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volatility environment. This model relies on the multivariate distribution of the ranges of n
independent Wiener processes, describing the difference between the highest and lowest stock prices
for a known time period. In addition to deriving the statistical characteristics of this distribution and
its truncated version, including reliability properties, moments, the stress—strength parameter, and
order statistics; we considered Bonferroni and Lorenz curves and the Gini index of the proposed
model, as well as assessed its robustness in turbulent market environments. The proposed
distribution enhances the modeling of range-based financial products to enable the construction of
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confirmed its effectiveness in modeling range-based products and reducing volatility in markets.

Keywords: multivariate distribution; Wiener process range; truncated distribution; stock price;
stress-strength parameter
Mathematics Subject Classification: 60J65, 60J70



mailto:rmraddadi@taibahu.edu.sa

22024

1. Introduction

The use of range-based models, which study the distribution of the difference between
maximum and minimum asset prices, has gained increasing attention in financial mathematics in
recent years. These models are particularly relevant for analyzing financial instruments such as range
options, hedge options, and volatility-linked derivatives. These instruments are constructed on the
price range of the stock during a specified time interval rather than against its mere terminal value.
This modeling method is based on some mathematical properties of a process called the Wiener
process {W(t),teR*}, where R* is the set of real numbers. It is one of the very few important

mathematical tools available for quantifying random variations in prices, especially when calculating
the price of exotic financial products. This process is also used to model the behavior of financial assets,
assuming that instantaneous price changes follow Gaussian distributions with time independence.

In recent decades, financial models have evolved from relying solely on the terminal value of the
stock to more complex models that take into account its behavior over the entire time period. Among
several modeling approaches for the analysis of financial risk and derivative instrument pricing, it is
the range-based models that are considered the most efficient in analyzing financial risk and pricing
derivative instruments, especially in highly volatile markets. Here, the range refers to the difference
between the minimum and maximum values that a stock may reach over a time interval (o,T), denoted

as range ﬁ(T):supW(t)—(iOnI)W(t). This interval, in the case of Brownian motion, is intrinsically
©T) :

related to the extrema of the Wiener process. Feller [1] obtained the distribution of this range by using the
method of images. He obtained the probability density function of this distribution, which was later used
by [2] to derive the cumulative distribution function and the associated quantile estimators.

Most previous studies focused on the unitary properties of this distribution, without considering
its behavior under high random fluctuations or over multiple time periods. In this regard, [3]
presented a probability distribution for the range of the Wiener process when restricted to two
specific values using the truncation method, which is considered more practical. They obtained the
probability density function of the new distribution and analyzed its statistical properties, including
survival and hazard functions, statistical moments, the stress-strength parameter, ordered statistics,
and econometric skewness. The distribution’s effectiveness in representing the behavior of
range-bound stock prices was also verified by applying it to real-world data. The results showed that
the distribution provides an accurate and appropriate model for describing prices in financial
environments with bounded fluctuations. As an extension of this type of distribution, El-Hadidy and
Alfreedi [4] exploited the concept of internal truncation of distributions introduced in [5] to obtain a
new distribution for the range of the Wiener process, aimed at excluding periods of minor price
fluctuations. The probabilities of the removed periods were distributed equally or in different
proportions to the periods with non-removed random fluctuations. In addition, El-Hadidy and
Alfreedi [4] presented the previous statistical properties of this distribution, where the results showed
that the new distribution accurately reflected the statistical effect resulting from excluding periods of low
volatility, making it suitable for financial applications including stock price modeling. El-Hadidy [6] also
presented a discrete distribution for the range of the Wiener process using a special transformation
based on the number of observed points. The presented discrete distribution showed good agreement
with financial data and is an effective alternative to traditional continuous distributions when dealing
with limited or discrete data.

Multivariate distributions are a foundation in financial modeling as they are used to describe the
interdependence and mutual influence of different financial assets under the presence of uncertain
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circumstances. In an earlier work, Alexander [7] and McNeil et al. [8] showed that the multivariate
models provide a reasonable description of the covariance of stocks, an element fundamental in risk
management, portfolio analysis, and derivative pricing. For example, distributions such as the
multivariate normal distribution and copula-based distributions in [9] are used to examine nonlinear
correlations between returns, estimate systematic risk, and determine optimal portfolio
diversification. The multivariate models presented in [10,11] have also demonstrated stunning
superiority in value-at-risk applications and in modeling the dynamics of highly correlated assets
during financial crises. Portions of the literature in [12,13] have demonstrated that uses of such
models are not only limited to forecasting improved projections but also to facilitating strategic
decision-making in dynamic investment horizons, which are impacted by a series of related variables.
El-Hadidy and Alfreedi [14] were able to develop a multivariate distribution for the
multidimensional Wiener process and analyzed its properties using probability range vectors, which
can be applied to describe the temporal relationships between multiple fluctuations in financial
markets. El-Hadidy and Alraddadi [15] also presented an accurate maximum decline distribution for
the Wiener process as a model for measuring financial market risk, which included calculating the
expected value of risk and extending it to the multidimensional case with applications to investment
portfolio management.

The objective here is to obtain a multivariate distribution of n independent Wiener process
ranges that represent the price differences of n stocks in the time interval (0,T7) and its truncated
version under the stochastic volatility constraints. We aim to derive the classical statistical properties
of this distribution, such as reliability properties, moments, the stress-strength parameter, and order
statistics. This study focuses on applying the multivariate structure to evaluate the effectiveness of
range-based stock pricing models. In addition, we study in detail the bivariate case of this distribution
and its truncated version. In doing so, we explore the influence of the combined behavior of maximum
and minimum price values for independent and different stocks in the time period (0,T), influenced
by varying stochastic volatility, on the accuracy of stock price valuation. Although the current
distribution assumes independence of Wiener processes, it can be extended to handle
non-independent cases using copula functions, thereby allowing the representation of cross-sectional
dependencies among financial assets. This tractability enables explicit derivation of joint
distributions, moments, and reliability measures.

This research includes the following sections: Section 2 presents the mathematical formulation
of the multivariate distribution of n independent Wiener process ranges that give the price differences
of n stocks in the time interval (0,T) and its truncated version under stochastic volatility. Section 3
examines the statistical properties of the bivariate case of this distribution and its truncated version.
Section 4 presents a numerical application that simulates restricted markets using real financial data.
The dynamics of the common price range are analyzed, and then statistical fit tests and performance
comparisons with existing models are studied. Section 5 concludes with the most important findings
and future recommendations.

2. n-dimensional Wiener range distribution

The Wiener process range probability density function is a fundamental component in the study
of this process due to its broad applications in physics, statistics, and financial modeling. This function
has found concrete applications in the study of volatility in financial markets, particularly in risk
models and the estimation of extreme price movements. Within the framework of the stochastic model
of price movement that is assumed to proceed as a Wiener process, the amplitude of this movement
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over a given time period is a quantitative indicator of the overall market volatility. One of the most
prominent practical applications is the use of the range distribution to estimate value-at-risk limits and
analyze extreme scenarios in investment portfolio management. For example, the expected range of
the Wiener process is used to establish upper and lower confidence limits for short-term price forecasts,
without needing to know the exact parameters of the price distribution, taking advantage of the
Gaussian and skewed nature of the process. The range distribution is used in hypothesis testing of the
stability of financial data in which the computed range is compared with theoretical values for the
purpose of establishing the existence of non-random behavior in the time series. Several studies have
demonstrated the relevance of the Wiener range in this context, including those by Feller [1], Withers
and Nadarajah [2], and Teamah et al. [3], who provided both theoretical expansions and practical insights
into its implementation in finance. The range of the Wiener process G(T) on the time interval (0,T) can
be defined as the difference between the stock’s highest and lowest prices over a given time period. So,

it can be written as G(T) = supW(t) — me(t) Applying the image method, which was used in [1], one
o)

can obtain the probability density function of G(T) by a series formula as follows:

fom () =‘;—J52exp[— G\ T } 2.1)

k=1 gi

0<g<w,and T>0.

2_2
where Ck_%

The use of multivariate distributions not only enhances the accuracy of forecasts of future returns,
but also contributes to supporting risk management strategies and diversifying investment portfolios in
highly volatile markets. Therefore, we consider (2.1) to obtain the multivariate distribution of price
differences for n independent stocks (ranges of independent Wiener processes) in the time interval (0,T),

which is given by
[Gy(T), G5 (T)..... G (T)]= | SUPW () — inf Wi (t), SUpWo (1) — inf Wy (t),..., SUpW, (t) — inf W, (t) |,
o) 1) ) ©.1) ©T) 1)

where  [W,(t),W,(t),...W,(t)] is a vector of n independent Wiener process. The assumption of

independence between Wiener processes is theoretically and practically crucial since it is
mathematically tractable and enables explicit calculation of joint distributions, moments, and
reliability measures, which would be unattainable in the case of dependence. Moreover, this
assumption provides a solid base for multivariate modeling, from which dependence structures such as
copulas or correlation matrices can later be added without affecting the key range properties. Therefore,
a joint probability density function of the multivariate distribution of independent random variables
G;,i=12,..,n isgiven by

DAT & 4C, T
fe,m).6,(M)..6, 1) (91 9210 gnit)=H—2 exp| — g; : (2.2)
i1 9« i

On the other hand, the cumulative distribution function of this distribution is given by

8C, T 8C, T
Fe,).6,)...6, () (91, 92, Gnit) = HZ[Q' il J [ é :l (2.3)

i=1 k=1 Ck9| oh

Therefore, its survival function is obtained from
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SG, (1,6, (M) 6, (1) (91, G20 G0 1) =1=Fg (1).6,m).... 6, (1) (91, T2, i L)

=1—ﬁi(g‘2+83kTJe>@{— BCET } 2.4)

2.1. Double truncated version

The use of a truncated multivariate probability distribution is an effective tool for improving the
accuracy of statistical estimation of stock price fluctuations in financial markets with high random
volatility. The concept of truncation for one- and two-sided probability distributions was introduced in
earlier works, such as [16-18]. El-Hadidy [5] also introduced a more general and comprehensive
concept of truncation, which allows truncating N intervals of the probability distribution. More recently,
El-Hadidy and Alraddadi [19] were able to introduce a new concept of truncating N intervals within a
multivariate distribution. These types of truncated distributions were able to provide a clearer picture of
the distribution of data within specific time periods, such as the works in [20,21], as they allow us to
ignore outliers or extreme values that often distort classical measures such as variance and correlation,
especially in markets that experience exceptional events or price spikes. By putting limits on spreads,
either as regulatory market limits or by using prior knowledge modeling, the truncated distribution can
then be utilized to provide a more realistic and accurate description of the probabilistic structure of
return vectors. This approach also assists in enhancing the stability of financial models, particularly
when used to estimate risk of a portfolio or optimize performance of machine learning models when
dealing with financial data with non-Gaussian features. Furthermore, the distribution of price becomes
closer to the empirical observation under this type of distribution, supporting its evidence for
applications in terms of financial derivatives pricing and systemic risk management.

Since G;,i=12,..,n, are independent random variables, and applying the truncated definition in [16],
we can get the joint double truncated probability density function of the new vector of independent

random variables [L(T),Ly(T)....L,(T)]. For all i=12...n, we let x =1/2JT , &=a/2JT ,
b =b /2JT, and then (2.1) becomes

¢ (%) :zw:[(—4xi’3 e><p[—Ckxi’2])+(ZCkx(3 em[—Ckxi’z]XCk’lJer(z)].

k=1
Also, its cumulative distribution function becomes @ (x;) = Z(Ck*1 + 2§i‘2)e>§o[—Ckxi‘2], which gives the
k=1
= S 1, 5z-2 =2 ~ S -1, pp-2 n-2 = iy
values d)T(a\i):Z:(Ck +23 )exp[—Ckai ] and cI)T(bi):Z:(Ck +2b; )exp[—Ckbi ] If 3 <x<b, then

k=1 k=1
the double truncated probability density function of x;,i=12,..,n, can take the form

i[(—4xi‘3 e><p[—Ckxi‘2])+(2Ckxi‘3 e><p[—Ckxi‘2]XCk‘1+2xi‘2)]

¢r (%) ‘ |
(Ck—1+2t}2)e>qo[—ck5i ] i( Yo ) [Ckafz]

¢_5r(Xi)=——_ =KL
=1 k=1

Or () - D1 (&)

NgE

=~

By restoring values x =1./2JT , @ =a;/2JT ,and b =b/2JT to their original values, one can get the
joint double truncated probability density function [L;(T), Ly(T).... L,(T)] b
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- fo,m (i)
i1 Fo,m @) —Fg m (@)

UL )Ly (M L, (0 (o L2 15 1) =

where a <l <b;,i=12..,n
Proposition 1. The joint double truncated cumulative distribution function of [L,(T),L,(T).... Ly(T)] is
given as

T? © » 4CkT 4CkT
n 2 kZ:; k[ | XO{ a’ } | XO{ I
U Ll st = | 7
LML M. LM U2 1:1[ i 1 BT | J4GT _i L BT ep| - 25T

k=1

Proof. Since the vector [L(T),Ly(T).... L,(T)] consists of independent random variables, the joint

distribution can be written as the product of the marginal distributions. Each marginal distribution is
obtained by integrating its density over the truncated interval [a;,b],i=12,..,n. Specifically,

n |

i fe,my (i)
U (18 PO IS ' -
L (T).Ly (Mo Ly 1) (1 L2 )= H Fo. ) 00) — Fo. 1 (@) [

I].ai

Evaluating the integral for each i requires applying integration by parts, which reduces the
expression into the compact exponential form shown in (2.6). This completes the proof.
Proposition 2. The joint double truncated survival function of [L(T), L,(T)..., L,(T)] is given by

-1
T2 4C, T 4C, T
e ch [—a exp|: k }+Iie><p|:— X }
n k=1 aI Ii

S, (I, 1., 1) =1- .
LML (7). Ly (M) V10 72 n l;[ © 1 4CkT = (4 4CkT
Yo w ) D) i
k=1 g i

Cy

2.7)

=1 i

Proof. By definition, the survival function is the complement of the cumulative distribution function,
ie., SLl(T) LM L@ (2 058 = 1=Up oy Ly (s 1) - Hence, for each truncated variable

L;(T), its survival function is obtained by integrating the tail probability from the upper truncation

point to infinity. Because the variables are independent, the joint survival function is simply the
product of these individual survival functions:

f T fe,my (i51)
FGi(T)(bi)_ F, @ @)

i.
|lbi

AIMS Mathematics Volume 10, Issue 9, 22023-22052.



22029

Evaluating each integral involves repeated use of the exponential expansion and summation properties
of the truncated density. After simplification, this leads to the compact series—exponential form
reported in (2.7). This completes the proof.

2.1.1. Moments

Statistical moments are the basic instruments for explaining and exploring the probability
distribution of financial stock returns, particularly in multivariate models used to study the correlation
between stock price changes. The first moment (mean) is used to estimate the expected return, while
the second moment gauges the variance and covariance that enable the derivation of the covariance
matrix necessary to estimate joint risks in investment portfolios as in [22]. The importance of moments
extends beyond this, as the higher moments such as skewness (third moment) and kurtosis (fourth
moment) are exact measures of the asymmetry of distribution and “tailedness™ attributes that deviate
from classical assumptions of normal distribution, as found in [23], which investigated the stylized
properties of financial markets. These moments are also used in approximate expansions, such as the
Edgeworth expansion, to refine the approximation of actual return distributions, which effectively
affects the accuracy in estimating risk measures such as value at risk and conditional probability of loss,
as in [24]. Thus, moment analysis of multivariate distributions is not just a statistical description; itis a
basic tool of financial performance measurement and risk management.

Theorem 1. Let [Ly(T),L,(T)..., L,(T)] be a vector of independent Wiener process range, and then its

joint moment generating function is given by

(3,0, T)

n

M . (I || ,-..,In;t): '
L(T).L, (). Ly (M) Us 12 1;[ s, (B) = Fg, ) (&) 8)

bi 0 A
where Ii(ai,bi,t,T):IZ[ak +Iizjex|{tli —f—;}dli :

a; k=1 i
Proof. Use (2.5) and the independence principle of L;,i=12,...,n, to get the joint moment generating
function (m.g.f.):

n bi
. iy I .
My ()L, (M), Ln(T)(IleZI'"l|n1t):HE(et )= e up, oy (list)dl;

n
i=1 i=1 a;
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where a=8T, o =Ci (it depends on the number k), and g, =4C, T dependson k andthe moment T.
k

Since the exponential expansion is valid for all I, e(—,), We can interchange summation and
integration. To justify this interchange, note that on any compact interval [a;, b1, each term of the
series is of the form exp[tli—ﬁkli‘zj with g - in k. Hence, ‘exo[tli—ﬂkli’Z]Semﬂt|max|li|—ﬁka(2] and

the series Zem[—ﬁkli‘zjconverges uniformly. Therefore, by the Weierstrass M-test [25], the
k

interchange of summation and integration is justified. Thus,

exp{tl fk} iM 1+tl, ﬂk+i(exp{“ IﬂkD =1+t|i—%+zztmf ( j( —B)rm3,

m! m!

i m=0 i m=2 u=0

Now, we let 1;(a;,b;,,t,T)=1;(a,b;,t,T)+ ;5 (a,b;,t,T) , where

1y (3;, b, t.T) = Zj.akexp{tl ﬁk}dl J'ak[lnr— : Zztn:(Zj(—ﬂk)”limS”Jdli, (2.9)

k=1 g, k=13

and

lip(ay,b;,t,T) = Zj.—exp{tl } ki:j[utli +Zi — ( j(—ﬁk)#hm-z-wjdli. (2.10)

k=1g, i i m=24=0
As in [26], we can solve the following equations:
m—-3u=-1, (2.12)
m—2-3u=-1, (2.12)
by using the Diophantine equations, where the set of the solutions of (2.11) is
Q ={(m,):m=3u-1, ueN}, (2.13)
and of (2.12) is
Q, ={(m,u):m=3u+1 ueN} (2.14)
Therefore, 1;;(a,b;,t,T) and 1;,(a;,b;,t,T) can be written as follows:

v m,(u#pg AM=mg, )

CBI™ (mira miran)]
bt = kzl‘a{(b )0 e ﬂk(__b_iﬂ+;ak[n;;( jml(m+1 3y)(b o)
N ( ﬂk) m “
+;ak[<m%:es1(“] " ai}

(2.15)
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Vom,(u#ps, AM=Mg, )

2pob) TN

k=1| m=2u=0

< M\ A i B
+az[(m,ﬂ)esz[ﬂj m! nai J

~|(1 1 b B 1 1 .
lip(a,b,t,T)=8) || === [+tihh L -2 = = +a
PICHY ) ;[(ai bi] 8 3 [a_?’ ng]

(2.16)

o

As a result, we can get the value of 1,(a,b,tT)= i(ak+;Jexp{ ’IBk:ldli, and then

k=1

I

Central moments are likely the most useful analytical tool in studying stock price volatility,
especially when comparing data over a limited time frame. Some studies, for instance, Cont’s [23]
research on statistical properties of financial asset returns, have demonstrated that using statistical
moments around zero can better reflect market behavior and risk analysis than traditional models
based on normal assumptions. Recent works also highlight the role of higher-order central moments in
capturing volatility clustering and tail risks in financial markets [46].

Theorem 2. If &,i=12,.,n, is the set of exponential integral functions, then the joint central moments

of L;,i=12,.,n, can be obtained from
q o
E —2+q q Ck —2+q q Ck X
AR G R e e

ML),y (1) 1y s P2 Iy 8) = HE(W) 1= i : |
i1 3 +87D2)e [ 4CKT} S o +87a7 { 4251

k=1 l k=1 i

(2.17)

2'p?
1
Proof. From the independence principle of Li,i=12,..,n, the joint central moments are given by

where %, _S ataz] —14 9, S s Sl
2 2" a2

Ila

x; =I;/2JT , then we have & =a, lzﬁ and b, =b,/2JT . These truncation limits become functions of
the time horizon 7. This formulation allows the central moments to adapt more flexibly to stochastic

¥ [ (4% exp(-=C, %))+ (2C, % * exp(=C, X ) (e +2%7) |, (2.18)

0
it \ N
i k=1

where g, = i(ak +8T5i‘2)e>q{

} Z(ak +8Ta; ) { 4(_:;1. From the convergence of the series
k=1 by’ 8

k=1 i

i (- exp(-Cyx ) + (2,6 exp(-Cox (e, +2x,%)], one can get
k=1
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00

b
> [ xil-ax ep-cox ) + (20 (- e + 262 i,

E(x) = H Ha ]
i =

=1 Z(ak +8T5i’2)e _AGT i(ak +8Ta’2)exp 4C’<T
= b? | &

@)

QJI

S -2+ | h—2+ C -4+ C | h—4+ C

Z( i ? q§||:g — bi ? qg{g’gig:l"’_zck{ai ! qgll: 1+% ?; +bi ! qgili_l"'g’gig:H\J

_ - ] - (2.19)
i1 3 8752 )e { 4CKT} S o +873 g 4951

o0 o0
k=1 by k=1 L&

This completes the proof.

Note that, since the distribution is double-truncated, all central moments are finite. The truncation
ensures the existence of moments by eliminating potential divergences from the tail behavior of the
untruncated range distribution.

The characteristic function is a central mathematical tool in characterizing the probability
distributions of stock returns, especially in models that go beyond the classical assumptions of normal
distribution, such as jump and price explosion models. Its usefulness in studying stock price volatility
over a limited time range is highlighted by its ability to represent the entire distribution of asset returns,
even in cases where it is difficult to explicitly specify the probability density function. This function
also allows for Fourier analysis to evaluate the theoretical prices of financial derivatives and to
estimate the risk coefficients associated with thick-tailed distributions. Carr and Madan [28]
demonstrated how the impedance function can be used with price options under non-normal
distributions, opening the way for more precise applications in modeling financial market volatility.
Theorem 3. If ;,i=12...n, are independent random variables, then their joint characteristic function is

1
T22 (ril(ai’bivth)"'EZ(ai’bi!taT))
M6t o i) = [ — , (2.20)
i=1 Z(akJrSTbiz)exp[ 4C'<T} Z(ak+8Ta ) { 4C';T}
k=1 i k=1 i

where

v m (,u#,us1 /\m:msl)

; ”J R ) O™ sy s
Iil(ai’bi!t!T):;ak!(bi_ai)+ 2 (b’ -af) - ﬂk(___iJ +Za Z;ZLJ mi(m +1—3,2) (b, g l)
Sa ¥ 1B rrnt |

(m, u)e$,
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v m,(,u:t,USZ Am=m52)

Y. B WIPO™ (g ma
SRR T

=[(1 S b 11
IZ(anptT) Z|:(;_—J+\/_tlna——%[¥—¥J:|+
( (ﬂk) (\/_t)m M =L J

and i2=-1
Proof. Smce the joint characteristic function of independent random variables is the product of their
marginal characteristic functions,

-1

0

T; Z(ak +8l; 2T)exp{ 4?”}

k=1 i

ML),y (o Ly (1) (L2 i) = HE(GFN) HJ. el p { :I — { }dli

i1 g Z;(ak +8Th; )exp kT kz;(ak +8Ta; 2)exp - 4C';T

i g

eVitil=1

and , the same majorant used in Theorem 1, bounds every term uniformly on [3:21: hence,
dominated convergence (or the same M-test bound) justifies term-wise integration for the joint
characteristic function, as well. This completes the proof.

2.1.2.  Stress-strength parameter

The stress-strength parameter in a multivariate framework represents a powerful extension of the
risk assessment associated with multiple interrelated financial assets. It is used to measure the joint
probability that positive market forces (such as returns) will outweigh negative pressures (such as
volatility or shocks) across more than one stock or index over a limited time period. Here, the
coefficient takes the form of P(x >Y), where X =|X;,X,.. X | and Y =[¥;,Y,..Y,| are random

vectors of stock performance and market stress forces, respectively. Studies such as in [29, 30] have
shown the effectiveness of this coefficient in comparing two probability distributions, and thus it is
suitable for modeling stock dynamics under market volatility and investigating a financial asset’s
ability to withstand short-run shocks. The method is particularly valuable in emerging markets or
during periods of crisis, where stock interactions play a significant role in collective volatility.

n
In this section, we consider the probability vector Y =1_[P(Gi (T,) <G;(T)), where G;(T;) and

i=1
G;(T,), i=12,..,n,are independent random variables, each distributed according to the spe0|f|cat|on in
Eq (2.2), with respective parameters T;, and T,. In statistical literature, the quantity Y;, i=12,..,n,is
commonly referred to as the stress-strength reliability parameter. It quantifies the likelihood that a
system, modeled here as a difference in stock prices at different times, will operate successfully under
uncertain conditions. Specifically, G;(T;) represents the random strength (e.g., resistance of the

difference in the price of stock number i=12,..,n), and G;(T,) represents the random stress (e.g.,
external market pressure in the price of stock number i=12..,n). A change in the price of stock
number i=12..,n occurs when the applied stress G;(T,) exceeds the available strength G;(T;). The
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system is deemed functional whenever G;(T,)>G;(T;); for more details, see [31]. For the range
distribution under consideration for n independent stocks, the stress-strength probability can be

n o0
represented as Y =Hj Fo.m) (9i:1)-fg, (ry (i:)dg;.
i=1l o
Analyzing the distribution of the difference in the prices for n independent stocks within a
bounded range is more effective and essential for assessing performance probabilities. Thus, we use
the truncated distribution (2.5) to obtain the stress-strength reliability parameter, defined as P(X >Y),

which provides a probabilistic measure of a stock’s return vector X = [)?1, X inj exceeding others’

Y = [Yl,YZ, LY J where X; e[a;,b] and Y; e[a;,b;] give the stock performance and market stress force

for each i=12..,n, respectively. This metric is widely applied in financial risk assessment and
portfolio optimization to quantify relative strength under uncertainty. Thus, we have

Y- HP(L(TZ)<L(T1» HjuL(T)(I.,t)uL(T)(I.,t)dl

i=1 0
Assumption 1. We assume that stress and strength are obtained from independent Wiener processes.
Assumption 2. We let

o0

Qu = (Ct +81b 2 e |- 4c, b2 |- i(ck‘l+8T1ai‘2)e>q)[—4Cleai‘2],
k=1 k=1

Qi _Z(c;1+8T2 )exp[ 4C,T,b ] (c;l+8T2a;2)e><p[—4CkT2a;2 :
k=1 k=

2_2
_8a, . -2 8

2A -1)% 72
T o Bk :Ck y Nk= ) AT 2 2 ﬂ
(7 — 2kr) 2 (2A-1)°x

where C, = and F, = for all

i=12..,n
Assumption 3. We consider the series ZQH and zQiZ to converge absolutely (i.e., ZQu<°O and
k k k

ZQiZ <) which follows automatically from the assumption a, >0 (i.e., the truncation bounds are
k

strictly positive and bounded away from zero) together with the exponential decay in k.
Theorem 4. If the conditions of integrability and convergence hold, then the stress—strength reliability
parameter is

n

o o b
- 4‘\/T_'|'1Q Q. ZZJ- Eikem[_Nkaf2T2]+ Byl; exp[Nkli’ZTz]XDA exp[— FAIi’2T1]+8Ii’2T1exp[— FAIi’ZTl])[ﬂi _
i=1 112 [Ni1vi2 k=1 L=14,

Proof. We let

b
Ji(ay, b, Ty, T,) = J.(éik exp [— Nkaszz]+ Byli exp [— Nkliisz]XDA exp [— FA|i72T1]+8li72T1 exp[— FA'fZTl])dli
3

= [((D:Cuc+ 80 2T Joro - (N 2T, + Fol 2T+ (DB + 81718 Jesp [ 12N, + FyTy) o

3
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~C,.D, o Nya 2T, ]Texp [ ryir2m o + 878 o0 Nea 2T, ]Tl;z e N2, i

3 g

+ By D/\jlli exp[— Ii_Z(NkTZ - F/\Tl)}“i + BkSTltj[i'i_l exp[— Ii_Z(NkTZ - FATl)}jli

g g

= C~:ik EXp[_Nkai_sz](DAJil(ai 05, T, T,) + 8Ty 35, (3, by !Tl’TZ))"' By DaJis(@,b;, Ty, T,) + B 811 Ji4 (84,1, T1, T),

where

by

' , F\T FATL | == VRAT. VRAT.

Jin (34,0, T, T,) :Ie)@[_FAIi T 1d); =, exp{— ;zl}rbi exp{— gzl}L ﬂFATl{_ Erf[ aA 1 ]Jr Erf[ bA l D
a i ! i !
JET, JFAT,
. \/;[Erf [a“J— Erf {b“D
— __2 —_ __2 .= I I
Jia (8,0, T, To) = Il. exp[-F I T ]d], 2JF, ’

a;

b.
\ _ _ 1 F.T, + N T F\T, + N T
‘]i3(ai:bi1TlvT2)=J‘IieXp[_Nin 2T, 1exp[-F, 72Ty 1d; =EFAT1 F[O’_A 1a2 : 2}_1{0’ A 1bz « ZD
, i i

3

. % [_ ¥ exp{_ AT+ Ny T, } o exp{_ P+ NGT | KTZ[F{Q FT N, J B r(o, T+ Ny T, JD

ai2 bi2 q bi2

and

by
. _ _ 1 F\T; + N T F\T, + N T
Ji4(ai’binTl’T2):Ilile)@[_Nkli 2T2]exp[—FAIi 2Tl]dli :E(_F[O’ A 1a2 : ZJJFF(O' A lbz : 2]}
i i

g

Since the conditions of integrability and convergence are satisfied, then

n 0

1 0
Y: R pr— \]i(ai,bi,T,T)
1:1[4\\/% R n

o0

Z(éik ep[-Nya; “T,1(DrJin (8,1, Ty, Tp) + 8T 355 (a5, by, Ty, T2)

n 1 0
_1:1[4\\/@ 0 (2.21)

+ By DpJis(a, b, Ty, Tp) + B 8T Jis (8, by :T11T2))-

This completed the proof.

n o0
In a similar way, one can get Y =1_”FGi (@50 Fe, ) (91:0)dg;.
i=1 o

2.1.3. Order statistics

In the context of pricing options based on the time path of the price, such as Asian mean options,
rank statistics and multivariate probability distributions of the Wiener process are of great importance.
Although closed-form formulas are available for pricing options based on the geometric mean under
the assumption that the stock price follows a lognormal distribution, as in [32], extracting a similar

AIMS Mathematics Volume 10, Issue 9, 22023-22052.



22036

closed-form formula for the arithmetic mean remains mathematically infeasible in the general case, due
to the lack of an accurate probability distribution for the arithmetic mean of lognormal variables [33].
This issue has led to the application of rank statistics as an analytical tool that helps approximate and
understand the behavior of extreme values and averages on the price path. Multivariate distributions
provide a precise mathematical framework for measuring the intertemporal relationship between stock
prices at different points in time. For example, logarithmic price returns can be modeled using a
multivariate normal distribution, as in [34], which allows for the analysis of covariance and correlation
between prices, which are essential elements for understanding the behavior of price changes and time
lags in financial assets. These models become essential for evaluating the probabilistic performance of
mean-based or extreme/minimal price options. The integration of ranking statistics and multivariate
probability distributions enhances the ability to build efficient numerical pricing algorithms and
compensates for the lack of precise analytical solutions. Accordingly, these tools are a theoretical pillar
in modern financial modeling of complex mean-based or extreme-based options [35]. Thus, we
consider the random vectors |y, Liaiy e Ly | < Loy Loy s Loy | S o < [ty Ly s Loy b
which denote the order statistics of a random sample L;,L;5..., Liz.i =12,..,n, from a distribution which

has joint double truncated probability density function (2.5). Consequently, the joint probability
density function of the p{" order statistic for each L7, i=12...n,is

n

- n! - T
UL, (T),Ly (T)o Ly TPy, P i pn:ﬁ)(ll’lz"“'I";t)znm(ULi(T)(li))pl 1(1—U|_i(T)(|i))q pluLi(T)(Ii)a
_ pi-1
? 0
T 3 Ckl[_ N exp{_ 4T } o exp{_ 4c,T D
2 a’ 12
n ~ k=1 i i
n!
i (P =DM - py)! 1 8T 4C T

i=1

Jor

{_

4C,T
b?

S\ G af

a/

|

=1

—Pi

T2 & 4C,T 4C,T
k=1 i i
x| 1—
(18T 4T | ~= 1 8T 4C,T
—+— |exp| — - — 4+ |exp| —
kz_;'[ck bizj { bf } kz_;'(ck aiz] { aiz}
L
T 21&( 1 8TJ { 4CKT}
2 kz_;(ck |12 12
X
(1 2T CGT| 1 21 CT
— 4+ |exp| — - —+=|exp| —
kz—;(ck bizj [ bf:l ;(Ck ain [ aﬁ:l
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_1|Pi

o)
n Pi pi—-1

C(~a exp[-4C,Ta” |+ eXp[_4Clei_2})j

‘ —
N

Il
NgE

i=1 Qiﬁ k=1
4 n-p;
x| Q - % ic;l(—ai exp[—4ckTa;2]+ ! exp[—4ckT|;2}) (2.22)
k=1
x (i(ck-l +81,°T )exp[ -4C,TI;? ]J
k=1
N L, 2T el _CT o L2 |G
were =32 oS -2 el

In addition, the joint distribution function of the random vector [Ll(plzﬁ), Lo(p, iy oo Ln(pn:ﬁ)j is

GLl(T),LZ(T),...,LnU)(plzﬁ,pz o Pn: n)(I PYR R ES HZ[ J(ULi(T)(Ii))T(l_ULi(T)(Ii));_r

=li=p

T2 4C,T 4C,T
chl —aiexo{— k }I exo[ X }
2 = a’ l;

|

n n (ﬁ)
AT &1 er acT| &1 8T 4C,T
i=1l i=p, 4 ot d S i _ k
Z{Ck+b2jexp|: bi2 :| Z[Ck+ ZJEXP{ a2 :I

q i

A-i

=

n\T
i) 2 7
n n

A-i

— ick‘l(— a, exp [— 4CkTai‘2]+ I, exp [— 4CkTIi‘2D . (2.23)
k=1

Also, the oi" moment of the p" order statistic, L, 7). i=12..,n, is

n i I A-k+l , ~ ~\b i
E(Lf%k:ﬁ)ng(k:ﬁ) n(kn)) H[q._ Z (ﬁj__ij[leq' (1—U|_i(T)(|i)>JdliJ. (2.24)

8
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b; i} _
We consider :I|iqi_l(1_ULi(T)(|i))J i Lik= %

Zy=——-"—,and G, =4C,T. This leads to
J (7 —2kx)
\ 1 I
faal, [T 2 - _
Nj =j|iq' H1- TZ(Zik eXO[‘Gkai 2]+8li e’@[‘Gkh ZD dl; .
3 k=1

k=l

From the binomial theorem, we have (1—ULi (T)(Ii)) P

.[IJ_ ) (U Ub )J . Consequently,

\—!
< M

b;

Nﬁ—JO[ 'J V[0 01, = Z[?J(—l) i

a; i=0

N |-

bl [i( kexp[_Gkai_z]+8|i exp[—lei‘z]) Td'i-

k=1

g

When j =01, we obtain, respectively,

b; ) ) -2 i o
NOT Z(zi]'[liqi_ldh :% and Nli =(TJ(_ i IZ( .kEXP[ Gka ]+8I eXp[ lel 2])‘1]. ldl

where the series Z(Zikem[—GkaF2]+8li exp[—Gin‘z]) is convergent. This leads to
k=1

b.

_1
(A e b

k=1ga

PO ) G G e )

1
k=1 Qi

where Ei denotes to the exponential integral function. At j =2, we have

{i( ke><10[—Gka(2 +8l; exp[—leiZ])] ZZ( kexp[ Geay ]+8I exp[ Gl ]Xz,n exp[ G- a’2]+8l exp[ Gﬁ|;2])

k=1 n=1

ii(zikziﬁ exp|- (G, +Gr)ar 2]+ 81,z x| Geay2 - Gal 2]+ 81,27 x| Gl 2~ Gra 2|+ 6412 exp |- G172 - G172
k=1 n=1

Consequently,

(Zikziﬁ exp[—(Gk JrGﬁ)ai‘z]JrSIiZik exp[—Gkai -G;l; 2]+8I Zi exp[ Gyli?-Gza; ]

+ 64||2 exp [— (Gk + Gﬁ )Ii_z])iqi _1dli
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o o b;
( J Zszz,n exp[ (Gy +G)ar2 J7dl, +8Z,, [ exp|- Gear? - GaI 2|

k=1 n=1 EN EN

+8Zmbexp[ Gyl 2 ~Ga; 2 Jod, +64Ie>go Gy + G ) 2o tal,,

q q
where

b;
.[eXp[ (Gy +G5 )a*Z]q. l, —exp[ (G, +Gs )afz]b' —afl |

a Gi

b
1o exp|- (Gyar? +GaI ) i :%exp[— Gkaiz](— l +1Ei(3+2qi ,Gﬁai2)+biq‘+lEi(3+2qi ,GﬁbiZD ,and
a:

b;
jexp[ (Gy +Ga)I72] 4, = ( +Gr)

a

QI

o K
y —aﬁir[—[uﬁ}(ek+Gﬁ)a;2J[ al J ’ +biq‘1"[—[1+&j,(6k+Gﬁ)b{2J[LJ “
2 Gy +Gn 2 Gy +Gn

Similarly, one can obtain the value of % for any value of |, and then E(Ll(kn) 2(kn)....Ln"(k:ﬁ)) will be
obtained from (2.24).

2.1.4. Modeling stock price disparities using Lorenz, Gini, and Bonferroni curves

The study of the variance of stock price spreads is a central issue in the quantitative analysis of
financial markets, especially when using statistical models based on the multivariate distribution of
stock price spreads over a limited range (double truncated multivariate distribution). Among the most
well-known tools in this field is the Lorenz curve, a graphical means of measuring the unequal
distribution of stock price spreads across a set of stocks. The random variables L;,i=12,..,n, are
arranged in ascending order, and the cumulative relative distribution of values is calculated against the
cumulative percentage of observations. The Lorenz curve is based on the existence of a joint
cumulative distribution function (2.6) for the vector of spreads [L,L,...L,] and represents the
relationship between the cumulative percentage of assets and the cumulative percentage of the change
in value. We can obtain the Lorenz curve for the independent random variables L;,i=12,..,n, from the

following equation:

jliuL,(T)(Ii;t)dli ) i[—4T(l“[O,4CkTai’2 —r[o,4ckT|;2])+4ckA]

L(uLl(T)LZ(T) ..... Ll ) = H ZI'— = e : : ,
=1 i=1 _ _ ~
j Lug, oy (it | Z[—4T(F[O,4CkTai —r[o,4ckT|oi ])+4CkCi]
k=1

g

(2.25)
where
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A = 2[— 2a% exp [— 4CkTai‘2]+ 212 exp [— 4C, T2 ]+ 8C, T (F[O,4CkTai‘2 ]— F[O,4CkTI 2 ])}
C = 2[— 2a% exp [— 4CkTa;2]+ 2b? exp [— 4C,Th,2 ]+ 8C, T (r[o, exp [— 4ckTa;2]]— r[o, exp [— 4C,Th2 ]])]

Accordingly, the Gini index is calculated as a quantitative measure of inequality, given from the formula

_H 1__

o0
i=1 ik:l

A, +4®, +5; - (128KC{7 T (W, + %))
8C,

{ —4T (b, —a,)T[0,4C,Ta;” | +4T (W, + z,) +

(2.26)
where

W; =4,/2C,T (Erf [— 2b; ﬁ]— Erf [— 2a; ﬁ])

7=, (r[o,4bfzckT |- 2e-eote ) _a (r[o,4afzckT |- 2etaitet )

- 1 1+4k272T || _ [ @+ 4kP77T | 3 nl
o, :—[exp{—(T | 2a, e><p[2k7z2Tai ZkaiZ—SCk)—\/Eexp —(T (-8C,T )2 Erf [—2 CTa 1]
i L i

3
(-8C, T )2 Erf [— 2,/C,T b;l]

) .
{2@ exp[2kz?Th; 2 b2 - 8C,) —v2exp —(1+42"T”T
i

| - O 4777 |
2b?

N—

z, = i{_ 4T (r[0,4CkTai‘2]— F[0,4Ckaf 2])+ 8%'} :
k

k=1
S, =16C,T (b, - a)r|0,4C,Ta?}
A =—4a] (b, - &) exp[-8C,T]

It indicates the degree of concentration of price differences; the closer it is to one, the more
concentrated the changes are in a small number of stocks. On the other hand, the Bonferroni curve is a
useful alternative in cases where the Lorenz curve is insensitive to the minimum variance. The
Bonferroni curve is one such measure that has the benefit of being graphically displayed in the unit
square and can also be related to the Lorenz curve and Gini index, as demonstrated in [35-37], where
the Bonferroni curve of the random vector [L,L,...., Ln] is given from (2.25) and (2.26) by

B(UL(T) LM i) ==——= (2.27)

It represents the relative average of the categories with the least price changes, making it sensitive
to price changes in the underperforming stock segment, which gives it particular importance in
analyzing defensive or low-risk financial portfolios. When modeling price movements using a
multivariate distribution (such as the multiple normal distribution or copula), these three measures
allow us to understand the common variance between different price differences and reflect the nature
of the common distribution and the asymmetry of risk associated with stocks. This becomes increasingly
important in volatile market environments, where the three indicators can be used to assess risk
distribution and improve diversification decisions in investment portfolios. According to [38], these
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metrics can also be used in life testing and reliability.
3. Bivariate distribution and its truncated version

The bivariate distribution of the difference between stock prices holds great importance in
economics, especially in the areas of financial market analysis and fair pricing of derivative financial
instruments. Thus, from (2.2), we can obtain the joint bivariate distribution of a Wiener range with
random variables ¢, and c, (r) given by

4T 4C, T .
fe, .6, (91, 9251) =H 3 Zexp[— < } 0<g;<o,i=12, (3.1)

2 ©
i-1 9 = Gi

As appears in Figure 1(a). Also, Figure 1(b) shows the joint double truncated version of the random
variables v, and v, , which from (2.5) are given by

1
T E o 1 8-|— 4CkT
— 4+ |exp| —
) 2 Z[Ck+|2J>¢{ I? }
u (I, 15;1) =
Cy bi2 b2 Ck ai2 af

Il
iN

(@ fome,m (9921 (B) uymyL,mlst)

Figure 1. (a) The joint probability density function (3.1); and (b) the joint double truncated PDF (3.2).

For multivariate distributions of stock price spreads, the cumulative distribution function is a
required tool for the investigation of the joint performance of returns. The cumulative distribution
function can be used to describe the cumulative probabilities of common events, such as simultaneous
decreases or increases in the prices of several financial assets. Financial dependence has been modeled,
as in [39], which showed that the use of the cumulative distribution functions (especially in the context
of non-normal distributions) allowed them to capture the phenomenon of dependence at extremes that
cannot be captured by linear correlation coefficients. The cumulative distribution functions are applied
to approximate conditional risk indexes such as the conditional value-at-risk suggested in [40], which
approximates the probability of big losses in a single asset simultaneously with a reference asset. The
cumulative distribution function thus provides a consistent probabilistic framework for approximating

AIMS Mathematics Volume 10, Issue 9, 22023-22052.



22042

joint risk, derivative product valuation on multiple assets, and guiding optimal diversification policy in
investment portfolios. Thus, from (2.3), the joint cumulative distribution function of ¢, and ¢, m

is given by

2 o 2
2,8C,T 8C,T .
Fe,(m).6,m) (91, 92:1) = I IZ(QCT;JG)@{_ g; } 0<gj<oo,i=12, (3.3)
i | 1

see Figure 2(a).

Tr I
i

A S A A 0 A B E
S i b g

La

U]
0.5

(@) Fo,mye,m(91:92:1) (B) Uy ry,milzit)

Figure 2. (a) The joint cumulative distribution function (3.3); and (b) the joint double
truncated cumulative distribution function (3.4).

When stock price differences are limited to a certain range, as is the case in many realistic models
that assume lower and upper bounds on price movements (due to price limits, volatility constraints, or
bounded returns models), the practical and theoretical importance of the cumulative distribution
function of the multivariate distribution increases. In this case, unlimited hypothetical distributions such
as the normal distribution cannot be relied upon alone, making the cumulative distribution an essential
tool for measuring joint probabilities within specific ranges. According to Genest and Favre [41], the use
of cumulative distribution functions with distributions with finite support allows for a better
description of the distribution of dependence between assets, especially when copula functions that
separate margins and dependence structures within bounded ranges are used. Cherubini et al. [42] and
Han and Zheng [43] also pointed out that this type of distribution is used in the evaluation of
range-dependent derivatives, where the joint return is only calculated within a certain range of values,
making integration over the cumulative distribution function essential for accurate pricing. In addition,
predicting conditional risks and scenario probabilities within a given range requires precise tools, and
the multivariate cumulative distribution function is the optimal tool for this. Thus, from (2.6) and for a
bounded range a; <I; <b;,i =12, the joint double truncated cumulative distribution function is given by
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T2 4C, T 4C, T
5 chl —aiexp{— X }rliexp{— X }
) 3 l
i L 8T || ACT | (1, 8T exp| - 2CT
C, b? b? | &lC af al

k=1 1 i i i

ca <l <bi=12, (3.4)

2
i=1

UL mym(hlt) = H

see Figure 2(b).
As in (2.4) and (2.7), Figures 3(a),(b) show the joint survival function of the bivariate distribution
of a Wiener range Sg ), (9:1,92;t) and its truncated version SL L, m (. Lit), respectively. In

financial models that assume bounded returns, the multivariate survival function gains advanced
analytical importance, particularly in evaluating the probabilities associated with the right tail of a
return distribution. Unlike the cumulative distribution function, which measures the probability that all
variables are less than or equal to certain values, the survival function provides a computational
framework for estimating the likelihood of returns exceeding certain bounds, which is crucial in risk
management and extreme probability contexts. According to [8], survival functions become more
accurate and appropriate when used to analyze scenarios involving “conditional exceedances”,
especially in portfolios containing correlated assets and affected by simultaneous movements in the
upper tail. Similarly, Jaworski et al. [44] demonstrated that copula functions combined with survival
functions allow tail dependence to be characterized efficiently, especially when the data are in a
bounded range. In practice, in such applications as valuing barrier options or defining the probability
of returns exceeding in the multi-asset portfolio, one has to employ multivariate survival functions in
order to calibrate models to the actual behavior of market motion.

(a) Se,(1),6,() (01, 92;1) (b) §L1(T),LZ(T)(I11|2;t)

Figure 3. (a) The joint survival function Sg ), )(9:,92:1); and (b) the joint double
truncated survival function §L1(T),LZ(T)(I11|2;t)-

3.1. Some reliability properties

The hazard rate function is used in multivariate distributions to analyze the behavior of
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conditional probabilities of sudden or extreme changes in stock price spreads. It is particularly useful
in predicting future risk conditional on past events, whether or not those spreads are range-bound. In
the absence of a range-bound spread, the hazard rate function is used to capture the possibility of large
and long-lasting market movements. It is useful for assessing the right or left tail of a distribution,
supplementing measure instruments such as expected shortfall or conditional tail expectation.
Therefore, the hazard rate function is used to assess systematic risk between correlated assets with
unbounded return behavior and shows excellent efficiency for extreme scenario modeling and high
dependencies. This function is given using (3.1) and (3.3) from the relation

fo, (.6, (91, 9231)

He, m).c,m) (91, 9251) =
(T),G,(T) 1- FGl(T),Gz(T)(gl’gz;t) (3 5)

as in Figure 4(a). When stock price spreads are restricted to a certain range, the hazard rate function
helps in analyzing “edge risk™ as it is used to estimate the probability of exceeding critical levels
within a limited range. As Klein and Moeschberger [45] pointed out, the conditional hazard ratio
provides accurate information about the timing of exceedances within the available range, especially
in instruments that rely on predetermined scenarios such as range options or structured finance
instruments. By using copula-based hazard models, as in [46], the dependence between variables can
be separated from the spread margins, making estimation more flexible and realistic, both in the
context of limited and unlimited price movements. Therefore, in the case of the truncated version of
the bivariate Wiener range distribution, the joint hazard rate function is given, using (3.2) and (3.4), by

ULl(T),Lz(T)(Il'IZ;t) see Figure 4(b)

Hym.nm (o loit) =

1-Uy m,mulzt)

531012 0.2

Hig.g9)

(a) Heg, ()6, (91 92:1) (b) ﬁLl(T),Lz(T)(I17 ;1)

Figure 4. (a) The joint hazard rate function Hg (g, (91, 92:t); and (b) the joint double
truncated hazard rate function Hy )., (i 15:t).

The reversed hazard rate function is a powerful analytical tool to examine multivariate probability
distributions, particularly for stock price spreads, since it can measure the conditional probabilities of a
price shift as it approaches a certain point from the left (i.e., before that value). Its use is in predicting
the risk of premature price reversal or the likelihood of an abrupt flip before crossing a certain
threshold. In the case of unlimited ranges of stock prices, the reversed hazard rate function is useful in
tackling the probability of evading or avoiding sudden falls through examining the probability of
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remaining beneath a certain threshold despite the infinite range. Using this function allows us to model
the regressive behavior of data and provides additional information to the standard hazard ratio,
especially for heavy tail data, e.qg., financial markets. Using (3.1) and (3.3), we get the reversed hazard
rate function:

fo, (1.6, (91, 92:1) (3.6)

RGI(T)YGZ(T)(gl,gZ’t) ) FGi(T),GZ(T)(gllgz;t) '

see Figure 5(a). In the case of range-bounded stock price spreads, the reversed hazard rate function
provides an accurate measure of the probability of the price stabilizing below the upper bound of the
range and is used to evaluate hedging strategies and control assets with expected upper bounds. This
function is also crucial in determining the relation of variables as they approach the boundary,
especially with models using copulas as joint distributions. In addition, it is also used in the
examination of financial instruments such as capped options and reverse barrier options, whose
outcome is subject to remaining under a specified level. Thus, this function is given from (3.2) and (3.4)

R u Iy, 1yt
by RLi(T),LZ(T)(Ilvlz;t)= Ll(T):Lz(T)(l 2t

, see Figure 5(b).

Uy my,m (s lzt)

(@) Ro,m).e,m (91, 92:1) (b) §L1(T),L2(T)(I1v|2;t)

Figure 5. (a) The joint reversed hazard rate function Rg )6, r)(9:,92:1); and (b) the joint
double truncated reversed hazard rate function §L1(T),L2(T)(Il’|2;t) .

The second failure rate function is an advanced analytical tool in time-to-event statistical analysis
and reliability theory. It is used to model the development of the failure rate or the risk itself over time
or variables. For the multivariate distribution of stock price spreads, this function is necessary because
it can estimate the probabilistic momentum of risk, i.e., the acceleration (or deceleration) of the
probability of simultaneous changes in two or more stocks. When stock price spreads are not bounded

n S it . . . . . . .
=] | log Sem(@it)_ , 1S used to capture the behavior of increasing or decreasing risk at the tails of
i1 S,y (9 +L1)

the distribution, as shown in Figure 6(a). This is particularly true during large and unexpected market
movements, which are common in heavy-tailed models. This function enables us to distinguish
between distributions with increasing or decreasing risk bias and helps us better assess the likelihood
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of simultaneous crashes or rare, high-impact events in financial markets. On the other hand, in the case

n B
= Hlog{M} , provides precise information about how risk changes near the boundary of the
) SLm (i +5t)
range, as in Figure 6(b), such as when the price approaches a known upper or lower bound. This is
particularly useful in the pricing of derivatives with constraints, e.g., capped options or range accrual
notes. The use of the second failure rate in multivariate distributions with bounded support therefore
enables us to model the boundary behavior of the data and their co-dependence, especially when

combined with copula models or conditional distributions.

4

4. Simulation and numerical validation with financial market data

To implement the proposed model based on the Wiener process range distribution in a continuous
format, real financial data for Apple (AAPL) and Microsoft (MSFT) stocks during July 2025 were
used. A real dataset of daily high—low price ranges was obtained from open financial data sources (e.g.,
NASDAQ via the Alpha Vantage API, https://www.alphavantage.co/). Moreover, the annual
fluctuations in the prices of these stocks are clearly illustrated in Figure 7, which demonstrates the
variability of their high—low ranges over the full year. Each trading day’s range was determined using the
difference between the high and low registered prices, as described in Table 1. Based on this data, the
average daily range for AAPL was approximately $3.4 with a standard deviation of approximately $1.3,
while the average daily range for MSFT was approximately $6.7 with a standard deviation of $3.8. An
exceptional spike was observed on July 31, when the range exceeded $23 due to a wide price
fluctuation. Descriptive statistics showed that the range distributions were moderately skewed and
flattened for AAPL, compared to being positively skewed and relatively high skewed for MSFT,
indicating a higher concentration of large fluctuations in the latter.

Since the underlying price process evolves continuously and the theoretical Wiener range
distribution is derived in continuous time, the nature of these data is directly consistent with the
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model’s assumptions. Prior to calibration, the series were cleaned of missing values and any
corporate events such as splits or dividends were treated in order to maintain consistency in the data.
Calibration was performed by providing the volatility parameter & for every stock. For AAPL, an
estimate of 6~0.018 proved to be a good fit in simulating the empirical range distribution, while for
MSFT, an estimate of 6~0.032 was consistent with the amplitude of the daily ranges. The estimation
was performed either by maximizing the likelihood function or by minimizing the Kolmogorov—
Smirnov distance between the empirical distribution and the joint CDF (2.3).

w “l \‘ \ l'f A

202;5-01 2025-03 2025-05 202$~07 2025-09 2025-11 202‘6-01
Davys (2025)

=)

(=)

High-Low Price Range
- oW

w

Figure 7. Fluctuations in the prices of AAPL and MSFT stocks during the year 2025 when
the price range is between 2 and 8.
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Table 1. Daily trading data for AAPL and MSFT with high—low price range differences.

Date AAPL MSFT Average Daily AAPL  MSFT  AAPL MSFT AAPL MSFT
High Low Range High Low Range Daily Std Dev  Mean Mean \olatility  Volatility Estimated Estimated
Range Price Price Coefficient Coefficient Volatility Volatility
7/1/2025 210.19 206.14 4.05 498.05 490.98 7.07 5.56 2.13546 208.165 494.515 0.019456  0.014297  0.010259 0.004318
7/2/2025 213.34 208.14 5.2 4935 4887 4.8 5 0.28284 210.74 491.1 0.024675  0.009774  0.001342 0.000576
7/3/2025 214.65 21181 2.84 500.13 493.44 6.69 4.765 2.72236 213.23 496.785 0.013319  0.013467  0.012767 0.00548
7/7/2025 216.23 208.8 7.43 498.75 49523 3.52 5.475 2.76478 212515 496.99 0.034962  0.007083  0.01301  0.005563
7/8/2025 21143 208.45 2.98 498.2 49411 4.09 3.535 0.78488 209.94 496.155 0.014195  0.008243  0.003739 0.001582
7/9/2025 211.33 207.22 4.11 506.78 499.74 7.04 5.575 2.07182 209.275 503.26 0.019639  0.013989  0.0099 0.004117
7/10/2025  213.48 210.03 3.45 504.44 497.75 6.69 5.07 2.29102 211.755 501.095 0.016292  0.013351  0.010819 0.004572
7/11/2025  212.13 209.86 2.27 505.03 497.8 7.23 4.75 3.50725 210.995 501.415 0.010759  0.014419  0.016622 0.006995
7/14/2025  210.91 207.54 3.37 503.97 501.03 294 3.155 0.30405 209.225 502.5 0.016107  0.005851  0.001453 0.000605
7/15/2025  211.89 208.92 2.97 508.3 502.79 5.51 4.24 1.79605 210.405 505.545 0.014116 0.010899  0.008536 0.003553
7/16/2025 2124  208.64 3.76 506.72 501.89 4.83 4.295 0.75660 210.52 504.305 0.017861  0.009578  0.003594 0.0015
7/17/2025 2118 20959 221 513.37 505.62 7.75 4.98 3.91737 210.695 509.495 0.010489  0.015211  0.018593 0.007689
7/18/2025  211.79 209.71 2.08 514.64 507.43 7.21 4.645 3.62745 210.75 511.035 0.00987 0.014109  0.017212 0.007098
7/21/2025  215.78 21163 4.15 512.09 505.55 6.54 5.345 1.68998 213.705 508.82 0.019419  0.012853  0.007908 0.003321
7/22/2025  214.95 21223 2.72 511.2  505.27 5.93 4.325 2.26981 21359 508.235 0.012735 0.011668  0.010627 0.004466
7/23/2025  215.15 21241 2.74 506.79 500.7 6.09 4.415 2.36880 213.78 503.745 0.012817  0.012089  0.011081 0.004702
7/24/2025  215.69 21353 2.16 513.67 507.3 6.37 4.265 297692 214.61 510.485 0.010065 0.012478  0.013871 0.005832
7/25/2025 21524 2134 184 518.29 510.36 7.93 4.885 430628 214.32 514.325 0.008585  0.015418  0.020093 0.008373
7/28/2025  214.85 213.06 1.79 515 510.12 4.88 3.335 2.18496 213.955 51256 0.008366  0.009521  0.010212 0.004263
7/29/2025  214.81 210.82 3.99 517.62 51156 6.06 5.025 1.46371 212.815 51459 0.018749  0.011776  0.006878 0.002844
7/30/2025  212.39 207.72 4.67 515.95 509.44 6.51 5.59 1.30107 210.055 512.695 0.022232  0.012698  0.006194 0.002538
7/31/2025  209.84 207.16 2.68 555.45 5319 2355 13.115 14.7573 208.5 543.675 0.012854  0.043316  0.070779 0.027144
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The results of the goodness-of-fit tests, presented in Table 2, showed that the proposed model
provided a good fit with the actual data. For AAPL, the estimated volatility coefficient was & ~0.018, and
the Kolmogorov—Smirnov statistic (KS = 0.073, p=0.42) and Anderson—Darling statistic (AD = 0.29,
p>0.1) were not significant, indicating a strong fit of the model. For MSFT, the estimated volatility
coefficient was &~0.032, with values of (KS = 0.089, p=021) and (AD = 0.51, p=~0.07)
demonstrating the model’s ability to represent daily ranges, with greater sensitivity to the large
fluctuations that characterize this stock. Probabilistic transformation (PIT) tests also confirmed the
regularity of the time series after calibration and their closeness to the expected theoretical regularity.

Table 2. Results of the goodness-of-fit tests.

Stock & KS KS AD AD Notes

statistic ~ p-value  statistic p-value
AAPL 0.018 0.073 0.42 0.29 >0.10 Strong model fit
MSFT 0.032 0.089 0.21 0.51 ~0.07 Higher sensitivity to

fluctuations

These results show that the model can capture daily price behavior in continuous-time markets.
It works efficiently for stable shares like AAPL and is flexible enough to capture wider swings in
MSFT. This provides a clear advantage over traditional models that rely on independence or
non-intermittency assumptions.

5. Conclusions

A comprehensive mathematical framework was developed to model financial instruments
sensitive to the range between maximum and minimum stock prices over a given interval. The model is
based on the multivariate distribution of the range of independent Wiener processes, which capture
stock price variations. We derived the general distribution of these variations and their truncated
version from two perspectives, highlighting their effectiveness under random fluctuations. The main
statistical properties of this distribution, such as reliability functions, statistical moments, stress-strength
parameters, and order statistics, were analyzed, with a focus on the bivariate distribution. The truncated
version of the bivariate distribution demonstrated higher accuracy, especially in highly volatile markets,
enhancing its importance in risk management and derivatives pricing.

This work makes an important theoretical and practical contribution to analyzing stock price
movements by their range. It also provides a foundation for developing analytical tools to improve risk
management and financial forecasting. Based on these findings, future research may test the model
under high-frequency trading episodes. Such episodes are marked by rapid volatility and structural
complexity. Another direction is to extend the model to non-independent Wiener processes using
copula functions. This extension preserves more realistic cross-sectional dependencies among asset
returns. Moreover, future research may extend the model by adding jump processes or fractional
Brownian motion to better capture long memory and sudden price shocks.
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