Stationary states in gas networks

  • Received: 01 September 2014 Revised: 01 December 2014
  • 93C20, 93C15.

  • Pipeline networks for gas transportation often contain circles. For such networks it is more difficult to determine the stationary states than for networks without circles. We present a method that allows to compute the stationary states for subsonic pipe flow governed by the isothermal Euler equations for certain pipeline networks that contain circles. We also show that suitably chosen boundary data determine the stationary states uniquely. The construction is based upon novel explicit representations of the stationary states on single pipes for the cases with zero slope and with nonzero slope. In the case with zero slope, the state can be represented using the Lambert--W function.

    Citation: Martin Gugat, Falk M. Hante, Markus Hirsch-Dick, Günter Leugering. Stationary states in gas networks[J]. Networks and Heterogeneous Media, 2015, 10(2): 295-320. doi: 10.3934/nhm.2015.10.295

    Related Papers:

    [1] Gregory N. Haidemenopoulos, Kostantinos N. Malizos, Anna D. Zervaki, and Kostantinos Bargiotas . Human bone ingrowth into a porous tantalum acetabular cup. AIMS Materials Science, 2017, 4(6): 1220-1230. doi: 10.3934/matersci.2017.6.1220
    [2] Bandar Abdullah Aloyaydi, Subbarayan Sivasankaran, Hany Rizk Ammar . Influence of infill density on microstructure and flexural behavior of 3D printed PLA thermoplastic parts processed by fusion deposition modeling. AIMS Materials Science, 2019, 6(6): 1033-1048. doi: 10.3934/matersci.2019.6.1033
    [3] Vincenzo Guarino, Tania Caputo, Rosaria Altobelli, Luigi Ambrosio . Degradation properties and metabolic activity of alginate and chitosan polyelectrolytes for drug delivery and tissue engineering applications. AIMS Materials Science, 2015, 2(4): 497-502. doi: 10.3934/matersci.2015.4.497
    [4] Raffaele Conte, Anna Di Salle, Francesco Riccitiello, Orsolina Petillo, Gianfranco Peluso, Anna Calarco . Biodegradable polymers in dental tissue engineering and regeneration. AIMS Materials Science, 2018, 5(6): 1073-1101. doi: 10.3934/matersci.2018.6.1073
    [5] Rémi G. Tilkin, Ana P. F. Monteiro, Julien G. Mahy, Jérome Hurlet, Nicolas Régibeau, Christian Grandfils, Stéphanie D. Lambert . Hybrid agarose gel for bone substitutes. AIMS Materials Science, 2022, 9(3): 430-445. doi: 10.3934/matersci.2022025
    [6] Miguel-Angel Rojas-Yañez, Claudia-Alejandra Rodríguez-González, Santos-Adriana Martel-Estrada, Laura-Elizabeth Valencia-Gómez, Claudia-Lucia Vargas-Requena, Juan-Francisco Hernández-Paz, María-Concepción Chavarría-Gaytán, Imelda Olivas-Armendáriz . Composite scaffolds of chitosan/polycaprolactone functionalized with protein of Mytilus californiensis for bone tissue regeneration. AIMS Materials Science, 2022, 9(3): 344-358. doi: 10.3934/matersci.2022021
    [7] Alp Karakoc, Ertugrul Taciroglu . Optimal automated path planning for infinitesimal and real-sized particle assemblies. AIMS Materials Science, 2017, 4(4): 847-855. doi: 10.3934/matersci.2017.4.847
    [8] Mario Ceddia, Bartolomeo Trentadue . A review of carbon fiber-reinforced polymer composite used to solve stress shielding in total hip replacement. AIMS Materials Science, 2024, 11(3): 449-462. doi: 10.3934/matersci.2024023
    [9] Juan Zhang, Huizhong Lu, Gamal Baroud . An accelerated and accurate process for the initial guess calculation in Digital Image Correlation algorithm. AIMS Materials Science, 2018, 5(6): 1223-1241. doi: 10.3934/matersci.2018.6.1223
    [10] Ananthanarayanan Rajeshkannan, Sumesh Narayan, A.K. Jeevanantham . Modelling and analysis of strain hardening characteristics of sintered steel preforms under cold forging. AIMS Materials Science, 2019, 6(1): 63-79. doi: 10.3934/matersci.2019.1.63
  • Pipeline networks for gas transportation often contain circles. For such networks it is more difficult to determine the stationary states than for networks without circles. We present a method that allows to compute the stationary states for subsonic pipe flow governed by the isothermal Euler equations for certain pipeline networks that contain circles. We also show that suitably chosen boundary data determine the stationary states uniquely. The construction is based upon novel explicit representations of the stationary states on single pipes for the cases with zero slope and with nonzero slope. In the case with zero slope, the state can be represented using the Lambert--W function.


    Let $ \mathfrak{A} $ denote the family of all functions $ f $ which are analytic in the open unit disc $ \mathcal{U} = \left \{ z:\left \vert z\right \vert < 1\right \} $ and satisfying the normalization

    $ f(z)=z+n=2anzn,
    $
    (1.1)

    while by $ \mathcal{S} $ we mean the class of all functions in $ \mathfrak{A} $ which are univalent in $ \mathcal{U}. $ Also let $ \mathcal{S}^{\ast } $ and $ \mathcal{C} $ denote the familiar classes of starlike and convex functions, respectively. If $ f $ and $ g $ are analytic functions in $ \mathcal{U }, $ then we say that $ f $ is subordinate to $ g, $ denoted by $ f\prec g, $ if there exists an analytic Schwarz function $ w $ in $ \mathcal{U} $ with $ w\left(0\right) = 0 $ and $ \left \vert w(z)\right \vert < 1 $ such that $ f(z) = g\left(w(z)\right). $ Moreover if the function $ g $ is univalent in $ \mathcal{U} $, then

    $ f(z)g(z)f(0)=g(0) and f(U)g(U).
    $

    For arbitrary fixed numbers $ A, $ $ B $ and $ b $ such that $ A $, $ B $ are real with $ -1\leq B < A\leq 1 $ and $ b\in \mathbb{C} \backslash \{0\} $, let $ \mathcal{P}[b, A, B] $ denote the family of functions

    $ p(z)=1+n=1pnzn,
    $
    (1.2)

    analytic in $ \mathcal{U} $ such that

    $ 1+1b{p(z)1}1+Az1+Bz.
    $

    Then, $ p\in \mathcal{P}[b, A, B] $ can be written in terms of the Schwarz function $ w $ by

    $ p(z)=b(1+Aw(z))+(1b)(1+Bw(z))1+Bw(z).
    $

    By taking $ b = 1-\sigma $ with $ 0\leq \sigma < 1, $ the class $ \mathcal{P} [b, A, B] $ coincides with $ \mathcal{P}[\sigma, A, B], $ defined by Polatoğ lu [17,18] (see also [2]) and if we take $ b = 1, $ then $ \mathcal{ P}[b, A, B] $ reduces to the familiar class $ \mathcal{P}[A, B] $ defined by Janowski [10]. Also by taking $ A = 1, $ $ B = -1 $ and $ b = 1 $ in $ \mathcal{P} [b, A, B] $, we get the most valuable and familiar set $ \mathcal{P} $ of functions having positive real part. Let $ \mathcal{S}^{\ast }[A, B, b] $ denote the class of univalent functions $ g $ of the form

    $ g(z)=z+n=2bnzn,
    $
    (1.3)

    in $ \mathcal{U} $ such that

    $ 1+1b{zg(z)g(z)1}1+Az1+Bz, 1B<A1,zU.
    $

    Then $ S^* [A, B] : = S^* [A, B, 1] $ and the subclass $ \mathcal{S}^{\ast}[1,-1,1] $ coincides with the usual class of starlike functions.

    The set of Bazilevič functions in $ \mathcal{U} $ was first introduced by Bazilevič [7] in 1955. He defined the Bazilevič function by the relation

    $ f(z)={(α+iβ)z0gα(t)p(t)tiβ1dt}1α+iβ,
    $

    where $ p\in \mathcal{P}, $ $ g\in \mathcal{S}^{\ast }, $ $ \beta $ is real and $ \alpha > 0 $. In 1979, Campbell and Pearce [8] generalized the Bazilevi č functions by means of the differential equation

    $ 1+zf(z)f(z)+(α+iβ1)zf(z)f(z)=αzg(z)g(z)+zp(z)p(z)+iβ,
    $

    where $ \alpha +i\beta \in \mathbb{C} -\left \{ \text{negative integers}\right \}. $ They associate each generalized Bazilevič functions with the quadruple $ (\alpha, \beta, g, p). $

    Now we define the following subclass.

    Definition 1.1. Let $ g $ be in the class $ \mathcal{S}^{\ast }[A, B] $ and let $ p\in \mathcal{P} [b, A, B] $. Then a function $ f $ of the form $ \left(1.1 \right) $ is said to belong to the class of generalized Bazilevič function associated with the quadruple $ (\alpha, \beta, g, p) $ if $ f $ satisfies the differential equation

    $ 1+zf(z)f(z)+(α+iβ1)zf(z)f(z)=αzg(z)g(z)+zp(z)p(z)+iβ.
    $

    where $ \alpha + i\beta \in \mathbb{C} - \{{\text {negative integers}} \} $.

    The above differential equation can equivalently be written as

    $ zf(z)f(z)=(g(z)z)α(zf(z))α+iβp(z),
    $

    or

    $ z1iβf(z)f1(α+iβ)gα(z)=p(z), zU.
    $

    Since $ p\in \mathcal{P}[b, A, B], $ it follows that

    $ 1+1b{z1iβf(z)f1(α+iβ)gα(z)1}1+Az1+Bz,
    $

    where $ g\in \mathcal{S}^{\ast }[A, B]. $

    Several research papers have appeared recently on classes related to the Janowski functions, Bazilevič functions and their generalizations, see [3,4,5,13,16,21,22].

    The following are some results that would be useful in proving the main results.

    Lemma 2.1. Let $ p\in \mathcal{P}[b, A, B] $ with $ b\neq 0, $ $ -1\leq B < A\leq 1, $ and has the form $ \left(1.2\right). $ Then for $ z = re^{i\theta }, $

    $ 12π2π0|p(reiθ)|2dθ1+[|b|2(AB)21]r21r2.
    $

    Proof. The proof of this lemma is straightforward but we include it for the sake of completeness. Since $ p\in \mathcal{P}[b, A, B] $, we have

    $ p(z)=b˜p(z)+(1b),˜pP[A,B].
    $

    Let $ \tilde{p}(z) = 1+\sum_{n = 1}^{\infty }c_{n}\, z^{n} $. Then

    $ 1+n=1pnzn=b(1+n=1cnzn)+(1b).
    $

    Comparing the coefficients of $ z^{n} $, we have

    $ pn=bcn.
    $

    Since $ \left \vert c_{n}\right \vert \leq A-B $ [20], it follows that $ \left \vert p_{n}\right \vert \leq \left \vert b\right \vert (A-B) $ and so

    $ 12π2π0|p(reiθ)|2dθ=12π2π0|n=0pnrneinθ|2dθ=12π2π0(n=0|pn|2r2n)dθ=n=0|pn|2r2n1+|b|2(AB)2n=1r2n=1+|b|2(AB)2r21r2=1+(|b|2(AB)21)r21r2.
    $

    Thus the proof is complete.

    Lemma 2.2. [1] Let $ \Omega $ be the family of analytic functions $ \omega $ on $ \mathcal{U} $, normalized by $ \omega (0) = 0 $, satisfying the condition $ \left \vert \omega (z)\right \vert < 1 $. If $ \omega \in \Omega $ and

    $ ω(z)=ω1z+ω2z2+,(zU),
    $

    then for any complex number $ t $,

    $ |ω2tω21|max{1,|t|}.
    $

    The above inequality is sharp for $ \omega (z) = z $ or $ \omega (z) = z^{2} $.

    Lemma 2.3. Let $ p(z) = 1+\sum \limits_{n = 1}^{\infty }p_{n}z^{n}\in \mathcal{P}[b, A, B], $ $ b\in \mathbb{C}\backslash \{0\}, $ $ -1\leq B < A\leq 1. $ Then for any complex number $ \mu $,

    $ |p2μp21||b|(AB)max{1,|μb(AB)+B|}={|b|(AB),if|μb(AB)+B|1,|b|(AB)|μb(AB)+B|,if|μb(AB)+B|1.
    $

    This result is sharp.

    Proof. Let $ p\in \mathcal{P}[b, A, B] $. Then we have

    $ 1+1b{p(z)1}1+Az1+Bz,
    $

    or, equivalently

    $ p(z)1+[bA+(1b)B]z1+Bz=1+b(AB)n=1(B)n1zn,
    $

    which would further give

    $ 1+p1z+p2z2+=1+b(AB)ω(z)+b(AB)(B)ω2(z)+=1+b(AB)(ω1z+ω2z2+) +b(AB)(B)(ω1z+ω2z2+)2+=1+b(AB)ω1z+b(AB){ω2Bω21}z2+.
    $

    Comparing the coefficients of $ z $ and $ z^{2} $, we obtain

    $ p1=b(AB)ω1p2=b(AB)ω2b(AB)Bω21.
    $

    By a simple computation,

    $ |p2μp21|=|b|(AB)|ω2(μb(AB)+B)ω21|.
    $

    Now by using Lemma 2.2 with $ t = \mu b(A-B)+B $, we get the required result. Equality holds for the functions

    $ p(z)=1+(bA+(1b)B)z21+Bz2=1+b(AB)z2+b(AB)(B)z4+,p1(z)=1+(bA+(1b)B)z1+Bz=1+b(AB)z+b(AB)(B)z2+.
    $

    Now we prove the following result by using a method similar to the one in Libera [12].

    Lemma 2.4. Suppose that $ N $ and $ D $ are analytic in $ \mathcal{U} $ with $ N(0) = D(0) = 0 $ and $ D $ maps $ \mathcal{U} $ onto a many sheeted region which is starlike with respect to the origin. If $ \frac{N^{\prime }(z)}{D^{\prime }(z) }\in \mathcal{P}[b, A, B] $, then

    $ N(z)D(z)P[b,A,B].
    $

    Proof. Let $ \frac{N^{\prime }(z)}{D^{\prime }(z)}\in \mathcal{P}[b, A, B]. $ Then by using a result due to Attiya [6], we have

    $ |N(z)D(z)c(r)|d(r),|z|<r,0<r<1,
    $

    where $ c(r) = \frac{1-B\left[B+b\left(A-B\right) \right] r^{2}}{1-B^{2}r^{2}} $ and $ d\left(r\right) = \frac{\left \vert b\right \vert \left(A-B\right) r^{2}}{1-B^{2}r^{2}}. $ We choose $ A\left(z\right) $ such that $ \left \vert A\left(z\right) \right \vert < d\left(r\right) $ and

    $ A(z)D(z)=N(z)c(r)D(z).
    $

    Now for a fixed $ z_{0} $ in $ \mathcal{U} $, consider the line segment $ L $ joining $ 0 $ and $ D\left(z_{0}\right) $ which remains in one sheet of the starlike image of $ \mathcal{U} $ by $ D. $ Suppose that $ L^{-1} $ is the pre-image of $ L $ under $ D $. Then

    $ |N(z0)c(r)D(z0)|=|z00(N(t)c(r)D(t))dt|=|L1A(t)D(t)dt|<d(r)L1|dD(t)|=d(r)D(z0).
    $

    This implies that

    $ |N(z0)D(z0)c(r)|<d(r).
    $

    Therefore

    $ N(z)D(z)P[b,A,B].
    $

    For $ A = -B = b = 1 $, we have the following result due to Libera [12].

    Lemma 2.5. If $ N $ and $ D $ are analytic in $ \mathcal{U} $ with $ N(0) = D(0) = 0 $ and $ D $ maps $ \mathcal{U} $ onto a many sheeted region which is starlike with respect to the origin, then

    $ N(z)D(z)P implies N(z)D(z)P.
    $

    Lemma 2.6. [14] If $ -1\leq B < A\leq 1, \beta _{1} > 0 $ and the complex number $ \gamma $ satisfies $ {Re}\left \{ \gamma \right \} \geq -\beta_{1}\left(1-A\right) /\left(1-B\right), $ then the differential equation

    $ q(z)+zq(z)β1q(z)+γ=1+Az1+Bz,zU,
    $

    has a univalent solution in $ \mathcal{U} $ given by

    $ q(z)={zβ1+γ(1+Bz)β1(AB)/Bβ1z0tβ1+γ1(1+Bt)β1(AB)/Bdtγβ1,B0,zβ1+γeβ1Azβ1z0tβ1+γ1eβ1Atdtγβ1,B=0.
    $

    If $ p\left(z\right) = 1+p_{1}z+p_{2}z^{2}+\cdots $ is analytic in $ \mathcal{U} $ and satisfies

    $ p(z)+zp(z)β1p(z)+γ1+Az1+Bz,
    $

    then

    $ p(z)q(z)1+Az1+Bz,
    $

    and $ q\left(z\right) $ is the best dominant.

    Before proving the results for the generalized Bazilevič functions, let us discuss a few results related to the function $ g \in S^*[A, B] $.

    Theorem 3.1. Let $ g\in \mathcal{S}^{\ast }[A, B] $ and of the form $ \left(1.3\right) $. Then for any complex number $ \mu, $

    $ |b3μb22|(AB)2max{1,|2(AB)μ(A2B))|}.
    $

    Proof. The proof of the result is the same as of Lemma 2.3. The result is sharp and equality holds for the function defined by

    $ g1(z)={z(1+Bz2)AB2B=z+12(AB)z3+,B0,zeA2z2=z+A2z3+,B=0,
    $

    or

    $ g2(z)={z(1+Bz)ABB,B0,zeAz,B=0,={z+(AB)z2+12(AB)(A2B)z3+,B0,z+Az2+12A2z3+,B=0.
    $

    Theorem 3.2. Let $ g\in \mathcal{S}^{\ast }[A, B]. $ Then for $ c > 0, $ $ \alpha > 0 $ and $ \beta $ any real number,

    $ Gα(z)=c+α+iβzc+iβz0tc+iβ1gα(t)dt,
    $
    (3.1)

    is in $ \mathcal{S}^{\ast }[A, B] $. In addition

    $ RezG(z)G(z)>δ=min|z|=1Req(z),
    $

    where

    $ q(z)={1αα+iβ+c2F1(1;α(1AB);α+iβ+c+1;Bz1+Bz)(c+iβ),B0,1αα+iβ+c1F1(1;α+iβ+c+1;αAz)(c+iβ),B=0.
    $

    Proof. From $ \left(3.1\right), $ we have

    $ zc+iβGα(z)=(c+α+iβ)z0tc+iβ1gα(t)dt.
    $

    Differentiating and rearranging gives

    $ (c+α+iβ)gα(z)Gα(z)=(c+iβ)+αp(z),
    $
    (3.2)

    where $ p(z) = \frac{zG^{\prime }(z)}{G(z)} $. Then differentiating $ \left(3.2\right) $ logarithmically, we have

    $ zg(z)g(z)=p(z)+zp(z)αp(z)+(c+iβ).
    $

    Since $ g\in \mathcal{S}^{\ast }[A, B] $, it follows that

    $ p(z)+zp(z)αp(z)+(c+iβ)1+Az1+Bz.
    $

    Now by using Lemma 2.6, for $ \beta _{1} = \alpha $ and $ \gamma = c+i\beta, $ we obtain

    $ p(z)q(z)1+Az1+Bz,
    $

    where

    $ q(z)={zc+α+iβ(1+Bz)α(AB)/Bαz0tc+α+iβ1(1+Bt)α(AB)/Bdtc+iβα,B0,zc+α+iβeαAzαz0tc+α+iβ1eαAtdtc+iβα,B=0.
    $

    Now by using the properties of the familiar hypergeometric functions proved in [15], we have

    $ q(z)={1αα+iβ+c2F1(1;α(1AB);α+iβ+c+1;Bz1+Bz)(c+iβ),B0,α+iβ+c1F1(1;α+iβ+c+1;αAz)(c+iβ),B=0.
    $

    This implies that

    $ p(z)q(z)={1αα+iβ+c2F1(1;α(1AB);α+iβ+c+1;Bz1+Bz)(c+iβ),B0,1αα+iβ+c1F1(1;α+iβ+c+1;αAz)(c+iβ),B=0,
    $

    and

    $ RezG(z)G(z)=Rep(z)>δ=min|z|=1Req(z).
    $

    Theorem 3.3. Let $ g\in \mathcal{S}^{\ast }[A, B]. $ Then

    $ S(z)=z0tc+iβ1gα(t)dt,
    $

    is $ (\alpha +c) $-valent starlike, where $ \alpha > 0, $ $ c > 0 $ and $ \beta $ is a real number.

    Proof. Let $ D_{1}(z) = zS^{\prime }(z) = z^{c+i\beta }g^{\alpha }(z) $ and $ N_{1}(z) = S(z). $ Then

    $ RezD1(z)D1(z)=Re{(c+iβ)+αzg(z)g(z)}=c+αRezg(z)g(z).
    $

    Since $ g\in \mathcal{S}^{\ast }[A, B]\subset \mathcal{S}^{\ast }\left(\frac{ 1-A}{1-B}\right) $, see [10], it follows that

    $ RezD1(z)D1(z)>c+α(1A1B)>0.
    $

    Also

    $ ReD1(z)N1(z)=Re{(c+iβ)+αzg(z)g(z)}>c+α(1A1B)>0.
    $

    Now by using Lemma 2.5$, $ we have

    $ ReD1(z)N1(z)>0 or RezS(z)S(z)>0.
    $

    By the mean value theorem for harmonic functions,

    $ RezS(z)S(z)|z=0=12π2π0RereiθS(reiθ)S(reiθ)dθ.
    $

    Therefore

    $ 2π0RereiθS(reiθ)S(reiθ)dθ=2πRe{c+iβ+αzg(z)g(z)}|z=0=2π(c+α).
    $

    Now by using a result due to [9,p 212], we have that $ S $ is $ (c+\alpha) $-valent starlike function.

    Now we are ready to discuss some results related to the defined generalized Bazilevič functions.

    Theorem 4.1. Let $ f $ be a generalized Bazilevič function associated by the quadruple $ \left(\alpha, \beta, g, p\right), $ where $ g\in \mathcal{S} ^{\ast }[A, B] $ of the form $ \left(1.3\right) $ and $ p\in \mathcal{P} [b, A, B] $ of the form $ \left(1.2\right) $. Then for $ c > 0, $

    $ F(z)=[c+α+iβzcz0tc1fα+iβ(t)dt]1α+iβ
    $
    (4.1)

    is a generalized Bazilevič function associated by the quadruple $ (\alpha, \beta, G, p), $ where $ G\in \mathcal{S}^{\ast }[A, B, \delta] $, as defined by $ \left(3.1\right). $

    Proof. From $ \left(4.1\right) $, we have

    $ Fα+iβ(z)=c+α+iβzcz0tc1(f(t))α+iβdt.
    $

    This implies that

    $ zcFα+iβ(z)=(c+α+iβ)z0tc1(f(t))α+iβdt.
    $

    Differentiate both sides and rearrange, we get

    $ czc1Fα+iβ(z)+(α+iβ)zcFα+iβ1(z)F(z)=(c+α+iβ)zc1(f(z))α+iβ,
    $

    and

    $ z1iβF(z)F1(α+iβ)(z)=1α+iβ{(c+α+iβ)ziβfα+iβ(z)cziβFα+iβ(z)}.
    $

    Now from $ (3.1) $, we have

    $ z1iβF(z)F1(α+iβ)Gα(z)=1α+iβ{(c+α+iβ)ziβfα+iβ(z)cziβc(c+α+iβ)z0tc1(f(t))α+iβdt}(c+α+iβ)zc+iβz0tc+iβ1gα(t)dt=1α+iβ{(zcfα+iβ(z)cz0tc1(f(t))α+iβdt}z0tc+iβ1gα(t)dt:=N(z)D(z).
    $

    With this, note that

    $ N(z)D(z)=1α+iβ{(czc1fα+iβ(z)+(α+iβ)zcfα+iβ1(z)f(z)czc1(f(z))α+iβ}zc+iβ1gα(z)=z1iβf(z)f1(α+iβ)(z)gα(z),
    $

    which implies $ \frac{N^{\prime }(z)}{D^{\prime }(z)} \in \mathcal{P}[b, A, B] $. By Theorem 3.3, we know that $ D(z) = \int_{0}^{z}t^{c+i\beta -1}g^{\alpha }(t)dt $ is $ (\alpha +c) $-valent starlike. Therefore by using Lemma 2.4, we obtain

    $ z1iβF(z)F1(α+iβ)(z)Gα(z)P[b,A,B].
    $

    This is the equivalent form of Definition 1.1. Hence the result follows.

    Corollary 4.2. Let $ A = 1, B = -1 $ and $ \beta = 0 $ in Theorem 4.1. Then

    $ Gα(z)=(α+c)zcz0tc1gα(t)dt
    $

    belong to $ S^{\ast }\left(\delta _{1}\right) $, where

    $ δ1=(1+2c)+(1+2c)2+8α4α,(see [16]).
    $

    Hence $ G $ is starlike when $ g\in \mathcal{S}^{\ast }, $ and

    $ Fα(z)=(α+c)zcz0tc1gα(t)dt
    $

    belongs to the class of Bazilevič functions associated by the quadruple $ (\alpha, 0, G, p). $

    Theorem 4.3. Let $ f $ of the form $ \left(1.1\right) $ be a generalized Bazilevič function associated by the quadruple $ (\alpha, \beta, g, p) $, with $ g\in \mathcal{S}^{\ast }[A, B] $ of the form $ \left(1.3\right) $ and $ p\in \mathcal{P}[b, A, B] $ of the form $ \left(1.2\right) $. Then

    $ |a33+α+iβ2(2+α+iβ)a22|AB2|2+α+iβ|[α+|b|max{2,|b(AB)+2B|}].
    $

    This inequality is sharp.

    Proof. Since $ f $ is a generalized Bazilevič function associated by the quadruple $ (\alpha, \beta, g, p) $, we have

    $ 1+zf(z)f(z)+(α+iβ1)zf(z)f(z)=αzg(z)g(z)+zp(z)p(z)+iβ.
    $
    (4.2)

    As $ f, \ g $ and $ p $ respectively have the form $ \left(1.1\right), \left(1.3\right) $ and $ \left(1.2\right), $ it is easy to get

    $ 1+zf(z)f(z)=1+2a2z+(6a34a22)z2+,zf(z)f(z)=1+a2z+(2a3a22)z2+,zg(z)g(z)=1+b2z+(2b3b22)z2+,zp(z)p(z)=p1z+(2p2p21)z2+.
    $

    Putting these values in $ \left(4.2\right) $ and comparing the coefficients of $ z, $ we obtain

    $ (1+α+iβ)a2=αb2+p1.
    $
    (4.3)

    Similarly by comparing the coefficients of $ z^{2} $ and rearranging, we have

    $ 2(2+α+iβ)a3=α(2b3b22)+2p2p21+a22(3+α+iβ).
    $
    (4.4)

    From $ \left(4.4\right) $, we have

    $ |a33+α+iβ2(2+α+iβ)a22|=|α(b312b22)+(p212p21)2+α+iβ|α|b312b22||2+α+iβ|+|p212p21||2+α+iβ|.
    $

    Now by using Theorem 3.1 and Lemma 2.3, both with $ \mu = \frac{1}{2} $, we obtain

    $ |b312b22|AB2max{1,|B|}=AB2,
    $

    and

    $ |p212p21||b|(AB)max{1,12|b(AB)+2B|}.
    $

    Therefore, we have

    $ |a33+α+iβ2(2+α+iβ)a22|AB2|2+α+iβ|[α+2|b|max{1,12|b(AB)+2B|}].
    $

    The equality

    $ |b312b22|=AB2
    $

    for $ B\neq 0 $ can be obtained for

    $ g(z)={z(1+Bz)ABB=z+(AB)z2+12(AB)(A2B)z3+,z(1+Bz2)AB2B=z+12(AB)z3+.
    $

    Similarly, the equality

    $ |b312b22|=A2
    $

    for $ B = 0 $ can be obtained for the function $ g_{\ast }(z) = $ $ ze^{\frac{A}{2} z^{2}} = z+\frac{A}{2}z^{3}+\cdots. $ Also equality for the functional $ \left \vert p_{2}-\frac{1}{2}p_{1}^{2}\right \vert $ can be obtained by the functions

    $ p(z)=1+(bA+(1b)B)z1+Bz or p1(z)=1+(bA+(1b)B)z21+Bz2.
    $

    Corollary 4.4. For $ A = 1, $ $ B = -1 $ and $ b = 1 $, we have the result proved in [8]:

    $ |a33+α+iβ2(2+α+iβ)a22|α+2|2+α+iβ|.
    $

    For $ \alpha = 1 $, $ \beta = 0 $, we have $ f\in \mathcal{K} $, the class of close-to-convex functions, and

    $ |a323a22|1.
    $

    The latter result has been proved in [11].

    Theorem 4.5. Let $ f $ of the form $ \left(1.1\right) $ be a generalized Bazilevič function associated by the quadruple $ (\alpha, \beta, g, p) $, with $ g\in \mathcal{S}^{\ast }[A, B] $ and of the form $ \left(1.3\right) $ and $ p\in \mathcal{P}[b, A, B] $ of the form $ \left(1.2\right) $. Then

    (i)

    $ |a2|(AB)(α+|b|)|1+α+iβ|.
    $

    (ii) If $ \alpha = 0, $ then

    $ |a3||b|(AB)|2+iβ|max{1,|b(AB)2(1(3+iβ)(1+iβ)2)+B|}.
    $

    Both the above inequalities are sharp.

    Proof. (ⅰ) From $ \left(4.3\right) $, we have

    $ (1+α+iβ)a2=αb2+p1.
    $

    This implies that

    $ |a2|α|b2|+|p1||1+α+iβ|.
    $

    By using the coefficient bound for $ \mathcal{S}^{\ast }[A, B] $ along with the coefficient bound of $ \mathcal{P}[b, A, B] $, we have

    $ |b2|AB and |p1||b|(AB).
    $

    This implies that

    $ |a2|(α+|b|)(AB)|1+α+iβ|.
    $

    Equality can be obtained by the functions

    $ g(z)=z(1+Bz)ABB, B0 and p(z)=1+[bA+(1b)B]z1+Bz.
    $

    (ⅱ) Let $ \alpha = 0. $ Then from $ \left(4.3\right) $ and $ \left(4.4 \right) $, we have

    $ (2+iβ)a3=p212p21+(3+iβ)p212(1+iβ)2=p212(1(3+iβ)(1+iβ)2)p21.
    $

    This implies

    $ |a3|=1|2+iβ||p2μp21|,
    $

    where $ \mu = \frac{1}{2}-\frac{(3+i\beta)}{2\left(1+i\beta \right) ^{2}}. $ Now by using Lemma 2.3, we obtain

    $ |a3||b|(AB)|2+iβ|max{1,|b(AB)2(2β2+iβ)(1+iβ)2)+B|}.
    $

    Sharpness can be attained by the functions

    $ p0(z)=1+(bA+(1b)B)z21+Bz2=1+b(AB)z2+b(AB)(B)z4+,p1(z)=1+(bA+(1b)B)z1+Bz=1+b(AB)z+b(AB)(B)z2+.
    $

    Corollary 4.6. For $ A = 1, $ $ B = -1 $ and $ b = 1 $, we have

    $ |a2|2(α+1)|1+α+iβ|,
    $

    and

    $ |a3|=2|2+iβ|max{1,|(3+iβ)(1+iβ)2|}.
    $

    In the final part of this paper, we look at some results for the generalized Bazilevič functions associated with $ \beta = 0 $.

    Let $ C_{r} $ denote the closed curve which is the image of the circle $ \left \vert z\right \vert = r < 1 $ under the mapping $ w = $ $ f(z) $, and $ L_{r}\left(f(z)\right) $ denote the length of $ C_{r} $. Also let $ M(r) = {\max} _{\left \vert z\right \vert = r} \left \vert f(z)\right \vert \ $and $ m(r) = { \min}_{\left \vert z\right \vert = r} \left \vert f(z)\right \vert $. We now prove the following result.

    Theorem 4.7. Let $ f $ be a generalized Bazilevič function associated by the quadruple $ (\alpha, 0, g, p) $. Then for $ B\neq 0 $,

    $ Lr(f(z)){C(α,b,A,B)M1α(r)[1(1r)α(ABB)],0<α1,C(α,b,A,B)m1α(r)[1(1r)α(ABB)],α>1,
    $

    where

    $ C(α,b,A,B)=2π|b|B[(AB)+1α].
    $

    Proof. As $ f $ is a generalized Bazilevič function associated by the quadruple $ (\alpha, 0, g, p) $, we have

    $ zf(z)=f1α(z)gα(z)p(z),
    $

    where $ g\in \mathcal{S}^{\ast }[A, B] $ and $ p\in \mathcal{P}[b, A, B] $. Since for $ z = re^{i\theta } $, $ 0 < r < 1 $,

    $ Lr(f(z))=2π0|zf(z)|dθ,
    $

    we have for $ 0 < \alpha \leq 1 $,

    $ Lr(f(z))=2π0|f1α(z)gα(z)p(z)|dθ,M1α(r)2π0r0|αg(z)gα1(z)p(z)+gα(z)p(z)|dsdθ,M1α(r){2π0r0α|gα(z)|s|h(z)p(z)|dsdθ+2π0r0|gα(z)|s|zp(z)|dsdθ},
    $

    where $ \frac{zg^{\prime }(z)}{g(z)} = h\left(z\right) \in \mathcal{P}[A, B] $. Now by using the distortion theorem for Janowski starlike functions when $ B\neq 0 $ (see [10]) and the Cauchy-Schwarz inequality, we have

    $ Lr(f(z))M1α(r)×r0sα1(1|B|s)αBAB{α2π0|h(z)|2dθ2π0|p(z)|2dθ+2π0|zp(z)|dθ}ds.
    $

    Now by using Lemma 2.1 for both the classes $ \mathcal{P}[b, A, B] $ and $ \mathcal{P}[A, B] $, along with the result

    $ 2π0|zp(z)||b|(AB)r1B2r2,
    $

    for $ p\in \mathcal{P}[b, A, B] $ (see [19]), we can write

    $ Lr(f(z))2πM1α(r)×r0sα1(1|B|s)αBAB{α1+[(AB)21]s21s21+[|b|2(AB)21]s21s2+|b|(AB)s1B2s2}ds.
    $

    Since $ 1-\left \vert B\right \vert r\geq 1-r $ and $ 1- B^2 r^2\geq 1-r^2 $,

    $ Lr(f(z))2πM1α(r)[|b|(AB)2+|b|(AB)]r01(1s)αBAB+1ds=C(α,b,A,B)M1α(r)[1(1r)α(ABB)],
    $

    where $ C(\alpha, b, A, B) = 2\pi |b| [(A-B) + (1/ \alpha)] B $.

    When $ \alpha > 1, $ we can prove similarly as above to get

    $ Lr(f(z))C(α,b,A,B)m1α(r)[1(1r)α(ABB)].
    $

    Corollary 4.8. For $ g\in \mathcal{S}^{\ast } $ and $ p\in \mathcal{P}(b), $ we have

    $ Lr(f(z)){2π|b|(2+1α)M1α(r)[1(1r)2α1],0<α1,2π|b|(2+1α)m1α(r)[1(1r)2α1],α>1.
    $

    Theorem 4.9. Let $ f $ be a generalized Bazilevič function associated by the quadruple $ (\alpha, 0, g, p) $, where $ g\in \mathcal{S}^{\ast }[A, B] $ and $ p\in \mathcal{P} [b, A, B] $. Then for $ B\neq 0 $,

    $ |an|{1n|b|B(AB+1α)limr1M1α(r),0<α1,1n|b|B(AB+1α)limr1m1α(r),α>1.
    $

    Proof. By Cauchy's theorem for $ z = re^{i\theta }, $ $ n\geq 2, $ we have

    $ nan=12πrn2π0zf(z)einθdθ.
    $

    Therefore

    $ n|an|12πrn2π0|zf(z)|dθ,=12πrnLr(f(z)).
    $

    By using Theorem 4.7 for the case $ 0 < \alpha \leq 1, $ we have

    $ n|an|12πrn(2π|b|B(AB+1α)M1α(r)[1(1r)αABB]).
    $

    Hence, by taking $ r $ approaches $ 1^{-} $,

    $ |an|1n|b|B(AB+1α)limr1M1α(r).
    $

    For $ \alpha > 1, $ we have

    $ |an|1n|b|B(AB+1α)limr1m1α(r).
    $

    Theorem 4.10. Let $ f $ be a generalized Bazilevič function represented by the quadruple $ (\alpha, 0, g, p), $ where $ g\in \mathcal{S}^{\ast }[A, B] $ and $ p\in \mathcal{P }[b, A, B]. $ Then for $ B\neq 0 $,

    $ |f(z)|αα(1B2)+(AB)(|b|BRe(b))1Brα2F1(α(1AB)+1;α;α+1;|B|r).
    $

    Proof. Since $ f $ is a generalized Bazilevič function associated by the quadruple $ (\alpha, 0, g, p), $ by definition, we have

    $ zf(z)f1α(z)gα(z)=p(z),
    $

    where $ g\in \mathcal{S}^{\ast }[A, B] $ and $ p\in \mathcal{P}[b, A, B]. $ This implies that

    $ fα(z)=αz0t1gα(t)p(t)dt,
    $

    and so

    $ |f(z)|αα|z|0|t1||gα(t)||p(t)|d|t|,=αr0s1|gα(t)||p(t)|ds.
    $

    Now by using the results

    $ |g(z)|r(1|B|r)ABB,B0, (see [10]), 
    $

    and

    $ |p(z)|1+|b|(AB)rB[(AB)Re{b}+B]r21|B|2r2, (see [6]), 
    $

    we have

    $ |f(z)|ααr0s1sα(1|B|s)α(1AB)1+|b|(AB)sB[(AB)Re{b}+B]s21|B|2s2dsα(1B2)+(AB)(|b|BRe{b})1+|B|r0sα1(1|B|s)α(1AB)1ds.
    $

    Putting $ s = ru, $ we have

    $ |f(z)|αα(1B2)+(AB)(|b|BRe{b})1Brα10uα1(1|B|ru)α(1AB)1du=(1B2)+(AB)(|b|BRe{b})1Brα 2F1(α(1AB)+1;α;α+1;|B|r),
    $

    where $ {_{2}}F_{1} \left(a; b;c; z\right) $ is the hypergeometric function.

    Corollary 4.11. For $ g\in \mathcal{S}^{\ast \mathit{\text{}}} $and $ p\in \mathcal{P}, $ we have

    $ |f(z)|α2αrα2F1(2α+1;α;α+1;r).
    $

    The research for the fourth author is supported by the USM Research University Individual Grant (RUI) 1001/PMATHS/8011038.

    The authors declare that they have no conflict of interests.

    [1] M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Networks and Heterogenous Media, 1 (2006), 295-314. doi: 10.3934/nhm.2006.1.295
    [2] A. Bressan, S. Canic, M. Garavello, M. Herty and B. Piccoli, Flows on networks: recent results and perspectives, EMS Reviews in Mathematical Sciences, 1 (2014), 47-111. doi: 10.4171/EMSS/2
    [3] R. Carvalho, L. Buzna, F. Bono, M. Masera, D. K. Arrowsmith and D. Helbing, Resilience of natural gas networks during conflicts, crises and disruptions, PLOS ONE, 9 (2014), e0090265. doi: 10.1371/journal.pone.0090265
    [4] F. Chapeau-Blondeau, Numerical evaluation of the lambert W function and application to generation of generalized Gaussian noise with exponent 1/2, IEEE Transactions on Signal Processing, 50 (2002), 2160-2165. doi: 10.1109/TSP.2002.801912
    [5] R. M. Colombo and F. Marcellini, Smooth and discontinuous junctions in the p-system, Journal of Mathematical Analysis and Applications, 361 (2010), 440-456. doi: 10.1016/j.jmaa.2009.07.022
    [6] R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Optimal control in networks of pipes and canals, SIAM J. Control Optim., 48 (2009), 2032-2050. doi: 10.1137/080716372
    [7] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth, On the Lambert W function, Adv. Comp. Math., 5 (1996), 329-359. doi: 10.1007/BF02124750
    [8] J.-M. Coron, B. d'Andrea-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws, IEEE Trans. Automat. Control, 52 (2007), 2-11. doi: 10.1109/TAC.2006.887903
    [9] M. Dick, M. Gugat and G. Leugering, Classical solutions and feedback stabilization for the gas flow in a sequence of pipes, Networks and Heterogeneous Media, 5 (2010), 691-709. doi: 10.3934/nhm.2010.5.691
    [10] M. Garavello and B. Piccoli, Conservation laws on complex networks, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 26 (2009), 1925-1951. doi: 10.1016/j.anihpc.2009.04.001
    [11] M. Gugat, M. Dick and G. Leugering, Gas flow in fan-shaped networks: Classical solutions and feedback stabilization, SIAM Journal on Control and Optimization, 49 (2011), 2101-2117. doi: 10.1137/100799824
    [12] M. Gugat and M. Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks, ESAIM: Control, Optimisation and Calculus of Variations, 17 (2011), 28-51. doi: 10.1051/cocv/2009035
    [13] M. Gugat, M. Herty and V. Schleper, Flow control in gas networks: Exact controllability to a given demand, Mathematical Methods in the Applied Sciences, 34 (2011), 745-757. doi: 10.1002/mma.1394
    [14] M. Herty, Modeling, simulation and optimization of gas networks with compressors, Networks and Heterogeneous Media, 2 (2007), 81-97. doi: 10.3934/nhm.2007.2.81
    [15] J. H. Lambert, Observationes variae in mathesin puram, Acta Helvetica, physico-mathematico-anatomico-botanico-medica, 3 (1758), 128-168.
    [16] T. Li, B. Rao and Z. Wang, Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions, Discrete Contin. Dyn. Syst., 28 (2010), 243-257. doi: 10.3934/dcds.2010.28.243
    [17] A. Martin, M. Möller and S. Moritz, Mixed integer models for the stationary case of gas network optimization, Mathematical Programming, 105 (2005), 563-582. doi: 10.1007/s10107-005-0665-5
    [18] G. A. Reigstad, Numerical network models and entropy principles for isothermal junction flow, Networks and Heterogeneous Media, 9 (2014), 65-95. doi: 10.3934/nhm.2014.9.65
    [19] V. Schleper, M. Gugat, M. Herty, A. Klar and G. Leugering, Well-posedness of networked hyperbolic systems of balance laws, in Constrained Optimization and Optimal Control for Partial Differential Equations, International Series of Numerical Mathematics, 160, Birkhäuser/Springer Basel AG, Basel, 2012, 123-146. doi: 10.1007/978-3-0348-0133-1_7
    [20] arXiv:1003.1628
    [21] G. P. Zou, N. Cheraghi and F. Taheri, Fluid-induced vibration of composite natural gas pipelines, International Journal of Solids and Structures, 42 (2005), 1253-1268. doi: 10.1016/j.ijsolstr.2004.07.001
  • This article has been cited by:

    1. S. Budhe, M. D. Banea, S. de Barros, Composite repair system for corroded metallic pipelines: an overview of recent developments and modelling, 2020, 25, 0948-4280, 1308, 10.1007/s00773-019-00696-3
    2. Mojdeh Mehrinejad Khotbehsara, Allan Manalo, Thiru Aravinthan, Wahid Ferdous, Brahim Benmokrane, Kate T.Q. Nguyen, Synergistic effects of hygrothermal conditions and solar ultraviolet radiation on the properties of structural particulate-filled epoxy polymer coatings, 2021, 277, 09500618, 122336, 10.1016/j.conbuildmat.2021.122336
    3. Mojdeh Mehrinejad Khotbehsara, Allan Manalo, Thiru Aravinthan, Wahid Ferdous, Kate T.Q. Nguyen, Gangarao Hota, Ageing of particulate-filled epoxy resin under hygrothermal conditions, 2020, 249, 09500618, 118846, 10.1016/j.conbuildmat.2020.118846
    4. K. S. Lim, A. S. Kasmaon, S. C. Chin, S. I. Doh, 2018, 2020, 0094-243X, 020036, 10.1063/1.5062662
    5. Saeid Ansari Sadrabadi, Amin Dadashi, Sichen Yuan, Venanzio Giannella, Roberto Citarella, Experimental-Numerical Investigation of a Steel Pipe Repaired with a Composite Sleeve, 2022, 12, 2076-3417, 7536, 10.3390/app12157536
    6. Emine Feyza Sukur, Sinem Elmas, Mahsa Seyyednourani, Volkan Eskizeybek, Mehmet Yildiz, Hatice S. Sas, Effects of meso‐ and micro‐scale defects on hygrothermal aging behavior of glass fiber reinforced composites , 2022, 43, 0272-8397, 8396, 10.1002/pc.27011
    7. Djouadi Djahida, Ghomari Tewfik, Maciej Witek, Mechri Abdelghani, Analytical Model and Numerical Analysis of Composite Wrap System Applied to Steel Pipeline, 2021, 14, 1996-1944, 6393, 10.3390/ma14216393
    8. Hanis Hazirah Arifin, Norhazilan Md Noor, Chao Bao, Meilin Deng, Kar Sing Lim, 2025, 9780443220845, 103, 10.1016/B978-0-443-22084-5.00010-5
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4998) PDF downloads(119) Cited by(33)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog