Loading [MathJax]/jax/output/SVG/jax.js

Neural network training in SCILAB for classifying mango (Mangifera indica) according to maturity level using the RGB color model

  • Industries that use fruits as raw materials must, at some point in the process, classify them to discard the unsuitable ones and thus ensure the quality of the final product. To produce mango nectar, it is necessary to ensure that the mango is mature enough to start the extraction of the nectar; however, sorting thousands of mangoes may require many people, who can easily lose attention and reduce the accuracy of the result. Such kind of decision can be supported by current Artificial Intelligence techniques. The theoretical details of the processing are presented, as well as the programming code of the neural network using SCILAB as a computer language; the code includes the color extraction from mango images. SCILAB programming is simple, efficient and does not require computers with large processing capacity. The classification was validated with 30 images (TIF format) of Manila variety mango; the mangoes were placed on a blue background to easily separate the background from the object of interest. Four and six mangoes were used to train the neural network. This application of neural networks is part of an undergraduate course on artificial intelligence, which shows the potential of these techniques for solving real and concrete problems.

    Citation: Eduardo Castillo-Castaneda. Neural network training in SCILAB for classifying mango (Mangifera indica) according to maturity level using the RGB color model[J]. STEM Education, 2021, 1(3): 186-198. doi: 10.3934/steme.2021014

    Related Papers:

    [1] Hamdy M. Youssef, Najat A. Alghamdi, Magdy A. Ezzat, Alaa A. El-Bary, Ahmed M. Shawky . A new dynamical modeling SEIR with global analysis applied to the real data of spreading COVID-19 in Saudi Arabia. Mathematical Biosciences and Engineering, 2020, 17(6): 7018-7044. doi: 10.3934/mbe.2020362
    [2] Ayako Suzuki, Hiroshi Nishiura . Transmission dynamics of varicella before, during and after the COVID-19 pandemic in Japan: a modelling study. Mathematical Biosciences and Engineering, 2022, 19(6): 5998-6012. doi: 10.3934/mbe.2022280
    [3] Anthony Morciglio, R. K. P. Zia, James M. Hyman, Yi Jiang . Understanding the oscillations of an epidemic due to vaccine hesitancy. Mathematical Biosciences and Engineering, 2024, 21(8): 6829-6846. doi: 10.3934/mbe.2024299
    [4] Adil Yousif, Awad Ali . The impact of intervention strategies and prevention measurements for controlling COVID-19 outbreak in Saudi Arabia. Mathematical Biosciences and Engineering, 2020, 17(6): 8123-8137. doi: 10.3934/mbe.2020412
    [5] Avinash Shankaranarayanan, Hsiu-Chuan Wei . Mathematical modeling of SARS-nCoV-2 virus in Tamil Nadu, South India. Mathematical Biosciences and Engineering, 2022, 19(11): 11324-11344. doi: 10.3934/mbe.2022527
    [6] Tao Chen, Zhiming Li, Ge Zhang . Analysis of a COVID-19 model with media coverage and limited resources. Mathematical Biosciences and Engineering, 2024, 21(4): 5283-5307. doi: 10.3934/mbe.2024233
    [7] Gilberto González-Parra, Cristina-Luisovna Pérez, Marcos Llamazares, Rafael-J. Villanueva, Jesus Villegas-Villanueva . Challenges in the mathematical modeling of the spatial diffusion of SARS-CoV-2 in Chile. Mathematical Biosciences and Engineering, 2025, 22(7): 1680-1721. doi: 10.3934/mbe.2025062
    [8] Sarafa A. Iyaniwura, Musa Rabiu, Jummy F. David, Jude D. Kong . Assessing the impact of adherence to Non-pharmaceutical interventions and indirect transmission on the dynamics of COVID-19: a mathematical modelling study. Mathematical Biosciences and Engineering, 2021, 18(6): 8905-8932. doi: 10.3934/mbe.2021439
    [9] Antonios Armaou, Bryce Katch, Lucia Russo, Constantinos Siettos . Designing social distancing policies for the COVID-19 pandemic: A probabilistic model predictive control approach. Mathematical Biosciences and Engineering, 2022, 19(9): 8804-8832. doi: 10.3934/mbe.2022409
    [10] H. Swapnarekha, Janmenjoy Nayak, H. S. Behera, Pandit Byomakesha Dash, Danilo Pelusi . An optimistic firefly algorithm-based deep learning approach for sentiment analysis of COVID-19 tweets. Mathematical Biosciences and Engineering, 2023, 20(2): 2382-2407. doi: 10.3934/mbe.2023112
  • Industries that use fruits as raw materials must, at some point in the process, classify them to discard the unsuitable ones and thus ensure the quality of the final product. To produce mango nectar, it is necessary to ensure that the mango is mature enough to start the extraction of the nectar; however, sorting thousands of mangoes may require many people, who can easily lose attention and reduce the accuracy of the result. Such kind of decision can be supported by current Artificial Intelligence techniques. The theoretical details of the processing are presented, as well as the programming code of the neural network using SCILAB as a computer language; the code includes the color extraction from mango images. SCILAB programming is simple, efficient and does not require computers with large processing capacity. The classification was validated with 30 images (TIF format) of Manila variety mango; the mangoes were placed on a blue background to easily separate the background from the object of interest. Four and six mangoes were used to train the neural network. This application of neural networks is part of an undergraduate course on artificial intelligence, which shows the potential of these techniques for solving real and concrete problems.





    [1] Modeling of color values for nondestructive evaluation of maturity of mango. Journal of Food Engineering (2007) 78: 22-26.
    [2] In: https://www.magmar.com.mx/, available 4th July 2021.
    [3] (1995) Artificial Intelligence: A modern Approach. New Jersey, USA: Prentice Hall.
    [4] Bughin, J., Seong, J., Manyika, J., Chui, M. and Joshi, R., Notes from AI frontier: Modeling the impact of AI on the world economy. Discussion paper, 2018, McKinsey Global Institute.
    [5] (2015) Artificial Intelligence in the 21st Century. VA, USA: Mercury Learning and Information.
    [6] Assessment of banana fruit maturity by image processing technique. J Food Sci Technol (2015) 52: 1216-1327.
    [7] Relación del Color y del Estado de Madurez, con las Propiedades FisicoquȪmica de Frutas Tropicales. Información Tecnológica (2013) 24: 51-56.
    [8] (1999) The Image Processing Handbook. Prentice Hall.
    [9] (2002) Digital Image Processing. Prentice Hall.
    [10] The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review (1958) 65:.
    [11] Rojas, R., The Backpropagation Algorithm. Neural Networks, 1996, pp. 149-182. Springer-Verlag.
    [12] A generalized normalized gradient descent algorithm. IEEE Signal Processing Letters (2004) 11: 115-118.
  • This article has been cited by:

    1. Qifang Liang, Buping Liu, Chunping Liu, Wenxing Liu, Xiaoxue Han, Limei Wan, Xiaobo Chen, Peng wu, Hongyu Li, Yujiao Sun, Yubin Yang, Weixiong Chen, 2021, Visual analysis based on the research of SARS and COVID-19, 9781450390002, 38, 10.1145/3448748.3448756
    2. Farai Nyabadza, Josiah Mushanyu, Rachel Mbogo, Gift Muchatibaya, Modelling the Influence of Dynamic Social Processes on COVID-19 Infection Dynamics, 2023, 11, 2227-7390, 963, 10.3390/math11040963
    3. Jennifer M. Klasen, Deborah M. Tynes, Caspar J. Peterson, Romano Schneider, Katharina Timper, Ralph Peterli, Cameron L. Randall, Tarik Delko, The Impact of the COVID-19 Pandemic on Patients from a Bariatric Program: A Qualitative Analysis of Their Perceptions of Health and Well-Being, 2022, 10, 2227-9032, 780, 10.3390/healthcare10050780
    4. Fatma Bozkurt, Ali Yousef, Thabet Abdeljawad, Adem Kalinli, Qasem Al Mdallal, A fractional-order model of COVID-19 considering the fear effect of the media and social networks on the community, 2021, 152, 09600779, 111403, 10.1016/j.chaos.2021.111403
    5. Tin Phan, Samantha Brozak, Bruce Pell, Anna Gitter, Amy Xiao, Kristina D. Mena, Yang Kuang, Fuqing Wu, A simple SEIR-V model to estimate COVID-19 prevalence and predict SARS-CoV-2 transmission using wastewater-based surveillance data, 2023, 857, 00489697, 159326, 10.1016/j.scitotenv.2022.159326
    6. Kaiyan Peng, Zheng Lu, Vanessa Lin, Michael R. Lindstrom, Christian Parkinson, Chuntian Wang, Andrea L. Bertozzi, Mason A. Porter, A multilayer network model of the coevolution of the spread of a disease and competing opinions, 2021, 31, 0218-2025, 2455, 10.1142/S0218202521500536
    7. Ali Yousef, A fractional-order model of COVID-19 with a strong Allee effect considering the fear effect spread by social networks to the community and the existence of the silent spreaders during the pandemic stage, 2022, 7, 2473-6988, 10052, 10.3934/math.2022560
    8. Mohammad Masum, M.A. Masud, Muhaiminul Islam Adnan, Hossain Shahriar, Sangil Kim, Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management, 2022, 80, 00380121, 101249, 10.1016/j.seps.2022.101249
    9. Yoh Iwasa, Rena Hayashi, Waves of infection emerging from coupled social and epidemiological dynamics, 2023, 558, 00225193, 111366, 10.1016/j.jtbi.2022.111366
    10. M. Ali Al-Radhawi, Mahdiar Sadeghi, Eduardo D. Sontag, Long-Term Regulation of Prolonged Epidemic Outbreaks in Large Populations via Adaptive Control: A Singular Perturbation Approach, 2022, 6, 2475-1456, 578, 10.1109/LCSYS.2021.3083983
    11. Kirti Jain, Vasudha Bhatnagar, Sadanand Prasad, Sharanjit Kaur, Coupling Fear and Contagion for Modeling Epidemic Dynamics, 2023, 10, 2327-4697, 20, 10.1109/TNSE.2022.3187775
    12. Ali Yousef, Fatma Bozkurt, Thabet Abdeljawad, Emad Emreizeeq, A mathematical model of COVID-19 and the multi fears of the community during the epidemiological stage, 2023, 419, 03770427, 114624, 10.1016/j.cam.2022.114624
    13. S. Manrubia, D. H. Zanette, Individual risk-aversion responses tune epidemics to critical transmissibility ( R = 1) , 2022, 9, 2054-5703, 10.1098/rsos.211667
    14. Giulia De Meijere, Vittoria Colizza, Eugenio Valdano, Claudio Castellano, Effect of delayed awareness and fatigue on the efficacy of self-isolation in epidemic control, 2021, 104, 2470-0045, 10.1103/PhysRevE.104.044316
    15. Wasim Abbas, Masud M. A., Anna Park, Sajida Parveen, Sangil Kim, Siew Ann Cheong, Evolution and consequences of individual responses during the COVID-19 outbreak, 2022, 17, 1932-6203, e0273964, 10.1371/journal.pone.0273964
    16. Musa Rabiu, Sarafa A. Iyaniwura, Assessing the potential impact of immunity waning on the dynamics of COVID-19 in South Africa: an endemic model of COVID-19, 2022, 109, 0924-090X, 203, 10.1007/s11071-022-07225-9
    17. Jinming Wan, Genki Ichinose, Michael Small, Hiroki Sayama, Yamir Moreno, Changqing Cheng, Multilayer networks with higher-order interaction reveal the impact of collective behavior on epidemic dynamics, 2022, 164, 09600779, 112735, 10.1016/j.chaos.2022.112735
    18. Bruce Kuwahara, Chris T. Bauch, Predicting Covid-19 pandemic waves with biologically and behaviorally informed universal differential equations, 2024, 10, 24058440, e25363, 10.1016/j.heliyon.2024.e25363
    19. Peter Miller, Kira Button, Nicholas Taylor, Kerri Coomber, Ryan Baldwin, Travis Harries, Brittany Patafio, Tahnee Guala, Nathan Harris, Ashlee Curtis, Gery C. Karantzas, Petra K. Staiger, Dominique de Andrade, The Impact of COVID-19 on Trends of Violence-Related Offences in Australia, 2023, 13, 2210-6014, 504, 10.1007/s44197-023-00131-2
    20. Matthew Ryan, Emily Brindal, Mick Roberts, Roslyn I. Hickson, A behaviour and disease transmission model: incorporating the Health Belief Model for human behaviour into a simple transmission model, 2024, 21, 1742-5662, 10.1098/rsif.2024.0038
    21. Iulia Martina Bulai, Mattia Sensi, Sara Sottile, A geometric analysis of the SIRS compartmental model with fast information and misinformation spreading, 2024, 185, 09600779, 115104, 10.1016/j.chaos.2024.115104
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2270) PDF downloads(310) Cited by(1)

Article outline

Figures and Tables

Figures(16)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog