Research article

A multivariate model for the Wiener process range, with statistical properties under stochastic volatility

  • Published: 22 September 2025
  • MSC : 60J65, 60J70

  • In this paper, we presented a mathematical model to analyze financial instruments that are sensitive to the difference between the highest and lowest prices of n independent stocks in a random volatility environment. This model relies on the multivariate distribution of the ranges of n independent Wiener processes, describing the difference between the highest and lowest stock prices for a known time period. In addition to deriving the statistical characteristics of this distribution and its truncated version, including reliability properties, moments, the stress–strength parameter, and order statistics; we considered Bonferroni and Lorenz curves and the Gini index of the proposed model, as well as assessed its robustness in turbulent market environments. The proposed distribution enhances the modeling of range-based financial products to enable the construction of more efficient risk management and hedging strategies. Simulations with real financial data also confirmed its effectiveness in modeling range-based products and reducing volatility in markets.

    Citation: Rawiyah Muneer Alraddadi, Mohamed Abd Allah El-Hadidy. A multivariate model for the Wiener process range, with statistical properties under stochastic volatility[J]. AIMS Mathematics, 2025, 10(9): 22023-22052. doi: 10.3934/math.2025980

    Related Papers:

  • In this paper, we presented a mathematical model to analyze financial instruments that are sensitive to the difference between the highest and lowest prices of n independent stocks in a random volatility environment. This model relies on the multivariate distribution of the ranges of n independent Wiener processes, describing the difference between the highest and lowest stock prices for a known time period. In addition to deriving the statistical characteristics of this distribution and its truncated version, including reliability properties, moments, the stress–strength parameter, and order statistics; we considered Bonferroni and Lorenz curves and the Gini index of the proposed model, as well as assessed its robustness in turbulent market environments. The proposed distribution enhances the modeling of range-based financial products to enable the construction of more efficient risk management and hedging strategies. Simulations with real financial data also confirmed its effectiveness in modeling range-based products and reducing volatility in markets.



    加载中


    [1] W. Feller, The asymptotic distribution of the range of sums of independent random variables, Ann. Math. Stat., 22 (1951), 427–432. https://www.jstor.org/stable/2236629
    [2] C. Withers, S. Nadarajah, The distribution and quantiles of the range of a Wiener process, Appl. Math. Comput., 232 (2014), 766–770. https://doi.org/10.1016/j.amc.2014.01.147 doi: 10.1016/j.amc.2014.01.147
    [3] A. Teamah, M. El-Hadidy, M. El-Ghoul, On bounded range distribution of a Wiener process, Commun. Stat. -Theor. M., 51 (2022), 919–942. https://doi.org/10.1080/03610926.2016.1267766 doi: 10.1080/03610926.2016.1267766
    [4] M. El-Hadidy, A. Alfreedi, Internal truncated distributions: Applications to Wiener process range distribution when deleting a minimum stochastic volatility interval from its domain, J. Taibah Univ. Sci., 13 (2019), 201–215. https://doi.org/10.1080/16583655.2018.1555020 doi: 10.1080/16583655.2018.1555020
    [5] M. El-Hadidy, Generalized truncated distributions with N intervals deleted: Mathematical definition, Filomat, 33 (2019), 3409–3424. https://www.jstor.org/stable/27382791
    [6] M. El-Hadidy, Discrete distribution for the stochastic range of a Wiener process and its properties, Fluct. Noise Lett., 18 (2019), 1950024. https://doi.org/10.1142/S021947751950024X doi: 10.1142/S021947751950024X
    [7] C. Alexander, Market models: A guide to financial data analysis, John Wiley & Sons, 2001.
    [8] A. J. McNeil, R. Frey, P. Embrechts, Quantitative risk management: Concepts, techniques and tools–revised edition, Princeton University Press, 2015.
    [9] A. J. Patton, Modelling asymmetric exchange rate dependence, Int. Econ. Rev., 47 (2006), 527–556. https://doi.org/10.1111/j.1468-2354.2006.00387.x doi: 10.1111/j.1468-2354.2006.00387.x
    [10] P. Jorion, Value at risk: The new benchmark for managing financial risk, 3Eds., McGraw-Hill, 2007.
    [11] P. Glasserman, Monte carlo methods in financial engineering, Springer, 2004. https://doi.org/10.1007/978-0-387-21617-1
    [12] R. S. Tsay, Analysis of financial time series, 3Eds., John Wiley & Sons, 2010. https://doi.org/10.1002/9780470644560
    [13] T. G. Andersen, T. Bollerslev, F. X. Diebold, P. Labys, Modeling and forecasting realized volatility, Econometrica, 71 (2003), 579–625. https://doi.org/10.1111/1468-0262.00418 doi: 10.1111/1468-0262.00418
    [14] M. El-Hadidy, A. Alfreedi, Multivariate distribution of N-dimensional Wiener process stock market risks, J. Emerg. Issues Econ. Financ. Bank., 9 (2020), 3006–3014.
    [15] M. El-Hadidy, R. Alraddadi, On distribution of the stock market risk with a maximum drawdown of a Wiener process, Commun. Math. Appl., 16 (2025), 301–314. https://doi.org/10.26713/cma.v16i1.2929 doi: 10.26713/cma.v16i1.2929
    [16] S. Nadarajah, Some truncated distributions, Acta Appl. Math., 106 (2009), 105–123. https://doi.org/10.1007/s10440-008-9285-4 doi: 10.1007/s10440-008-9285-4
    [17] M. Ali, S. Nadarajah, A truncated Pareto distribution, Comput. Commun., 30 (2006), 1–4. https://doi.org/10.1016/j.comcom.2006.07.003 doi: 10.1016/j.comcom.2006.07.003
    [18] L. Zaninetti, M. Ferraro, On the truncated Pareto distribution with applications, Cent. Eur. J. Phys., 6 (2008), 1–6. https://doi.org/10.2478/s11534-008-0008-2 doi: 10.2478/s11534-008-0008-2
    [19] M. A. El-Hadidy, R. Alraddadi, On bivariate distributions with N deleted areas: Mathematical definition, Commun. Math. Appl., 15 (2024), 1181–1190. https://doi.org/10.26713/cma.v15i3.2834 doi: 10.26713/cma.v15i3.2834
    [20] Z. I. Botev, The normal law under linear restrictions: Simulation and estimation via minimax tilting, J. R. Stat. Soc. B, 79 (2017), 125–148. https://doi.org/10.1111/rssb.12162 doi: 10.1111/rssb.12162
    [21] W. C. Horrace, Some results on the multivariate truncated normal distribution, J. Multivar. Anal., 94 (2005), 209–221. https://doi.org/10.1016/j.jmva.2004.10.007 doi: 10.1016/j.jmva.2004.10.007
    [22] J. Y. Campbell, A. W. Lo, A. C. MacKinlay, The econometrics of financial markets, Macroecon. Dyn., 2 (1998), 559–562. https://doi.org/10.1017/S1365100598009092 doi: 10.1017/S1365100598009092
    [23] R. Cont, Empirical properties of asset returns: Stylized facts and statistical issues, Quant. Financ., 1 (2001), 223–236. https://doi.org/10.1080/713665670 doi: 10.1080/713665670
    [24] E. Jondeau, S. Poon, M. Rockinger, Financial modeling under Non-Gaussian distributions, Springer, 2007. https://doi.org/10.1007/978-1-84628-696-4
    [25] W. Rudin, Principles of mathematical analysis, McGraw-Hill, 1976.
    [26] T. Andreescu, D. Andrica, I. Cucurezeanu, An introduction to Diophantine equations: A problem-based approach, Boston: Birkhäuser, 2010. https://doi.org/10.1007/978-0-8176-4549-6
    [27] X. Hu, G. Li, G. Xiang, Q. Zhou, Asset pricing models in the presence of higher moments: Theory and evidence from the U. S. and China stock market, Pac. -Basin Financ. J., 79 (2023), 102053. https://doi.org/10.1016/j.pacfin.2023.102053 doi: 10.1016/j.pacfin.2023.102053
    [28] P. Carr, D. Madan, Option valuation using the fast Fourier transform, J. Comput. Financ., 2 (1999), 61–73. https://doi.org/10.21314/JCF.1999.043 doi: 10.21314/JCF.1999.043
    [29] R. Subramanian, K. S. Ramesh, A note on the stress-strength reliability, IEEE T. Reliab., R-18 (1969), 204–205. https://doi.org/10.1109/TR.1969.5216356 doi: 10.1109/TR.1969.5216356
    [30] D. Kundu, M. Z. Raqab, Estimation of P(Y < X) for three-parameter Weibull distribution, Stat. Probab. Lett., 79 (2009), 1839–1846. https://doi.org/10.1016/j.spl.2009.05.026 doi: 10.1016/j.spl.2009.05.026
    [31] J. D. Church, B. Harris, The estimation of reliability from stress strength relationships, Technometrics, 12 (1970), 49–54. https://doi.org/10.2307/1267350 doi: 10.2307/1267350
    [32] A. Kemna, A. Vorst, A pricing method for options based on average asset values, J. Bank. Financ., 14 (1990), 113–129. https://doi.org/10.1016/0378-4266(90)90039-5 doi: 10.1016/0378-4266(90)90039-5
    [33] Y. Bergman, Option pricing with differential interest rates, Rev. Financ. Stud., 8 (1995), 475–500. https://doi.org/10.1093/rfs/8.2.475 doi: 10.1093/rfs/8.2.475
    [34] P. Glasserman, Monte Carlo methods in financial engineering, Springer, 2003. https://doi.org/10.1007/978-0-387-21617-1
    [35] J. Hull, Options, Futures, and other derivatives, 9Eds., Pearson, 2021.
    [36] G. M. Giorgi, R. Mondani, Sampling distribution of Bonferroni inequality index from exponential population, Sankhya B, 57 (1995), 10–18. https://www.jstor.org/stable/25052872
    [37] G. M. Giorgi, Concentration index, Bonferroni, Encyclopedia of statistical sciences, New York: Wiley, 2 (1998), 141–146. https://doi.org/10.1002/0471667196.ess0617.pub2
    [38] G. M. Giorgi, M. Crescenzi, A look at the Bonferroni inequality measure in a reliability framework, Statistica, LXI (2001), 571–583. https://doi.org/10.6092/issn.1973-2201/6824
    [39] P. Embrechts, A. McNeil, D. Straumann, Correlation and dependence in risk management: Properties and pitfalls, In: M. A. H. Dempster Ed., Risk Management: Value at Risk and Beyond, Cambridge University Press, 2002,176–223. http://dx.doi.org/10.1017/CBO9780511615337.008
    [40] T. Adrian, M. Brunnermeier, CoVaR, Am. Econ. Rev., 106 (2016), 1705–1741. https://doi.org/10.1257/aer.20120555 doi: 10.1257/aer.20120555
    [41] C. Genest, A. Favre, Everything you always wanted to know about copula modeling but were afraid to ask, J. Hydrol. Eng., 12 (2007), 347–368. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(347) doi: 10.1061/(ASCE)1084-0699(2007)12:4(347
    [42] U. Cherubini, E. Luciano, W. Vecchiato, Copula methods in finance, John Wiley & Sons, 2004. https://doi.org/10.1002/9781118673331
    [43] Y. Han, X. Zheng, Approximate pricing of derivatives under fractional stochastic volatility model, ANZIAM J., 65 (2023), 229–247. https://doi.org/10.1017/S1446181123000202 doi: 10.1017/S1446181123000202
    [44] P. Jaworski, F. Durante, W. Härdle, T. Rychlik, Copula theory and its applications, Springer, 2010. https://doi.org/10.1007/978-3-642-12465-5
    [45] J. Klein, M. Moeschberger, Survival analysis: Techniques for censored and truncated data, 2Eds., Springer, 2003. https://doi.org/10.1007/b97377
    [46] D. Oakes, Bivariate survival models induced by frailties, J. Am. Stat. Assoc., 84 (1989), 487–493. https://doi.org/10.1080/01621459.1989.10478795 doi: 10.1080/01621459.1989.10478795
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(419) PDF downloads(24) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog