Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article

Existence of a solution to a semilinear elliptic equation

  • Received: 21 August 2016 Accepted: 26 August 2016 Published: 30 August 2016
  • We consider the equation Δu=f(u)1|Ω|Ωf(u)dx, where the domain Ω=TN, the N-dimensional torus, with N=2 or N=3. And f is a given smooth function of u for u(x)GR. We prove that there exists a solution u to this equation which is unique if |dfdu(u0)| is sufficiently small, where u0G is a given constant. And we prove that the solution u is not unique if dfdu(u0) is a simple eigenvalue of Δ.

    Citation: Diane Denny. Existence of a solution to a semilinear elliptic equation[J]. AIMS Mathematics, 2016, 1(3): 208-211. doi: 10.3934/Math.2016.3.208

    Related Papers:

    [1] Ruyun Ma, Dongliang Yan, Liping Wei . Global bifurcation of sign-changing radial solutions of elliptic equations of order 2m in annular domains. AIMS Mathematics, 2020, 5(5): 4909-4916. doi: 10.3934/math.2020313
    [2] Changmu Chu, Yuxia Xiao, Yanling Xie . Infinitely many sign-changing solutions for a semilinear elliptic equation with variable exponent. AIMS Mathematics, 2021, 6(6): 5720-5736. doi: 10.3934/math.2021337
    [3] Haohao Jia, Feiyao Ma, Weifeng Wo . Large positive solutions to an elliptic system of competitive type with nonhomogeneous terms. AIMS Mathematics, 2021, 6(8): 8191-8204. doi: 10.3934/math.2021474
    [4] Changling Xu, Hongbo Chen . A two-grid P20-P1 mixed finite element scheme for semilinear elliptic optimal control problems. AIMS Mathematics, 2022, 7(4): 6153-6172. doi: 10.3934/math.2022342
    [5] H. Al Jebawy, H. Ibrahim, Z. Salloum . On oscillating radial solutions for non-autonomous semilinear elliptic equations. AIMS Mathematics, 2024, 9(6): 15190-15201. doi: 10.3934/math.2024737
    [6] Chunjuan Hou, Zuliang Lu, Xuejiao Chen, Xiankui Wu, Fei Cai . Superconvergence for optimal control problems governed by semilinear parabolic equations. AIMS Mathematics, 2022, 7(5): 9405-9423. doi: 10.3934/math.2022522
    [7] Wenguo Shen . Bifurcation and one-sign solutions for semilinear elliptic problems in RN. AIMS Mathematics, 2023, 8(5): 10453-10467. doi: 10.3934/math.2023530
    [8] Dan Wang, Yongxiang Li . Existence and uniqueness of radial solution for the elliptic equation system in an annulus. AIMS Mathematics, 2023, 8(9): 21929-21942. doi: 10.3934/math.20231118
    [9] Keqiang Li, Shangjiu Wang, Shaoyong Li . Symmetry of large solutions for semilinear elliptic equations in a symmetric convex domain. AIMS Mathematics, 2022, 7(6): 10860-10866. doi: 10.3934/math.2022607
    [10] Xin Liu, Yan Wang . Averaging principle on infinite intervals for stochastic ordinary differential equations with Lévy noise. AIMS Mathematics, 2021, 6(5): 5316-5350. doi: 10.3934/math.2021314
  • We consider the equation Δu=f(u)1|Ω|Ωf(u)dx, where the domain Ω=TN, the N-dimensional torus, with N=2 or N=3. And f is a given smooth function of u for u(x)GR. We prove that there exists a solution u to this equation which is unique if |dfdu(u0)| is sufficiently small, where u0G is a given constant. And we prove that the solution u is not unique if dfdu(u0) is a simple eigenvalue of Δ.


    1. Introduction

    In this paper, we consider the following equation for u

    Δu=f(u)1|Ω|Ωf(u)dx (1.1)

    under periodic boundary conditions. The domain Ω=TN, the N-dimensional torus, with N=2,3. Here f is a given smooth function of u for u(x)GR.

    We will prove that there exists a solution u to equation (1.1) which is unique if |dfdu(u0)|<1(C0)2, where u0G is a given constant and where C0 is the constant from Poincarés inequality. And we will prove that the solution u is not unique if dfdu(u0) is a simple eigenvalue of Δ.

    In previous related work, many researchers have studied the equation Δu=f(u)+g. Existence of a solution u to the equation Δu=f(u)+g has been proven for a Dirichlet boundary condition u|Ω=0 (see, e.g., [1, 2, 5, 7]) under certain conditions on f and, g. And existence of a solution u to the equation Δ,,u=f(u)+g has been proven for a Neumann boundary condition un|Ω=h (see, e.g., [3, 4, 6]) under certain conditions on f and g. We have not seen any work by other researchers on the existence of a solution u to equation (1.1) under periodic boundary conditions. And we have not seen any work by other researchers which contains the particular condition that |dfdu(u0)|<1(C0)2, where C0 is the constant from Poincarés inequality and where u0 is a given constant in the domain of the function dfdu.


    2. Existence theorem

    In the proof that follows, we use the standard notation for the L2(Ω) norm of a function g, namely, g20=Ω|g|2dx. And we denote the inner product as (g,h)=Ωghdx. Also, we let Du denote the gradient of a function u. We also use the notation |dfdu|0,¯G1=max, where \frac{df}{du} is a function of u and where \overline{G}_1 \subset \mathbb{R} is a closed bounded interval.

    The purpose of this article is to prove the following theorem.

    Theorem 2.1. Consider the following equation for u

    -\Delta u=f(u)-\frac{1}{|\Omega|}\int_{\Omega} f(u)d\mathbf{x} (2.1)

    where the domain \Omega=\mathbb{T}^N, the N-dimensional torus, with N=2 or N=3, and where f is a given smooth function of u for u(\mathbf{x}) \in G \subset \mathbb{R}. Let u_0 \in G be a given constant. Then we have the following two cases:

    (1) If |\frac{d f}{d u}(u_0) | < \frac{1}{(C_0)^2}, where C_0 is the constant from Poincarés inequality, then there exists a unique classical solution u(\mathbf{x})\in \overline{G}_1 to equation (2.1) which satisfies the condition u(\mathbf{x}_0)=u_0, where \overline{G}_1 \subset G \subset \mathbb{R} and where u_0 \in \overline{G}_1 and where \mathbf{x}_0 \in \Omega is a given point. This unique classical solution is u=u_0.

    (2) If \frac{df}{du} (u_0) is a simple eigenvalue of -\Delta then there exists a solution u of equation (2.1) which is not the constant function u_0. This solution u may not necessarily satisfy the condition u(\mathbf{x}_0)=u_0. }

    Proof.

    We will consider separately each of the two cases from the statement of the theorem. First, we will consider Case 1 from the statement of Theorem 2.1

    Suppose that |\frac{d f}{d u}(u_0) | < \frac{1}{(C_0)^2}, where C_0 is the constant from Poincarés inequality and where u_0 \in G is a given constant. It follows that there exists a closed bounded interval \overline{G}_1 \subset G such that u_0 \in \overline{G}_1 and such that |\frac{d f}{d u} |_{0, \overline{G}_1} < \frac{1}{(C_{0})^2}, where |\frac{d f}{d u} |_{0, \overline{G}_1}=\max\{|\frac{d f}{d u} (u_{*}) |:u_{*} \in \overline{G}_1\}. Suppose that u is a classical solution of equation (2.1) such that u(\mathbf{x}) \in \overline{G}_1 for all \mathbf{x} \in \Omega and u satisfies the condition u(\mathbf{x}_0)=u_0, where \mathbf{x}_0 \in \Omega is a given point. We will now prove that this solution is u=u_0.

    From equation (2.1), and from using integration by parts and Poincarés inequality, we obtain the following estimate for \Vert D u\Vert_{0}^2:

    \begin{gathered} \left\| {Du} \right\|_0^2=(-\Delta u, u-\frac{1}{{|\Omega |}}\int_\Omega u d{\mathbf{x}}) \\=(f(u)-\frac{1}{{|\Omega |}}\int_\Omega f (u)d{\mathbf{x}}, u-\frac{1}{{|\Omega |}}\int_\Omega u d{\mathbf{x}}) \\ \leq {\left\| {f(u)-\frac{1}{{|\Omega |}}\int_\Omega f (u)d{\mathbf{x}}} \right\|_0}{\left\| {u-\frac{1}{{|\Omega |}}\int_\Omega u d{\mathbf{x}}} \right\|_0} \\ \leq {({C_0})^2}{\left\| {Df(u)} \right\|_0}{\left\| {Du} \right\|_0} \\ \end{gathered} (2.2)

    where we used Poincarés inequality to obtain \|u-\frac{1}{|\Omega|}\int_{\Omega} u d\mathbf{x} \|_0 \leq C_0 \|D u \|_0 and \|f(u)-\frac{1}{|\Omega|}\int_{\Omega} f(u)d\mathbf{x} \|_0 \leq C_0 \|Df(u) \|_0.

    From (2.2) we obtain the inequality

    \begin{gathered} \left\| {Du} \right\|_0^2 \leq {({C_0})^4}\left\| {Df(u)} \right\|_0^2 \\ \leq {({C_0})^4}|\frac{{df}}{{du}}|_{{L^\infty }(\Omega)}^2\left\| {Du} \right\|_0^2 \\ \leq {({C_0})^4}|\frac{{df}}{{du}}|_{0, {{\bar G}_1}}^2\left\| {Du} \right\|_0^2 \\ \end{gathered} (2.3)

    where we used the assumption that u(\mathbf{x})\in \overline{G}_1 for all \mathbf{x}\in \Omega, and so it follows that |\frac{d f}{d u} |_{L^{\infty}(\Omega)}\leq |\frac{d f}{d u} |_{0, \overline{G}_1}, where |\frac{d f}{d u} |_{0, \overline{G}_1}=\max\{|\frac{d f}{d u} (u_{*}) |:u_{*} \in \overline{G}_1\}.

    Since \Big|\frac{d f}{du} \Big|_{0, \overline{G}_1}^2 < \frac{1}{(C_0)^4}, it follows from (2.3) that \Vert D u\Vert_{0}=0 and so the solution u of equation (2.1) is a constant. Therefore the solution u=u_0 is the unique classical solution of equation (2.1) in \overline{G}_1 which satisfies the condition u(\mathbf{x}_0)=u_0. This completes the proof of Case 1 in the statement of Theorem 2.1.

    Next, we consider Case 2 in the statement of Theorem 2.1. We now prove that if \frac{d f}{du} (u_0) is a simple eigenvalue of -\Delta then there exists a solution u of equation (2.1) which is not the constant solution u_0. We remark that this solution u may not necessarily satisfy the condition that u(\mathbf{x}_0)=u_0, where \mathbf{x}_0 \in \Omega is a given point.

    We begin by letting v=u-u_0 and write equation (2.1) equivalently as

    \begin{gathered}-\Delta v=-\Delta u=f(u)-\frac{1}{{|\Omega |}}\int_\Omega f (u)d{\mathbf{x}} \\=(f(u)-f({u_0}))-\frac{1}{{|\Omega |}}\int_\Omega {(f(} u)-f({u_0}))d{\mathbf{x}} \\=(\frac{{df}}{{du}}({u_0} + {t_1}(u-{u_0})))(u-{u_0})-\frac{1}{{|\Omega |}}\int_\Omega (\frac{{df}}{{du}}({u_0} + {t_1}(u-{u_0})))(u-{u_0})d{\mathbf{x}} \\=(\frac{{df}}{{du}}({u_0} + {t_1}v))v-\frac{1}{{|\Omega |}}\int_\Omega (\frac{{df}}{{du}}({u_0} + {t_1}v))vd{\mathbf{x}} \\ \end{gathered} (2.4)

    where t_{1} \in (0, 1). Here we used the mean value theorem.

    We next obtain the identity

    \begin{gathered} \frac{{df}}{{du}}({u_0} + {t_1}v)=\frac{{df}}{{du}}({u_0} + {t_1}v)-\frac{{df}}{{du}}({u_0}) + \frac{{df}}{{du}}({u_0}) \\=(\frac{{{d^2}f}}{{d{u^2}}}({u_0} + {t_2}({t_1}v))){t_1}v + \frac{{df}}{{du}}({u_0}) \\ \end{gathered} (2.5)

    where t_{2} \in (0, 1). And we again used the mean value theorem.

    Substituting (2.5) into (2.4) yields

    -\Delta v=\frac{{df}}{{du}}({u_0})v + (\frac{{{d^2}f}}{{d{u^2}}}({u_0} + {t_2}({t_1}v))){t_1}{v^2}-\frac{1}{{|\Omega |}}\int_\Omega (\frac{{df}}{{du}}({u_0} + {t_1}v))vd{\mathbf{x}} (2.6)

    where v=u-u_0, where t_{1} \in (0, 1), and where t_{2} \in (0, 1).

    We can write equation (2.6) in the form

    \Delta v+ \lambda v=g(v) (2.7)

    where \lambda=\frac{d f}{du}(u_{0}) and where g(v)=-\Big(\frac{d^2 f}{du^2}(u_0+t_{2}(t_{1}v))\Big)t_{1}v^2 +\frac{1}{|\Omega|}\int_{\Omega}\Big(\frac{d f}{du}(u_{0}+t_{1}v)\Big) v d\mathbf{x}.

    Let F(v, \lambda)=\Delta v+ \lambda v-g(v) . We will apply the the implicit function theorem to the equation F(v, \lambda)=0. Note that g(0)=0 and g^{\prime}(0)=0 .

    If \lambda=\frac{d f}{du}(u_{0}) is not an eigenvalue of -\Delta, it follows from the implicit function theorem that v=0 is the only small solution to the equation F(v, \lambda)=0 when F(v, \lambda)=\Delta v+ \lambda v-g(v) and when g(0)=0 and g^{\prime}(0)=0 (see, e.g., [7]). Therefore u=u_0 is the only solution of equation (2.1) in a neighborhood of u_0.

    If \lambda=\frac{d f}{du}(u_{0}) is a simple eigenvalue of -\Delta, it follows from the implicit function theorem that there exists a non-trivial solution v to the equation F(v, \lambda)=0 when F(v, \lambda)=\Delta v+ \lambda v-g(v) and when g(0)=0 and g^{\prime}(0)=0 (see, e.g., [7]). Therefore there exists a solution u to equation (2.1) which is not the constant function u_0.

    This completes the proof of Theorem 2.1.


    [1] Haim Brezis and Walter A. Strauss, Semi-linear second-order elliptic equations in L1, J. Math.Soc. Japan 25 (1973), no. 4, 565-590.
    [2] L. Evans, Partial Differential Equations, Graduate Studies in Mathematics 19, American Mathematical Society, Providence, Rhode Island, 1998.
    [3] J.P. Gossez and P. Omari, A necessary and su cient condition of nonresonance for a semilinear Neumann problem, Proceedings of the American Mathematical Society 114 (1992), no. 2, 433-442.
    [4] Chaitan P. Gupta, Perturbations of second order linear elliptic problems by unbounded nonlinearities,Nonlinear Analysis: Theory, Methods & Applications 6 (1982), no. 9, 919-933.
    [5] P.L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Review 24(1982), no. 4, 441-467.
    [6] Jason R. Looker, Semilinear elliptic Neumann problems with rapid growth in the nonlinearity, Bull.Austral. Math. Soc. 74 (2006), 161-175.
    [7] M. Renardy and R. Rogers, An Introduction to Partial Di erential Equations, Springer-Verlag:New York, 1993.
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5713) PDF downloads(1420) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog