‖∂xyΔθ‖L2≤132‖∂xyΔθ‖2L2+C‖curlu‖2L∞‖∇3θ‖2L2+C‖curlu‖2L∞‖∇2θ‖2L2≤132‖∂xyΔθ‖2L2+C‖curlu‖2L∞‖∇3θ‖2L2+C‖curlv‖2L∞‖θ‖2H3 | (57) |
and
M4=−∫R2Δu2∂xyθ∂xΔθdx=∫R2∂yΔu2∂xθ∂xΔθdx+∫R2Δu2∂xθ∂xyΔθdx≤C‖∂xθ‖L∞‖Δ∂yu2‖L2‖∂xΔθ‖L2+C‖∂xyΔθ‖L2‖Δu2‖12L2‖∂xΔu2‖12L2‖∂xθ‖12L2‖∂xyθ‖12L2≤C‖∂xθ‖L∞‖Δcurlu‖L2‖∇3θ‖L2+132‖∂xyΔθ‖2L2+C‖Δu2‖L2‖Δcurlu‖L2‖∂xθ‖L2‖∂xyθ‖L2≤C‖∂xθ‖L∞(‖Δcurlv‖2L2+‖∇3θ‖2L2)+132‖∂xyΔθ‖2L2+C‖v‖L2‖Δcurlv‖L2⋅‖∇θ‖L2‖∂y∇θ‖L2≤C‖∂xθ‖L∞(‖Δcurlv‖2L2+‖∇3θ‖2L2)+132‖∂xyΔθ‖2L2+C‖∇θ‖L2‖∂y∇θ‖L2‖curlv‖2H2. | (58) |
For the term
M5=−2∫R2∂xxu1∂xxθ∂xΔθdx=−2∫R2∂xxu1∂xxθ∂xxxθdx−2∫R2∂xxu1∂xxθ∂xyyθdx=−∫R2∂xxu1∂x(∂xxθ)2dx−2∫R2∂xxu1∂xxθ∂xyyθdx=∫R2∂xxxu1(∂xxθ)2dx+2∫R2(∂xxxu1∂xθ∂xyyθ+∂xxu1∂xθ∂xxyyθ)dx=−∫R2∂xxyu2(∂xxθ)2dx+2∫R2(∂xxxu1∂xθ∂xyyθ+∂xxu1∂xθ∂xxyyθ)dx=2∫R2∂xxu2∂xxθ∂xxyθdx+2∫R2∂xxxu1∂xθ∂xyyθdx+2∫R2∂xxu1∂xθ∂xxyyθdx=−2∫R2∂xxxu2∂xθ∂xxyθdx−2∫R2∂xxu2∂xθ∂xxxyθdx+2∫R2∂xxxu1∂xθ∂xyyθdx+2∫R2∂xxu1∂xθ∂xxyyθdx=M51+M52+M53+M54. | (59) |
Using Lemma 2.3, Lemma 2.6, the Hölder inequality and the Young inequality, we have
M51≤C‖∂xθ‖L∞‖∂xxcurlu‖L2‖∂xxyθ‖L2≤C‖∂xθ‖L∞(‖∂xxcurlv‖2L2+‖∂xxyθ‖2L2)≤C‖∂xθ‖L∞(‖Δcurlv‖2L2+‖∇3θ‖2L2), |
M52≤C‖∂xxxyθ‖L2‖∂xxu2‖12L2‖∂xxxu2‖12L2‖∂xθ‖12L2‖∂xyθ‖12L2≤164‖∂y∇3θ‖2L2+C‖Δu2‖L2‖Δcurlu‖L2‖∂xθ‖L2‖∂xyθ‖L2≤164‖∂y∇3θ‖2L2+C‖v‖L2‖Δcurlv‖L2‖∂xθ‖L2‖∂xyθ‖L2≤164‖∂y∇3θ‖2L2+C‖∂xθ‖L2‖∂xyθ‖L2‖curlv‖2H2, |
Inserting the above estimates into (59), we have
(60) |
For the terms
(61) |
(62) |
and
(63) |
It is easy to estimate the term
(64) |
Inserting the above estimates (55)-(58) and (60)-(64) into (54) gives that
(65) |
where we used (8), (36), (38), (40) and (48).
The term
(66) |
Due to the existence of the "favorable" derivative
Now, combining (65) and the estimates of (66) with (53), it follows that
This together with the Gronwall inequality yields that
which completes the proof of Theorem 1.2.
The authors thank the editor and reviewer for valuable comments and suggestions.
[1] |
Global regularity results for the 2D Boussinesq equations with partial dissipation. J. Differential Equations (2016) 260: 1893-1917. ![]() |
[2] |
H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 343. Springer, Berlin Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7
![]() |
[3] |
Nonlinear Schrödinger evolution equations. Nonlinear Anal. (1980) 4: 677-681. ![]() |
[4] |
A note on limiting cases of Sobolev embedding and convolution inequalities. Comm. Partial Differential Equations (1980) 5: 773-789. ![]() |
[5] | The initial problem for the Boussinesq equations with data in . Lect. Notes Math. (1980) 771: 129-144. |
[6] |
Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion. Adv. Math. (2011) 226: 1803-1822. ![]() |
[7] |
Global regularity for the 2D anisotropic Boussinesq equations with vertical dissipation. Arch. Ration. Mech. Anal. (2013) 208: 985-1004. ![]() |
[8] |
Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv. Math. (2006) 203: 497-513. ![]() |
[9] | Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv. Math. (2012) 233: 1618-1645. |
[10] | (1998) Perfect Incompressible Fluids. New York: Oxford Lecture Ser. Math. Appl., vol. 14, The Clarendon Press/Oxford Univ. Press. |
[11] |
Camassa-Holm equations as a closure model for turbulent channel and pipe flow. Phys. Rev. Lett. (1998) 81: 5338-5341. ![]() |
[12] |
The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory. J. Dyn. Differ. Equ. (2002) 14: 1-35. ![]() |
[13] |
Global well-posedness for Euler-Boussinesq system with critical dissipation. Comm. Partial Differential Equations (2011) 36: 420-445. ![]() |
[14] |
Global well-posedness of the viscous Boussinesq equations. Discrete Contin. Dyn. Syst. (2005) 12: 1-12. ![]() |
[15] |
The 2D incompressible Boussinesq equations with general critical dissipation. SIAM J. Math. Anal. (2014) 46: 3426-3454. ![]() |
[16] |
Commutator estimates and the Euler and Navier-Stokes equations. Commun. Pure Appl. Math. (1988) 41: 891-907. ![]() |
[17] |
BKM's criterion and global weak solutions for magnetohydrodynamics with zero viscosity. Discrete Contin. Dyn. Syst. (2009) 25: 575-583. ![]() |
[18] |
A. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, Courant Lecture Notes in Mathematics, vol. 9, AMS/CIMS, 2003. doi: 10.1090/cln/009
![]() |
[19] | (2002) Vorticity and Incompressible Flow. Cambridge: Cambridge University Press. |
[20] |
Global well-posedness for the LANS- equations on bounded domains. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. (2001) 359: 1449-1468. ![]() |
[21] |
The anisotropic Lagrangian averaged Euler and Navier-Stokes equations. Arch. Ration. Mech. Anal. (2003) 166: 27-46. ![]() |
[22] | J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987. |
[23] |
Global well-posedness of the 2D Boussinesq equations with fractional Laplacian dissipation. J. Differential Equations (2016) 260: 6716-6744. ![]() |
[24] |
On the Cauchy problems for certain Boussinesq- equations. Proc. Roy. Soc. Edinburgh Sect. A (2010) 140: 319-327. ![]() |
1. | Xiaoqiang Dai, Shaohua Chen, Global well-posedness for the Cauchy problem of generalized Boussinesq equations in the control problem regarding initial data, 2021, 14, 1937-1632, 4201, 10.3934/dcdss.2021114 |