In Mediterranean countries, due to warmer and drier environmental conditions, viticulture faces problems such as drought, short biological cycle, and frequent infestations by pests. Precision Viticulture (PV), through spatially variable rate application of crop inputs, enhances grape yield and quality, while reducing operational costs and environmental impact. PV has been a reality in Mediterranean countries since the end of the last century. Proximal/remote sensors such as LIght Detection And Ranging (LIDAR), soil electrical conductivity proximal sensors, and remote sensing from Unmanned Aerial Vehicles (UAVs) and/or satellites and/or robots can monitor vegetation vigour, thus delineating vineyard Management Zones (MZs), needing specific crop input amounts. MZs enable us to plan either temporally variable vintage in zones having different ripeness periods for producing uniform quality grapes and, therefore, wine, or spatially variable vintage for producing different quality grapes and, therefore, wines. The economic and environmental benefits of PV should be quantified by refining user-friendly data processing software and developing models to better understand and address the within-vineyard spatial variability of crop and soil parameters. Our aim of this review article was to highlight the ways PV can be implemented in Mediterranean countries to face problems such as drought, short biological cycle, and frequent infestations by pests.
Citation: Antonio Comparetti, Evangelos Anastasiou, Aikaterini Kasimati, Spyros Fountas. Precision viticulture in Mediterranean countries: From vegetation vigour and yield maps to spatially and temporally variable vintage[J]. AIMS Agriculture and Food, 2025, 10(2): 390-422. doi: 10.3934/agrfood.2025020
[1] | Chungen Liu, Huabo Zhang . Ground state and nodal solutions for fractional Kirchhoff equation with pure critical growth nonlinearity. Electronic Research Archive, 2021, 29(5): 3281-3295. doi: 10.3934/era.2021038 |
[2] | Senli Liu, Haibo Chen . Existence and asymptotic behaviour of positive ground state solution for critical Schrödinger-Bopp-Podolsky system. Electronic Research Archive, 2022, 30(6): 2138-2164. doi: 10.3934/era.2022108 |
[3] | Xiaoyong Qian, Jun Wang, Maochun Zhu . Existence of solutions for a coupled Schrödinger equations with critical exponent. Electronic Research Archive, 2022, 30(7): 2730-2747. doi: 10.3934/era.2022140 |
[4] | Ping Yang, Xingyong Zhang . Existence of nontrivial solutions for a poly-Laplacian system involving concave-convex nonlinearities on locally finite graphs. Electronic Research Archive, 2023, 31(12): 7473-7495. doi: 10.3934/era.2023377 |
[5] | Shiyong Zhang, Qiongfen Zhang . Normalized solution for a kind of coupled Kirchhoff systems. Electronic Research Archive, 2025, 33(2): 600-612. doi: 10.3934/era.2025028 |
[6] | Zhiyan Ding, Hichem Hajaiej . On a fractional Schrödinger equation in the presence of harmonic potential. Electronic Research Archive, 2021, 29(5): 3449-3469. doi: 10.3934/era.2021047 |
[7] | Lingzheng Kong, Haibo Chen . Normalized solutions for nonlinear Kirchhoff type equations in high dimensions. Electronic Research Archive, 2022, 30(4): 1282-1295. doi: 10.3934/era.2022067 |
[8] | Jun Wang, Yanni Zhu, Kun Wang . Existence and asymptotical behavior of the ground state solution for the Choquard equation on lattice graphs. Electronic Research Archive, 2023, 31(2): 812-839. doi: 10.3934/era.2023041 |
[9] | Zijian Wu, Haibo Chen . Multiple solutions for the fourth-order Kirchhoff type problems in RN involving concave-convex nonlinearities. Electronic Research Archive, 2022, 30(3): 830-849. doi: 10.3934/era.2022044 |
[10] | Xiaoguang Li . Normalized ground states for a doubly nonlinear Schrödinger equation on periodic metric graphs. Electronic Research Archive, 2024, 32(7): 4199-4217. doi: 10.3934/era.2024189 |
In Mediterranean countries, due to warmer and drier environmental conditions, viticulture faces problems such as drought, short biological cycle, and frequent infestations by pests. Precision Viticulture (PV), through spatially variable rate application of crop inputs, enhances grape yield and quality, while reducing operational costs and environmental impact. PV has been a reality in Mediterranean countries since the end of the last century. Proximal/remote sensors such as LIght Detection And Ranging (LIDAR), soil electrical conductivity proximal sensors, and remote sensing from Unmanned Aerial Vehicles (UAVs) and/or satellites and/or robots can monitor vegetation vigour, thus delineating vineyard Management Zones (MZs), needing specific crop input amounts. MZs enable us to plan either temporally variable vintage in zones having different ripeness periods for producing uniform quality grapes and, therefore, wine, or spatially variable vintage for producing different quality grapes and, therefore, wines. The economic and environmental benefits of PV should be quantified by refining user-friendly data processing software and developing models to better understand and address the within-vineyard spatial variability of crop and soil parameters. Our aim of this review article was to highlight the ways PV can be implemented in Mediterranean countries to face problems such as drought, short biological cycle, and frequent infestations by pests.
Our goal of this paper is to consider the existence of nodal solution and ground state solution for the following fractional Kirchhoff equation:
{−(a+b‖u‖2K)LKu+V(x)u=|u|2∗α−2u+kf(x,u),x∈Ω,u=0,x∈R3∖Ω, | (1) |
where
LKu(x)=12∫R3(u(x+y)+u(x−y)−2u(x))K(y)dy,x∈R3, |
the kernel
(ⅰ)
(ⅱ) there exists
(ⅲ)
We note that when
(−Δ)αu(x)=−C(α)2∫R3(u(x+y)+u(x−y)−2u(x))|y|3+2αdy |
and in this case
∫R3∫R3|u(x)−u(y)|2K(x−y)dxdy=2C(α)∫R3|(−Δ)α/2u(x)|2dx, |
where
When
{(−Δ)αu+V(x)u=|u|2∗α−2u+kf(x,u),x∈Ω,u=0,x∈R3∖Ω. | (2) |
Equation (2) is derived from the fractional Schrödinger equation and the nonlinearity
(a+b∫R3∫R3|u(x)−u(y)|2|x−y|3+2αdxdy)(−Δ)αu=f(x,u), | (3) |
where
utt+(a+b∫R3∫R3|u(x)−u(y)|2|x−y|3+2αdxdy)(−Δ)αu=f(x,u). | (4) |
As a special significant case, the nonlocal aspect of the tension arises from nonlocal measurements of the fractional length of the string. For more mathematical and physical background on Schrödinger-Kirchhoff type problems, we refer the readers to [6] and the references therein.
In the remarkable work of Caffarelli and Silvestre [2], the authors express this nonlocal operator
In past few years, some researchers began to search for nodal solutions of Schrödinger type equation with critical growth nonlinearity and have got some interesting results. For example, Zhang [20] considered the following Schrödinger-Poisson system:
{−Δu+u+k(x)ϕu=a(x)|u|p−2u+u5,x∈R3,−Δϕ=k(x)u2,x∈R3, | (5) |
where
Wang [17] studies the following Kirchhoff-type equation:
{−(a+b∫Ω|∇u|2dx)Δu=|u|4u+λf(x,u), x∈Ω,u=0, x∈∂Ω, | (6) |
where
However, as for fractional Kirchhoff types equation, to the best of our knowledge, few results involved the existence and asymptotic behavior of ground state and nodal solutions in case of critical growth. If
It's worth noting that, the Brouwer degree method used in [18] strictly depends on the nonlinearity
Throughout this paper, we let
E={u∈X:∫R3V(x)u2dx<∞,u=0a.e.inR3∖Ω}, |
where the space X introduced by Servadei and Valdinoci ([12,13]) denotes the linear space of Lebesgue measurable functions
((x,y)→(u(x)−u(y))√K(x−y)∈L2((R3×R3)∖(Ωc×Ωc),dxdy) |
with the following norm
||u||2X=||u||2L2+∫Q|u(x)−u(y)|2K(x−y)dxdy, |
where
⟨u,v⟩=a2∫R3∫R3(u(x)−u(y))(v(x)−v(y))K(x−y)dxdy+∫ΩV(x)uvdx,∀u,v∈E |
and the norm
‖u‖2=a2∫R3∫R3|u(x)−u(y)|2K(x−y)dxdy+∫ΩV(x)u2dx. |
The following result for the space
Lemma 1.1. ([12]) Let
A weak solution
12(a+b‖u‖2K)∫R3∫R3(u(x)−u(y))(v(x)−v(y))K(x−y)dxdy+∫ΩV(x)u(x)v(x)dx−∫Ω|u(x)|2∗α−2u(x)v(x)dx−k∫Ωf(x,u(x))v(x)dx=0, |
for any
⟨u,v⟩+b‖u‖2K(u,v)K−k∫Ωf(x,u)vdx−∫Ω|u|2∗α−2uvdx=0,∀v∈E. |
As for the function
(f1):
(f2): There exists
(f3):
Remark 1. We note that under the conditions (
The main results can be stated as follows.
Theorem 1.2. Suppose that
Remark 2. The ground state nodal solution
Jk(uk)=ck:=infu∈MkJk(u), |
where
u+=max{u(x),0},u−=min{u(x),0}. |
We recall that the nodal set of a continuous function
Theorem 1.3. Suppose that
Jk(uk)>2c∗, |
where
Comparing with the literature, the above two results can be regarded as a supplementary of those in [3,4,14,17].
The remainder of this paper is organized as follows. In Section 2, we give some useful preliminaries. In Section 3, we study the existence of ground state and nodal solutions of (1) and we prove Theorems 1.1-1.2.
We define the energy functional associated with equation (1) as follows:
Jk(u)=12‖u‖2+b4‖u‖4K−k∫ΩF(x,u)dx−12∗α∫Ω|u|2∗αdx,∀u∈E. |
According to our assumptions on
⟨J′k(u),v⟩=⟨u,v⟩+b‖u‖2K(u,v)K−k∫Ωf(x,u)vdx−∫Ω|u|2∗α−2uvdx,∀u,v∈E. |
Note that, since (1) involves pure critical nonlinearity
For fixed
H(s,t)=⟨J′k(su++tu−),su+⟩,G(s,t)=⟨J′k(su++tu−),tu−⟩. |
The argument generally used is to modify the method developed in [11]. The nodal Nehari manifold is defined by
Mk={u∈E,u±≠0and⟨J′k(u),u+⟩=⟨J′k(u),u−⟩=0}, | (7) |
which is a subset of the Nehari manifold
Jk(u)=Jk(u+)+Jk(u−), |
it brings difficulties to construct a nodal solution.
The following result describes the shape of the nodal Nehari manifold
Lemma 2.1. Assume that
Proof. From
|f(x,t)|≤ε|t|+Cε|t|q−1,∀t∈R. | (8) |
By above equality and Sobolev's embedding theorems, we have
H(s,t):=s2‖u+‖2+b‖su++tu−‖2K(su++tu−,su+)K−∫Ω|su+|2∗αdx−k∫Ωf(x,su+)su+dx−ast2∫R3∫R3[u+(x)u−(y)+u−(x)u+(y)]K(x−y)dxdy≥s2‖u+‖2−C1s2∗α‖u+‖2∗α−kεC2s2‖u+‖2−kCεC3sq‖u+‖q. | (9) |
By choosing
G(s,t):=t2‖u−‖2+b‖su++tu−‖2K(su++tu−,tu−)K−∫Ω|tu−|2∗αdx−k∫Ωf(x,tu−)tu−dx−ast2∫R3∫R3[u+(x)u−(y)+u−(x)u+(y)]K(x−y)dxdy>0, | (10) |
for
H(δ1,t)>0,G(s,δ1)>0. | (11) |
For any
H(δ2,t)≤δ22‖u+‖2+b‖δ2u++tu−‖2K(δ2u++tu−,δ2u+)K−δ22∗α∫R3|u+|2∗αdx+δ2tD(u). |
Similarly, we have
G(s,δ2)≤δ22‖u−‖2+b‖su++δ2u−‖2K(su++δ2u−,δ2u−)K−δ22∗α∫R3|u−|2∗αdx+sδ2D(u). |
By choosing
H(δ2,t)<0,G(s,δ2)<0 | (12) |
for all
Following (11) and (12), we can use Miranda's Theorem (see Lemma 2.4 in [17]) to get a positive pair
Lastly, we will prove that
s2u‖u+‖2+s2uD(u)+s4ub(‖u+‖2K+‖u−‖2K+2D(u))(‖u+‖2K+D(u))≥s2u‖u+‖2+sutuD(u)+b(s2u‖u+‖2K+t2u‖u−‖2K+2sutuD(u))(s2u‖u+‖2K+sutuD(u))=s2∗αu∫R3|u+|2∗αdx+k∫R3f(x,suu+)suu+dx. | (13) |
On the other hand,
‖u+‖2+D(u)+b(‖u+‖2K+‖u−‖2K+2D(u))(‖u+‖2K+D(u))≤∫R3|u+|2∗αdx+k∫R3f(x,u+)u+dx. | (14) |
From (13) - (14), we can see that
(1s2u−1)(‖u+‖2+D(u))≥(s2∗α−4u−1)∫R3|u+|2∗αdx+k∫R3[f(x,suu+)(suu+)3−f(x,u+)(u+)3](u+)4dx. |
So we have
Lemma 2.2. There exists
Proof. For any
‖u±‖2+b‖u‖2K(u,u±)K=k∫R3f(x,u±)u±dx+∫R3|u±|2∗αdx. |
Hence, in view of (8), we have
‖u±‖2≤kεC1‖u±‖2+kC2‖u±‖q+C3‖u±‖2∗α. |
By choosing
‖u±‖≥ρ | (15) |
for some
f(x,t)t−4F(x,t)≥0, | (16) |
and
Jk(u)=14‖u‖2+(14−12∗α)∫R3|u|2∗αdx+k4∫R3[f(x,u)u−4F(x,u)]dx≥14‖u‖2. |
So
Let
s2∗αk∫R3|u+|2∗αdx+t2∗αk∫R3|u−|2∗αdx≤‖sku++tku−‖2+b‖sku++tku−‖4K≤2s2k‖u+‖2+2t2k‖u−‖2+4bs4k‖u+‖4K+4bt4k‖u−‖4K, |
which implies
‖sknu++tknu−‖2+b‖sknu++tknu−‖4K=∫R3|sknu++tknu−|2∗αdx+kn∫R3f(sknu++tknu−)(sknu++tknu−)dx. | (17) |
Because
0≤ck≤Jk(sku++tku−)≤s2k‖u+‖2+t2k‖u−‖2+2bs4k‖u+‖4K+2bt4k‖u−‖4K, |
so
u±n→u±inLp(R3)∀p∈(2,2∗α),u±n(x)→u±(x)a.e.x∈R3. |
Denote
S:=infu∈E∖{0}‖u‖2(∫R3|u|2∗αdx)22∗α. |
Sobolev embedding theorem insures that
By
‖u±n‖2−‖u±n−u±‖2=2⟨u±n,u±⟩−‖u±‖2. |
By taking
limn→∞‖u±n‖2=limn→∞‖u±n−u±‖2+‖u±‖2. |
On the other hand, by (8) we have
∫R3F(x,su±n)dx→∫R3F(x,su±)dx. |
Then,
lim infn→∞Jk(su+n+tu−n)≥s22limn→∞(‖u+n−u+‖2+‖u+‖2)+t22limn→∞(‖u−n−u−‖2+‖u−‖2)+bs44[limn→∞‖u+n−u+‖2K+‖u+‖2K]2+bt44[limn→∞‖u−n−u−‖2K+‖u−‖2K]2+stlim infn→∞D(un)+bs2t24a2lim infn→∞D2(un)+bs2t22lim infn→∞(‖u+n‖2K‖u−n‖2K)+bs3t2alim infn→∞(D(un)‖u+n‖2K)+bst32alim infn→∞(D(un)‖u−n‖2K)−s2∗α2∗αlimn→∞(|u+n−u+|2∗α2∗α+|u+|2∗α2∗α)−t2∗α2∗αlimn→∞(|u−n−u−|2∗α2∗α+|u−|2∗α2∗α)−k∫R3F(x,su+)dx−k∫R3F(x,tu−)dx, |
where
lim infn→∞Jk(su+n+tu−n)≥Jk(su++tu−)+s22limn→∞‖u+n−u+‖2+t22limn→∞‖u−n−u−‖2−s2∗α2∗αlimn→∞|u+n−u+|2∗α2∗α−t2∗α2∗αlimn→∞|u−n−u−|2∗α2∗α+bs42limn→∞‖u+n−u+‖2K‖u+‖2K+bs44(limn→∞‖u+n−u+‖2K)2+bt42limn→∞‖u−n−u−‖2K‖u−‖2K+bt44(limn→∞‖u−n−u−‖2K)2=Jk(su++tu−)+s22A1−s2∗α2∗αB1+t22A2−t2∗α2∗αB2+bs42A3‖u+‖2K+bs44A23+bt42A4‖u−‖2K+bt44A24, |
where
A1=limn→∞‖u+n−u+‖2,A2=limn→∞‖u−n−u−‖2,B1=limn→∞|u+n−u+|2∗α2∗α,B2=limn→∞|u−n−u−|2∗α2∗α,A3=limn→∞‖u+n−u+‖2K,A4=limn→∞‖u−n−u−‖2K. |
From the inequality above, we deduce that
Jk(su++tu−)+s22A1−s2∗α2∗αB1+t22A2−t2∗α2∗αB2+bs42A3‖u+‖2K+bs44A23+bt42A4‖u−‖2K+bt44A24≤ck. | (18) |
We next prove
β=α3S32α≤α3(A1(B1)22∗α)32α. |
It happens that,
α3(A1(B1)22∗α)32α=maxs≥0{s22A1−s2∗α2∗αB1}≤maxs≥0{s22A1−s2∗α2∗αB1+bs42A3‖u+‖2K+bs44A23}. |
The inequality (18) and
β≤maxs≥0{s22A1−s2∗α2∗αB1+bs42A3‖u+‖2K+bs44A23}≤ck<β, |
which is a contradiction. Thus
Then, we consider the key point to the proof of Theorem 1.1, that is
Similarly, we only prove
Case 1:
ˉs22A1−ˉs2∗α2∗αB1+bˉs42A3‖u+‖2K+bˉs44A23=maxs≥0{s22A1−s2∗α2∗αB1+bs42A3‖u+‖2K+bs44A23}, |
ˉt22A2−ˉt2∗α2∗αB2+bˉt42A4‖u−‖2K+bˉt44A24=maxt≥0{t22A2−t2∗α2∗αB2+bt42A4‖u−‖2K+bt44A24}. |
Since
φu(su,tu)=max(s,t)∈[0,ˉs]×[0,ˉt]φu(s,t). |
If
By direct computation, we get
s22A1−s2∗α2∗αB1+bs42A3‖u+‖2K+bs44A23>0, | (19) |
t22A2−t2∗α2∗αB2+bt42A4‖u−‖2K+bt44A24>0, | (20) |
for all
β≤ˉs22A1−ˉs2∗α2∗αB1+bˉs42A3‖u+‖2K+bˉs44A23+t22A2−t2∗α2∗αB2+bt42A4‖u−‖2K+bt44A24, |
β≤ˉt22A2−ˉt2∗α2∗αB2+bs42A3‖u+‖2K+bs44A23+s22A1−s2∗α2∗αB1+bˉt42A4‖u−‖2K+bˉt44A24. |
In view of (18), it follows that
ck≥Jk(suu++tuu−)+s2u2A1−s2∗αu2∗αB1+t2u2A2−t2∗αu2∗αB2+bs4u2A3‖u+‖2K+bs4u4A23+bt4u2A4‖u−‖2K+bt4u4A24>Jk(suu++tuu−)≥ck. |
It is impossible. The proof of Case 1 is completed.
Case 2:
φu(su,tu)=max(s,t)∈[0,ˉs]×[0,∞)φu(s,t). |
We need to prove that
β≤ˉs22A1−ˉs2∗α2∗αB1+bˉs42A3‖u+‖2K+bˉs44A23+t22A2−t2∗α2∗αB2+bt42A4‖u−‖2K+bt44A24. |
Thus also from (20) and
ck≥Jk(suu++tuu−)+s2u2A1−s2∗αu2∗αB1+t2u2A2−t2∗αu2∗αB2+bs4u2A3‖u+‖2K+bs4u4A23+bt4u2A4‖u−‖2K+bt4u4A24>Jk(suu++tuu−)≥ck, |
which is a contradiction.
Since
⟨J′k(u),u±⟩≤lim infn→∞‖u±n‖2+blim infn→∞‖un‖2K(un,u±n)K−limn→∞∫R3f(x,u±n)u±ndx−limn→∞∫R3|u±n|2∗α+lim infn→∞L(un)≤limn→∞⟨J′k(un),u±n⟩=0. |
By Lemma 2.1, we know
ck≤Jk(˜u)−14⟨J′k(˜u),˜u⟩=14(‖suu+‖2+‖tuu−‖2)+(14−12∗α)(|suu+|2∗α2∗α+|tuu−|2∗α2∗α)+k4∫R3[f(x,suu+)(suu+)−4F(x,suu+)]dx+k4∫R3[f(x,tuu−)(tuu−)−4F(x,tuu−)]dx≤lim infn→∞[Jk(un)−14⟨J′k(un),un⟩]=ck. |
So, we have completed proof of Lemma 2.2.
In this section, we will prove main results.
Proof. Since
Jk(su+k+tu−k)<ck. | (21) |
If
‖J′k(v)‖≥θ,forall‖v−uk‖≤3δ. |
We know by the result (15), if
¯ck:=max∂QI∘g<ck. | (22) |
Let
To finish the proof of Theorem 1.1, one of the key points is to prove that
max(s,t)∈ˉQJk(η(1,g(s,t)))<ck. | (23) |
The other is to prove that
Jk(η(1,v))≤Jk(η(0,v))=Jk(v),∀v∈E. | (24) |
For
Jk(η(1,g(s,t)))≤Jk(g(s,t))<ck. |
If
Jk(η(1,g(1,1)))≤ck−ε<ck. |
Thus (23) holds. Then, let
Υ(s,t):=(1s⟨J′k(φ(s,t)),(φ(s,t))+⟩,1t⟨J′k(φ(s,t)),(φ(s,t))−⟩). |
The claim holds if there exists
‖g(s,t)−uk‖2=‖(s−1)u+k+(t−1)u−k‖2≥|s−1|2‖u+k‖2>|s−1|2(6δ)2, |
and
Υ(12,t)=(2⟨J′k(12u+k+tu−k),12u+k⟩,1t⟨J′k(12u+k+tu−k),tu−⟩). |
On the other hand, from (9) and
H(t,t)=(t2−t4)(‖u+‖2+D(u))+(t4−t2∗α)∫R3|u+|2∗αdx+kt4∫R3(f(x,u+)−f(x,tu+)t3)u+dx. |
According to
H(12,t)=‖12u+k‖2+t2D(uk)+b(14‖u+k‖2K+t2‖u−k‖2K+taD(uk))(14‖u+k‖2K+t2aD(uk))−(12)2∗α∫R3|u+k|2∗αdx−k∫R3f(x,12u+k)12u+kdx≥H(12,12)>0, |
which implies that
H(12,t)>0,∀t∈[12,32]. | (25) |
Analogously,
H(32,t)=‖32u+k‖2+3t2D(uk)+b(94‖u+k‖2K+t2‖u−k‖2K+3taD(uk))(94‖u+k‖2K+3t2aD(uk))−(32)2∗α∫R3|u+k|2∗αdx−k∫R3f(x,32u+k)32u+kdx≤H(32,32)<0, |
that is,
H(32,t)<0,∀t∈[12,32]. | (26) |
By the same way,
G(s,12)>0,∀s∈[12,32],andG(s,32)>0,∀s∈[12,32]. | (27) |
From (25)-(27), the assumptions of Miranda's Theorem (see Lemma 2.4 in [17]) are satisfied. Thus, there exists
Proof. Recall that
Firstly, we prove that
β≤˜t22A−˜t2∗α2∗αB:=maxt≥0{t22A−t2∗α2∗αB}≤maxt≥0{t22A−t2∗α2∗αB+bt44(C2+2C‖vk‖2K)}≤c∗<β. |
Which is a contradiction.
Then, we prove that
c∗≤Jk(tvvk)<Jk(tvvk)+t2v2A−t2∗αv2∗αB+bt4v4(C2+2C‖vk‖2K)≤c∗. |
From the above arguments we know
c∗≤Jk(˜v)−14⟨J′k(˜v),˜v⟩≤14‖vk‖2+(14−12∗α)|vk|2∗α2∗α+k4∫R3[f(x,vk)vk−4F(x,vk)]dx=lim infn→∞[Jk(vn)−14⟨J′k(vn),vn⟩]=c∗. |
Therefore,
By standard arguments, we can find
su+u+∈Nk,tu−u−∈Nk. |
Thus, the above fact follows that
2c∗≤Jk(su+u+)+Jk(tu−u−)≤Jk(su+u++tu−u−)<Jk(u++u−)=ck. |
[1] |
Fountas S, Espejo-Garcia B, Kasimati A, et al. (2020) The future of digital agriculture: technologies and opportunities. IT Prof 22: 24–28. https://doi.org/10.1109/MITP.2019.2963412 doi: 10.1109/MITP.2019.2963412
![]() |
[2] | Paice MER, Day W (1997) Using computer simulation to compare patch spraying strategies. In: Stafford JV (Ed.), Precision Agriculture '97: Spatial Variability in Soil and Crop, Oxford, BIOS Scientific Publishers, 1: 421–428. |
[3] | McGovern EA, Holden NM, Ward SM, et al. (1998) Calibration of Landsat Thematic Mapper imagery for milled peat density prediction. Jyvaskyla, Finlandia. |
[4] | ISPA—International Society of Precision Agriculture. Precision Ag definition. Available from: https://www.ispag.org/about/definition. |
[5] |
Santillán D, Garrote L, Iglesias A, et al. (2020) Climate change risks and adaptation: New indicators for Mediterranean viticulture. Mitig Adapt Strateg Glob Change 25: 881–899. https://doi.org/10.1007/s11027-019-09899-w doi: 10.1007/s11027-019-09899-w
![]() |
[6] | Santesteban LG (2019) Precision viticulture and advanced analytics. A short review. Food Chem 279: 58–62. https://doi.org/10.1016/j.foodchem.2018.11.140 |
[7] |
Tanda G, Chiarabini V (2019) Use of multispectral and thermal imagery in precision viticulture. J Physiol: Conf Ser 1224: 012034. https://doi.org/10.1088/1742-6596/1224/1/012034 doi: 10.1088/1742-6596/1224/1/012034
![]() |
[8] | Arnó J, Martínez Casasnovas JA, Ribes Dasi M, et al. (2009) Review. Precision viticulture. Research topics, challenges and opportunities in site-specific vineyard management. Span J Agric Res 7: 779. https://doi.org/10.5424/sjar/2009074-1092 |
[9] |
Sishodia RP, Ray RL, Singh SK (2020) Applications of remote sensing in precision agriculture: A review. Remote Sens 12: 3136. https://doi.org/10.3390/rs12193136 doi: 10.3390/rs12193136
![]() |
[10] |
Matese A, Di Gennaro F (2015) Technology in precision viticulture: A state of the art review. Int J Wine Res 5: 69–81. https://doi.org/10.2147/IJWR.S69405 doi: 10.2147/IJWR.S69405
![]() |
[11] | Anderson G, van Aardt J, Bajorski P, et al. (2016) Detection of wine grape nutrient levels using visible and near infrared 1 nm spectral resolution remote sensing. In: Valasek J, Thomasson JA (Eds.), Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping, 9866: 70–83. |
[12] |
Mashalaba L, Galleguillos M, Seguel O, et al. (2020) Predicting spatial variability of selected soil properties using digital soil mapping in a rainfed vineyard of central Chile. Geoderma Reg 22: e00289. https://doi.org/10.1016/j.geodrs.2020.e00289 doi: 10.1016/j.geodrs.2020.e00289
![]() |
[13] |
Kandylakis Z, Falagas A, Karakizi C, et al. (2020) Water stress estimation in vineyards from aerial SWIR and multispectral UAV data. Remote Sens 12: 2499. https://doi.org/10.3390/rs12152499 doi: 10.3390/rs12152499
![]() |
[14] |
Palacios F, Bueno G, Salido J, et al. (2020) Automated grapevine flower detection and quantification method based on computer vision and deep learning from on-the-go imaging using a mobile sensing platform under field conditions. Comput Electron Agric 178: 105796. https://doi.org/10.1016/j.compag.2020.105796 doi: 10.1016/j.compag.2020.105796
![]() |
[15] |
Brillante L, Martínez-Lüscher J, Yu R, et al. (2020) Carbon isotope discrimination (δ13 C) of grape musts is a reliable tool for zoning and the physiological ground-truthing of sensor maps in precision viticulture. Front Environ Sci 8: 561477. https://doi.org/10.3389/fenvs.2020.561477 doi: 10.3389/fenvs.2020.561477
![]() |
[16] |
Perry EM, Pierce FJ, Davenport JR, et al. (2009) Comparing active optical and airborne measurements of grape canopies. Acta Hortic 824: 75–84. https://doi.org/10.17660/ActaHortic.2009.824.8 doi: 10.17660/ActaHortic.2009.824.8
![]() |
[17] |
Anastasiou E, Balafoutis A, Theocharis S, et al. (2022) Assessment of laser scanner use under different settings in two differently managed vineyards for estimating pruning wood parameters. AgriEngineering 4: 733–746. https://doi.org/10.3390/agriengineering4030047 doi: 10.3390/agriengineering4030047
![]() |
[18] |
Anastasiou E, Castrignanò A, Arvanitis K, et al. (2019) A variability multi-source data fusion approach to assess spatial-temporal and delineate homogeneous zones: A use case in a table grape vineyard in Greece. Sci Total Environ 684: 155–163. https://doi.org/10.1016/j.scitotenv.2019.05.324 doi: 10.1016/j.scitotenv.2019.05.324
![]() |
[19] |
Henry D, Aubert H, Veronese T, et al. (2017) Remote estimation of intra-parcel grape quantity from three-dimensional imagery technique using ground-based microwave FMCW radar. IEEE Instrum Meas Mag 20: 20–24. https://doi.org/10.1109/MIM.2017.7951687 doi: 10.1109/MIM.2017.7951687
![]() |
[20] |
Vanino S, Pulighe G, Nino P, et al. (2015) Estimation of evapotranspiration and crop coefficients of Tendone vineyards using multi-sensor remote sensing data in a Mediterranean environment. Remote Sens 7: 14708–14730. https://doi.org/10.3390/rs71114708127 doi: 10.3390/rs71114708127
![]() |
[21] |
Anastasiou E, Balafoutis AT, Fountas S (2022) Trends in remote sensing technologies in olive cultivation. Smart Agr Technol 3: 100103. https://doi.org/10.1016/j.atech.2022.100103 doi: 10.1016/j.atech.2022.100103
![]() |
[22] |
Cogato A, Meggio F, Collins C, et al. (2020) Medium-resolution multispectral data from sentinel-2 to assess the damage and the recovery time of late frost on vineyards. Remote Sens 12: 1896. https://doi.org/10.3390/rs12111896 doi: 10.3390/rs12111896
![]() |
[23] | Pagay V, Kidman CM (2019) Evaluating remotely-sensed grapevine (Vitis Vinifera L.) water stress responses across a viticultural region. Agronomy 9: 682. https://doi.org/10.3390/agronomy9110682 |
[24] |
Albetis J, Jacquin A, Goulard M, et al. (2019) On the potentiality of UAV multispectral imagery to detect Flavescence dorée and grapevine trunk diseases. Remote Sens 11: 23. https://doi.org/10.3390/rs11010023 doi: 10.3390/rs11010023
![]() |
[25] |
Soliman A, Heck RJ, Brenning A, et al. (2013) Remote sensing of soil moisture in vineyards using airborne and ground-based thermal inertia data. Remote Sens 5: 3729–3748. https://doi.org/10.3390/rs5083729 doi: 10.3390/rs5083729
![]() |
[26] |
Droulia F, Charalampopoulos I (2021) Future climate change impacts on European viticulture: A review on recent scientific advances. Atmosphere 12: 495. https://doi.org/10.3390/atmos12040495 doi: 10.3390/atmos12040495
![]() |
[27] |
Dinis LT, Bernardo S, Yang C, et al. (2022) Mediterranean viticulture in the context of climate change. Ciência y Técnica in Vitivinicoltura 37: 139–158. https://doi.org/10.1051/ctv/ctv20223702139 doi: 10.1051/ctv/ctv20223702139
![]() |
[28] | Bramley RGV (2001) Variation in the yield and quality of winegrapes and the effect of soil property variation in two contrasting Australian vineyards. Final Report on GWRDC—Project No. CSL00/01. CSIRO Land and Water/Grape and Wine Research and Development Corporation. |
[29] | Bramley RGV (2001) Progress in the development of precision viticulture—Variation in yield, quality and soil properties in contrasting Australian vineyards. Final Report on GWRDC—Project No. CSL00/01. CSIRO Land and Water/Grape and Wine Research and Development Corporation. |
[30] | Bramley RGV (2002) Travel to Minneapolis and California USA to attend the 6th International Conference on Precision Agriculture and meet with US wine industry personnel interested in Precision Viticulture. Final Report on GWRDC—Project No. CSL02/01. CSIRO Land and Water/Grape and Wine Research and Development Corporation. |
[31] | Bramley RGV (2002) Precision viticulture—Tools to optimise winegrape production in a difficult landscape. Final Report on GWRDC—Project No. CSL02/01. CSIRO Land and Water/Grape and Wine Research and Development Corporation. |
[32] | Castagnoli A, Dosso P (2001) Viticoltura assistita da satellite (Satellite aided viticulture). L'informatore agrario 18: 77–81 (in Italian). |
[33] | Castagnoli A, Dosso P (2002) Servizi ad alta tecnologia per la viticoltura di precisione (High technology services for precision viticulture). L'informatore agrario (appendix) 13: 57–62 (in Italian). |
[34] | Tagarakis A, Liakos V, Fountas, S, et al. (2011) Using soil and landscape properties to delineate management zones in vines. Tarım Makinaları Bilimi Dergisi 7: 33–38. |
[35] | Tisseyre B, Taylor J (2005) An overview of methodologies and technologies for implementing precision agriculture in viticulture. In: XⅡ Congresso Brasileiro de Viticultura e Enologia Anais, 45354. |
[36] |
Tisseyre B, Ojeda H, Taylor J (2007) New technologies and methodologies for site-specific viticulture. J Int Sci Vigne Vin 41: 63–76. https://doi.org/10.20870/oeno-one.2007.41.2.852 doi: 10.20870/oeno-one.2007.41.2.852
![]() |
[37] | Bramley RGV, Lanyon DM, Panten K (2005) Whole-of-vineyard experimentation—An improved basis for knowledge generation and decision making. Final Report on GWRDC—Project No. CSL04/01. CSIRO Land and Water/Grape and Wine Research and Development Corporation. |
[38] | Bramley RGV, Reid A, Taylor J, et al. (2005) A comparison of the spatial variability of vineyard yield in European and Australian production systems. Final Report on GWRDC—Project No. CSL04/01. CSIRO Land and Water/Grape and Wine Research and Development Corporation. |
[39] | Schueller JK (1997) Technology for precision agriculture. In: Stafford JV (Ed.), Precision Agriculture '97. Spatial Variability in Soil and Crop, Oxford, BIOS Scientific Publishers, 1: 33–34. |
[40] | Senturk S, Sertel E, Kaya S (2013) Vineyards mapping using object based analysis. In: 2013 Second International Conference on Agro-Geoinformatics (Agro-Geoinformatics), 66–70, IEEE. |
[41] | Jurisic M, Stanisavljevic A, Plascak I (2010) Application of Geographic Information System (GIS) in the selection of vineyard sites in Croatia. Bulg J Agric Sci 16: 235–242. |
[42] |
Esteves C, Fangueiro D, Braga RP, et al. (2022) Assessing the contribution of ECa and NDVI in the delineation of management zones in a vineyard. Agronomy 12: 1331. https://doi.org/10.3390/agronomy12061331 doi: 10.3390/agronomy12061331
![]() |
[43] |
Serrano J, Mau V, Rodrigues R, et al. (2023) Definition and validation of vineyard management zones based on soil apparent electrical conductivity and altimetric survey. Environments 10: 117. https://doi.org/10.3390/environments10070117 doi: 10.3390/environments10070117
![]() |
[44] | Comparetti A (2011) Precision agriculture: Past, present and future. In: Agroinzinerija ir energetika, Aleksandras Stulginskis University, 216–230. |
[45] |
Kernecker M, Knierim A, Wurbs A, et al. (2020) Experience versus expectation: Farmers' perceptions of smart farming technologies for cropping systems across Europe. Precis Agric 21: 34–50. https://doi.org/10.1007/s11119-019-09651-zCorpus doi: 10.1007/s11119-019-09651-zCorpus
![]() |
[46] | Say SM, Keskin M, Sehri M, et al. (2017) Adoption of precision agriculture technologies in developed and developing countries. In: International Science and Technology Conference, Cambridge, USA, 41–49. |
[47] |
Sozzi M, Kayad A, Marinello F, et al. (2020) Comparing vineyard imagery acquired from Sentinel-2 and Unmanned Aerial Vehicle (UAV) platform. OENO One 54: 189–197. https://doi.org/10.20870/oeno-one.2020.54.1.2557 doi: 10.20870/oeno-one.2020.54.1.2557
![]() |
[48] | Bălăceanu C, Negoiţă A, Drăgulinescu AM, et al. (2021) The use of IoT technology in smart viticulture. In: 2021 23rd International Conference on Control Systems and Computer Science (CSCS), 362–369. https://doi.org/10.1109/CSCS52396.2021.00066 |
[49] |
Mizik T (2023) How can proximal sensors help decision-making in grape production?. Heliyon 9: e16322. https://doi.org/10.1016/j.heliyon.2023.e16322 doi: 10.1016/j.heliyon.2023.e16322
![]() |
[50] |
Singh AP, Yerudkar A, Mariani V, et al. (2022) A bibliometric review of the use of unmanned aerial vehicles in precision agriculture and precision viticulture for sensing applications. Remote Sens 14: 1604. https://doi.org/10.3390/rs14071604 doi: 10.3390/rs14071604
![]() |
[51] |
Fountas S, Mylonas N, Malounas I, et al. (2020) Agricultural robotics for field operations. Sensors 20: 2672. https://doi.org/10.3390/s20092672 doi: 10.3390/s20092672
![]() |
[52] |
Ammoniaci M, Kartsiotis SP, Perria R, et al. (2021) State of the art of monitoring technologies and data processing for precision viticulture. Agriculture 11: 201. https://doi.org/10.3390/agriculture11030201 doi: 10.3390/agriculture11030201
![]() |
[53] |
Somkuwar RG, Naik S (2024) Precision viticulture: A review. Curr Hortic 12: 23–34. https://doi.org/10.5958/2455-7560.2024.00003.8 doi: 10.5958/2455-7560.2024.00003.8
![]() |
[54] |
Vaudour E, Shaw AB (2005) A worldwide perspective on viticultural zoning. S Afr J Enol Vitic 26: 106–115. https://doi.org/10.21548/26-2-2125 doi: 10.21548/26-2-2125
![]() |
[55] |
Kontogiannis S, Kokkonis G, Ellinidou S, et al. (2017) Proposed fuzzy-NN algorithm with LoRa communication protocol for clustered irrigation systems. Future Internet 9: 78. https://doi.org/10.3390/fi9040078 doi: 10.3390/fi9040078
![]() |
[56] | Will B, Rolfes I (2014) A miniaturized soil moisture sensor based on time domain transmissometry. In: Proceedings of the IEEE Sensors Applications Symposium (SAS), Queenstown, New Zealand, 233–236. |
[57] |
Ferrarezi RS, Dove SK, van Iersel MW (2015) An automated system for monitoring soil moisture and controlling irrigation using low-cost open-source microcontrollers. Hort Technol 2: 110–118. https://doi.org/10.21273/HORTTECH.25.1.110 doi: 10.21273/HORTTECH.25.1.110
![]() |
[58] |
Carrara M, Castrignano A, Comparetti A, et al. (2007) Mapping of penetrometer resistance in relation to tractor traffic using multivariate geostatistics. Geoderma 142: 294–307. https://doi.org/10.1016/j.geoderma.2007.08.020 doi: 10.1016/j.geoderma.2007.08.020
![]() |
[59] |
Adylin IP, Comparetti A, Greco C, et al. (2024) Computing the pressure of agricultural tractors on soil and mapping its compaction. Dokuchaev Soil Bulletin V 120: 136–163. https://doi.org/10.19047/0136-1694-2024-120-136-163 doi: 10.19047/0136-1694-2024-120-136-163
![]() |
[60] |
Kameoka S, Isoda S, Hashimoto A, et al. (2017) A wireless sensor network for growth environment measurement and multi-band optical sensing to diagnose tree vigor. Sensors 17: 966. https://doi.org/10.3390/s17050966 doi: 10.3390/s17050966
![]() |
[61] | Gladstones J (2011) Wine, Terroir and Climate Change: Wakefield Press, Kent Town, CT, USA, ISBN 978-1-86254-924-1. |
[62] |
Jones VG, Duff A, Hall A, et al. (2010) Spatial Analysis of Climate in Wine Grape Growing Regions in the Western United States. Am J Enol Vitic 61: 323–326. https://doi.org/10.5344/ajev.2010.61.3.313 doi: 10.5344/ajev.2010.61.3.313
![]() |
[63] | Blanco-Ward D, Ribeiro A, Barreales D, et al. (2019) Climate change potential effects on grapevine bioclimatic indices: A case study for the Portuguese demarcated Douro Region (Portugal). In: BIO Web Conference 2019. |
[64] | Bulgari R, Cola G, Ferrante A, et al. (2015) Micrometeorological environment in traditional and photovoltaic greenhouses and effects on growth and quality of tomato (Solanum lycopersicum L.). Ital J Agrometeorol 2: 27–38. https://doi.org/10.19199/2015.2.2038-5625.027 |
[65] |
Vivar M, Fuentes M, Norton M, et al. (2014) Estimation of sunshine duration from the global irradiance measured by a photovoltaic silicon solar cell. Renew Sustain Energy Rev 36: 26–33. http://dx.doi.org/10.1016/j.rser.2014.04.045 doi: 10.1016/j.rser.2014.04.045
![]() |
[66] |
Yang H, Li J, Yang J, et al. (2014) Effects of nitrogen application rate and leaf age on the distribution pattern of leaf SPAD readings in the rice canopy. PLoS ONE 9: e88421. https://doi.org/10.1371/journal.pone.0088421 doi: 10.1371/journal.pone.0088421
![]() |
[67] | Osypka P, Rheinfelden H (2009) Apparatus for Examining or Monitoring Plants. U.S. Patent 2009/0278555 A1. |
[68] |
Morari F, Castrignanò A, Pagliarina C (2009) Application of multivariate geostatistics in delineating management zones within a gravelly vineyard using geo-electrical sensors. Comput Electron Agric 68: 97–107. https://dx.doi.org.10.1016/j.compag.2009.05.003 doi: 10.1016/j.compag.2009.05.003
![]() |
[69] |
Andrenelli MC, Magini S, Pellegrini S, et al. (2013) The use of the ARP© system to reduce the costs of soil survey for precision viticulture. J Appl Geophys, 99: 24–34. http://dx.doi.org/10.1016/j.jappgeo.2013.09.012 doi: 10.1016/j.jappgeo.2013.09.012
![]() |
[70] | Meygret A, Baillarin S, Gascon F, Hillairet E, Dechoz C et al. (2009) SENTINEL-2 image quality and level 1 processing. International Society of Optical Engineering. https://doi.org/10.1117/12.826184 |
[71] | Giannaros C, Kotroni V, Lagouvardos K, Giannaros MT, Pikridas C (2020) Assessing the Impact of GNSS ZTD Data Assimilation into the WRF Modeling System during High-Impact Rainfall Events over Greece. Remote Sens 12,383. https://doi.org/10.3390/rs12030383 |
[72] | Haralambous H, Oikonomou C, Pikridas C, et al. (2019) Project-Balkan-Mediterranean real time severe weather service. In: Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2019, Yokohama, Japan, 9879–9882. https://doi.org/10.1109/IGARSS.2019.8898121 |
[73] |
Sepúlveda-Reyes D, Ingram B, Bardeen M, et al. (2015) Predicting grapevine water status based on hyperspectral reflectance vegetation indices. Remote Sens 7: 6460–16479. https://doi.org/10.3390/rs71215835 doi: 10.3390/rs71215835
![]() |
[74] |
Sepúlveda-Reyes D, Ingram B, Bardeen M, et al. (2016) Selecting canopy zones and thresholding approaches to assess grapevine water status by using aerial and ground-based thermal imaging. Remote Sens 8: 822. https://doi.org/10.3390/rs8100822 doi: 10.3390/rs8100822
![]() |
[75] |
Rey-Caramés C, Diago MP, Martín MP, et al. (2015) Using RPAS multi-spectral imagery to characterise vigour, leaf development, yield components and berry composition variability within a vineyard. Remote Sens 7: 14458–14481. https://doi.org/10.3390/rs71114458 doi: 10.3390/rs71114458
![]() |
[76] | Turner D, Lucieer A, Watson C (2011) Development of an unmanned aerial vehicle (UAV) for hyper resolution vineyard mapping based on visible, multispectral, and thermal imagery. In: Proceedings of the 34th International Symposium on Remote Sensing of Environment, Sydney, Australia. |
[77] |
Karakizi C, Oikonomou M, Karantzalos K (2016) Vineyard detection and vine variety discrimination from very high resolution satellite data. Remote Sens 8: 235. https://doi.org/10.3390/rs8030235 doi: 10.3390/rs8030235
![]() |
[78] |
Giovos R, Tassopoulos D, Kalivas D, et al. (2021) Remote sensing vegetation indices in viticulture: A critical review. Agriculture 11: 457. https://doi.org/10.3390/agriculture11050457 doi: 10.3390/agriculture11050457
![]() |
[79] |
Beeri O, Netzer Y, Munitz S, et al. (2020) Kc and LAI estimations using optical and SAR remote sensing imagery for vineyards plots. Remote Sens 12: 3478. https://doi.org/10.3390/rs12213478 doi: 10.3390/rs12213478
![]() |
[80] | Gerhards M, Schlerf M., Mallick K, et al. (2019) Challenges and future perspectives of multi-/hyperspectral thermal infrared remote sensing for crop water-stress detection: A review. Remote Sens 11: 1240. https://doi.org/10.3390/rs11101240 |
[81] |
Al-Saddik H, Simon JC, Cointault F (2017) Development of spectral disease indices for 'Flavescence Dorée' grapevine disease identification. Sensors 17: 2772. https://doi.org/10.3390/s17122772 doi: 10.3390/s17122772
![]() |
[82] |
Stuart MB, McGonigle AJS, Willmott JR (2019) Hyperspectral imaging in environmental monitoring: A review of recent developments and technological advances in compact field deployable systems. Sensors 19: 3071. https://doi.org/10.3390/s19143071 doi: 10.3390/s19143071
![]() |
[83] |
Jiang Z, Huete A, Chen J, et al. (2006) Analysis of NVDI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sens Environ 101: 366–378. https://doi.org/10.1016/j.rse.2006.01.003 doi: 10.1016/j.rse.2006.01.003
![]() |
[84] |
Matsushita B, Yang W, Chen J, et al. (2007) Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to topographic effects: A case study in high-Density cypress forest. Sensors 7: 2636–2651. https://doi.org/10.3390/s7112636 doi: 10.3390/s7112636
![]() |
[85] |
Xue J, Su B (2017) Significant remote sensing vegetation indices: A review of developments and applications. J Sensors (Hindawi) 2017: 1353691. https://doi.org/10.1155/2017/1353691 doi: 10.1155/2017/1353691
![]() |
[86] |
Gamon J, Serrano L, Surfus J (1997) The photochemical reflectance index: An optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 112: 492–501. https://doi.org/10.1007/s004420050337 doi: 10.1007/s004420050337
![]() |
[87] |
Garbulsky MF, Peñuelas J, Gamon J, Inoue Y, Filella I (2011) The Photochemical Reflectance Index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: A review and meta-analysis. Remote Sens Environ 115: 281–297. https://doi.org/10.1016/j.rse.2010.08.023 doi: 10.1016/j.rse.2010.08.023
![]() |
[88] |
Hu R, Yan G, Mu X, Luo J (2014) Indirect measurement of leaf area index on the basis of path length distribution. Remote Sens Environ 155: 239–247. http://dx.doi.org/10.1016/j.rse.2014.08.032 doi: 10.1016/j.rse.2014.08.032
![]() |
[89] |
Anastasiou E, Balafoutis A, Darra N, et al. (2018) Satellite and proximal sensing to estimate the yield and quality of table grapes. Agriculture 8: 94. https://doi.org/10.3390/agriculture8070094 doi: 10.3390/agriculture8070094
![]() |
[90] | Almutairi B, Battay A, Belaid M, et al. (2013) Comparative study of SAVI and NDVI vegetation indices in Sulaibiya Area (Kuwait) using worldview satellite imagery. Int J Geosci Geomatics 1: 50–53. |
[91] |
Jimenez A, Salamance JM, Medina MJQ, et al. (2015) Crops diagnosis using digital image processing and precision agriculture technologies. Inge Cuc 11: 63–71. https://doi.org/10.17981/ingecuc.11.1.2015.06 doi: 10.17981/ingecuc.11.1.2015.06
![]() |
[92] |
Comparetti A, Marques da Silva JR (2022) Use of Sentinel-2 satellite for spatially variable rate fertiliser management in a Sicilian vineyard. Sustainability 14: 1688. https://doi.org/10.3390/su14031688 doi: 10.3390/su14031688
![]() |
[93] |
Fernández-Novales J, Saiz-Rubio V, Barrio I, et al. (2021) Monitoring and mapping vineyard water status using non-invasive technologies by a ground robot. Remote Sens 13: 2830. https://doi.org/10.3390/rs13142830 doi: 10.3390/rs13142830
![]() |
[94] |
Vrochidou E, Tziridis K, Nikolaou A, et al. (2021) An autonomous grape-harvester robot: Integrated system architecture. Electronics 10: 1056. https://doi.org/10.3390/electronics10091056 doi: 10.3390/electronics10091056
![]() |
[95] |
Oberti R, Marchi M, Tirelli P, et al. (2016) Selective spraying of grapevines for disease control using a modular agricultural robot. Biosyst Eng 146: 203–215. https://doi.org/10.1016/j.biosystemseng.2015.12.004 doi: 10.1016/j.biosystemseng.2015.12.004
![]() |
[96] |
Kasimati A, Psiroukis V, Darra N, et al. (2023) Investigation of the similarities between NDVI maps from different proximal and remote sensing platforms in explaining vineyard variability. Precis Agric 24: 1220–1240. https://doi.org/10.1007/s11119-022-09984-2 doi: 10.1007/s11119-022-09984-2
![]() |
[97] |
Paoli JN, Strauss O, Tisseyre B, et al. (2007) Spatial data fusion for qualitative estimation of fuzzy request zones: Application on precision viticulture. Fuzzy Sets Syst 158: 535–554. https://doi.org/10.1016/j.fss.2006.10.019 doi: 10.1016/j.fss.2006.10.019
![]() |
[98] |
Kasimati A, Espejo-Garcia B, Vali E, et al. (2021) Investigating a selection of methods for the prediction of total soluble solids among wine grape quality characteristics using normalized difference vegetation index data from proximal and remote sensing. Front Plant Sci 12: 683078. https://doi.org/10.3389/fpls.2021.683078 doi: 10.3389/fpls.2021.683078
![]() |
[99] |
Kasimati A, Espejo-García B, Darra N, et al. (2022) Predicting grape sugar content under quality attributes using normalized difference vegetation index data and automated machine learning. Sensors 22: 3249. https://doi.org/10.3390/s22093249 doi: 10.3390/s22093249
![]() |
[100] |
Grelier M, Guillaume S, Tisseyre B, et al. (2007) Precision viticulture data analysis using fuzzy inference systems. OENO ONE 41: 19–31. https://doi.org/10.20870/oeno-one.2007.41.1.857 doi: 10.20870/oeno-one.2007.41.1.857
![]() |
[101] | Gutiérrez S, Tardaguila J, Fernández-Novales J, et al. (2015) Data mining and non-invasive proximal sensing for precision viticulture. In: Proceedings 2nd International Electronic Conference Sensors Application. |
[102] | Whalley JL, Shanmuganathan S (2013) Applications of image processing in viticulture: A review. In: Conference MSSANZ-International Congress on Modelling and Simulation, Adelaide, Australia. |
[103] | Liu S, Marden S, Whitty M (2013) Towards automated yield estimation in viticulture. In: Proceedings of the Australasian Conference on Robotics and Automation, Sydney, Australia, 24: 2–6. |
[104] | Liu S, Whitty M, Cossell S (2015) Automatic grape bunch detection in vineyards for precise yield estimation. In: 2015 14th IAPR International Conference on Machine Vision Applications (MVA), IEEE, 238–241. https://doi.org/10.1109/MVA.2015.7153175 |
[105] | De Filippis T, Rocchi L, Fiorillo E, et al. (2012) Smartvineyard: An open source web-GIS application for precision viticulture. In: I International Workshop on Vineyard Mechanization and Grape and Wine Quality, 978: 107–116. https://doi.org/10.17660/ActaHortic.2013.978.11 |
[106] | Shanmuganathan S, Sallis P, Pavesi L, Muñoz, MCJ (2008) Computational intelligence and geo-informatics in viticulture. In: 2008 Second Asia International Conference on Modelling & Simulation (AMS), IEEE, 480–485. https://doi.org/10.1109/AMS.2008.101 |
[107] | Rossi V, Salinari F, Poni S, et al. (2014) Addressing the implementation problem in agricultural decision support systems: The example of vite.net®. Comput Electron Agric 100: 88–99. http://dx.doi.org/10.1016/j.compag.2013.10.011 |
[108] | Feruzzi FM, Gavazzeni L (2024) VINETO: A Decision Support System for Sustainable Wine Production using high-resolution Earth Observation imagery and Machine Learning. Proceedings of 2024 IAF Symposium on Integrated Applications at the 75th International Astronautical Congress, IAC 2024,315–322. https://doi.org/10.52202/078366-0037 |
[109] | Visconti F, de la Fuente M, Buesa I, et al. (2023) Decision support system for selecting the rootstock, irrigation regime and nitrogen fertilization in winemaking vineyards: WANUGRAPE4.0. In: EDP Sciences, BIO Web of Conferences, 68: 01032. https://doi.org/10.1051/bioconf/20236801032 |
[110] |
Pilafidis S, Kosmas E, Livieratos I, et al. (2024). Assessing energy use and greenhouse gas emissions in Cretan vineyards for the development of a crop-specific decision support tool. Environ, Dev Sustainability 26: 24415–24452. https://doi.org/10.1007/s10668-023-03649-4 doi: 10.1007/s10668-023-03649-4
![]() |
[111] |
Dias LC, Marques P, Garcia R, et al. (2025). A multicriteria sustainability assessment for improving integrated pest management for vineyards. J Cleaner Prod 2025: 145489. https://doi.org/10.1016/j.jclepro.2025.145489 doi: 10.1016/j.jclepro.2025.145489
![]() |
[112] |
Tsirogiannis IL, Malamos N, Baltzoi P. (2023) Application of a generic participatory decision support system for irrigation management for the case of a wine grapevine at Epirus, Northwest Greece. Horticulturae 9: 267. https://doi.org/10.3390/horticulturae9020267 doi: 10.3390/horticulturae9020267
![]() |
[113] |
Terribile F, Bonfante A, D'Antonio A, et al. (2017) A geospatial decision support system for supporting quality viticulture at the landscape scale. Compu Electron Agric 140: 88–102. https://doi.org/10.1016/j.compag.2017.05.028 doi: 10.1016/j.compag.2017.05.028
![]() |
[114] |
Bregaglio S, Savian F, Raparelli E, et al. (2022) A public decision support system for the assessment of plant disease infection risk shared by Italian regions. J Environ Manag 317: 115365. https://doi.org/10.1016/j.jenvman.2022.115365 doi: 10.1016/j.jenvman.2022.115365
![]() |
[115] |
Balafoutis A, Koundouras S, Anastasiou E, et al. (2017) Life cycle assessment of two vineyards after the application of precision viticulture techniques: A case study. Sustainability 9: 1997. https://doi.org/10.3390/su9111997 doi: 10.3390/su9111997
![]() |
[116] |
Zanchin A, Lovat L, Marcuzzo P, et al. (2023) Improving the oenological potential of grapes for Prosecco PDO sparkling wine thanks to nitrogen fertigation. Agronomy 13: 1369. https://doi.org/10.3390/agronomy13051369 doi: 10.3390/agronomy13051369
![]() |
[117] |
Casson A, Ortuani B, Giovenzana V, et al. (2022) A multidisciplinary approach to assess environmental and economic impact of conventional and innovative vineyards management systems in Northern Italy. Sci Total Environ 838: 156–181. http://dx.doi.org/10.1016/j.scitotenv.2022.156181 doi: 10.1016/j.scitotenv.2022.156181
![]() |
[118] |
González M-R, Hailemichael G, Catalina A, et al. (2019) Combined effects of water status and iron deficiency chlorosis on grape composition in non-irrigated vineyards. Sci Agric 76: 473–480. http://dx.doi.org/10.1590/1678-992X-2018-0084 doi: 10.1590/1678-992X-2018-0084
![]() |
[119] |
Sánchez R, González García MR, Vilanova M, et al. (2019) Aroma composition of Tempranillo grapes as affected by iron deficiency chlorosis and vine water status. Sci Agric 78: e20190112. http://dx.doi.org/10.1590/1678-992X-2019-0112 doi: 10.1590/1678-992X-2019-0112
![]() |
[120] |
Garcia-Tejero IF, Costa JM, Egipto R, et al. (2016) Thermal data to monitor crop-water status in irrigated Mediterranean viticulture. Agric Water Manag 176: 80–90. https://doi.org/10.1016/j.agwat.2016.05.008 doi: 10.1016/j.agwat.2016.05.008
![]() |
[121] |
Kontogiannis S, Asiminidis C (2020) A proposed low-cost viticulture stress framework for table grape varieties. IoT 1: 337–359. https://doi.org/10.3390/iot102002 doi: 10.3390/iot102002
![]() |
[122] |
Ortuani B, Facchi A, Mayer A, et al. (2019). Assessing the effectiveness of variable-rate drip irrigation on water use efficiency in a vineyard in Northern Italy. Water 11: 1964. https://doi.org/10.3390/w11101964 doi: 10.3390/w11101964
![]() |
[123] | Cameron W, Petrie PR, Bonada M (2024) Effects of vineyard management practices on winegrape composition. A review using meta-analysis. Am J Enol Vitic 75: 0750022. https://doi.org/10.5344/ajev.2024.24018 |
[124] |
Tagarakis AC, Koundouras S, Fountas S, et al. (2018) Evaluation of the use of LIDAR laser scanner to map pruning wood in vineyards and its potential for management zones delineation. Precis Agric 19: 334–347. https://doi.org/10.1007/s11119-017-9519-4 doi: 10.1007/s11119-017-9519-4
![]() |
[125] |
Vallejo A, Millán L, Abrego Z, et al. (2019) Fungicide distribution in vitiviniculture ecosystems according to different application strategies to reduce environmental impact. Sci Total Environ 687: 319–329. https://doi.org/10.1016/j.scitotenv.2019.06.112 doi: 10.1016/j.scitotenv.2019.06.112
![]() |
[126] |
Tsalidis GA (2022) Human health and ecosystem quality benefits with life cycle assessment due to fungicides elimination in agriculture. Sustainability 14: 846. https://doi.org/10.3390/su14020846 doi: 10.3390/su14020846
![]() |
[127] |
Chen M, Brun F, Raynal M, et al. (2020) Delaying the first grapevine fungicide application reduces exposure on operators by half. Sci Rep 10: 6404. https://doi.org/10.1038/s41598-020-62954-4 doi: 10.1038/s41598-020-62954-4
![]() |
[128] |
Anastasiou E, Fountas S, Voulgaraki M, et al. (2023) Precision farming technologies for crop protection: A meta-analysis. Smart Agr Technol 2023: 100323. https://doi.org/10.1016/j.atech.2023.100323 doi: 10.1016/j.atech.2023.100323
![]() |
[129] |
Pérez-Expósito JP, Fernández-Caramés TM, Fraga-Lamas P, et al. (2017) VineSens: An eco-smart decision-support viticulture system. Sensors 17: 465. https://doi.org/10.3390/s17030465 doi: 10.3390/s17030465
![]() |
[130] |
Gil E, Arnó J, Llorens J, et al. (2014) Advanced technologies for the improvement of spray application techniques in Spanish viticulture: An overview. Sensors 14: 691–708. https://doi.org/10.3390/s140100691 doi: 10.3390/s140100691
![]() |
[131] |
Gil E, Llorens J, Llop J, et al. (2013) Use of a terrestrial LIDAR sensor for drift detection in vineyard spraying. Sensors 13: 516–534. https://doi.org/10.3390/s130100516 doi: 10.3390/s130100516
![]() |
[132] |
Garcia-Ruiz F, Campos J, Llop-Casamada J, Gil E (2023) Assessment of map based variable rate strategies for copper reduction in hedge vineyards. Comput Electron Agric 207: 107753. https://doi.org/10.1016/j.compag.2023.107753 doi: 10.1016/j.compag.2023.107753
![]() |
[133] | Marques da Silva JR, Correia M, Dias A, et al. (2017) CARTS—Canopy Adjusted Real Time Spraying, 11th International AⅡA Conference, Bari, Italy, 484–487. |
[134] | Gil E, Llorens J, Llop J, et al. (2013) Variable rate sprayer. Part 2—Vineyard prototype: Design, implementation, and validation. Comput Electron Agric 95: 136–150. https://doi.org/10.1016/j.compag.2013.02.01 |
[135] |
Román C, Llorens J, Uribeetxebarria A, et al. (2020) Spatially variable pesticide application in vineyards: Part Ⅱ, field comparison of uniform and map-based variable dose treatments. Biosyst Eng 195: 42–53. https://doi.org/10.1016/j.biosystemseng.2020.04.013 doi: 10.1016/j.biosystemseng.2020.04.013
![]() |
[136] |
Martinez-Casasnovas JA, Agelet-Fernandez J, Arno J, et al. (2012) Analysis of vineyard differential management zones and relation to vine development, grape maturity and quality. Span J Agric Res 10: 326-337. Available from: www.inia.es/sjar. http://dx.doi.org/10.5424/sjar/2012102-370-11. doi: 10.5424/sjar/2012102-370-11
![]() |
[137] |
Serrano L, González-Flor C, Gorchs G (2012) Assessment of grape yield and composition using the reflectance based Water Index in Mediterranean rainfed vineyards. Remote Sens Environ 118: 249–258. https://doi.org/10.1016/j.rse.2011.11.021 doi: 10.1016/j.rse.2011.11.021
![]() |
[138] | Bramley RGV (2022) 12—Precision viticulture: Managing vineyard variability for improved quality outcomes. In: Reynolds AG (Ed.), Woodhead Publishing Series in Food Science, Technology and Nutrition, Managing Wine Quality, 2nd ed.: Woodhead Publishing Limited, Cambridge, UK, 541–586. |
[139] | Bonilla I, de Toda FM, Martínez-Casasnovas JA (2015) Vine vigor, yield and grape quality assessment by airborne remote sensing over three years: Analysis of unexpected relationships in cv. Tempranillo. Span J Agric Res 13: e0903. https://doi.org/10.5424/sjar/2015132-7809 |
[140] |
Priori S, Martini E, Andrenelli MC, et al. (2013) Improving wine quality through harvest zoning and combined use of remote and soil proximal sensing. Soil Sci Soc Am J 77: 1338–1348. https://doi.org/10.2136/sssaj2012.0376 doi: 10.2136/sssaj2012.0376
![]() |
[141] |
Booltink HWG, van Alphen BJ, Batchelor WD, et al. (2001) Tools for optimizing management of spatially variable fields. Agric Syst 70: 445–476. https://doi.org/10.1016/S0308-521X(01)00055-5 doi: 10.1016/S0308-521X(01)00055-5
![]() |
[142] | Dampney PMR, Moore M (1999) Precision agriculture in England - current practice and research-based advice to farmers. In: Robert PC, Rust RH, Larson WE (Eds.), Proceedings of the 4th International Conference on Precision Agriculture, St. Paul, MN, US. Madison, WI, American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 661–674. |
1. | Yue Wang, Wei Wei, Ying Zhou, The Existence, Uniqueness, and Multiplicity of Solutions for Two Fractional Nonlocal Equations, 2023, 12, 2075-1680, 45, 10.3390/axioms12010045 |