Research article Special Issues

Stability of nonlinear systems with multi-delayed random impulses: Average estimation and delay approach

  • Published: 23 September 2025
  • MSC : 34K50, 90B15, 93D20

  • This study focuses on analyzing the exponential stability in the pth moment for a class of random impulsive delayed nonlinear systems (RIDNSs) influenced by multiple randomly delayed impulses. The underlying continuous-time dynamics are governed by random delay differential equations subjected to stochastic perturbations modeled as second-order moment processes. To establish new stability conditions, we employ tools such as the average random impulsive estimation (ARIE), average impulsive delay (AID), average delay time (ADT), and Lyapunov-based techniques. The developed criteria are applicable not only to inherently stable or unstable systems, but also to scenarios where impulses with stabilizing and destabilizing effects appear simultaneously. Several illustrative examples are included to verify the applicability and advantages of the proposed approach.

    Citation: Yao Lu, Dehao Ruan, Quanxin Zhu. Stability of nonlinear systems with multi-delayed random impulses: Average estimation and delay approach[J]. AIMS Mathematics, 2025, 10(9): 22075-22091. doi: 10.3934/math.2025982

    Related Papers:

  • This study focuses on analyzing the exponential stability in the pth moment for a class of random impulsive delayed nonlinear systems (RIDNSs) influenced by multiple randomly delayed impulses. The underlying continuous-time dynamics are governed by random delay differential equations subjected to stochastic perturbations modeled as second-order moment processes. To establish new stability conditions, we employ tools such as the average random impulsive estimation (ARIE), average impulsive delay (AID), average delay time (ADT), and Lyapunov-based techniques. The developed criteria are applicable not only to inherently stable or unstable systems, but also to scenarios where impulses with stabilizing and destabilizing effects appear simultaneously. Several illustrative examples are included to verify the applicability and advantages of the proposed approach.



    加载中


    [1] J. Xu, Y. Liu, J. Qiu, J. Lu, Event-triggered impulsive control for nonlinear stochastic delayed systems and complex networks, Commun. Nonlinear Sci., 140 (2025), 108305. https://doi.org/10.1016/j.cnsns.2024.108305 doi: 10.1016/j.cnsns.2024.108305
    [2] X. Liu, P. Cheng, Stabilization of impulsive hybrid stochastic differential equations with Lévy noise by feedback control based on discrete-time state observations, Commun. Nonlinear Sci., 137 (2024), 108131. https://doi.org/10.1016/j.cnsns.2024.108131 doi: 10.1016/j.cnsns.2024.108131
    [3] Z. Wu, Stability criteria of random nonlinear systems and their applications, IEEE T. Automat. Contr., 60 (2015), 1038–1049. https://doi.org/10.1109/TAC.2014.2365684 doi: 10.1109/TAC.2014.2365684
    [4] Z. Wu, H. Karimi, P. Shi, Practical trajectory tracking of random Lagrange systems, Automatica, 105 (2019), 314–322. https://doi.org/10.1016/j.automatica.2019.04.006 doi: 10.1016/j.automatica.2019.04.006
    [5] T. Jiao, W. Zheng, S. Xu, Stability analysis for a class of random nonlinear impulsive systems, Int. J. Robust Nonlin., 27 (2017), 1171–1193. https://doi.org/10.1002/rnc.3630 doi: 10.1002/rnc.3630
    [6] T. Jiao, W. Zheng, S. Xu, Unified stability criteria of random nonlinear time-varying impulsive switched systems, IEEE T. Circuits I., 67 (2020), 3099–3112. https://doi.org/10.1109/TCSI.2020.2983324 doi: 10.1109/TCSI.2020.2983324
    [7] H. Xu, Q. Zhu, New criteria on pth moment exponential stability of stochastic delayed differential systems subject to average-delay impulses, Syst. Control Lett., 164 (2022), 105234. https://doi.org/10.1016/j.sysconle.2022.105234 doi: 10.1016/j.sysconle.2022.105234
    [8] Y. Lu, D. Ruan, Q. Zhu, Symmetric analysis of stability criteria for nonlinear systems with multi-delayed periodic impulses: Intensity periodicity and averaged delay, Symmetry, 17 (2025), 1481. https://doi.org/10.3390/sym17091481 doi: 10.3390/sym17091481
    [9] Y. Liu, J. Xu, J. Lu, W. Gui, Stability of stochastic time-delay systems involving delayed impulses, Automatica, 152 (2023), 110955. https://doi.org/10.1016/j.automatica.2023.110955 doi: 10.1016/j.automatica.2023.110955
    [10] Y. Lu, Q. Zhu, Exponential stability of impulsive random delayed nonlinear systems with average-delay impulses, J. Franklin I., 361 (2024), 106813. https://doi.org/10.1016/j.jfranklin.2024.106813 doi: 10.1016/j.jfranklin.2024.106813
    [11] P. Li, X. Li, J. Lu, Input-to-state stability of impulsive delay systems with multiple impulses, IEEE T. Automat. Contr., 66 (2021), 362–368. https://doi.org/10.1109/TAC.2020.2982156 doi: 10.1109/TAC.2020.2982156
    [12] H. Xu, Q. Zhu, Exponential stability of stochastic nonlinear delay systems subject to multiple periodic impulses, IEEE T. Automat. Contr., 69 (2024), 2621–2628. https://doi.org/10.1109/TAC.2023.3335005 doi: 10.1109/TAC.2023.3335005
    [13] A. R. Teel, A. Subbaraman, A. Sferlazza, Stability analysis for stochastic hybrid systems: a survey, Automatica, 50 (2014), 2435–2456. https://doi.org/10.1016/j.automatica.2014.08.006 doi: 10.1016/j.automatica.2014.08.006
    [14] W. He, F. Qian, Q. Han, G. Chen, Almost sure stability of nonlinear systems under random and impulsive sequential attacks, IEEE T. Automat. Contr., 65 (2020), 3879–3886. https://doi.org/10.1109/TAC.2020.2972220 doi: 10.1109/TAC.2020.2972220
    [15] W. He, X. Gao, W. Zhong, F. Qian, Secure impulsive synchronization control of multi-agent systems under deception attacks, Inform. Sciences, 459 (2018), 354–368. https://doi.org/10.1016/j.ins.2018.04.020 doi: 10.1016/j.ins.2018.04.020
    [16] Y. Tang, X. Xing, H.R. Karimi, L. Kocarev, J. Kurths, Tracking control of networked multi-agent systems under new characterizations of impulses and its applications in robotic systems, IEEE T. Ind. Electron., 63 (2016), 1299–1307. https://doi.org/10.1109/TIE.2015.2453412 doi: 10.1109/TIE.2015.2453412
    [17] Y. Tang, X. Wu, P. Shi, F. Qian, Input-to-state stability for nonlinear systems with stochastic impulses, Automatica, 113 (2020), 108766. https://doi.org/10.1016/j.automatica.2019.108766 doi: 10.1016/j.automatica.2019.108766
    [18] J. Xu, Y. Liu, Q. Meng, J. Cao, M. Abdel-Aty, Unified stability criteria for impulsive stochastic delayed systems, Nonlinear Anal. Hybri., 52 (2024), 101474. https://doi.org/10.1016/j.nahs.2024.101474 doi: 10.1016/j.nahs.2024.101474
    [19] W. Zhang, L. Feng, Z. Wu, J. Park, Stability criteria of random delay differential systems subject to random impulses, Int. J. Robust Nonlin., 31 (2021), 6681–6698. https://doi.org/10.1002/rnc.5632 doi: 10.1002/rnc.5632
    [20] L. Feng, W. Zhang, Z. Wu, Noise-to-state stability of random impulsive delay systems with multiple random impulses, Appl. Math. Comput., 436 (2023), 127517. https://doi.org/10.1016/j.amc.2022.127517 doi: 10.1016/j.amc.2022.127517
    [21] S. Dashkovskiy, M. Kosmykov, A. Mironchenko, L. Naujok, Stability of interconnected impulsive systems with and without time delays, using Lyapunov methods, Nonlinear Anal. Hybri., 6 (2012), 899–915. https://doi.org/10.1016/j.nahs.2012.02.001 doi: 10.1016/j.nahs.2012.02.001
    [22] S. Dashkovskiy, V. Slynko, Stability conditions for impulsive dynamical systems, Math. Control Signals Syst., 34 (2022), 95–128. https://doi.org/10.1007/s00498-021-00305-y doi: 10.1007/s00498-021-00305-y
    [23] S. Dashkovskiy, V. Slynko, Dwell-time stability conditions for infinite dimensional impulsive systems, Automatica, 147 (2023), 110695. https://doi.org/10.1016/j.automatica.2022.110695 doi: 10.1016/j.automatica.2022.110695
    [24] L. Feng, J. Park, W. Zhang, Improved noise-to-state stability criteria of random nonlinear systems with stochastic impulses, IET Control Theory A., 15 (2021), 96–109. https://doi.org/10.1049/cth2.12030 doi: 10.1049/cth2.12030
    [25] L. Feng, W. Zhang, Z. Yang, J. Park, Further stability results for random nonlinear systems with stochastic impulses, J. Franklin I., 358 (2021), 5426–5450. https://doi.org/10.1016/j.jfranklin.2021.04.039 doi: 10.1016/j.jfranklin.2021.04.039
    [26] J. Lu, D. W. C. Ho, J. Cao, A unified synchronization criterion for impulsive dynamical networks, Automatica, 46 (2010), 1215–1221. https://doi.org/10.1016/j.automatica.2010.04.005 doi: 10.1016/j.automatica.2010.04.005
    [27] B. Zhou, On asymptotic stability of linear time-varying systems, Automatica, 68 (2016), 266–276. https://doi.org/10.1016/j.automatica.2015.12.030 doi: 10.1016/j.automatica.2015.12.030
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(418) PDF downloads(34) Cited by(0)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog