Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Removal of acetaldehyde gas using wet scrubber coupled with photo-Fenton reaction

  • The feasibility of the combined air-cleaning method, which consisted of a wet scrubber and the photo-Fenton reaction, in the removal of gaseous acetaldehyde was evaluated. An acetaldehyde-gas removal efficiency of 99% was achieved in the one-pass test (residence time of 17 s) using an inlet acetaldehyde-gas concentration of 1000 ppb at an initial total-iron-ion concentration of 50 mg L−1 and initial hydrogen peroxide concentration of 630 mg L−1. Even at the low initial total-iron-ion concentration of 4 mg L−1, a removal efficiency of 92% was achieved. The acetaldehyde removal efficiency was relatively independent of the initial hydrogen peroxide concentration. UV irradiation further augmented the rate of the photo-Fenton reaction leading to enhanced acetaldehyde-gas removal.

    Citation: Masahiro Tokumura, Atsushi Mizukoshi, Miyuki Noguchi, Yuko Wada, Yuri Usami, Takako Yamaki, Yukio Yanagisawa. Removal of acetaldehyde gas using wet scrubber coupled with photo-Fenton reaction[J]. AIMS Environmental Science, 2016, 3(1): 159-167. doi: 10.3934/environsci.2016.1.159

    Related Papers:

    [1] Junyuan Yang, Rui Xu, Xiaofeng Luo . Dynamical analysis of an age-structured multi-group SIVS epidemic model. Mathematical Biosciences and Engineering, 2019, 16(2): 636-666. doi: 10.3934/mbe.2019031
    [2] Simone De Reggi, Francesca Scarabel, Rossana Vermiglio . Approximating reproduction numbers: a general numerical method for age-structured models. Mathematical Biosciences and Engineering, 2024, 21(4): 5360-5393. doi: 10.3934/mbe.2024236
    [3] Toshikazu Kuniya, Mimmo Iannelli . $R_0$ and the global behavior of an age-structured SIS epidemic model with periodicity and vertical transmission. Mathematical Biosciences and Engineering, 2014, 11(4): 929-945. doi: 10.3934/mbe.2014.11.929
    [4] Zhiping Liu, Zhen Jin, Junyuan Yang, Juan Zhang . The backward bifurcation of an age-structured cholera transmission model with saturation incidence. Mathematical Biosciences and Engineering, 2022, 19(12): 12427-12447. doi: 10.3934/mbe.2022580
    [5] Yicang Zhou, Zhien Ma . Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences and Engineering, 2009, 6(2): 409-425. doi: 10.3934/mbe.2009.6.409
    [6] Xi-Chao Duan, Xue-Zhi Li, Maia Martcheva . Dynamics of an age-structured heroin transmission model with vaccination and treatment. Mathematical Biosciences and Engineering, 2019, 16(1): 397-420. doi: 10.3934/mbe.2019019
    [7] Abdennasser Chekroun, Mohammed Nor Frioui, Toshikazu Kuniya, Tarik Mohammed Touaoula . Global stability of an age-structured epidemic model with general Lyapunov functional. Mathematical Biosciences and Engineering, 2019, 16(3): 1525-1553. doi: 10.3934/mbe.2019073
    [8] Chayu Yang, Jin Wang . Computation of the basic reproduction numbers for reaction-diffusion epidemic models. Mathematical Biosciences and Engineering, 2023, 20(8): 15201-15218. doi: 10.3934/mbe.2023680
    [9] Christine K. Yang, Fred Brauer . Calculation of $R_0$ for age-of-infection models. Mathematical Biosciences and Engineering, 2008, 5(3): 585-599. doi: 10.3934/mbe.2008.5.585
    [10] Mostafa Adimy, Abdennasser Chekroun, Claudia Pio Ferreira . Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase. Mathematical Biosciences and Engineering, 2020, 17(2): 1329-1354. doi: 10.3934/mbe.2020067
  • The feasibility of the combined air-cleaning method, which consisted of a wet scrubber and the photo-Fenton reaction, in the removal of gaseous acetaldehyde was evaluated. An acetaldehyde-gas removal efficiency of 99% was achieved in the one-pass test (residence time of 17 s) using an inlet acetaldehyde-gas concentration of 1000 ppb at an initial total-iron-ion concentration of 50 mg L−1 and initial hydrogen peroxide concentration of 630 mg L−1. Even at the low initial total-iron-ion concentration of 4 mg L−1, a removal efficiency of 92% was achieved. The acetaldehyde removal efficiency was relatively independent of the initial hydrogen peroxide concentration. UV irradiation further augmented the rate of the photo-Fenton reaction leading to enhanced acetaldehyde-gas removal.


    Many classical SIS (Susceptible-Infective-Susceptible) and SIRS (Susceptible-Infective-Recovered-Susceptible) models have been developed to study disease outbreaks [1,2,3,4,5]. Since certain diseases (e.g., childhood diseases) are age dependent, age-structured epidemic models have attracted the attention of many scholars [6,7,8,9,10,11]. In [6], Busenberg found that a sharp threshold (defined by the spectral radius of a positive linear operator) exists and can determine the global behavior of an age-structured epidemic model. In [7], Cao investigated the existence and global stability of all equilibria for an age-structured epidemic model with imperfect vaccination and relapse. It was found that, if the threshold is less than 1, the disease-free equilibrium is globally and asymptotically stable; if the threshold is greater than 1, the endemic equilibrium is globally stable. In reference [9], by discretizing the multigroup model, the authors transformed a PDE (Partial Differential Equations) system into an ODE (Ordinary Differential Equations) system, and proved that the global asymptotic stability of each equilibrium of the discretized system is completely determined by threshold $ R_0 $. The threshold is defined as the basic reproduction number, which denotes the expected value of secondary cases produced by infective individuals during the entire infectious period when the entire population are susceptible [12].

    As the threshold that controls disease outbreaks, $ R_0 $ plays an extremely important role in assessing disease transmission trend and in reducing disease burden. However, for most age-structured epidemic equations such as the system in [13], the basic reproduction number, $ R_0 = \int_0^{a_\dagger}k(\sigma)e^{-\int_0^\sigma\mu(\eta)d\eta}\frac{1}{\gamma}(1-e^{-\gamma\sigma})d\sigma\int_\mathbb{R}\tilde{P}(\omega)d\omega $, is merely a theoretical expression of the next generation operator, and is always difficult to calculate. It is a common practice to use numerical approaches to approximate the threshold value [10,14]. Since many widely used epidemic models do not satisfy the global Lipschitz coefficients required for using the explicit Euler-Maruyama (EM) scheme, we propose the semi-implicit theta-scheme [15,16], which is known as the backward EM when $ \theta = 1 $, to approximate the exact basic reproduction number. We also estimate the approximate error of the exact basic reproduction number and the numerical threshold.

    The novelty of this paper is that we use the theta scheme to discrete the linear operator produced by the infective population in a finite dimensional horizon, so that we can find out the spectral radius, which is the positive dominant eigenvalue of a nonnegative irreducible matrix defined by the next-generation operator. Subsequently, based on the spectral approximation theory [17], we obtain the threshold that converges to the exact basic reproduction number under a relatively weak condition (i.e., the compactness of the next-generation operator needs to be satisfied). These results are expected to be useful for studying infectious diseases.

    The rest of this paper is organized as follows: in Section 2, the theta scheme is constructed based on the operator theory, and the scheme yields the numerical approximation of the basic reproduction number for a deterministic and a stochastic age-structure epidemic system. Section 3 presented several numerical simulations to illustrate the theoretical results. Concluding remarks are given in Section 4.

    In this section, we first present the age-structured SIRS epidemic model developed by [11],

    $ {(t+a)S(t,a)=μ(a)S(t,a)λ(a,t)S(t,a)+γ(a)R(t,a),(t+a)I(t,a)=λ(a,t)S(t,a)(μ(a)+ν(a)+δ(a))I(t,a),(t+a)R(t,a)=ν(a)I(t,a)(μ(a)+γ(a))R(t,a),S(t,0)=Λ,t[0,+),S(0,a)=S0(a),a(0,A)I(t,0)=0,t[0,+),I(0,a)=I0(a),a(0,A)R(t,0)=0,t[0,+),R(0,a)=R0(a),a(0,A) $ (2.1)

    where $ S(t, a) $, $ I(t, a) $ and $ R(t, a) $ denote the density of susceptible, infective and recovered individuals of age $ a $ at time $ t $, respectively. Define the force of infectious $ \lambda(a, t) $ by

    $ \lambda(a, t) = \int^A_0\beta(a, \varrho)I(\varrho, t)d\varrho. $

    The condition $ S(t, 0) = \Lambda $ means that the newborns are all susceptible, $ \Lambda $ is the recruitment rate of the population. $ S_0(a) $, $ I_0(a) $ and $ R_0(a)\in L^1(0, A) $ for $ \forall a\in[0, A] $. All parameters are positive and their meanings are shown in Table 1.

    Table 1.  Meanings of all parameters.
    Parameters Meanings
    $ \mu(a) $ the natural mortality of the population
    $ \beta(a, \varrho) $ the age-dependent transmission coefficient
    $ \gamma(a) $ the rate of removed individuals who lose immunity returning to the susceptible class
    $ A $ the maximum age
    $ \nu(a) $ the natural recovery rate of the infective individuals
    $ \delta(a) $ the disease inducing death rate

     | Show Table
    DownLoad: CSV

    Let us consider system (2.1) on the Banach space $ X: = L^1(0, A)\times L^1(0, A)\times L^1(0, A) $. Let $ T $ be a linear operator defined by

    $ Tφ(a):=[T1φ1(a)T2φ2(a)T3φ3(a)]=[dφ1(a)daμ(a)φ1(a)λ(a,t)φ1(a)dφ2(a)da(μ(a)+ν(a)+δ(a))φ2(a)dφ3(a)da(μ(a)+γ(a))φ3(a)], $ (2.2)

    $ \varphi(a) = (\varphi_1(a), \varphi_2(a), \varphi_3(a))^\top\in D(T) $, where the domain $ D(T) $ is given as

    $ D(T):={φX:φiis absolutely continuous on[0,A],ddaφiXandφ(0)=(0,0,0)}. $

    The disease-free equilibrium of model (2.1) is $ E = \big(E^0(a), 0, E^r(a)\big) $, where $ E^r(a) = e^{-\int_0^a(\mu(\eta)+\gamma(\eta))d\eta} $, and $ E^0(a) = \gamma(a)E^r(a)\int_0^ae^{-\int_\varrho^a\mu(\eta)d\eta}d\varrho $ is the density of the susceptible population at age $ a $ in the disease-free state. Then we define a nonlinear operator $ F:X\rightarrow X $ by

    $ Fφ(a):=[F1φ1(a)F2φ2(a)F3φ3(a)]=[γ(a)φ3(a)E0(a)A0β(a,ϱ)φ2(ϱ)dϱν(a)φ2(a)]. $ (2.3)

    Let $ u(t) = (S(t, \cdot), I(t, \cdot).R(t, \cdot))^\top $, together with (2.2) and (2.3), system (2.1) has been rewritten as the following abstract Cauchy problem

    $ ddtu(t)=Tu(t)+Fu(t),u(0)=u0X. $ (2.4)

    Next, we mainly consider the second equation of (2.1). By simple calculation, the positive inverse $ (-T_2)^{-1} $ is defined as follows

    $ (-T_2)^{-1}\varphi_2(a): = \int_0^ae^{-\int_\varrho^a(\mu(\eta)+\nu(\eta)+\delta(\eta))d\eta}\varphi_2(\varrho)d\varrho, \quad \varphi_2\in Y: = L^1(0, A). $

    Then, according to [11], we can give the next generation operator $ \mathcal{K} $ by

    $ \mathcal{K}\varphi_2(a): = F_2(-T_2)^{-1}\varphi_2(a) = E^0(a)\int^A_0\beta(a, \varrho)\int_0^\varrho e^{-\int_\rho^\varrho(\mu(\eta)+\nu(\eta)+\delta(\eta))d\eta}\varphi_2(\rho)d\rho d\varrho. $

    Based on the definition in [12], the basic reproduction number $ \mathcal{\mathcal{R}}_0 $ is defined as $ r(\mathcal{K}) $, where $ r(\mathcal{K}) $ is the spectral radius of the operator $ \mathcal{K} $.

    Since the form of $ r(\mathcal{K}) $ is abstract, we can not calculate $ \mathcal{\mathcal{R}}_0 $ explicitly. To avoid misunderstanding, we let $ B = T_2, G = F_2 $, $ \varphi_2 = \hbar\in D(B) $,

    $ D(B):={Y:is absolutely continuous on[0,A],ddaYand(0)=0}. $

    Hence, we discretize the following system

    $ ddtI(t)=BI(t)+GI(t),I(0)=I0Y $ (2.5)

    into a system of ordinary differential equations in $ Y_n: = \mathbb{R}^n $, $ n\in\mathbb{N} $. Let $ \Delta a = A/n $, $ a_k: = k\Delta a, \beta_{kj}: = \beta(a_k, a_j), \mu_k: = \mu(a_k), \nu_k: = \nu(a_k) $ and $ \delta_k: = \delta(a_k), k = 0, 1, \ldots, n, j = 1, 2, \ldots, n. $ Then the abstract Cauchy system (2.5) is discretized as

    $ ddtI(t)=BnI(t)+GnI(t),I(0)=I0Yn, $ (2.6)

    where $ I(t) $ and $ I_0 $ are $ n- $column vectors, $ B_n $ and $ G_n $ are $ n- $square matrices with the following form

    $ Bn:=[θM11Δa001Δa(1θ)M1θM21Δa001Δa(1θ)Mn1θMn1Δa]n×n, $
    $ Gn:=[N0[(1θ)β01+θβ11]ΔaN0[(1θ)β02+θβ12]ΔaN0[(1θ)β0n+θβ1n]ΔaN1[(1θ)β11+θβ21]ΔaN1[(1θ)β12+θβ22]ΔaN0[(1θ)β1n+θβ2n]ΔaNn1[(1θ)βn1,1+θβn1]ΔaNn1[(1θ)βn1,2+θβn2]ΔaNn1[(1θ)βn1,n+θβnn]Δa], $

    where $ M_i = \mu_i+\nu_i+\delta_i(i = 1, \cdots, n) $, $ N_i = (1-\theta) E^0_i+\theta E^0_{i+1}(i = 0, \cdots, n-1) $. The additional parameter $ \theta\in[0, 1] $ allows us to control the implicitness of the numerical scheme [16], for technical reasons we always require $ \theta\geq\frac{1}{2} $. Here we denote the next generation matrix $ \mathcal{K}_n: = G_n(-B_n)^{-1} $, $ \mathcal{R}_{0, n}: = r(\mathcal{K}_n) $ is the threshold corresponding to $ \mathcal{R}_0 $, and $ \mathcal{R}_{0, n} $ can be analyzed in a finite horizon. Since $ -B_n $ is a nonsingular M-matrix, and $ (-B_n)^{-1} $ is positive. Hence, from the Perron-Frobenius theorem [18], we know that $ r(\mathcal{K}_n) $ is the positive dominant eigenvalue with algebraic multiplicity 1.

    We give two bounded linear operators $ \mathcal{P}: Y\rightarrow Y_n $ and $ \mathcal{J}: Y_n\rightarrow Y $ as follows

    $ {(Pn)k:=1Δaak+1ak(a)da,k=0,1,,n1,Y,(Jnψ)(a):=n1k=0ψkχ(ak,ak+1](a),ψ=(ψ1,ψ2,,ψn)Yn, $ (2.7)

    where $ k $ is the $ k $th entry of a vector, $ \top $ is the transpose of matrix $ \psi $, and $ \chi_{(a_{k}, a_{k+1}]}(a) $ is the indicator function which implies that

    $ χ(ak,ak+1](a)={1,a(ak,ak+1],0,a(ak,ak+1]. $

    From Section 4.1 in [19], we know that for all $ n\in\mathbb{N} $, $ \|\mathcal{P}_n\|\leq1 $ and $ \|\mathcal{J}_n\|\leq1 $. We denote $ \|\cdot\|_{Y_n} $ is the norm in $ Y_n $, and

    $ ψYn:=Δan1k=0|ψk|,ψ=(ψ1,ψ2,,ψn)Yn. $ (2.8)

    Next, we apply the spectral approximation theory to present the convergence theorem of the basic reproduction number.

    Theorem 2.1. Assuming that $ \mathcal{K} $ is compact, if for any $ \hbar\in Y $, $ \lim\limits_{n\rightarrow+\infty}\|\mathcal{J}_n\mathcal{K}_n\mathcal{P}_n\hbar-\mathcal{K}\hbar\|_Y = 0 $, then $ \mathcal{R}_{0, n}\rightarrow\mathcal{R}_0 $ as $ n\rightarrow+\infty $, preserving algebraic multiplicity 1.

    Proof. It is easy to see $ \mathcal{K} $ is strictly positive and irreducible, then from Theorem 3 in [20] and the Krein-Rutman theorem in [21], yield that $ \mathcal{R}_0 = r(\mathcal{K}) > 0 $ is the maximum eigenvalue of operator $ \mathcal{K} $. By a simple calculation, the inverse matrix of $ -B_n $ is shown as follows

    $ (Bn)1=[1θM1+1Δa00(1)3((1θ)M11Δa)(θM1+1Δa)(θM2+1Δa)1θM2+1Δa0(1)n+1n1i=1((1θ)Mi1Δa)nk=1(θMk+1Δa)n1i=2(1Δa(1θ)Mi)nk=2(θMk+1Δa)1θMn+1Δa], $ (2.9)

    then we have

    $ KnψYn=Gn(Bn)1ψYnΔan1k=0ˉE0ˉβΔaθ(μ_+ν_+δ_)n1k=0|ψk|=AˉE0ˉβθ(μ_+ν_+δ_)ψYn,θ[12,1], $

    where $ \bar{E}^0 $ and $ \bar{\beta} $ denote the upper bounds of $ E^0 $ and $ \beta $, respectively. $ \underline{\mu} $, $ \underline{\nu} $ and $ \underline{\delta} $ denote the lower bounds of $ \mu $, $ \nu $ and $ \delta $, respectively. They are both finite positive.

    In addition, we give the following assumption to make that $ \mathcal{K} $ is compact.

    Assumption 2.1. For any $ h > 0 $,

    $ limh0A0|E0(a+h)β(a+h,ϱ)E0(a)β(a,ϱ)|da=0uniformly forϱR, $ (2.10)

    where $ E^0\beta $ is extended by $ E^0(a)\beta(a, \varrho) = 0 $ for any $ a, \varrho\in(-\infty, 0)\cup(A, \infty) $.

    The above assumption implies that the operator $ \mathcal{K} $ keep the compactness [11, Assumption 4.4]. In order to prove $ \mathcal{J}_n\mathcal{K}_n\mathcal{P}_n $ converges to $ \mathcal{K} $ point by point, we provide the following lemma.

    Lemma 2.1. For all $ \hbar\in Y $, $ \lim\limits_{n\rightarrow+\infty}\|\mathcal{J}_n\mathcal{K}_n\mathcal{P}_n\hbar-\mathcal{K}\hbar\|_Y = 0. $

    Proof. For any $ \hbar\in Y $, we obtain

    $ JnKnPnKY=JnGn(Bn)1PnG(B)1YJnGn(Bn)1PnJnGnPn(B)1Y+JnGnPn(B)1G(B)1YJnGn(Bn)1PnPn(B)1Yn+JnGnPn(B)1G(B)1YL(Bn)1PnPn(B)1Yn+JnGnPn(B)1G(B)1Y. $ (2.11)

    Since $ \|\mathcal{J}_n\|\leq1 $, and for any $ n\in\mathbb{N} $, $ \|G_n\|\leq A\bar{E^0}\bar{\beta} $, we have $ L = \|\mathcal{J}_n\|\; \|G_n\| = A\bar{E^0}\bar{\beta} $. Next we estimate the first term in the right-hand of (2.11), then

    $ (Bn)1Pn(B)1PnXn=(Bn)1Pn(B)(B)1(Bn)1(Bn)Pn(B)1Yn(Bn)1Pn(B)(B)1(Bn)Pn(B)1YnAPn(B)ϕ(Bn)PnϕYn, $

    where $ \phi: = (-B)^{-1}\hbar\in D(B) $, and for any $ \psi = (\psi_1, \psi_2, \cdots, \psi_n)^\top\in Y_n $,

    $ (Bn)1ψYnΔank=11θ(μ_+ν_+δ_)+1Δan1k=0|ψk|AψYn, $

    namely, $ \|(-B_n)^{-1}\|\leq A $. From (2.7), we obtain

    $ (Bn)1Pn(B)1PnYnAPn(B)ϕ(Bn)PnϕYnAΔan1k=0|Pn(B)ϕ(Bn)Pnϕ|AΔan1k=0|1Δaak+1ak(ddaϕ(a)+(μ(a)+ν(a)+δ(a))ϕ(a))da(1θ)(μ(k)+ν(k)+δ(k))Δaakak1ϕ(a)da1Δaak+1akϕ(a)da1Δaakak1ϕ(a)daΔaθ(μ(k+1)+ν(k+1)+δ(k+1))Δaak+1akϕ(a)da|, $

    where $ a_0 = a_{-1} = 0 $. By the mean value theorem, we have

    $ (Bn)1Pn(B)1PnYnAΔan1k=0|ddaϕ(ηk+1)+(μ(ηk+1)+ν(ηk+1)+δ(ηk+1))ϕ(ηk+1)(1θ)(μ(k)+ν(k)+δ(k))ϕ(ρk)1Δa(ϕ(ξk+1)ϕ(ξk))θ(μ(k+1)+ν(k+1)+δ(k+1))ϕ(ζk+1)|AΔan1k=0(|ddaϕ(ηk+1)ddaϕ(εk+1)|+|(μ(ηk+1)+ν(ηk+1)+δ(ηk+1))ϕ(ηk+1)(μ(k)+ν(k)+δ(k))ϕ(ϱk)|)+|θ(μ(k)+ν(k)+δ(k))ϕ(ρk)θ(μ(k+1)+ν(k+1)+δ(k+1))ϕ(ζk+1)|AΔan1k=0[ω(ϕ,2Δa)+ω(μ+ν+δ,Δa)ω(ϕ,Δa)+ω(θ(μ+ν+δ),2Δa)ω(ϕ,2Δa)], $

    where $ \omega(f, r) $ denotes the modulus of continuity. We know that $ \omega(f, r) $ is defined by $ \sup_{|x-y|\leq r}|f(x)-f(y)| $ with the following property

    $ ω(f,r)0,asr0. $

    Hence, $ \|(-B_n)^{-1}\mathcal{P}_n\hbar-(-B)^{-1}\mathcal{P}_n\hbar\|_{Y_n}\rightarrow0 $ holds. Then we consider the second term of (2.11) as follows

    $ JnGnPn(B)1G(B)1Y=JnGnPnϕGϕY=n1k=0ak+1ak|nj=1((1θ)E0k+θE0k+1)((1θ)βkj+θβk+1,j)jj1ϕ(ϱ)dϱA0E0(a)β(a,ϱ)ϕ(ϱ)dϱ|da=n1k=0ak+1ak|nj=1((1θ)E0k+θE0k+1)((1θ)βkj+θβk+1,j)jj1ϕ(ϱ)dϱnj=1jj1[(1θ)E0+θE0][(1θ)β+θβ]ϕ(ϱ)dϱ|dan1k=0ak+1aknj=1jj1|(1θ)2E0kβkj+(1θ)θE0kβk+1,j+θ(1θ)E0k+1βkj+θ2E0k+1βk+1,j(1θ)2E0β+(1θ)θE0β+θ(1θ)E0β+θ2E0β||ϕ(ϱ)|dϱdan1k=0ak+1aknj=1jj1|(1θ)2ω(E0,Δa)ω(β,Δa)+(1θ)θω(E0,Δa)ω(β,Δa)+θ(1θ)ω(E0,Δa)ω(β,Δa)+θ2ω(E0,Δa)ω(β,Δa)||ϕ(ϱ)|dϱdaAω(E0,Δa)ω(β,Δa)ϕY0asn+, $ (2.12)

    where $ \omega(E^0, \Delta a)\rightarrow0(\Delta a\rightarrow0) $ and $ \omega(\beta, \Delta a)\rightarrow0(\Delta a\rightarrow0) $, respectively. Hence,

    $ \|\mathcal{J}_nG_n\mathcal{P}_n(-B)^{-1}\hbar-G(-B)^{-1}\hbar\|_Y\rightarrow0. $

    Combine the above discussion, we have $ \lim\limits_{n\rightarrow+\infty}\|\mathcal{J}_n\mathcal{K}_n\mathcal{P}_n\hbar-\mathcal{K}\hbar\|_Y = 0 $.

    By virtue of Assumption 2.1 and Lemma 2.1, we know that Theorem 2.1 holds. Namely, $ \mathcal{R}_{0, n}\rightarrow\mathcal{R}_0 $ as $ n\rightarrow+\infty $, preserving algebraic multiplicity 1.

    In this section, we seem the natural mortality $ \mu(a) $ as a random variable $ \mu(a)-\sigma\frac{dB_t}{dt} $, where $ B_t $ is a standard Brownian motion, $ \sigma $ is the intensity of noise perturbation. Then, replace $ \mu(a) $ with $ \mu(a)-\sigma\frac{dB_t}{dt} $ in system (2.1), we can obtain a stochastic age-structured SIRS model

    $ {(t+a)S(t,a)=μ(a)S(t,a)λ(a,t)S(t,a)+γ(a)R(t,a)+σS(t,a)dBtdt,(t+a)I(t,a)=λ(a,t)S(t,a)(μ(a)+ν(a)+δ(a))I(t,a)+σI(t,a)dBtdt,(t+a)R(t,a)=ν(a)I(t,a)(μ(a)+γ(a))R(t,a),S(t,0)=Λ,t[0,+),S(0,a)=S0(a),a(0,A)I(t,0)=0,t[0,+),I(0,a)=I0(a),a(0,A)R(t,0)=0,t[0,+),R(0,a)=R0(a),a(0,A). $ (2.13)

    Next, we analysis the stochastic basic reproduction number. In the same way, we take the infective population of system (2.13) into account, and substitute $ S(t, a) = E^0(a) $ into it, we derive

    $ {(t+a)I(t,a)=E0(a)A0β(a,ϱ)I(t,a)dϱ(μ(a)+ν(a)+δ(a))I(t,a)+σ(a)I(t,a)dBtdt,I(t,0)=0,t[0,+),I(0,a)=I0(a),a(0,A). $ (2.14)

    According to the general definition of the stochastic basic reproduction number, the following two operators are defined on $ Y: = L^1(0, A) $

    $ {A(a)=dda(a)(μ(a)+ν(a)+δ(a))(a),F(a)=E0(a)(1σ22)A0β(a,ϱ)(ϱ)dϱ,1σ22>0, $ (2.15)

    and

    $ D(A):={Y:is absolutely continuous on[0,A],ddaYand(0)=0}. $

    Using $ \mathcal{A} $ and $ \mathcal{F} $ to rewrite (2.14) as

    $ ddtI(t)=AI(t)+FI(t),I(0)=I0. $ (2.16)

    Then we have

    $ (-\mathcal{A})^{-1}\hbar(a): = \int_0^ae^{-\int_\varrho^a(\mu(\eta)+\nu(\eta)+\delta(\eta))d\eta}\hbar(\varrho)d\varrho, \quad \hbar\in Y. $

    The next generation operator $ \mathcal{T} $ is shown by

    $ \mathcal{T}\hbar(a): = \mathcal{F}(-\mathcal{A} )^{-1}\hbar(a) = E^0(a)(1-\frac{\sigma^2}{2})\int^A_0\beta(a, \varrho)\int_0^\varrho e^{-\int_\rho^\varrho(\mu(\eta)+\nu(\eta)+\delta(\eta))d\eta}\hbar(\rho)d\rho d\varrho, \quad \hbar\in Y. $

    Samely, we define $ r(\mathcal{T}) $ as the basic reproduction number $ \mathcal{R}{_0^s} $ of the stochastic system (2.13), and $ \mathcal{R}_{0, n}^s: = r(\mathcal{T}) $ is the threshold corresponding to $ \mathcal{R}_0^s $.

    Next, we discretize (2.16) in $ Y_n: = \mathbb{R}^n $, $ n\in\mathbb{N} $. Then the system (2.16) is discretized into the following equation

    $ ddtI(t)=AnI(t)+FnI(t),I(0)=I0Yn, $ (2.17)

    where $ \mathcal{A}_n $ is defined as the same as $ B_n $($ \mathcal{A}_n: = B_n $), and

    $ Fn:=[Q0[(1θ)β01+θβ11]ΔaQ0[(1θ)β0n+θβ1n]ΔaQn1[(1θ)βn1,1+θβn1]ΔaQn1[(1θ)βn1,n+θβnn]Δa] $

    where $ \theta\in[\dfrac{1}{2}, 1] $, $ Q_i = (1-\dfrac{\sigma^2}{2})\Big[(1-\theta) E^0_i+\theta E^0_{i+1}\Big](i = 0, 1, \cdots, n-1) $.

    Theorem 2.2. From Theorem 2.1, we know that $ \mathcal{T} $ is irreducible, compact and strictly positive. If

    $ \lim\limits_{\Delta\rightarrow0}\mathbb{E}\|\mathcal{J}_n\mathcal{T}_n\mathcal{P}_n\hbar-\mathcal{T}\hbar\|_Y = 0 $

    for any $ \hbar\in Y $, then

    $ \mathcal{R}_{0, n}^s\rightarrow\mathcal{R}_0^s \quad \mathit{\text{as}} \quad \Delta\rightarrow0, \quad \mathit{\text{preserving algebraic multiplicity 1}}, $

    where $ \mathcal{J}_n $ and $ \mathcal{P}_n $ are defined as (2.7).

    Proof. Obviously, $ \mathcal{R}_0^s = r(\mathcal{T}) > 0 $, and $ r(\mathcal{T}) $ is the spectral radius of operator $ \mathcal{T} $. We know that $ (-\mathcal{A}_n)^{-1} = (-B_n)^{-1} $, and $ (-B_n)^{-1} $ is given by (2.9). Then we have

    $ TnψYn=Fn(An)1ψYnΔan1k=0ˉE0(1σ22)ˉβΔaθ(μ_+ν_+δ_)n1k=0|ψk|=AˉE0(1σ22)ˉβθ(μ_+ν_+δ_)ψYn,θ[12,1],1σ22>0, $

    where $ \underline{E}^0 $ is the lower bound of $ E^0 $.

    Next, we verify that $ \lim\limits_{\Delta\rightarrow0}\|\mathcal{J}_n\mathcal{T}_n\mathcal{P}_n\hbar-\mathcal{T}\hbar\|_Y = 0 $. For any $ \hbar\in Y $, we have

    $ JnTnPnTY=JnFn(An)1PnF(A)1YJnFn(An)1PnJnFnPn(A)1Y+JnFnPn(A)1F(A)1YJnFn(An)1PnPn(A)1Yn+JnFnPn(A)1F(A)1YAˉE0ˉβ(An)1PnPn(A)1Yn+JnFnPn(A)1F(A)1Y, $ (2.18)

    where the first term of (2.18)

    $ \|(-\mathcal{A}_n)^{-1}\mathcal{P}_n\hbar-\mathcal{P}_n(-\mathcal{A})^{-1}\hbar\|_{Y_n} = \|(-B_n)^{-1}\mathcal{P}_n\hbar-\mathcal{P}_n(-B)^{-1}\hbar\|_{Y_n} $

    is similar to the first term in the right-hand of (2.11), so it is easy to see that

    $ \|(-\mathcal{A}_n)^{-1}\mathcal{P}_n\hbar-\mathcal{P}_n(-\mathcal{A})^{-1}\hbar\|_{Y_n}\rightarrow0. $

    Next we estimated the second term of (2.18). Let $ \varpi: = (-\mathcal{A})^{-1}\hbar\in D(\mathcal{A}) $, we obtain

    $ JnFnPn(A)1F(A)1Y=JnFnPnϖFϖY=n1k=0ak+1ak|nj=1[(1θ)E0i+θE0i+1](1σ22)jj1ϖ(ϱ)dϱA0E0(a)(1σ22)β(a,ϱ)ϖ(ϱ)dϱ|da=n1k=0ak+1ak|nj=1((1θ)E0k+θE0k+1)(1σ22)((1θ)βkj+θβk+1,j)jj1ϖ(ϱ)dϱnj=1jj1((1θ)E0+θE0)(1σ22)((1θ)β+θβ)ϖ(ϱ)dϱ|da(1σ22)n1k=0ak+1aknj=1jj1|(1θ)2E0kβkj+(1θ)θE0kβk+1,j+θ(1θ)E0k+1βkj+θ2E0k+1βk+1,j(1θ)2E0β+(1θ)θE0β+θ(1θ)E0β+θ2E0β||ϕ(ϱ)|dϱda(1σ22)n1k=0ak+1aknj=1jj1|(1θ)2ω(E0,Δa)ω(β,Δa)+(1θ)θω(E0,Δa)ω(β,Δa)+θ(1θ)ω(E0,Δa)ω(β,Δa)+θ2ω(E0,Δa)ω(β,Δa)||ϕ(ϱ)|dϱdaA(1σ22)ω(E0,Δa)ω(β,Δa)ϕY0asn+. $ (2.19)

    Thus, $ \|\mathcal{J}_n\mathcal{F}_n\mathcal{P}_n(-\mathcal{A})^{-1}\hbar-\mathcal{F}(-\mathcal{A})^{-1}\hbar\|_Y\rightarrow0 $ holds. Hence, we obtain the desired assertion.

    In conclusion, Theorem 2.2 holds, which implies that $ \mathcal{R}_{0, n}^s\rightarrow\mathcal{R}_0^s $ as $ \Delta\rightarrow0 $, preserving algebraic multiplicity 1.

    Remark 2.1. Compared with [10], our paper has two advantages:

    [10] employed a backward Euler method to approximate $ R_0 $, and obtain the numerical threshold $ R_0^n\rightarrow R_0 $ as $ n\rightarrow\infty $. In present paper, we propose a $ \theta $ method is know as the backward EM when $ \theta = 1 $, and the explicit Euler-Maruyama(EM) scheme when $ \theta = 0 $. The $ \theta $ scheme has the parameter $ \theta $, and different $ \theta $ values give different convergence rates. Therefore, we can use the $ \theta $ method to find the optimal convergence rate. And the backward Euler method is a special case when $ \theta = 1 $ of our method. Our work provides an extension of [10].

    A deterministic age-structured epidemic model is discussed in [10], but in present paper, we studied not only the deterministic system but also the stochastic age-structured epidemic model, and the stochastic system is more practical.

    In this section, numerical examples are shown to verify our Theorems. In what follows, let $ A = 100 $, $ \mu(a) = 0.2(1+\frac{a^3}{10^3}) $ ([13], see Fig. 1(a)), $ \gamma(a) = \gamma = 0.25 $, $ \nu(a) = \nu = 0.1 $ and $ \delta(a) = \delta = 0.05 $ (see [22]). Thus, $ E^0(a) = \gamma(a)E^r(a)\int_0^ae^{-\int_\varrho^a\mu(\eta)d\eta}d\varrho = 0.25e^{(-0.45a-\frac{a^4}{2\times10^4})}\int_0^ae^{\varrho(\frac{\varrho^3}{2\times10^4}+0.2)-a(\frac{a^3}{2\times10^4}+0.2)}d\varrho $. Based on numerical integration for $ E^0(a) $, we obtain Fig. 1(b).

    Figure 1.  Parameters used in the numerical example.

    In this example, we do not specify what kinds of influenza-like disease it is, and the value of $ \mathcal{R}_0 $ is in the range of 2-3 [23]. We assumption that the disease is more likely to transmission between individuals with similar ages [10], then we let $ \beta(a, \varrho) = kJ(a-\varrho) $, where $ k = 200 $ and $ J(x) = 0.6(-x^2+100^2)\times10^{-6}+0.001 $ is a normalized distance function. Thus, we can easily verify that Assumption 2.1 is true. Hence, Theorem 2.1 and 2.2 hold, which implies that $ \mathcal{R}_{0, n}\rightarrow\mathcal{R}_0(\mathcal{R}_{0, n}^s\rightarrow\mathcal{R}_0^s) $ as $ n\rightarrow+\infty $.

    Let $ \theta = 0.5 $, and choose $ \mathcal{R}_{0, 1000}\approx2.57673470573749 = :\mathcal{R}^* $ as a reference value for $ \mathcal{R}_0 $. From Fig. 2(a), we see that the threshold $ \mathcal{R}_{0, n} $ for the discretized system (2.6) respect to the reference value $ \mathcal{R}^* $ as $ n $ increases. Further more, the error $ \mathcal{R}^*-\mathcal{R}_{0, n} $ converges to zero as $ n $ increases (see Fig. 2(b)). In Fig. 3, we show the numerical simulations of $ \mathcal{R}_{0, n} $ at $ \theta = 0.5 $, $ \theta = 0.7 $ and $ \theta = 0.9 $, respectively. It is obvious to see that the value of $ \theta $ has a certain impact on the convergence rate of $ \mathcal{R}_{0, n} $. The bigger value of $ \theta $, the faster rate of convergence. This implies that the backward EM method would make the convergence faster. Our paper verified the work of [10].

    Figure 2.  Logarithmic plots of the threshold $ \mathcal{R}_{0, n} $ (a) and the error $ \mathcal{R}^*-\mathcal{R}_{0, n} $ with respect to the reference value $ \mathcal{R}^* = 2.57673470573749 $ (b).
    Figure 3.  Computer simulations of the threshold $ \mathcal{R}_{0, n} $ with different values of $ \theta $.

    In this example, let $ \sigma = 0.1 $, and we also choose $ \mathcal{R}^s_{0, 1000}\approx2.56385103220880 = :\mathcal{R}_s^* $ as a reference for $ \mathcal{R}_0^s $. Similarly, the threshold value $ \mathcal{R}^s_{0, n} $ for the discretized system (2.17) respect to the reference value $ \mathcal{R}_s^* $ (see Fig. 4(a)) and the error $ \mathcal{R}_s^*-\mathcal{R}^s_{0, n} $ converges to zero as $ n $ increases (see Fig. 4(b)). Fig. 5(a) give a comparation for $ \mathcal{R}^s_{0, n} $ at $ \sigma = 0.1 $, $ \sigma = 0.5 $ and $ \sigma = 0.8 $, respectively. We can see that the intensity of environmental disturbance has a great influence on the threshold $ \mathcal{R}^s_{0, n} $. The higher value of $ \sigma $, the smaller value of $ \mathcal{R}^s_{0, n} $. This means that the intensity of environmental fluctuation can reduce the threshold of disease outbreak, which may be a better measure to control disease outbreak. We show a $ 3D $ simulation of $ R_{0, n}^s $ corresponding to $ \theta\in[0.5, 1] $ and $ \sigma\in[0, 1] $ in Fig. 5(b), the effect of $ \sigma $ on the threshold $ R_{0, n}^s $ with the change of $ \theta $ is further explained.

    Figure 4.  Logarithmic plots of the threshold $ \mathcal{R}^s_{0, n} $ (a) and the error $ \mathcal{R}_s^*-\mathcal{R}^s_{0, n} $ with respect to the reference value $ \mathcal{R}_s^* = 2.56385103220880 $ (b).
    Figure 5.  Computer simulations of the threshold $ R_{0, n}^s $ with different values of $ \sigma $ (a) and the $ 3D $ simulation of $ R_{0, n}^s $ corresponding to $ \theta\in[0.5, 1] $ and $ \sigma\in[0, 1] $ (b).

    For the age-structure epidemic model, the basic reproduction number is defined as an integral and difficult to be estimated. Hence, it is necessary to approximate it using numerical methods. This paper investigates the numerical approximation of two basic reproduction numbers for deterministic and stochastic age-structured epidemic systems, respectively. We use the theta scheme to discrete the infective population in a finite space, so that the two abstract basic reproduction numbers can be calculated explicitly. Afterward, using the spectral approximation theory, we obtain the numerical threshold that converges to the exact value as $ n $ increases. We also estimate the approximation error between the exact basic reproduction number and its numerical approximation. Finally, several numerical simulations are shown to illustrate our theoretical results. The numerical results show that, for the deterministic system, the convergence rate of $ \mathcal{R}_{0, n} $ is faster when $ \theta $ is bigger under the condition of $ \theta\in[\frac{1}{2}, 1] $. For $ \theta\in[0, \frac{1}{2}] $, the proof of the pointwise convergence in Lemma 2.2 remains challenging, and is warranted to be investigated in a future study. For the stochastic system, the appropriate noise intensity can reduce the threshold of disease outbreak.

    The research is supported by the Natural Science Foundation of China (Grant number 11661064).

    The authors declare there is no conflict of interest.

    [1] Ao CH, Lee SC, Yu JC (2003) Photocatalyst TiO2 supported on glass fiber for indoor air purification: effect of NO on the photodegradation of CO and NO2. J Photochem Photobiol A: Chem 156: 171-177. doi: 10.1016/S1010-6030(03)00009-1
    [2] Ishizuka Y, Tokumura M, Mizukoshi A, et al. (2010) Measurement of secondary products during oxidation reaction of terpenes with ozone based on the PTR-MS analysis: effects of coexistent carbonyl compounds. Int J Environ Res Public Health 7: 3853-3870. doi: 10.3390/ijerph7113853
    [3] Obuchi E, Sakamoto T, Nakano K, et al. (1999) Photocatalytic decomposition of acetaldehyde over TiO2/SiO2 catalyst. Chem Eng Sci 54: 1525-1530. doi: 10.1016/S0009-2509(99)00067-6
    [4] Apter A, Bracker A, Hodgson M, et al. (1994) Epidemiology of the sick building syndrome. J Allergy Clin Immunol 94: 277-288. doi: 10.1053/ai.1994.v94.a56006
    [5] Shinohara N, Kai Y, Mizukoshi A, et al. (2009) On-site passive flux sampler measurement of emission rates of carbonyls and VOCs from multiple indoor sources. Build Environ 44: 859-863. doi: 10.1016/j.buildenv.2008.06.007
    [6] Wiglusz R, Jarnuszkiewicz I, Sitko E, et al. (1990) Hygienic aspects of the use of pressed-wood products in residential buildings. Part I the effect of particleboards ageing on release of formaldehyde. Bull Inst Marit Trop Med Gdynia 41: 73-78.
    [7] Clarisse B, Laurent AN, Seta N, et al. (2003) Indoor aldehydes: Measurement of contamination levels and identification of their determinants in Paris dwellings. Environ Res 92: 245-253. doi: 10.1016/S0013-9351(03)00039-2
    [8] Dellarco VL (1988) A mutagenicity assessment of acetaldehyde. Mutat Res 195: 1-20. doi: 10.1016/0165-1110(88)90013-9
    [9] Brooks PJ, Theruvathu JA (2005) DNA adducts from acetaldehyde: Implications for alcohol-related carcinogenesis. Alcohol 35: 197-193.
    [10] Saijo Y, Kishi R, Sata F, et al. (2004) Symptoms in relation to chemicals and dampness in newly built dwellings. Int Arch Occup Environ Health 77: 461-470. doi: 10.1007/s00420-004-0535-0
    [11] Lu N, Yu HT, Su Y, et al. (2012) Water absorption and photocatalytic activity of TiO2 in a scrubber system for odor control at varying pH. Sep Purif Technol 90: 196-203. doi: 10.1016/j.seppur.2012.02.035
    [12] Biard PF, Couvert A, Renner C, et al. (2011) Intensification of volatile organic compounds mass transfer in a compact scrubber using the O3/H2O2 advanced oxidation process: Kinetic study and hydroxyl radical tracking. Chemosphere 85: 1122-1129. doi: 10.1016/j.chemosphere.2011.07.050
    [13] Tokumura M, Nakajima R, Znad HT, et al. (2008) Chemical absorption process for degradation of VOC gas using heterogeneous gas-liquid photocatalytic oxidation: Toluene degradation by photo-Fenton reaction. Chemosphere 73: 768-775. doi: 10.1016/j.chemosphere.2008.06.021
    [14] Tokumura M, Wada Y, Usami Y, et al. (2012) Method of removal of volatile organic compounds by using wet scrubber coupled with photo-Fenton reaction: Preventing emission of by-products. Chemosphere 89: 1238-1242. doi: 10.1016/j.chemosphere.2012.07.018
    [15] Tokumura M, Wada Y, Usami Y, et al. (2012) Air Cleaning Method using Photo Fenton Reaction in Gas-Liquid Contactor. Indoor Environment 15: 27-38.
    [16] Will IBS, Moraes JEF, Teixeira ACSC, et al. (2004) Photo-Fenton degradation of wastewater containing organic compounds in solar reactors. Sep. Purif. Technol. 34: 51–57. doi: 10.1016/S1383-5866(03)00174-6
    [17] Wu D, Liu M, Dong D, et al. (2007) Effects of some factors during electrochemical degradation of phenol by hydroxyl radicals. Microchem J 85: 250-256.
    [18] Tokumura M, Ohta A, Znad HT, et al. (2006) UV light assisted decolorization of dark brown colored coffee effluent by photo-Fenton reaction. Water Res 40: 3775-3784. doi: 10.1016/j.watres.2006.08.012
    [19] Tokumura M, Znad HT, Kawase Y (2006) Modeling of an external light irradiation slurry photoreactor: UV light or sunlight-photo assisted Fenton discoloration of azo-dye Orange II with natural mineral tourmaline powder. Chem Eng Sci 61: 6361-6371. doi: 10.1016/j.ces.2006.05.038
    [20] Tokumura M, Sekine M, Yoshinari M, et al. (2007) Photo-Fenton process for excess sludge disintegration. Process Biochem 42: 627-633. doi: 10.1016/j.procbio.2006.11.010
    [21] Lee A, Goldstein AH, Keywood MD, et al. (2006) Gas-phase products and secondary aerosol yields from the ozonolysis of ten different terpenes. J Geophys Res 111: D07302.
    [22] Lee A, Goldstein AH, Kroll JH, et al. (2006) Gas-phase products and secondary aerosol yields from the photooxidation of 16 different terpenes. J Geophys Res 111: D17305.
    [23] Zanta CLPS, Friedrich LC, Machulek Jr A, et al. (2010) Surfactant degradation by a catechol-driven Fenton reaction. J Hazard Mater 178: 258-263. doi: 10.1016/j.jhazmat.2010.01.071
    [24] Tokumura M, Morito R, Hatayama R, et al. (2011) Iron redox cycling in hydroxyl radical generation during the photo-Fenton oxidative degradation: Dynamic change of hydroxyl radical concentration. Appl Catal B: Environ 106: 565-576. doi: 10.1016/j.apcatb.2011.06.017
  • This article has been cited by:

    1. Dimitri Breda, Francesco Florian, Jordi Ripoll, Rossana Vermiglio, Efficient numerical computation of the basic reproduction number for structured populations, 2021, 384, 03770427, 113165, 10.1016/j.cam.2020.113165
    2. Dimitri Breda, Toshikazu Kuniya, Jordi Ripoll, Rossana Vermiglio, Collocation of Next-Generation Operators for Computing the Basic Reproduction Number of Structured Populations, 2020, 85, 0885-7474, 10.1007/s10915-020-01339-1
    3. Dimitri Breda, Simone De Reggi, Francesca Scarabel, Rossana Vermiglio, Jianhong Wu, Bivariate collocation for computing R0 in epidemic models with two structures, 2022, 116, 08981221, 15, 10.1016/j.camwa.2021.10.026
    4. Huizi Yang, Zhanwen Yang, Shengqiang Liu, Numerical threshold of linearly implicit Euler method for nonlinear infection-age SIR models, 2023, 28, 1531-3492, 70, 10.3934/dcdsb.2022067
    5. Kangkang Chang, Qimin Zhang, Numerical approximation of basic reproduction number for an age‐structured HIV infection model with both virus‐to‐cell and cell‐to‐cell transmissions, 2021, 44, 0170-4214, 12851, 10.1002/mma.7586
    6. X. Liu, M. Zhang, Z.W. Yang, Numerical threshold stability of a nonlinear age-structured reaction diffusion heroin transmission model, 2024, 204, 01689274, 291, 10.1016/j.apnum.2024.06.016
    7. Simone De Reggi, Francesca Scarabel, Rossana Vermiglio, Approximating reproduction numbers: a general numerical method for age-structured models, 2024, 21, 1551-0018, 5360, 10.3934/mbe.2024236
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7404) PDF downloads(1721) Cited by(7)

Figures and Tables

Figures(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog