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Abstract: In this paper, we presented a mathematical model to analyze financial instruments that are 

sensitive to the difference between the highest and lowest prices of n independent stocks in a random 

volatility environment. This model relies on the multivariate distribution of the ranges of n 

independent Wiener processes, describing the difference between the highest and lowest stock prices 

for a known time period. In addition to deriving the statistical characteristics of this distribution and 

its truncated version, including reliability properties, moments, the stress–strength parameter, and 

order statistics; we considered Bonferroni and Lorenz curves and the Gini index of the proposed 

model, as well as assessed its robustness in turbulent market environments. The proposed 

distribution enhances the modeling of range-based financial products to enable the construction of 

more efficient risk management and hedging strategies. Simulations with real financial data also 

confirmed its effectiveness in modeling range-based products and reducing volatility in markets. 
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1. Introduction  

The use of range-based models, which study the distribution of the difference between 

maximum and minimum asset prices, has gained increasing attention in financial mathematics in 

recent years. These models are particularly relevant for analyzing financial instruments such as range 

options, hedge options, and volatility-linked derivatives. These instruments are constructed on the 

price range of the stock during a specified time interval rather than against its mere terminal value. 

This modeling method is based on some mathematical properties of a process called the Wiener 

process },),({ RttW where R  is the set of real numbers. It is one of the very few important 

mathematical tools available for quantifying random variations in prices, especially when calculating 

the price of exotic financial products. This process is also used to model the behavior of financial assets, 

assuming that instantaneous price changes follow Gaussian distributions with time independence.  

In recent decades, financial models have evolved from relying solely on the terminal value of the 

stock to more complex models that take into account its behavior over the entire time period. Among 

several modeling approaches for the analysis of financial risk and derivative instrument pricing, it is 

the range-based models that are considered the most efficient in analyzing financial risk and pricing 

derivative instruments, especially in highly volatile markets. Here, the range refers to the difference 

between the minimum and maximum values that a stock may reach over a time interval ),0( T , denoted 

as range )(inf)(sup)(
),0(),0(

tWtWTR
TT

 . This interval, in the case of Brownian motion, is intrinsically 

related to the extrema of the Wiener process. Feller [1] obtained the distribution of this range by using the 

method of images. He obtained the probability density function of this distribution, which was later used 

by [2] to derive the cumulative distribution function and the associated quantile estimators.  

Most previous studies focused on the unitary properties of this distribution, without considering 

its behavior under high random fluctuations or over multiple time periods. In this regard, [3] 

presented a probability distribution for the range of the Wiener process when restricted to two 

specific values using the truncation method, which is considered more practical. They obtained the 

probability density function of the new distribution and analyzed its statistical properties, including 

survival and hazard functions, statistical moments, the stress-strength parameter, ordered statistics, 

and econometric skewness. The distribution’s effectiveness in representing the behavior of 

range-bound stock prices was also verified by applying it to real-world data. The results showed that 

the distribution provides an accurate and appropriate model for describing prices in financial 

environments with bounded fluctuations. As an extension of this type of distribution, El-Hadidy and 

Alfreedi [4] exploited the concept of internal truncation of distributions introduced in [5] to obtain a 

new distribution for the range of the Wiener process, aimed at excluding periods of minor price 

fluctuations. The probabilities of the removed periods were distributed equally or in different 

proportions to the periods with non-removed random fluctuations. In addition, El-Hadidy and 

Alfreedi [4] presented the previous statistical properties of this distribution, where the results showed 

that the new distribution accurately reflected the statistical effect resulting from excluding periods of low 

volatility, making it suitable for financial applications including stock price modeling. El-Hadidy [6] also 

presented a discrete distribution for the range of the Wiener process using a special transformation 

based on the number of observed points. The presented discrete distribution showed good agreement 

with financial data and is an effective alternative to traditional continuous distributions when dealing 

with limited or discrete data. 

Multivariate distributions are a foundation in financial modeling as they are used to describe the 

interdependence and mutual influence of different financial assets under the presence of uncertain 
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circumstances. In an earlier work, Alexander [7] and McNeil et al. [8] showed that the multivariate 

models provide a reasonable description of the covariance of stocks, an element fundamental in risk 

management, portfolio analysis, and derivative pricing. For example, distributions such as the 

multivariate normal distribution and copula-based distributions in [9] are used to examine nonlinear 

correlations between returns, estimate systematic risk, and determine optimal portfolio 

diversification. The multivariate models presented in [10,11] have also demonstrated stunning 

superiority in value-at-risk applications and in modeling the dynamics of highly correlated assets 

during financial crises. Portions of the literature in [12,13] have demonstrated that uses of such 

models are not only limited to forecasting improved projections but also to facilitating strategic 

decision-making in dynamic investment horizons, which are impacted by a series of related variables. 

El-Hadidy and Alfreedi [14] were able to develop a multivariate distribution for the 

multidimensional Wiener process and analyzed its properties using probability range vectors, which 

can be applied to describe the temporal relationships between multiple fluctuations in financial 

markets. El-Hadidy and Alraddadi [15] also presented an accurate maximum decline distribution for 

the Wiener process as a model for measuring financial market risk, which included calculating the 

expected value of risk and extending it to the multidimensional case with applications to investment 

portfolio management. 

The objective here is to obtain a multivariate distribution of n independent Wiener process 

ranges that represent the price differences of n stocks in the time interval ),0( T  and its truncated 

version under the stochastic volatility constraints. We aim to derive the classical statistical properties 

of this distribution, such as reliability properties, moments, the stress-strength parameter, and order 

statistics. This study focuses on applying the multivariate structure to evaluate the effectiveness of 

range-based stock pricing models. In addition, we study in detail the bivariate case of this distribution 

and its truncated version. In doing so, we explore the influence of the combined behavior of maximum 

and minimum price values for independent and different stocks in the time period ),,0( T  influenced 

by varying stochastic volatility, on the accuracy of stock price valuation. Although the current 

distribution assumes independence of Wiener processes, it can be extended to handle 

non-independent cases using copula functions, thereby allowing the representation of cross-sectional 

dependencies among financial assets. This tractability enables explicit derivation of joint 

distributions, moments, and reliability measures. 

This research includes the following sections: Section 2 presents the mathematical formulation 

of the multivariate distribution of n independent Wiener process ranges that give the price differences 

of n stocks in the time interval ),0( T  and its truncated version under stochastic volatility. Section 3 

examines the statistical properties of the bivariate case of this distribution and its truncated version. 

Section 4 presents a numerical application that simulates restricted markets using real financial data. 

The dynamics of the common price range are analyzed, and then statistical fit tests and performance 

comparisons with existing models are studied. Section 5 concludes with the most important findings 

and future recommendations. 

2. n-dimensional Wiener range distribution 

The Wiener process range probability density function is a fundamental component in the study 

of this process due to its broad applications in physics, statistics, and financial modeling. This function 

has found concrete applications in the study of volatility in financial markets, particularly in risk 

models and the estimation of extreme price movements. Within the framework of the stochastic model 

of price movement that is assumed to proceed as a Wiener process, the amplitude of this movement 
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over a given time period is a quantitative indicator of the overall market volatility. One of the most 

prominent practical applications is the use of the range distribution to estimate value-at-risk limits and 

analyze extreme scenarios in investment portfolio management. For example, the expected range of 

the Wiener process is used to establish upper and lower confidence limits for short-term price forecasts, 

without needing to know the exact parameters of the price distribution, taking advantage of the 

Gaussian and skewed nature of the process. The range distribution is used in hypothesis testing of the 

stability of financial data in which the computed range is compared with theoretical values for the 

purpose of establishing the existence of non-random behavior in the time series. Several studies have 

demonstrated the relevance of the Wiener range in this context, including those by Feller [1], Withers 

and Nadarajah [2], and Teamah et al. [3], who provided both theoretical expansions and practical insights 

into its implementation in finance. The range of the Wiener process )(TG  on the time interval ),0( T  can 

be defined as the difference between the stock’s highest and lowest prices over a given time period. So, 

it can be written as )(inf)(sup)(
),0(),0(

tWtWTG
TT

 . Applying the image method, which was used in [1], one 

can obtain the probability density function of )(TG  by a series formula as follows: 

,
4

exp
4

)(

1
22)( 



 












k i

k
TG

g

TC

g

T
gf          (2.1) 

where ,
8

)12( 22


k
Ck  g0 , and 0T . 

The use of multivariate distributions not only enhances the accuracy of forecasts of future returns, 

but also contributes to supporting risk management strategies and diversifying investment portfolios in 

highly volatile markets. Therefore, we consider (2.1) to obtain the multivariate distribution of price 

differences for n  independent stocks (ranges of independent Wiener processes) in the time interval ),0( T , 

which is given by 

  
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where  )(),...,(),( 21 tWtWtW n  is a vector of n  independent Wiener process. The assumption of 

independence between Wiener processes is theoretically and practically crucial since it is 

mathematically tractable and enables explicit calculation of joint distributions, moments, and 

reliability measures, which would be unattainable in the case of dependence. Moreover, this 

assumption provides a solid base for multivariate modeling, from which dependence structures such as 

copulas or correlation matrices can later be added without affecting the key range properties. Therefore, 

a joint probability density function of the multivariate distribution of independent random variables 
niGi ,...,2,1,   is given by 
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On the other hand, the cumulative distribution function of this distribution is given by 
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Therefore, its survival function is obtained from  
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2.1. Double truncated version 

The use of a truncated multivariate probability distribution is an effective tool for improving the 

accuracy of statistical estimation of stock price fluctuations in financial markets with high random 

volatility. The concept of truncation for one- and two-sided probability distributions was introduced in 

earlier works, such as [16–18]. El-Hadidy [5] also introduced a more general and comprehensive 

concept of truncation, which allows truncating N intervals of the probability distribution. More recently, 

El-Hadidy and Alraddadi [19] were able to introduce a new concept of truncating N intervals within a 

multivariate distribution. These types of truncated distributions were able to provide a clearer picture of 

the distribution of data within specific time periods, such as the works in [20,21], as they allow us to 

ignore outliers or extreme values that often distort classical measures such as variance and correlation, 

especially in markets that experience exceptional events or price spikes. By putting limits on spreads, 

either as regulatory market limits or by using prior knowledge modeling, the truncated distribution can 

then be utilized to provide a more realistic and accurate description of the probabilistic structure of 

return vectors. This approach also assists in enhancing the stability of financial models, particularly 

when used to estimate risk of a portfolio or optimize performance of machine learning models when 

dealing with financial data with non-Gaussian features. Furthermore, the distribution of price becomes 

closer to the empirical observation under this type of distribution, supporting its evidence for 

applications in terms of financial derivatives pricing and systemic risk management. 

Since niGi ,...,2,1,  , are independent random variables, and applying the truncated definition in [16], 

we can get the joint double truncated probability density function of the new vector of independent 

random variables  )(),...,(),( 21 TLTLTL n . For all ,,...,2,1 ni   we let Tlx ii 2/ , Taa ii 2/ , and 

,2/ Tbb ii   and then (2.1) becomes 
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By restoring values Tlx ii 2/ , Taa ii 2/ , and Tbb ii 2/  to their original values, one can get the 

joint double truncated probability density function  )(),...,(),( 21 TLTLTL n  by  
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where nibla iii ,...,2,1,  .  

Proposition 1. The joint double truncated cumulative distribution function of  )(),...,(),( 21 TLTLTL n  is 

given as 
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Proof. Since the vector  )(),...,(),( 21 TLTLTL n  consists of independent random variables, the joint 

distribution can be written as the product of the marginal distributions. Each marginal distribution is 

obtained by integrating its density over the truncated interval niba ii ,...,2,1],,[  . Specifically, 
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Evaluating the integral for each i  requires applying integration by parts, which reduces the 

expression into the compact exponential form shown in (2.6). This completes the proof. 

Proposition 2. The joint double truncated survival function of  )(),...,(),( 21 TLTLTL n  is given by 
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Proof. By definition, the survival function is the complement of the cumulative distribution function, 
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Evaluating each integral involves repeated use of the exponential expansion and summation properties 

of the truncated density. After simplification, this leads to the compact series–exponential form 

reported in (2.7). This completes the proof.  

2.1.1. Moments 

Statistical moments are the basic instruments for explaining and exploring the probability 

distribution of financial stock returns, particularly in multivariate models used to study the correlation 

between stock price changes. The first moment (mean) is used to estimate the expected return, while 

the second moment gauges the variance and covariance that enable the derivation of the covariance 

matrix necessary to estimate joint risks in investment portfolios as in [22]. The importance of moments 

extends beyond this, as the higher moments such as skewness (third moment) and kurtosis (fourth 

moment) are exact measures of the asymmetry of distribution and “tailedness” attributes that deviate 

from classical assumptions of normal distribution, as found in [23], which investigated the stylized 

properties of financial markets. These moments are also used in approximate expansions, such as the 

Edgeworth expansion, to refine the approximation of actual return distributions, which effectively 

affects the accuracy in estimating risk measures such as value at risk and conditional probability of loss, 

as in [24]. Thus, moment analysis of multivariate distributions is not just a statistical description; it is a 

basic tool of financial performance measurement and risk management. 

Theorem 1. Let  )(),...,(),( 21 TLTLTL n  be a vector of independent Wiener process range, and then its 
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Proof. Use (2.5) and the independence principle of niLi ,...,2,1,  , to get the joint moment generating 
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where ,8ˆ Ta   
k

k
C

1
  (it depends on the number k ), and TCkk 4  depends on k  and the moment T . 

Since the exponential expansion is valid for all ),( il ,  we can interchange summation and 

integration. To justify this interchange, note that on any compact interval ],[ ii ba , each term of the 

series is of the form  2exp  iki ltl   with k  in k . Hence,    22 maxexpexp   ikiiki altltl   and 

the series   
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As in [26], we can solve the following equations: 
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Central moments are likely the most useful analytical tool in studying stock price volatility, 

especially when comparing data over a limited time frame. Some studies, for instance, Cont’s [23] 

research on statistical properties of financial asset returns, have demonstrated that using statistical 

moments around zero can better reflect market behavior and risk analysis than traditional models 

based on normal assumptions. Recent works also highlight the role of higher-order central moments in 

capturing volatility clustering and tail risks in financial markets [46]. 
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This completes the proof.  

Note that, since the distribution is double-truncated, all central moments are finite. The truncation 

ensures the existence of moments by eliminating potential divergences from the tail behavior of the 

untruncated range distribution. 

The characteristic function is a central mathematical tool in characterizing the probability 

distributions of stock returns, especially in models that go beyond the classical assumptions of normal 

distribution, such as jump and price explosion models. Its usefulness in studying stock price volatility 

over a limited time range is highlighted by its ability to represent the entire distribution of asset returns, 

even in cases where it is difficult to explicitly specify the probability density function. This function 

also allows for Fourier analysis to evaluate the theoretical prices of financial derivatives and to 

estimate the risk coefficients associated with thick-tailed distributions. Carr and Madan [28] 

demonstrated how the impedance function can be used with price options under non-normal 

distributions, opening the way for more precise applications in modeling financial market volatility. 
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Proof. Since the joint characteristic function of independent random variables is the product of their 

marginal characteristic functions, 
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, the same majorant used in Theorem 1, bounds every term uniformly on ],[ ii ba ; hence, 

dominated convergence (or the same M-test bound) justifies term-wise integration for the joint 

characteristic function, as well. This completes the proof.  

2.1.2. Stress-strength parameter 

The stress-strength parameter in a multivariate framework represents a powerful extension of the 

risk assessment associated with multiple interrelated financial assets. It is used to measure the joint 

probability that positive market forces (such as returns) will outweigh negative pressures (such as 

volatility or shocks) across more than one stock or index over a limited time period. Here, the 

coefficient takes the form of )( YX P , where  
n

XXX ,...,
2

,
1

X  and  
n

YYY ,...,
2

,
1

Y  are random 

vectors of stock performance and market stress forces, respectively. Studies such as in [29, 30] have 

shown the effectiveness of this coefficient in comparing two probability distributions, and thus it is 

suitable for modeling stock dynamics under market volatility and investigating a financial asset’s 

ability to withstand short-run shocks. The method is particularly valuable in emerging markets or 

during periods of crisis, where stock interactions play a significant role in collective volatility. 

In this section, we consider the probability vector 




n

i

ii TGTGP

1

12 ))()((Y , where )( 1TGi  and 

)( 2TGi , ni ,...,2,1 , are independent random variables, each distributed according to the specification in 

Eq (2.2), with respective parameters ,1T  and 2T . In statistical literature, the quantity ,iY ni ,...,2,1 , is 

commonly referred to as the stress-strength reliability parameter. It quantifies the likelihood that a 

system, modeled here as a difference in stock prices at different times, will operate successfully under 

uncertain conditions. Specifically, )( 1TGi  represents the random strength (e.g., resistance of the 

difference in the price of stock number ni ,...,2,1 ), and )( 2TGi  represents the random stress (e.g., 

external market pressure in the price of stock number ni ,...,2,1 ). A change in the price of stock 

number ni ,...,2,1  occurs when the applied stress )( 2TGi  exceeds the available strength )( 1TGi . The 
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system is deemed functional whenever )()( 12 TGTG ii  ; for more details, see [31]. For the range 

distribution under consideration for n  independent stocks, the stress-strength probability can be 

represented as .);(.);(

1
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iiTGiTG dgtgftgF
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Y   

Analyzing the distribution of the difference in the prices for n independent stocks within a 

bounded range is more effective and essential for assessing performance probabilities. Thus, we use 

the truncated distribution (2.5) to obtain the stress-strength reliability parameter, defined as )
~~

( YX P , 

which provides a probabilistic measure of a stock’s return vector  
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~
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Y , where  iii baX ,
~
   and  iii baY ,

~
  give the stock performance and market stress force 

for each ni ,...,2,1 , respectively. This metric is widely applied in financial risk assessment and 

portfolio optimization to quantify relative strength under uncertainty. Thus, we have 
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strictly positive and bounded away from zero) together with the exponential decay in k . 
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Since the conditions of integrability and convergence are satisfied, then 
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This completed the proof. 
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2.1.3. Order statistics 

In the context of pricing options based on the time path of the price, such as Asian mean options, 

rank statistics and multivariate probability distributions of the Wiener process are of great importance. 

Although closed-form formulas are available for pricing options based on the geometric mean under 

the assumption that the stock price follows a lognormal distribution, as in [32], extracting a similar 
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closed-form formula for the arithmetic mean remains mathematically infeasible in the general case, due 

to the lack of an accurate probability distribution for the arithmetic mean of lognormal variables [33]. 

This issue has led to the application of rank statistics as an analytical tool that helps approximate and 

understand the behavior of extreme values and averages on the price path. Multivariate distributions 

provide a precise mathematical framework for measuring the intertemporal relationship between stock 

prices at different points in time. For example, logarithmic price returns can be modeled using a 

multivariate normal distribution, as in [34], which allows for the analysis of covariance and correlation 

between prices, which are essential elements for understanding the behavior of price changes and time 

lags in financial assets. These models become essential for evaluating the probabilistic performance of 

mean-based or extreme/minimal price options. The integration of ranking statistics and multivariate 

probability distributions enhances the ability to build efficient numerical pricing algorithms and 

compensates for the lack of precise analytical solutions. Accordingly, these tools are a theoretical pillar 

in modern financial modeling of complex mean-based or extreme-based options [35]. Thus, we 

consider the random vectors  )~:~(1)~:2(1)~:1(1 ,...,, nnnn LLL   )~:~(2)~:2(2)~:1(2 ,...,, nnnn LLL  ...   ,,...,, )~:~()~:2()~:1( nnnnnnn LLL  

which denote the order statistics of a random sample niLLL niii ,...,2,1,,...,, ~21  , from a distribution which 

has joint double truncated probability density function (2.5). Consequently, the joint probability 

density function of the th
ip  order statistic for each ,)~:( npi i

L  ni ,...,2,1 , is 
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Similarly, one can obtain the value of 
ji
~ for any value of j

~
, and then  nq

nkn
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nk
q

nk LLLE )~:()~:(2)~:(1 ....21  will be 

obtained from (2.24). 

2.1.4. Modeling stock price disparities using Lorenz, Gini, and Bonferroni curves 

The study of the variance of stock price spreads is a central issue in the quantitative analysis of 

financial markets, especially when using statistical models based on the multivariate distribution of 

stock price spreads over a limited range (double truncated multivariate distribution). Among the most 

well-known tools in this field is the Lorenz curve, a graphical means of measuring the unequal 

distribution of stock price spreads across a set of stocks. The random variables niLi ,...,2,1,  , are 

arranged in ascending order, and the cumulative relative distribution of values is calculated against the 

cumulative percentage of observations. The Lorenz curve is based on the existence of a joint 

cumulative distribution function (2.6) for the vector of spreads  nLLL ,...,, 21  and represents the 

relationship between the cumulative percentage of assets and the cumulative percentage of the change 

in value. We can obtain the Lorenz curve for the independent random variables niLi ,...,2,1,  , from the 

following equation:  
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(2.25) 

where  
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Accordingly, the Gini index is calculated as a quantitative measure of inequality, given from the formula 
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It indicates the degree of concentration of price differences; the closer it is to one, the more 

concentrated the changes are in a small number of stocks. On the other hand, the Bonferroni curve is a 

useful alternative in cases where the Lorenz curve is insensitive to the minimum variance. The 

Bonferroni curve is one such measure that has the benefit of being graphically displayed in the unit 

square and can also be related to the Lorenz curve and Gini index, as demonstrated in [35–37], where 

the Bonferroni curve of the random vector  nLLL ,...,, 21  is given from (2.25) and (2.26) by 
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It represents the relative average of the categories with the least price changes, making it sensitive 

to price changes in the underperforming stock segment, which gives it particular importance in 

analyzing defensive or low-risk financial portfolios. When modeling price movements using a 

multivariate distribution (such as the multiple normal distribution or copula), these three measures 

allow us to understand the common variance between different price differences and reflect the nature 

of the common distribution and the asymmetry of risk associated with stocks. This becomes increasingly 

important in volatile market environments, where the three indicators can be used to assess risk 

distribution and improve diversification decisions in investment portfolios. According to [38], these 
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metrics can also be used in life testing and reliability. 

3. Bivariate distribution and its truncated version  

The bivariate distribution of the difference between stock prices holds great importance in 

economics, especially in the areas of financial market analysis and fair pricing of derivative financial 

instruments. Thus, from (2.2), we can obtain the joint bivariate distribution of a Wiener range with 

random variables )(
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TG  and )(
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TG  given by 
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As appears in Figure 1(a). Also, Figure 1(b) shows the joint double truncated version of the random 

variables )(
1

TL  and )(
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TL , which from (2.5) are given by 
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Figure 1. (a) The joint probability density function (3.1); and (b) the joint double truncated PDF (3.2). 

For multivariate distributions of stock price spreads, the cumulative distribution function is a 

required tool for the investigation of the joint performance of returns. The cumulative distribution 

function can be used to describe the cumulative probabilities of common events, such as simultaneous 

decreases or increases in the prices of several financial assets. Financial dependence has been modeled, 

as in [39], which showed that the use of the cumulative distribution functions (especially in the context 

of non-normal distributions) allowed them to capture the phenomenon of dependence at extremes that 

cannot be captured by linear correlation coefficients. The cumulative distribution functions are applied 

to approximate conditional risk indexes such as the conditional value-at-risk suggested in [40], which 

approximates the probability of big losses in a single asset simultaneously with a reference asset. The 

cumulative distribution function thus provides a consistent probabilistic framework for approximating 



22042 

AIMS Mathematics  Volume 10, Issue 9, 22023–22052. 

joint risk, derivative product valuation on multiple assets, and guiding optimal diversification policy in 

investment portfolios. Thus, from (2.3), the joint cumulative distribution function of )(
1

TG  and )(
2

TG  

is given by 
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see Figure 2(a). 
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Figure 2. (a) The joint cumulative distribution function (3.3); and (b) the joint double 

truncated cumulative distribution function (3.4). 

When stock price differences are limited to a certain range, as is the case in many realistic models 

that assume lower and upper bounds on price movements (due to price limits, volatility constraints, or 

bounded returns models), the practical and theoretical importance of the cumulative distribution 

function of the multivariate distribution increases. In this case, unlimited hypothetical distributions such 

as the normal distribution cannot be relied upon alone, making the cumulative distribution an essential 

tool for measuring joint probabilities within specific ranges. According to Genest and Favre [41], the use 

of cumulative distribution functions with distributions with finite support allows for a better 

description of the distribution of dependence between assets, especially when copula functions that 

separate margins and dependence structures within bounded ranges are used. Cherubini et al. [42] and 

Han and Zheng [43] also pointed out that this type of distribution is used in the evaluation of 

range-dependent derivatives, where the joint return is only calculated within a certain range of values, 

making integration over the cumulative distribution function essential for accurate pricing. In addition, 

predicting conditional risks and scenario probabilities within a given range requires precise tools, and 

the multivariate cumulative distribution function is the optimal tool for this. Thus, from (2.6) and for a 

bounded range 2,1,  ibla iii , the joint double truncated cumulative distribution function is given by 
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see Figure 2(b). 

As in (2.4) and (2.7), Figures 3(a),(b) show the joint survival function of the bivariate distribution 

of a Wiener range );,( 21)(),( 21
tggS TGTG  and its truncated version );,(

~
21)(),( 21

tLlS TLTL , respectively. In 

financial models that assume bounded returns, the multivariate survival function gains advanced 

analytical importance, particularly in evaluating the probabilities associated with the right tail of a 

return distribution. Unlike the cumulative distribution function, which measures the probability that all 

variables are less than or equal to certain values, the survival function provides a computational 

framework for estimating the likelihood of returns exceeding certain bounds, which is crucial in risk 

management and extreme probability contexts. According to [8], survival functions become more 

accurate and appropriate when used to analyze scenarios involving “conditional exceedances”, 

especially in portfolios containing correlated assets and affected by simultaneous movements in the 

upper tail. Similarly, Jaworski et al. [44] demonstrated that copula functions combined with survival 

functions allow tail dependence to be characterized efficiently, especially when the data are in a 

bounded range. In practice, in such applications as valuing barrier options or defining the probability 

of returns exceeding in the multi-asset portfolio, one has to employ multivariate survival functions in 

order to calibrate models to the actual behavior of market motion. 

  

(a) );,( 21)(),( 21
tggS TGTG  (b) );,(

~
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Figure 3. (a) The joint survival function );,( 21)(),( 21
tggS TGTG ; and (b) the joint double 

truncated survival function );,(
~

21)(),( 21
tllS TLTL . 

3.1. Some reliability properties 

The hazard rate function is used in multivariate distributions to analyze the behavior of 
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conditional probabilities of sudden or extreme changes in stock price spreads. It is particularly useful 

in predicting future risk conditional on past events, whether or not those spreads are range-bound. In 

the absence of a range-bound spread, the hazard rate function is used to capture the possibility of large 

and long-lasting market movements. It is useful for assessing the right or left tail of a distribution, 

supplementing measure instruments such as expected shortfall or conditional tail expectation. 

Therefore, the hazard rate function is used to assess systematic risk between correlated assets with 

unbounded return behavior and shows excellent efficiency for extreme scenario modeling and high 

dependencies. This function is given using (3.1) and (3.3) from the relation 
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      (3.5)  

as in Figure 4(a). When stock price spreads are restricted to a certain range, the hazard rate function 

helps in analyzing “edge risk” as it is used to estimate the probability of exceeding critical levels 

within a limited range. As Klein and Moeschberger [45] pointed out, the conditional hazard ratio 

provides accurate information about the timing of exceedances within the available range, especially 

in instruments that rely on predetermined scenarios such as range options or structured finance 

instruments. By using copula-based hazard models, as in [46], the dependence between variables can 

be separated from the spread margins, making estimation more flexible and realistic, both in the 

context of limited and unlimited price movements. Therefore, in the case of the truncated version of 

the bivariate Wiener range distribution, the joint hazard rate function is given, using (3.2) and (3.4), by 
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Figure 4. (a) The joint hazard rate function );,( 21)(),( 21
tggH TGTG ; and (b) the joint double 

truncated hazard rate function );,(
~

21)(),( 21
tllH TLTL . 

The reversed hazard rate function is a powerful analytical tool to examine multivariate probability 

distributions, particularly for stock price spreads, since it can measure the conditional probabilities of a 

price shift as it approaches a certain point from the left (i.e., before that value). Its use is in predicting 

the risk of premature price reversal or the likelihood of an abrupt flip before crossing a certain 

threshold. In the case of unlimited ranges of stock prices, the reversed hazard rate function is useful in 

tackling the probability of evading or avoiding sudden falls through examining the probability of 
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remaining beneath a certain threshold despite the infinite range. Using this function allows us to model 

the regressive behavior of data and provides additional information to the standard hazard ratio, 

especially for heavy tail data, e.g., financial markets. Using (3.1) and (3.3), we get the reversed hazard 

rate function:  
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see Figure 5(a). In the case of range-bounded stock price spreads, the reversed hazard rate function 

provides an accurate measure of the probability of the price stabilizing below the upper bound of the 

range and is used to evaluate hedging strategies and control assets with expected upper bounds. This 

function is also crucial in determining the relation of variables as they approach the boundary, 

especially with models using copulas as joint distributions. In addition, it is also used in the 

examination of financial instruments such as capped options and reverse barrier options, whose 

outcome is subject to remaining under a specified level. Thus, this function is given from (3.2) and (3.4) 

by 
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Figure 5. (a) The joint reversed hazard rate function );,( 21)(),( 21
tggR TGTG ; and (b) the joint 

double truncated reversed hazard rate function );,(
~

21)(),( 21
tllR TLTL . 

The second failure rate function is an advanced analytical tool in time-to-event statistical analysis 

and reliability theory. It is used to model the development of the failure rate or the risk itself over time 

or variables. For the multivariate distribution of stock price spreads, this function is necessary because 

it can estimate the probabilistic momentum of risk, i.e., the acceleration (or deceleration) of the 

probability of simultaneous changes in two or more stocks. When stock price spreads are not bounded 

by a specific range, the second failure rate function, given by );,...,,( 21)(),...,(),(
*
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tgggS nTGTGTG n
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log , is used to capture the behavior of increasing or decreasing risk at the tails of 

the distribution, as shown in Figure 6(a). This is particularly true during large and unexpected market 

movements, which are common in heavy-tailed models. This function enables us to distinguish 

between distributions with increasing or decreasing risk bias and helps us better assess the likelihood 
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of simultaneous crashes or rare, high-impact events in financial markets. On the other hand, in the case 

of range-bound spreads, the second failure rate, given by the relation );,...,,(
~

21)(),...,(),(
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log , provides precise information about how risk changes near the boundary of the 

range, as in Figure 6(b), such as when the price approaches a known upper or lower bound. This is 

particularly useful in the pricing of derivatives with constraints, e.g., capped options or range accrual 

notes. The use of the second failure rate in multivariate distributions with bounded support therefore 

enables us to model the boundary behavior of the data and their co-dependence, especially when 

combined with copula models or conditional distributions. 
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Figure 6. (a) The joint second rate of failure function );,...,,( 21)(),...,(),(
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; and 

(b) the joint double truncated second rate of failure function );,...,,(
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21)(),...,(),(
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21
tlllS nTLTLTL n

. 

4. Simulation and numerical validation with financial market data 

To implement the proposed model based on the Wiener process range distribution in a continuous 

format, real financial data for Apple (AAPL) and Microsoft (MSFT) stocks during July 2025 were 

used. A real dataset of daily high–low price ranges was obtained from open financial data sources (e.g., 

NASDAQ via the Alpha Vantage API, https://www.alphavantage.co/). Moreover, the annual 

fluctuations in the prices of these stocks are clearly illustrated in Figure 7, which demonstrates the 

variability of their high–low ranges over the full year. Each trading day’s range was determined using the 

difference between the high and low registered prices, as described in Table 1. Based on this data, the 

average daily range for AAPL was approximately $3.4 with a standard deviation of approximately $1.3, 

while the average daily range for MSFT was approximately $6.7 with a standard deviation of $3.8. An 

exceptional spike was observed on July 31, when the range exceeded $23 due to a wide price 

fluctuation. Descriptive statistics showed that the range distributions were moderately skewed and 

flattened for AAPL, compared to being positively skewed and relatively high skewed for MSFT, 

indicating a higher concentration of large fluctuations in the latter. 

Since the underlying price process evolves continuously and the theoretical Wiener range 

distribution is derived in continuous time, the nature of these data is directly consistent with the 
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model’s assumptions. Prior to calibration, the series were cleaned of missing values and any 

corporate events such as splits or dividends were treated in order to maintain consistency in the data. 

Calibration was performed by providing the volatility parameter   for every stock. For AAPL, an 

estimate of 018.0ˆ   proved to be a good fit in simulating the empirical range distribution, while for 

MSFT, an estimate of 032.0ˆ   was consistent with the amplitude of the daily ranges. The estimation 

was performed either by maximizing the likelihood function or by minimizing the Kolmogorov–

Smirnov distance between the empirical distribution and the joint CDF (2.3). 

 

 

Figure 7. Fluctuations in the prices of AAPL and MSFT stocks during the year 2025 when 

the price range is between 2 and 8. 
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Table 1. Daily trading data for AAPL and MSFT with high–low price range differences. 

Date AAPL MSFT  Average 

Daily 

Range 

Daily 

Std Dev 

AAPL 

Mean 

Price 

MSFT 

Mean 

Price 

AAPL 

Volatility 

Coefficient 

MSFT 

Volatility 

Coefficient 

AAPL 

Estimated 

Volatility 

MSFT 

Estimated 

Volatility 

High Low Range  High Low Range  

7/1/2025 210.19 206.14 4.05 498.05 490.98 7.07 5.56 2.13546 208.165 494.515 0.019456 0.014297 0.010259 0.004318 

7/2/2025 213.34 208.14 5.2 493.5 488.7 4.8 5 0.28284 210.74 491.1 0.024675 0.009774 0.001342 0.000576 

7/3/2025 214.65 211.81 2.84 500.13 493.44 6.69 4.765 2.72236 213.23 496.785 0.013319 0.013467 0.012767 0.00548 

7/7/2025 216.23 208.8 7.43 498.75 495.23 3.52 5.475 2.76478 212.515 496.99 0.034962 0.007083 0.01301 0.005563 

7/8/2025 211.43 208.45 2.98 498.2 494.11 4.09 3.535 0.78488 209.94 496.155 0.014195 0.008243 0.003739 0.001582 

7/9/2025 211.33 207.22 4.11 506.78 499.74 7.04 5.575 2.07182 209.275 503.26 0.019639 0.013989 0.0099 0.004117 

7/10/2025 213.48 210.03 3.45 504.44 497.75 6.69 5.07 2.29102 211.755 501.095 0.016292 0.013351 0.010819 0.004572 

7/11/2025 212.13 209.86 2.27 505.03 497.8 7.23 4.75 3.50725 210.995 501.415 0.010759 0.014419 0.016622 0.006995 

7/14/2025 210.91 207.54 3.37 503.97 501.03 2.94 3.155 0.30405 209.225 502.5 0.016107 0.005851 0.001453 0.000605 

7/15/2025 211.89 208.92 2.97 508.3 502.79 5.51 4.24 1.79605 210.405 505.545 0.014116 0.010899 0.008536 0.003553 

7/16/2025 212.4 208.64 3.76 506.72 501.89 4.83 4.295 0.75660 210.52 504.305 0.017861 0.009578 0.003594 0.0015 

7/17/2025 211.8 209.59 2.21 513.37 505.62 7.75 4.98 3.91737 210.695 509.495 0.010489 0.015211 0.018593 0.007689 

7/18/2025 211.79 209.71 2.08 514.64 507.43 7.21 4.645 3.62745 210.75 511.035 0.00987 0.014109 0.017212 0.007098 

7/21/2025 215.78 211.63 4.15 512.09 505.55 6.54 5.345 1.68998 213.705 508.82 0.019419 0.012853 0.007908 0.003321 

7/22/2025 214.95 212.23 2.72 511.2 505.27 5.93 4.325 2.26981 213.59 508.235 0.012735 0.011668 0.010627 0.004466 

7/23/2025 215.15 212.41 2.74 506.79 500.7 6.09 4.415 2.36880 213.78 503.745 0.012817 0.012089 0.011081 0.004702 

7/24/2025 215.69 213.53 2.16 513.67 507.3 6.37 4.265 2.97692 214.61 510.485 0.010065 0.012478 0.013871 0.005832 

7/25/2025 215.24 213.4 1.84 518.29 510.36 7.93 4.885 4.30628 214.32 514.325 0.008585 0.015418 0.020093 0.008373 

7/28/2025 214.85 213.06 1.79 515 510.12 4.88 3.335 2.18496 213.955 512.56 0.008366 0.009521 0.010212 0.004263 

7/29/2025 214.81 210.82 3.99 517.62 511.56 6.06 5.025 1.46371 212.815 514.59 0.018749 0.011776 0.006878 0.002844 

7/30/2025 212.39 207.72 4.67 515.95 509.44 6.51 5.59 1.30107 210.055 512.695 0.022232 0.012698 0.006194 0.002538 

7/31/2025 209.84 207.16 2.68 555.45 531.9 23.55 13.115 14.7573 208.5 543.675 0.012854 0.043316 0.070779 0.027144 
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The results of the goodness-of-fit tests, presented in Table 2, showed that the proposed model 

provided a good fit with the actual data. For AAPL, the estimated volatility coefficient was 018.0ˆ  , and 

the Kolmogorov–Smirnov statistic (KS = 0.073, 42.0p ) and Anderson–Darling statistic (AD = 0.29, 

1.0p ) were not significant, indicating a strong fit of the model. For MSFT, the estimated volatility 

coefficient was 032.0ˆ  , with values of (KS = 0.089, 21.0p ) and (AD = 0.51, 07.0p ) 

demonstrating the model’s ability to represent daily ranges, with greater sensitivity to the large 

fluctuations that characterize this stock. Probabilistic transformation (PIT) tests also confirmed the 

regularity of the time series after calibration and their closeness to the expected theoretical regularity. 

Table 2. Results of the goodness-of-fit tests. 

Stock ̂  KS 

statistic 

KS 

p-value 

AD 

statistic 

AD 

p-value 

Notes 

AAPL 0.018 0.073 0.42 0.29 > 0.10 Strong model fit 

MSFT 0.032 0.089 0.21 0.51 ≈ 0.07 Higher sensitivity to 

fluctuations 

These results show that the model can capture daily price behavior in continuous-time markets. 

It works efficiently for stable shares like AAPL and is flexible enough to capture wider swings in 

MSFT. This provides a clear advantage over traditional models that rely on independence or 

non-intermittency assumptions. 

5. Conclusions 

A comprehensive mathematical framework was developed to model financial instruments 

sensitive to the range between maximum and minimum stock prices over a given interval. The model is 

based on the multivariate distribution of the range of independent Wiener processes, which capture 

stock price variations. We derived the general distribution of these variations and their truncated 

version from two perspectives, highlighting their effectiveness under random fluctuations. The main 

statistical properties of this distribution, such as reliability functions, statistical moments, stress-strength 

parameters, and order statistics, were analyzed, with a focus on the bivariate distribution. The truncated 

version of the bivariate distribution demonstrated higher accuracy, especially in highly volatile markets, 

enhancing its importance in risk management and derivatives pricing.  

This work makes an important theoretical and practical contribution to analyzing stock price 

movements by their range. It also provides a foundation for developing analytical tools to improve risk 

management and financial forecasting. Based on these findings, future research may test the model 

under high-frequency trading episodes. Such episodes are marked by rapid volatility and structural 

complexity. Another direction is to extend the model to non-independent Wiener processes using 

copula functions. This extension preserves more realistic cross-sectional dependencies among asset 

returns. Moreover, future research may extend the model by adding jump processes or fractional 

Brownian motion to better capture long memory and sudden price shocks. 
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