Research article

Remarks on smallness of chemotactic effect for asymptotic stability in a two-species chemotaxis system

  • Received: 21 July 2016 Accepted: 03 August 2016 Published: 10 August 2016
  • This paper deals with the two-species chemotaxis system {ut=Δu(uχ1(w)w)+μ1u(1u)inΩ×(0,),vt=Δv(vχ2(w)w)+μ2v(1v)inΩ×(0,),wt=dΔw+h(u,v,w)inΩ×(0,), where Ω is a bounded domain in RN with smooth boundary Ω, NN; h, χi are functions satisfying some conditions. Global existence and asymptotic stability of solutions to the above system were established under some conditions [11]. The main purpose of the present paper is to improve smallness conditions for chemotactic effect deriving asymptotic stability and to give the convergence rate in stabilization which cannot be attained in the previous work.

    Citation: Masaaki Mizukami. Remarks on smallness of chemotactic effect for asymptotic stability in a two-species chemotaxis system[J]. AIMS Mathematics, 2016, 1(3): 156-164. doi: 10.3934/Math.2016.3.156

    Related Papers:

    [1] Qianqian Li, Ankur Jyoti Kashyap, Qun Zhu, Fengde Chen . Dynamical behaviours of discrete amensalism system with fear effects on first species. Mathematical Biosciences and Engineering, 2024, 21(1): 832-860. doi: 10.3934/mbe.2024035
    [2] Prasina Alexander, Fatemeh Parastesh, Ibrahim Ismael Hamarash, Anitha Karthikeyan, Sajad Jafari, Shaobo He . Effect of the electromagnetic induction on a modified memristive neural map model. Mathematical Biosciences and Engineering, 2023, 20(10): 17849-17865. doi: 10.3934/mbe.2023793
    [3] B. Spagnolo, D. Valenti, A. Fiasconaro . Noise in ecosystems: A short review. Mathematical Biosciences and Engineering, 2004, 1(1): 185-211. doi: 10.3934/mbe.2004.1.185
    [4] Zhilan Feng, Robert Swihart, Yingfei Yi, Huaiping Zhu . Coexistence in a metapopulation model with explicit local dynamics. Mathematical Biosciences and Engineering, 2004, 1(1): 131-145. doi: 10.3934/mbe.2004.1.131
    [5] Mahtab Mehrabbeik, Fatemeh Parastesh, Janarthanan Ramadoss, Karthikeyan Rajagopal, Hamidreza Namazi, Sajad Jafari . Synchronization and chimera states in the network of electrochemically coupled memristive Rulkov neuron maps. Mathematical Biosciences and Engineering, 2021, 18(6): 9394-9409. doi: 10.3934/mbe.2021462
    [6] Nazanin Zaker, Christina A. Cobbold, Frithjof Lutscher . The effect of landscape fragmentation on Turing-pattern formation. Mathematical Biosciences and Engineering, 2022, 19(3): 2506-2537. doi: 10.3934/mbe.2022116
    [7] Sridevi Sriram, Hayder Natiq, Karthikeyan Rajagopal, Ondrej Krejcar, Hamidreza Namazi . Dynamics of a two-layer neuronal network with asymmetry in coupling. Mathematical Biosciences and Engineering, 2023, 20(2): 2908-2919. doi: 10.3934/mbe.2023137
    [8] Hebing Zhang, Xiaojing Zheng . Invariable distribution of co-evolutionary complex adaptive systems with agent's behavior and local topological configuration. Mathematical Biosciences and Engineering, 2024, 21(2): 3229-3261. doi: 10.3934/mbe.2024143
    [9] Stefano Fasani, Sergio Rinaldi . Local stabilization and network synchronization: The case of stationary regimes. Mathematical Biosciences and Engineering, 2010, 7(3): 623-639. doi: 10.3934/mbe.2010.7.623
    [10] P. E. Greenwood, L. M. Ward . Rapidly forming, slowly evolving, spatial patterns from quasi-cycle Mexican Hat coupling. Mathematical Biosciences and Engineering, 2019, 16(6): 6769-6793. doi: 10.3934/mbe.2019338
  • This paper deals with the two-species chemotaxis system {ut=Δu(uχ1(w)w)+μ1u(1u)inΩ×(0,),vt=Δv(vχ2(w)w)+μ2v(1v)inΩ×(0,),wt=dΔw+h(u,v,w)inΩ×(0,), where Ω is a bounded domain in RN with smooth boundary Ω, NN; h, χi are functions satisfying some conditions. Global existence and asymptotic stability of solutions to the above system were established under some conditions [11]. The main purpose of the present paper is to improve smallness conditions for chemotactic effect deriving asymptotic stability and to give the convergence rate in stabilization which cannot be attained in the previous work.


    [1] X. Bai, M.Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics. Indiana Univ. Math. J. 65 (2016), 553-583.
    [2] N. Bellomo, A. Bellouquid, Y. Tao,and M.Winkler, Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25 (2015), 1663-1763.
    [3] C. Bianca, M. Pennisi, S. Motta, M.A. Ragusa, Immune system network and cancer vaccine. AIP Conf. Proc., 1389 (2011), 945-948.
    [4] T. Hillen, K. J. Painter, A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58 (2009), 183-217.
    [5] D. Horstmann, From 1970 until present: the Keller–Segel model in chemotaxis and its consequences. Jahresber. Deutsch. Math. -Verein. 106 (2004), 51-69.
    [6] D. Horstmann, Generalizing the Keller–Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species. J. Nonlinear Sci. 21 (2011), 231-270.
    [7] S. Kathirvel, R. Jangre, S. Ko, Design of a novel energy eficient topology for maximum magnitude generator. IET Computers and Digital Techniques, 10 (2016), 93101.
    [8] E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26 (1970), 399-415.
    [9] O. A. Ladyzenskaja, V. A. Solonnikov, and N. N. Ural’ceva, Linear and Quasi-linear Equations of Parabolic Type, AMS, Providence, 1968.
    [10] M. Mizukami, Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity. submitted.
    [11] M. Mizukami, T. Yokota, Global existence and asymptotic stability of solutions to a two-species chemotaxis system with any chemical diflusion. J. Diflerential Equations 261 (2016), 2650-2669.
    [12] M. Negreanu, J. I. Tello, On a two species chemotaxis model with slow chemical diflusion. SIAM J. Math. Anal. 46 (2014), 3761-3781.
    [13] M. Negreanu, J. I. Tello, Asymptotic stability of a two species chemotaxis system with non-diflusive chemoattractant. J. Diflerential Equations 258 (2015), 1592-1617.
    [14] F. Pappalardo, V. Brusic, F. Castiglione, C. Schonbach, Computational and bioinforfatics techniques for immunology. BioMed research international, 2014 (2014), 1-2.
    [15] G. Wolansky, Multi-components chemotactic system in the absence of conflicts. European J. Appl. Math. 13 (2002), 641-661.
  • This article has been cited by:

    1. S. Zozor, D. Mateos, P. W. Lamberti, Mixing Bandt-Pompe and Lempel-Ziv approaches: another way to analyze the complexity of continuous-state sequences, 2014, 87, 1434-6028, 10.1140/epjb/e2014-41018-5
    2. Fikri Öztürk, 2020, Chapter 4, 978-3-030-27671-3, 33, 10.1007/978-3-030-27672-0_4
    3. R. López-Ruiz, Y. Moreno, A.F. Pacheco, S. Boccaletti, D.-U. Hwang, Awaking and sleeping of a complex network, 2007, 20, 08936080, 102, 10.1016/j.neunet.2006.04.002
    4. DRAGUTIN T. MIHAILOVIĆ, IGOR BALAŽ, SYNCHRONIZATION IN BIOCHEMICAL SUBSTANCE EXCHANGE BETWEEN TWO CELLS, 2012, 26, 0217-9849, 1150031, 10.1142/S021798491150031X
    5. Ahmed G. Radwan, On some generalized discrete logistic maps, 2013, 4, 20901232, 163, 10.1016/j.jare.2012.05.003
    6. David W Graham, Charles W Knapp, Erik S Van Vleck, Katie Bloor, Teresa B Lane, Christopher E Graham, Experimental demonstration of chaotic instability in biological nitrification, 2007, 1, 1751-7362, 385, 10.1038/ismej.2007.45
    7. Ricardo López-Ruiz, Danièle Fournier-Prunaret, Periodic and chaotic events in a discrete model of logistic type for the competitive interaction of two species, 2009, 41, 09600779, 334, 10.1016/j.chaos.2008.01.015
    8. Unal Ufuktepe, Burcin Kulahcioglu, Gizem Yuce, 2016, Chapter 3, 978-3-319-42084-4, 36, 10.1007/978-3-319-42085-1_3
    9. Juan R. Sánchez, Ricardo López-Ruiz, A method to discern complexity in two-dimensional patterns generated by coupled map lattices, 2005, 355, 03784371, 633, 10.1016/j.physa.2005.02.058
    10. Malgorzata Guzowska, Rafael Luís, Saber Elaydi, Bifurcation and invariant manifolds of the logistic competition model, 2011, 17, 1023-6198, 1851, 10.1080/10236198.2010.504377
    11. DRAGUTIN T. MIHAILOVIĆ, MIRKO BUDINČEVIĆ, IGOR BALAŽ, ANJA MIHAILOVIĆ, STABILITY OF INTERCELLULAR EXCHANGE OF BIOCHEMICAL SUBSTANCES AFFECTED BY VARIABILITY OF ENVIRONMENTAL PARAMETERS, 2011, 25, 0217-9849, 2407, 10.1142/S0217984911027431
    12. Maosong Yang, Shaojuan Ma, Stochastic Hopf–Hopf bifurcation of two-species discrete coupling logistic system with symbiotic interaction, 2020, 2020, 1687-1847, 10.1186/s13662-020-02758-y
    13. Ricardo López-Ruiz, Jaime Sañudo, Elvira Romera, Xavier Calbet, 2011, Chapter 4, 978-90-481-3889-0, 65, 10.1007/978-90-481-3890-6_4
    14. Fu Jing-chao, Zhang Zhong-hua, Liu Chun-li, 2011, Chaos control of a discrete coupled Logistic model for the symbiotic interaction of two species, 978-1-4244-8737-0, 4115, 10.1109/CCDC.2011.5968946
    15. JUAN R. SANCHEZ, COMPLEX BEHAVIOR OF FUZZY LOGISTIC RULE 90 AUTOMATON, 2005, 16, 0129-1831, 1449, 10.1142/S0129183105008047
    16. Xianming Wu, Longxiang Fu, Shaobo He, Huihai Wang, Analogue circuit implementation of a new logistic‐like map, 2022, 58, 0013-5194, 533, 10.1049/ell2.12529
    17. Zhiheng Yu, Jiyu Zhong, Yingying Zeng, Song Li, Dynamics in a discrete time model of logistic type, 2022, 28, 1023-6198, 869, 10.1080/10236198.2022.2102909
    18. Xuefen Li, Fangfang Shen, Analysis of the Dynamical Behaviour of a Two-Dimensional Coupled Ecosystem with Stochastic Parameters, 2021, 13, 2073-8994, 1547, 10.3390/sym13081547
    19. Lin Wang, Rui-Wu Wang, Host regulation and seasonality generate population chaos in a fig-wasp mutualism, 2022, 165, 09600779, 112811, 10.1016/j.chaos.2022.112811
    20. Alison J. Robey, Abigail Skwara, David A. Vasseur, 2023, 9780128096338, 10.1016/B978-0-12-822562-2.00137-7
    21. Jelena Stanojević, Nemanja Vuksanović, Katarina Kukić, Vesna Jablanović, MODIFICATION OF THE COBWEB MODEL INTO GENERALIZED LOGISTIC EQUATION FOR THE WHEAT PRICE ANALYSIS , 2023, 70, 2334-8453, 1025, 10.59267/ekoPolj23041025S
    22. Jiangqiong Yu, Jie Li, Zhiheng Yu, Strong Resonances and Arnold Tongues in a Discrete Time Model of Logistic Type, 2025, 0170-4214, 10.1002/mma.10857
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6728) PDF downloads(1731) Cited by(11)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog