Research article Special Issues

Soliton dynamics and stability of the time-fractional higher-order nonlinear Schrödinger equation: Analytical solutions and modulational instability analysis

  • Published: 22 September 2025
  • MSC : 35Q55, 35B35, 35C08, 35A20, 34A34

  • The paper investigates the soliton dynamics and stability analysis of the time-fractional higher-order nonlinear Schrödinger equation. A Caputo time-fractional derivative is included in the time fractional higher-order nonlinear Schrödinger equation, along with dispersive higher-order and nonlinear terms, which allow us to describe wave propagation in arbitrarily complex nonlinear and dispersive media in greater detail. Through the use of the $ \phi^{6} $-model expansion method, a vast range of precise analytical soliton solutions is obtained, comprising nonlinear, regular, and singular periodic solitons. The effects of the fractional higher-order physical parameters on the amplitude, width, and nature of these solitons are systematically examined. Moreover, the modulational instability is studied through the use of linear stability analysis. Plots are given in order to explain the change in the form and stability behavior, and the evolution of the soliton solutions as the parameters vary.

    Citation: Kanza Noor, Jamshad Ahmad. Soliton dynamics and stability of the time-fractional higher-order nonlinear Schrödinger equation: Analytical solutions and modulational instability analysis[J]. AIMS Mathematics, 2025, 10(9): 22053-22074. doi: 10.3934/math.2025981

    Related Papers:

  • The paper investigates the soliton dynamics and stability analysis of the time-fractional higher-order nonlinear Schrödinger equation. A Caputo time-fractional derivative is included in the time fractional higher-order nonlinear Schrödinger equation, along with dispersive higher-order and nonlinear terms, which allow us to describe wave propagation in arbitrarily complex nonlinear and dispersive media in greater detail. Through the use of the $ \phi^{6} $-model expansion method, a vast range of precise analytical soliton solutions is obtained, comprising nonlinear, regular, and singular periodic solitons. The effects of the fractional higher-order physical parameters on the amplitude, width, and nature of these solitons are systematically examined. Moreover, the modulational instability is studied through the use of linear stability analysis. Plots are given in order to explain the change in the form and stability behavior, and the evolution of the soliton solutions as the parameters vary.



    加载中


    [1] M. Naber, Time fractional Schrödinger equation, J. Math. Phys., 45 (2004), 3339–3352. https://doi.org/10.1063/1.1769611 doi: 10.1063/1.1769611
    [2] J. Ahmad, K. Noor, S. Akram, Stability analysis and solitonic behaviour of Schrödinger's nonlinear (2+1) complex conformable time fractional model, Opt. Quant. Electron., 56 (2024), 907. https://doi.org/10.1007/s11082-024-06521-5 doi: 10.1007/s11082-024-06521-5
    [3] G. P. Agrawal, Nonlinear fiber optics: Its history and recent progress, J. Opt. Soc. Am. B, 28 (2011), A1–A10. https://doi.org/10.1364/JOSAB.28.0000A1 doi: 10.1364/JOSAB.28.0000A1
    [4] P. L. Butzer, U. Westphal, An introduction to fractional calculus, In: Applications of fractional calculus in physics, Academic Press, 2000, 1–85. https://doi.org/10.1142/9789812817747_0001
    [5] M. Nadeem, F. Liu, Y. Alsayaad, Analyzing the dynamical sensitivity and soliton solutions of the time-fractional Schrödinger model with Beta derivative, Sci. Rep., 14 (2024), 8301. https://doi.org/10.1038/s41598-024-58796-z doi: 10.1038/s41598-024-58796-z
    [6] F. Tian, Y. Wang, Z. Li, Numerical simulation of soliton propagation behavior for the fractional-in-space NLSE, Fractal Fract., 8 (2024), 163. https://doi.org/10.3390/fractalfract8040163 doi: 10.3390/fractalfract8040163
    [7] M. Caputo, Linear models of dissipation whose Q is almost frequency independent, Ann. Geophys., 19 (1966), 383–393. https://doi.org/10.4401/ag-5051 doi: 10.4401/ag-5051
    [8] K. M. Elhadj, L. Al Sakkaf, U. Al Khawaja, A. Boudjemâa, Singular soliton molecules of the nonlinear Schrödinger equation, Phys. Rev. E, 101 (2020), 042221. https://doi.org/10.1103/PhysRevE.101.042221 doi: 10.1103/PhysRevE.101.042221
    [9] N. I. Okposo, K. Raghavendar, N. Khan, J. F. G. Aguilar, A. M. Jonathan, New exact optical solutions for the Lakshmanan–Porsezian–Daniel equation with parabolic law nonlinearity using the $\phi^{6}$-expansion technique, Nonlinear Dynam., 113 (2025), 4775–4795. https://doi.org/10.1007/s11071-024-10430-3 doi: 10.1007/s11071-024-10430-3
    [10] H. U. Rehman, I. Iqbal, M. Mirzazadeh, M. S. Hashemi, A. U. Awan, A, M. Hassan, Optical solitons of new extended (3+1)-dimensional nonlinear Kudryashov's equation via $\phi^{6}$-model expansion method, Opt. Quant. Electron., 56 (2024), 279. https://doi.org/10.1007/s11082-023-05850-1 doi: 10.1007/s11082-023-05850-1
    [11] H. X. Jia, D. W. Zuo, Properties of the hybrid solutions for a generalized (3+1)-dimensional KP equation, Phys. Lett. A, 525 (2024), 129882. https://doi.org/10.1016/j.physleta.2024.129882 doi: 10.1016/j.physleta.2024.129882
    [12] X. Zhao, L. Li, F. Yu, Fractional-order effect on soliton solution and the oscillation number for some time-space fractional higher-order nonlinear Schrödinger equations, Nonlinear Dynam., 112 (2024), 13409–13426. https://doi.org/10.1007/s11071-024-09740-3 doi: 10.1007/s11071-024-09740-3
    [13] E. A. E. Khazanov, Post-compression of femtosecond laser pulses using self-phase modulation: From kilowatts to petawatts in 40 years, Quantum Electron., 52 (2022), 208. https://doi.org/10.1070/QEL18001 doi: 10.1070/QEL18001
    [14] A. Sheveleva, U. Andral, B. Kibler, P. Colman, J. M. Dudley, C. Finot, Idealized four-wave mixing dynamics in a nonlinear Schrödinger equation fiber system, Optica, 9 (2022), 656–662. https://doi.org/10.1364/OPTICA.445172 doi: 10.1364/OPTICA.445172
    [15] K. A. Gepreel, R. M. Shohib, M. E. Alngar, Analyzing multiplicative noise effects on stochastic resonant nonlinear Schrödinger equation via two integration algorithms, Opt. Quant. Electron., 57 (2025), 156. https://doi.org/10.1007/s11082-025-08067-6 doi: 10.1007/s11082-025-08067-6
    [16] A. Zhang, Y. Zhang, X. Wang, Z. Wang, J. Duan, The stochastic fractional Strichartz estimate and blow-up for Schrödinger equation, 2023. https://doi.org/10.48550/arXiv.2308.10270
    [17] K. K. Ahmed, H. M. Ahmed, W. B. Rabie, M. F. Shehab, Effect of noise on wave solitons for (3+1)-dimensional nonlinear Schrödinger equation in optical fiber, Indian J. Phys., 98 (2024), 4863–4882. https://doi.org/10.1007/s12648-024-03222-3 doi: 10.1007/s12648-024-03222-3
    [18] M. A. S. Murad, M. A. Mustafa, U. Younas, H. Emadifar, A. S. Khalifa, W. W. Mohammed, et al., Soliton solutions to the generalized derivative nonlinear Schrödinger equation under the effect of multiplicative white noise and conformable derivative, Sci. Rep., 15 (2025), 19599. https://doi.org/10.1038/s41598-025-04981-7 doi: 10.1038/s41598-025-04981-7
    [19] S. Abbagari, A. Houwe, L. Akinyemi, D. Y. Serge, K. T. Crépin, Multi-hump soliton and rogue waves of the coupled nonlinear Schrödinger equations in a nonlinear left-handed transmission line, Nonlinear Dynam., 113 (2025), 10319–10334. https://doi.org/10.1007/s11071-024-10774-w doi: 10.1007/s11071-024-10774-w
    [20] H. H. Hussein, H. M. Ahmed, S. A. Kandil, W. Alexan, Unveiling diverse solitons in the quintic perturbed Gerdjikov-Ivanov model via a modified extended mapping method, Sci. Rep., 15 (2025), 15881. https://doi.org/10.1038/s41598-025-97981-6 doi: 10.1038/s41598-025-97981-6
    [21] W. F. Weng, M. H. Zhang, G. Q. Zhang, Z. Y. Yan, Dynamics of fractional N-soliton solutions with anomalous dispersions of integrable fractional higher-order nonlinear Schrödinger equations, Chaos, 32 (2022), 123110. https://doi.org/10.1063/5.0101921 doi: 10.1063/5.0101921
    [22] M. I. Afridi, T. Islam, M. A. Akbar, M. S. Osman, The investigation of nonlinear time-fractional models in optical fibers and the impact analysis of fractional-order derivatives on solitary waves, Fractal Fract., 8 (2024), 627. https://doi.org/10.3390/fractalfract8110627 doi: 10.3390/fractalfract8110627
    [23] S. Hussain, G. Arora, R. Kumar, Semi-analytical methods for solving non-linear differential equations: A review, J. Math. Anal. Appl., 531 (2024), 127821. https://doi.org/10.1016/j.jmaa.2023.127821 doi: 10.1016/j.jmaa.2023.127821
    [24] A. Chabchoub, N. P. Hoffman, N. Akhmediev, Modulation instability and New Breathers on finite background, Phys. Rev. Lett., 106 (2011), 204502. https://doi.org/10.1103/PhysRevLett.106.204502 doi: 10.1103/PhysRevLett.106.204502
    [25] M. Onorato, S. Residori, U. Bortolozzo, A. Montina, F. T. Arecchi, Rogue waves and modulational instability in optics and oceanography, Phys. Rep., 528 (2013), 47–89. https://doi.org/10.1016/j.physrep.2013.03.001 doi: 10.1016/j.physrep.2013.03.001
    [26] J. Ahmad, K. Noor, S. Anwar, S. Akram, Stability analysis and soliton solutions of the truncated M-fractional Heisenberg ferromagnetic spin chain model via two analytical methods, Opt. Quant. Electron., 56 (2024), 95. https://doi.org/10.1007/s11082-023-05528-8 doi: 10.1007/s11082-023-05528-8
    [27] A. Khare, U. Sukhatme, New periodic and hyperbolic soliton solutions of the nonlinear Schrödinger equation, J. Math. Phys., 43 (2002), 3798–3816.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(498) PDF downloads(21) Cited by(0)

Article outline

Figures and Tables

Figures(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog