Research article

On the general sum-connectivity index of hypergraphs

  • Published: 23 September 2025
  • MSC : 05C35, 05C50, 05C90

  • Given a non-zero real number $ \alpha $, the general sum-connectivity index $ \chi_{\alpha} $ for graph $ G $ is given by the sum $ \Sigma_{xy\in {E(G)}} (d_x+d_y)^{\alpha} $. Here, $ d_x $ denotes the degree of a vertex $ x $ in graph $ G $, and $ E(G) $ is the edge set of $ G $. A hypertree is a connected hypergraph without cycles. In a $ k $-uniform hypergraph, every hyperedge contains exactly $ k $ vertices, and a hypergraph is termed linear if any two distinct hyperedges share at most one vertex. This study addresses analytical challenges inherent in hypergraphs by concentrating on key subclasses and introducing innovative perturbation methods to solve fundamental extremal problems within these frameworks. Through this approach, we aim to broaden the scope and utility of graph-theoretic techniques. Specifically, within the class of uniform linear hypergraphs, we characterize the extremal hypergraphs with respect to the $ \chi_{\alpha} $ operation. Furthermore, we investigate extremal problems related to $ \chi_{\alpha} $ in both general hypergraphs and bipartite hypergraphs, yielding new insights into their previously unexplored structural properties.

    Citation: Hongzhuan Wang, Piaoyang Yin, Yan Li. On the general sum-connectivity index of hypergraphs[J]. AIMS Mathematics, 2025, 10(9): 22092-22105. doi: 10.3934/math.2025983

    Related Papers:

  • Given a non-zero real number $ \alpha $, the general sum-connectivity index $ \chi_{\alpha} $ for graph $ G $ is given by the sum $ \Sigma_{xy\in {E(G)}} (d_x+d_y)^{\alpha} $. Here, $ d_x $ denotes the degree of a vertex $ x $ in graph $ G $, and $ E(G) $ is the edge set of $ G $. A hypertree is a connected hypergraph without cycles. In a $ k $-uniform hypergraph, every hyperedge contains exactly $ k $ vertices, and a hypergraph is termed linear if any two distinct hyperedges share at most one vertex. This study addresses analytical challenges inherent in hypergraphs by concentrating on key subclasses and introducing innovative perturbation methods to solve fundamental extremal problems within these frameworks. Through this approach, we aim to broaden the scope and utility of graph-theoretic techniques. Specifically, within the class of uniform linear hypergraphs, we characterize the extremal hypergraphs with respect to the $ \chi_{\alpha} $ operation. Furthermore, we investigate extremal problems related to $ \chi_{\alpha} $ in both general hypergraphs and bipartite hypergraphs, yielding new insights into their previously unexplored structural properties.



    加载中


    [1] A. Ali, Z. Du, On the difference between atom-bond connectivity index and Randić index of binary and chemical trees, Int. J. Quantum Chem., 117 (2017), e25446. https://doi.org/10.1002/qua.25446 doi: 10.1002/qua.25446
    [2] A. Ali, I. Gutman, E. Milovanović, I.Milovanović, Sum of powers of the degree of graphs: extremal results and bounds, MATCH Commun. Math. Comput. Chem., 80 (2018), 5–84.
    [3] S. Akhter, M. Zmran, Z. Raza, Bounds for the general sum-connectivity index of composite graphs, J. Inequal. Appl., 2017 (2017), 76. https://doi.org/10.1186/s13660-017-1350-y doi: 10.1186/s13660-017-1350-y
    [4] N. Akhter, I. Tomescu, Bicyclic graphs with minimum general sum-connectivity index for $-1\leq \alpha < 0$, Proc. Romanian Acad. A, 16 (2015), 484–489.
    [5] M. Arshad, I. Tomescu, Maximum general sum-connectivity index with $-1\leq \alpha < 0$ for bicyclic graphs, Math. Rep., 19 (2017), 93–96.
    [6] A. Ali, D. Dimitrov, Z. Du, F. Ishfag, On the extremal graphs for general sum-connectivity index $\chi_{\alpha}$ with given cyclomatic number when $\alpha>1$, Dicrete Appl. Math., 257 (2019), 19–30. https://doi.org/10.1016/j.dam.2018.10.009 doi: 10.1016/j.dam.2018.10.009
    [7] B. Borovićanin, K. C. Das, B. Furtula, I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem., 78 (2017), 17–100.
    [8] B. Borovićanin, K. C. Das, B. Furtula, I. Gutman, Zagreb indices: bounds and extremal graphs, In: Bounds in chemical Graph Theory–Basics, Univ. Kragujevac. Kragujevac, 2017, 67–153.
    [9] Q. Cui, L. Zhong, The general Randić index of trees with given number of pendent vertices, Appl. Math. Comput., 302 (2017), 111–121. https://doi.org/10.1016/j.amc.2017.01.021 doi: 10.1016/j.amc.2017.01.021
    [10] Q. Cui, L. Zhong, On the general sum-connectivity index of trees with give number of pendent vertices, Dicrete Appl. Math., 222 (2017), 213–221. https://doi.org/10.1016/j.dam.2017.01.016 doi: 10.1016/j.dam.2017.01.016
    [11] C. Ouyang, L. Qi, X. Yuan, The first few unicyclic and bicyclic hypergraphs with largest spectral radii, Linear Algebra Appl., 527 (2017), 141–162. https://doi.org/10.1016/j.laa.2017.04.008 doi: 10.1016/j.laa.2017.04.008
    [12] K. C. Das, S. Balachandran, I. Gutman, Inverse degree, Randić index and harmonic index of graphs, Appl. Anal. Discrete Math., 11 (2017), 304–313. https://doi.org/10.2298/aadm1702304d doi: 10.2298/aadm1702304d
    [13] T. Dehghan-Zadeh, A. R. Ashrafi, N. Habibi, Maximum and second maximum of Randić index in the class of tricyclic graphs, MATCH Commun. Math. Comput. Chem., 74 (2015), 137–144.
    [14] T. Divnić, L. Pavlović, B. Liu, Extremal graphs for the Randić index when minimum, maximum degrees and order of graphs are odd, Optimization, 64 (2015), 2021–2038. https://doi.org/10.1080/02331934.2014.919500 doi: 10.1080/02331934.2014.919500
    [15] Z. Du, B. Zhou, N. Trinajstić, On the general sum-connectivity index of trees, Appl. Math. Lett., 24 (2011), 402–405. https://doi.org/10.1016/j.aml.2010.10.038 doi: 10.1016/j.aml.2010.10.038
    [16] Z. Du, B. Zhou, N. Trinajstić, Minimum general sum-connectivity index of unicyclic graphs, J. Math. Chem., 48 (2010), 697–703. https://doi.org/10.1007/s10910-010-9702-6 doi: 10.1007/s10910-010-9702-6
    [17] I. Gutman, B. Furtula, V. Katanić, Randić index and information, AKCE Int. J. Graphs Comb., 15 (2018), 307–312. https://doi.org/10.1016/j.akcej.2017.09.006 doi: 10.1016/j.akcej.2017.09.006
    [18] M. K. Jamil, I. Tomescu, Minimum general sum-connectivity index of trees and unicyclic graphs having a given matching number, Dicrete Appl. Math., 222 (2017), 143–150. https://doi.org/10.1016/j.dam.2017.01.020 doi: 10.1016/j.dam.2017.01.020
    [19] M. Knor, B. Lu$\check{z}$ar, R$\check{s}$krekovski, Sandwiching the generalized Randić index, Dicrete Appl. Math., 181 (2015), 160–166. https://doi.org/10.1016/j.dam.2014.08.032 doi: 10.1016/j.dam.2014.08.032
    [20] X. Li, Y. Shi, A survey on the Randić index, MATCH Commun. Math. Comput. Chem., 59 (2008), 127–156.
    [21] F. Li, Q. Ye, The general connectivity indices of fluoranthene-type benzenoid systemss, Appl. Math. Comput., 273 (2016), 897–911. https://doi.org/10.1016/j.amc.2015.10.050 doi: 10.1016/j.amc.2015.10.050
    [22] B. Lu$\check{c}$ić, S. Nikolić, N. Trinajstić, B. Zhou, S. I. Turk, Sum-connectivity index, In: Novel molecular structure descriptors theory and applications I, Univ. Kragujevac, 2010,101–136.
    [23] H. Li, J.-Y. Shao, L. Qi, The extremal spectral radii of $k$-uniform supertrees, J. Comb. Optim., 32 (2016), 741–761. https://doi.org/10.1007/s10878-015-9896-4 doi: 10.1007/s10878-015-9896-4
    [24] T. Mansour, M. A. Rostami, S. Elumalai, B. A. Xavier, Correcting a paper on the Randić index and gemetric-arithmetic indices, Turk. J. Math., 41 (2017), 27–32. https://doi.org/10.3906/mat-1510-115 doi: 10.3906/mat-1510-115
    [25] I. $\check{Z}$. Milovanović, E. I. Milovanović, M. Matejić, Some inequalities for general sum-connectivity index, MATCH Commun. Math. Comput. Chem., 79 (2018), 477–489.
    [26] M. Randić, On characterization of molecular branching, J. Amer. Chem. Soc., 97 (1975), 6609–6615. https://doi.org/10.1021/ja00856a001 doi: 10.1021/ja00856a001
    [27] J. A. Rodriguez, On the wiener index and the eccentric distance sum of hypergraphs, MATCH Commun. Math. Comput. Chem., 54 (2005), 209–220.
    [28] Y. Shi, Note on two generalization of the Randić index, Appl. Math. Comput., 265 (2015), 1019–1025. https://doi.org/10.1016/j.amc.2015.06.019 doi: 10.1016/j.amc.2015.06.019
    [29] S. S. Shetty, K. A. Bhat, Sombor index of hypergraphs, MATCH Commun. Math. Comput. Chem., 91 (2024), 235–254. https://doi.org/10.46793/match.91-1.235s doi: 10.46793/match.91-1.235s
    [30] I. Tomescu, S. Kanwal, Ordering trees having small general sum-connectivity index, MATCH Commun. Math. Comput. Chem., 69 (2013), 535–548.
    [31] T. Vetrík, Degree-based indices of hypergraphs: definitions and first results, Asian-Eur. J. Math., 17 (2024), 2450023. https://doi.org/10.1142/S1793557124500232 doi: 10.1142/S1793557124500232
    [32] H. Wang, P. Yin, On the eccentricity-based invariants of uniform hypergraphs, Filomat, 38 (2024), 325–342. https://doi.org/10.2298/FIL2401325W doi: 10.2298/FIL2401325W
    [33] X. Yuan, J. Shao, H. Shan, Ordering of some uniform supertrees with largest spectral radii, Linear Algebra Appl., 495 (2016), 206–222. https://doi.org/10.1016/j.laa.2016.01.031 doi: 10.1016/j.laa.2016.01.031
    [34] B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem., 46 (2009), 1252–1270. https://doi.org/10.1007/s10910-008-9515-z doi: 10.1007/s10910-008-9515-z
    [35] B. Zhou, N. Trinajstić, On general sum-connectivity index, J. Math. Chem., 47 (2010), 210–218. https://doi.org/10.1007/s10910-009-9542-4 doi: 10.1007/s10910-009-9542-4
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(450) PDF downloads(18) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog