Citation: Masaaki Mizukami. Remarks on smallness of chemotactic effect for asymptotic stability in a two-species chemotaxis system[J]. AIMS Mathematics, 2016, 1(3): 156-164. doi: 10.3934/Math.2016.3.156
[1] | Qianqian Li, Ankur Jyoti Kashyap, Qun Zhu, Fengde Chen . Dynamical behaviours of discrete amensalism system with fear effects on first species. Mathematical Biosciences and Engineering, 2024, 21(1): 832-860. doi: 10.3934/mbe.2024035 |
[2] | Prasina Alexander, Fatemeh Parastesh, Ibrahim Ismael Hamarash, Anitha Karthikeyan, Sajad Jafari, Shaobo He . Effect of the electromagnetic induction on a modified memristive neural map model. Mathematical Biosciences and Engineering, 2023, 20(10): 17849-17865. doi: 10.3934/mbe.2023793 |
[3] | B. Spagnolo, D. Valenti, A. Fiasconaro . Noise in ecosystems: A short review. Mathematical Biosciences and Engineering, 2004, 1(1): 185-211. doi: 10.3934/mbe.2004.1.185 |
[4] | Zhilan Feng, Robert Swihart, Yingfei Yi, Huaiping Zhu . Coexistence in a metapopulation model with explicit local dynamics. Mathematical Biosciences and Engineering, 2004, 1(1): 131-145. doi: 10.3934/mbe.2004.1.131 |
[5] | Mahtab Mehrabbeik, Fatemeh Parastesh, Janarthanan Ramadoss, Karthikeyan Rajagopal, Hamidreza Namazi, Sajad Jafari . Synchronization and chimera states in the network of electrochemically coupled memristive Rulkov neuron maps. Mathematical Biosciences and Engineering, 2021, 18(6): 9394-9409. doi: 10.3934/mbe.2021462 |
[6] | Nazanin Zaker, Christina A. Cobbold, Frithjof Lutscher . The effect of landscape fragmentation on Turing-pattern formation. Mathematical Biosciences and Engineering, 2022, 19(3): 2506-2537. doi: 10.3934/mbe.2022116 |
[7] | Sridevi Sriram, Hayder Natiq, Karthikeyan Rajagopal, Ondrej Krejcar, Hamidreza Namazi . Dynamics of a two-layer neuronal network with asymmetry in coupling. Mathematical Biosciences and Engineering, 2023, 20(2): 2908-2919. doi: 10.3934/mbe.2023137 |
[8] | Hebing Zhang, Xiaojing Zheng . Invariable distribution of co-evolutionary complex adaptive systems with agent's behavior and local topological configuration. Mathematical Biosciences and Engineering, 2024, 21(2): 3229-3261. doi: 10.3934/mbe.2024143 |
[9] | Stefano Fasani, Sergio Rinaldi . Local stabilization and network synchronization: The case of stationary regimes. Mathematical Biosciences and Engineering, 2010, 7(3): 623-639. doi: 10.3934/mbe.2010.7.623 |
[10] | P. E. Greenwood, L. M. Ward . Rapidly forming, slowly evolving, spatial patterns from quasi-cycle Mexican Hat coupling. Mathematical Biosciences and Engineering, 2019, 16(6): 6769-6793. doi: 10.3934/mbe.2019338 |
[1] | X. Bai, M.Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics. Indiana Univ. Math. J. 65 (2016), 553-583. |
[2] | N. Bellomo, A. Bellouquid, Y. Tao,and M.Winkler, Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25 (2015), 1663-1763. |
[3] | C. Bianca, M. Pennisi, S. Motta, M.A. Ragusa, Immune system network and cancer vaccine. AIP Conf. Proc., 1389 (2011), 945-948. |
[4] | T. Hillen, K. J. Painter, A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58 (2009), 183-217. |
[5] | D. Horstmann, From 1970 until present: the Keller–Segel model in chemotaxis and its consequences. Jahresber. Deutsch. Math. -Verein. 106 (2004), 51-69. |
[6] | D. Horstmann, Generalizing the Keller–Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species. J. Nonlinear Sci. 21 (2011), 231-270. |
[7] | S. Kathirvel, R. Jangre, S. Ko, Design of a novel energy eficient topology for maximum magnitude generator. IET Computers and Digital Techniques, 10 (2016), 93101. |
[8] | E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26 (1970), 399-415. |
[9] | O. A. Ladyzenskaja, V. A. Solonnikov, and N. N. Ural’ceva, Linear and Quasi-linear Equations of Parabolic Type, AMS, Providence, 1968. |
[10] | M. Mizukami, Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity. submitted. |
[11] | M. Mizukami, T. Yokota, Global existence and asymptotic stability of solutions to a two-species chemotaxis system with any chemical diflusion. J. Diflerential Equations 261 (2016), 2650-2669. |
[12] | M. Negreanu, J. I. Tello, On a two species chemotaxis model with slow chemical diflusion. SIAM J. Math. Anal. 46 (2014), 3761-3781. |
[13] | M. Negreanu, J. I. Tello, Asymptotic stability of a two species chemotaxis system with non-diflusive chemoattractant. J. Diflerential Equations 258 (2015), 1592-1617. |
[14] | F. Pappalardo, V. Brusic, F. Castiglione, C. Schonbach, Computational and bioinforfatics techniques for immunology. BioMed research international, 2014 (2014), 1-2. |
[15] | G. Wolansky, Multi-components chemotactic system in the absence of conflicts. European J. Appl. Math. 13 (2002), 641-661. |
1. | S. Zozor, D. Mateos, P. W. Lamberti, Mixing Bandt-Pompe and Lempel-Ziv approaches: another way to analyze the complexity of continuous-state sequences, 2014, 87, 1434-6028, 10.1140/epjb/e2014-41018-5 | |
2. | Fikri Öztürk, 2020, Chapter 4, 978-3-030-27671-3, 33, 10.1007/978-3-030-27672-0_4 | |
3. | R. López-Ruiz, Y. Moreno, A.F. Pacheco, S. Boccaletti, D.-U. Hwang, Awaking and sleeping of a complex network, 2007, 20, 08936080, 102, 10.1016/j.neunet.2006.04.002 | |
4. | DRAGUTIN T. MIHAILOVIĆ, IGOR BALAŽ, SYNCHRONIZATION IN BIOCHEMICAL SUBSTANCE EXCHANGE BETWEEN TWO CELLS, 2012, 26, 0217-9849, 1150031, 10.1142/S021798491150031X | |
5. | Ahmed G. Radwan, On some generalized discrete logistic maps, 2013, 4, 20901232, 163, 10.1016/j.jare.2012.05.003 | |
6. | David W Graham, Charles W Knapp, Erik S Van Vleck, Katie Bloor, Teresa B Lane, Christopher E Graham, Experimental demonstration of chaotic instability in biological nitrification, 2007, 1, 1751-7362, 385, 10.1038/ismej.2007.45 | |
7. | Ricardo López-Ruiz, Danièle Fournier-Prunaret, Periodic and chaotic events in a discrete model of logistic type for the competitive interaction of two species, 2009, 41, 09600779, 334, 10.1016/j.chaos.2008.01.015 | |
8. | Unal Ufuktepe, Burcin Kulahcioglu, Gizem Yuce, 2016, Chapter 3, 978-3-319-42084-4, 36, 10.1007/978-3-319-42085-1_3 | |
9. | Juan R. Sánchez, Ricardo López-Ruiz, A method to discern complexity in two-dimensional patterns generated by coupled map lattices, 2005, 355, 03784371, 633, 10.1016/j.physa.2005.02.058 | |
10. | Malgorzata Guzowska, Rafael Luís, Saber Elaydi, Bifurcation and invariant manifolds of the logistic competition model, 2011, 17, 1023-6198, 1851, 10.1080/10236198.2010.504377 | |
11. | DRAGUTIN T. MIHAILOVIĆ, MIRKO BUDINČEVIĆ, IGOR BALAŽ, ANJA MIHAILOVIĆ, STABILITY OF INTERCELLULAR EXCHANGE OF BIOCHEMICAL SUBSTANCES AFFECTED BY VARIABILITY OF ENVIRONMENTAL PARAMETERS, 2011, 25, 0217-9849, 2407, 10.1142/S0217984911027431 | |
12. | Maosong Yang, Shaojuan Ma, Stochastic Hopf–Hopf bifurcation of two-species discrete coupling logistic system with symbiotic interaction, 2020, 2020, 1687-1847, 10.1186/s13662-020-02758-y | |
13. | Ricardo López-Ruiz, Jaime Sañudo, Elvira Romera, Xavier Calbet, 2011, Chapter 4, 978-90-481-3889-0, 65, 10.1007/978-90-481-3890-6_4 | |
14. | Fu Jing-chao, Zhang Zhong-hua, Liu Chun-li, 2011, Chaos control of a discrete coupled Logistic model for the symbiotic interaction of two species, 978-1-4244-8737-0, 4115, 10.1109/CCDC.2011.5968946 | |
15. | JUAN R. SANCHEZ, COMPLEX BEHAVIOR OF FUZZY LOGISTIC RULE 90 AUTOMATON, 2005, 16, 0129-1831, 1449, 10.1142/S0129183105008047 | |
16. | Xianming Wu, Longxiang Fu, Shaobo He, Huihai Wang, Analogue circuit implementation of a new logistic‐like map, 2022, 58, 0013-5194, 533, 10.1049/ell2.12529 | |
17. | Zhiheng Yu, Jiyu Zhong, Yingying Zeng, Song Li, Dynamics in a discrete time model of logistic type, 2022, 28, 1023-6198, 869, 10.1080/10236198.2022.2102909 | |
18. | Xuefen Li, Fangfang Shen, Analysis of the Dynamical Behaviour of a Two-Dimensional Coupled Ecosystem with Stochastic Parameters, 2021, 13, 2073-8994, 1547, 10.3390/sym13081547 | |
19. | Lin Wang, Rui-Wu Wang, Host regulation and seasonality generate population chaos in a fig-wasp mutualism, 2022, 165, 09600779, 112811, 10.1016/j.chaos.2022.112811 | |
20. | Alison J. Robey, Abigail Skwara, David A. Vasseur, 2023, 9780128096338, 10.1016/B978-0-12-822562-2.00137-7 | |
21. | Jelena Stanojević, Nemanja Vuksanović, Katarina Kukić, Vesna Jablanović, MODIFICATION OF THE COBWEB MODEL INTO GENERALIZED LOGISTIC EQUATION FOR THE WHEAT PRICE ANALYSIS , 2023, 70, 2334-8453, 1025, 10.59267/ekoPolj23041025S | |
22. | Jiangqiong Yu, Jie Li, Zhiheng Yu, Strong Resonances and Arnold Tongues in a Discrete Time Model of Logistic Type, 2025, 0170-4214, 10.1002/mma.10857 |