Solar cells are the most common and important applications of solar energy. However, dust accumulation can have a very serious impact on the performance of Photovoltaic (PV) systems. Here, we investigated the dust and its influence on solar modules, both polycrystalline and monocrystalline. The specified site had four horizontally oriented 80 W PV modules. To mitigate the environmental effect, one of the two PV modules was intentionally kept dusty while the other was consistently cleaned. Over 90 days, measurements of PV performance and ambient factors were taken every 30 minutes. Time-based and normalized measurements were used to discuss how dust affects current, voltage, and power. Research revealed that the accumulation of dust led to a higher rate of power decline (30.48%) in polycrystalline PV modules compared to monocrystalline PV modules (14.1%). The current and power losses for monocrystalline PV modules ranged from 0.21 to 2.16 A and 13 to 56 W, respectively. When subjected to external conditions for an equivalent duration, polycrystalline PV modules had degradation rates ranging from 0.1 to 2.37 A in terms of current, and power losses ranging from 10 to 60.5 W, respectively. The results confirmed that polycrystalline surface characteristics significantly increase the amount of dust accumulation, which must be considered when designing all such solar arrays and testing for deployment. This finding provides a lesson for high PV maintenance strategy optimization, specifically in high dust operating environments, for continued PV energy.
Citation: Anbazhagan Geetha, S. Usha, J. Santhakumar, Surender Reddy Salkuti. Analysis of dust accumulation effects on the long-term performance of solar PV panels[J]. AIMS Energy, 2025, 13(3): 493-516. doi: 10.3934/energy.2025019
[1] | Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Thabet Abdeljawad, Kottakkaran Sooppy Nisar . Integral transforms of an extended generalized multi-index Bessel function. AIMS Mathematics, 2020, 5(6): 7531-7547. doi: 10.3934/math.2020482 |
[2] | Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Abdel-Haleem Abdel-Aty, Emad E. Mahmoud, Kottakkaran Sooppy Nisar . Estimation of generalized fractional integral operators with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(5): 4492-4506. doi: 10.3934/math.2021266 |
[3] | Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565 |
[4] | Sobia Rafeeq, Sabir Hussain, Jongsuk Ro . On fractional Bullen-type inequalities with applications. AIMS Mathematics, 2024, 9(9): 24590-24609. doi: 10.3934/math.20241198 |
[5] | Mustafa Gürbüz, Yakup Taşdan, Erhan Set . Ostrowski type inequalities via the Katugampola fractional integrals. AIMS Mathematics, 2020, 5(1): 42-53. doi: 10.3934/math.2020004 |
[6] | Hari M. Srivastava, Artion Kashuri, Pshtiwan Othman Mohammed, Abdullah M. Alsharif, Juan L. G. Guirao . New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag-Leffler kernel. AIMS Mathematics, 2021, 6(10): 11167-11186. doi: 10.3934/math.2021648 |
[7] | Ghulam Farid, Maja Andrić, Maryam Saddiqa, Josip Pečarić, Chahn Yong Jung . Refinement and corrigendum of bounds of fractional integral operators containing Mittag-Leffler functions. AIMS Mathematics, 2020, 5(6): 7332-7349. doi: 10.3934/math.2020469 |
[8] | Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814 |
[9] | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441 |
[10] | Muhammad Amer Latif, Humaira Kalsoom, Zareen A. Khan . Hermite-Hadamard-Fejér type fractional inequalities relating to a convex harmonic function and a positive symmetric increasing function. AIMS Mathematics, 2022, 7(3): 4176-4198. doi: 10.3934/math.2022232 |
Solar cells are the most common and important applications of solar energy. However, dust accumulation can have a very serious impact on the performance of Photovoltaic (PV) systems. Here, we investigated the dust and its influence on solar modules, both polycrystalline and monocrystalline. The specified site had four horizontally oriented 80 W PV modules. To mitigate the environmental effect, one of the two PV modules was intentionally kept dusty while the other was consistently cleaned. Over 90 days, measurements of PV performance and ambient factors were taken every 30 minutes. Time-based and normalized measurements were used to discuss how dust affects current, voltage, and power. Research revealed that the accumulation of dust led to a higher rate of power decline (30.48%) in polycrystalline PV modules compared to monocrystalline PV modules (14.1%). The current and power losses for monocrystalline PV modules ranged from 0.21 to 2.16 A and 13 to 56 W, respectively. When subjected to external conditions for an equivalent duration, polycrystalline PV modules had degradation rates ranging from 0.1 to 2.37 A in terms of current, and power losses ranging from 10 to 60.5 W, respectively. The results confirmed that polycrystalline surface characteristics significantly increase the amount of dust accumulation, which must be considered when designing all such solar arrays and testing for deployment. This finding provides a lesson for high PV maintenance strategy optimization, specifically in high dust operating environments, for continued PV energy.
Fractional calculus signifies the identity of the distinguished materials in the modern research field due to its integrated applications in diverse regions such as mathematical physics, fluid dynamics, mathematical biology, etc. Convex function, exponentially convex function [1,2,3,4,5], related inequalities like as trapezium inequality, Ostrowski's inequality and Hermite Hadamard inequality, integrals [6,7,8,9,10] having succeed in mathematical analysis, approximation theory due to immense applications [11,12] have great importance in mathematics theory. Many authors established quadrature rules in numerical analysis for approximate definite integrals. Recently, Pólya-Szegö and Chebyshev inequalities occupied immense space in the field analysis. Chebyshev [13] was introduced the well-known inequality called Chebyshev inequality.
In the literature of convex function, the Jensen inequality has gained much importance which describes a connection between an integral of the convex function and the value of the convex function of an interval [14,15,16]. Pshtiwan and Thabet [17] considered the modified Hermite Hadamard inequality in the context of fractional calculus using the Riemann-Liouville fractional integrals. Arran and Pshtiwan [18] discussed the Hermite Hadamard inequality results with fractional integrals and derivatives using Mittag-Leffler kernel. Pshtiwan and Thabet [19] constructed a connection between the Riemann-Liouville fractional integrals of a function concerning a monotone function with nonsingular kernel and Atangana-Baleanu. Pshtiwan and Brevik [20] obtained an inequality of Hermite Hadamard type for Riemann-Liouville fractional integrals, and proved the application of obtained inequalities on modified Bessel functions and q-digamma function. In [21], Set et al. introduced Grüss type inequalities by employing generalized k-fractional integrals. Recently, Nisar et al. [22] gave some new generalized fractional integral inequalities.
Very recently, the fractional conformable and proportional fractional integral operators were given in [23,24]. Later on, Huang et al. [25] gave Hermite–Hadamard type inequalities by using fractional conformable integrals (FCI). Qi et al. [26] investigated Čebyšev type inequalities involving FCI. The Chebyshev type inequalities and certain Minkowski's type inequalities are found in [27,28,29]. Nisar et al. [30] have investigated some new inequalities for a class of n (n∈N) positive, continuous, and decreasing functions by employing FCI. Rahman et al. [31] introduced Grüss type inequalities for k-fractional conformable integrals.
Some significant inequalities are given as applications of fractional integrals [32,33,34,35,36,37,38]. Recently, Rahman et al. [39,40] presented fractional integral inequalities involving tempered fractional integrals. Qiang et al. [41] discussed a fractional integral containing the Mittag-Leffler function in inequality theory and contributed Hadamard type inequality, continuity, and boundedness, upper bounds of that integral. Nisar et al. [42] established weighted fractional Pólya-Szegö and Chebyshev type integral inequalities by operating the generalized weighted fractional integral involving kernel function. The dynamical approach of fractional calculus [43,44,45,46,47,48,49] in the field of inequalities.
Grüss inequality [50] established for two integrable function as follows
|T(h,l)|≤(k−K)(s−S)4, | (1.1) |
where the h and l are two integrable functions which are synchronous on [a,b] and satisfy:
s≤h(z)≤K,s≤l(y1)≤S, z,y1∈[a,b] | (1.2) |
for some s,k,S,K∈R.
Pólya and Szegö [51] proved the inequalities
∫bah2(z)dz∫abl2(z)dz(∫abh(z)l(z)dz)2≤14(√KSks+√ksKS)2. | (1.3) |
Dragomir and Diamond [52], proves the inequality by using the Pólya-szegö inequality
|T(h,l)|≤(S−s)(K−k)4(b−a)2√skSK∫bah(z)l(z)dz | (1.4) |
where h and l are two integrable functions which are synchronous on [a,b], and
0<s≤h(z)≤S<∞,0<k≤l(y1)≤K<∞, z,y1∈[a,b] | (1.5) |
for some s,k,S,K∈R.
The aim of this paper is to estimate a new version of Pólya-Szegö inequality, Chebyshev integral inequality, and Hermite Hadamard type integral inequality by a fractional integral operator having a nonsingular function (generalized multi-index Bessel function) as a kernel, and these established results have great contribution in the field of inequalities. The Hermite Hadamard type integral inequality provides the upper and lower estimate to find the average integral for the convex function of any defined interval.
The structure of the paper follows:
In section 2, we present some well-known definitions and mathematical preliminaries. The new generalized fractional integral with nonsingular function as a kernel is defined in section 3. In section 4, we present Hermite Hadamard type Mercer inequality of new designed fractional integral operator with nonsingular function (generalized multi-index Bessel function) as a kernel. some inequalities of (s−m)-preinvex function involving new designed fractional integral operator with nonsingular function (generalized multi-index Bessel function) as a kernel are presented in section 5. Here section 6 and 7, we present Pólya-Szegö and Chebyshev integral inequalities involving generalized fractional integral operator with nonsingular function as a kernel, respectively.
Definition 2.1. The inequality holds for the convex function if a mapping g:K→R exist as
g(δy1+(1−δ)y2)≤δg(y1)+(1−δ)g(y2), | (2.1) |
where ∀y1,y2∈K and δ∈[0,1].
Definition 2.2. The inequality derived by Hermite [53] call as Hermite Hadamard inequality
g(y1+y22)≤1y2−y1∫y2y1g(t)dt≤g(y1)+g(y2)2, | (2.2) |
where y1,y2∈I, with y2≠y1, if g:I⊆R→R is a convex function.
Definition 2.3. Let yj∈K for all j∈In, ωj>0 such that ∑j∈Inωj=1. Then the Jensen inequality holds
g(∑j∈Inωjyj)≤∑j∈Inωjg(yj), | (2.3) |
exist if g:k→R is convex function.
Mercer [54] derived the Mercer inequality by applying the Jensen inequality and properties of convex function.
Definition 2.4. Let yj∈K for all j∈In, ωj>0 such that ∑j∈Inωj=1, m=minj∈In{yj} and n=maxj∈In{yj}. Then the inequality holds for convex function as
g(m+n−∑i∈Inωjyj)≤g(m)+g(n)−∑j∈Inωjg(yj), | (2.4) |
if g:k→R is convex function.
Definition 2.5. [55] The inequality holds for exponentially convex function, if a real valued mapping g:K→R exist as
g(δy1+(1−δ)y2)≤δg(y1)eθy1+(1−δ)g(y2)eθy2, | (2.5) |
where ∀y1,y2∈K and δ∈[0,1] and θ∈R.
Suppose that Ω⊆Rn is a set. Let g:Ω→R continuous function and let ξ:Ω×Ω→Rn be continuous function:
Definition 2.6. [56] With respect to bifunction ξ(.,.) a set Ω is called a invex set, if
y1+δξ(y2,y1), | (2.6) |
where ∀y1,y2∈Ω,δ∈[0,1].
Definition 2.7. [57] A invex set Ω and a mapping g with respect to ξ(.,.) is called a preinvex function, as
g(y1+δξ(y2,y1))≤(1−δ)g(y1)+δg(y2), | (2.7) |
where ∀ y1,y2+ξ(y2,y1)∈Ω,δ∈[0,1].
Definition 2.8. A invex set Ω with real valued mapping g and respect to ξ(.,.) is called a exponentially preinvex, if the inequality
g(y1+δξ(y2,y1))≤(1−δ)g(y1)eθy1+δg(y2)eθy2, | (2.8) |
where for all y1,y2+ξ(y2,y1)∈Ω,δ∈[0,1] and θ∈R.
Definition 2.9. A invex set Ω with real valued mapping g and respect to ξ(.,.) is called a exponentially s-preinvex, if
g(y1+δξ(y2,y1))≤(1−δ)sg(y1)eθy1+δsg(y2)eθy2, | (2.9) |
where for all y1,y2+ξ(y2,y1)∈Ω,δ∈[0,1], s∈(0,1] and θ∈R.
Definition 2.10. A invex set Ω with real valued mapping g and respect to ξ(.,.) is called exponentially (s-m)-preinvex, if
g(y1+mδξ(y2,y1))≤(1−δ)sg(y1)eθy1+mδsg(y2)eθy2, | (2.10) |
where for all y1,y2+ξ(y2,y1)∈Ω, δ,m∈[0,1] and θ∈R.
Definition 2.11. [58] Generalized multi-index Bessel function is defined by Choi et al as follows
J(ξj)m,λ(δj)m,σ(z)=∞∑s=0(λ)σs∏mj=1Γ(ξjs+δj+1)(−z)ss!, | (2.11) |
where ξj,δj,λ∈C, (j=1,⋯,m), ℜ(λ)>0,ℜ(δj)>−1,∑mj=1ℜ(ξ)j>max{0:ℜ(σ)−1},σ>0.
Definition 2.12. [58] Pohhammer symbol is defined for λ∈C as follows
(λ)s={λ(λ+1)⋯(λ+s−1),s∈N1,s=0, | (2.12) |
=Γ(λ+s)Γ(λ),(λ∈C/Z0) | (2.13) |
where Γ being the Gamma function.
This section presents a generalized fractional integral operator with a nonsingular function (multi-index Bessel function) as a kernel.
Definition 3.1. Let ξj,δj,λ,ζ∈C,(j=1,⋯,m),ℜ(λ)>0,ℜ(δj)>−1,∑mj=1ℜ(ξj)>max{0:ℜ(σ)−1},σ>0. Let g∈L [y1,y2] and t∈[y1,y2]. Then the corresponding left sided and right sided generalized integral operators having generalized multi-index Bessel function defined as:
(Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)=∫zy1(z−t)δjJ(ξj)m,λ(δj)m,σ(ζ(z−t)ξj)g(t)dt, | (3.1) |
and
(Œ(ξj,δj)mλ,σ,ζ;y−2g)(z)=∫y2z(t−z)δjJ(ξj)m,λ(δj)m,σ(ζ(t−z)ξj)g(t)dt. | (3.2) |
Remark 3.1. The special cases of generalized fractional integrals with nonsingular kernel are given below:
1. If set j=m=1, σ=0 and limits from [0,z] in Eq (3.1), we get a fractional integral defined by Srivastava and Singh in [59] as
(Œξ1,δ1λ,0,ζ;0+g)(z)=∫z0(z−t)δ1Jξ1δ1(ζ(z−t)ξ1)g(t)dt=f(z). | (3.3) |
2. If set j=m=1, δ1=δ1−1 in Eq (3.1), we have a fractional integral defined by Srivastava and Tomovski in [60] as
(Œξ1,δ1−1λ,σ,ζ;y+1g)(z)=(Eζ;λ,σy+1;ξ−1,δ1g)(z). | (3.4) |
3. If set j=m=1, δ1=δ1−1, ζ=0 in Eq (3.1), we get a Riemann-Liouville fractional integral operator defined in [61] as
(Œξ1,δ1λ,σ,ζ;y+1g)(z)=(Iδ1y+1g)(z). | (3.5) |
4. If set j=m=1, σ=1, δ1=δ1−1, in Eq (3.1) and Eq (3.2), we get the fractional integral operator defined by Prabhakar in [62] as follows
(Œξ1,δ1−1λ,1,ζ;y+1g)(z)=E∗(ξ1,δ1;λ;ζ)g(z)=∘g(z) | (3.6) |
(Œ(ξ1,δ1−1)λ,1,ζ;y−2g)(z)=E∗(ξ1,δ1;λ;ζ)g(z). | (3.7) |
Lemma 3.1. From generalized fractional integral operator, we have
(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)=∫zy1(z−t)δjJ(ξj)m,λ(δj)m,σ(ζ(z−t)ξj)dt=∫zy1(z−t)δj∞∑s=0(λ)σs(−ζ)s∏mj=1Γ(ξjs+δj+1)(z−t)ξjss!dt=∞∑s=0(λ)σs(−ζ)s∏mj=1Γ(ξjs+δj+1)s!∫zy1(z−t)ξjs+δjdt=(z−y1)δj+1∞∑s=0(λ)σs(−ζ)s∏mj=1Γ(ξjs+δj+1)s!(z−y1)ξjsξjs+δj+1. | (3.8) |
Hence, the Eq (3.8) becomes
(Œ(ξj,δj+1)mλ,σ,ζ;y+11)(z)=(z−y1)δj+1J(ξj)m,λ(δj)m+1,σ(ζ(z−y1)ξj), | (3.9) |
and similarly we have
(Œ(ξj,δj+1)mλ,σ,ζ;y−21)(z)=(y2−z)δj+1J(ξj)m,λ(δj)m+1,σ(ζ(y2−z)ξj). | (3.10) |
In this section, we derive Hermite Hadamard type Mercer inequality of new designed fractional integral operator in a generalized multi-index Bessel function using a kernel.
Theorem 4.1. Let g:[m,n]→(0,∞) is convex function such that g∈χc(m,n), ∀x,y∈[m,n] and the operator defined in Eq (5.2) in the form of left sense operator and Eq (3.2) in the form of right sense operator then we have
g(m+n−x+y2)≤g(m)+g(n)−[J(ξj)m,λ(δj)m+1,σ(ζ)]−12(y−x)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;y−g(x)] | (4.1) |
≤g(m)+g(n)−g(x)+g(y)2. | (4.2) |
Proof. Consider the mercer inequality
g(m+n−y1+y22)≤g(m)+g(n)−g(y1)+g(y2)2,∀y1,y2∈[m,n]. | (4.3) |
Let x,y∈[m,n], t∈[z−1,z], y1=(z−t)x+(1−z+t)y and y2=(1−z+t)x+(z−t)y then inequality (4.3) becomes
g(m+n−y1+y22)≤g(m)+g(n)−g((z−t)x+(1−z+t)y)+g(1−z+t)x+(z−t)y)2. | (4.4) |
Multiply both sides of Eq (4.4) by (z−t)δjJ(ξj)m,λ(δj)m,σ(ζ(z−t)ξj) and integrating with respect to t from [z−1,z], we get
J(ξj)m,λ(δj)m+1,σ(ζ)g(m+n−x+y2)≤J(ξj)m,λ(δj)m+1,σ(ζ)[g(m)+g(n)]−12[∫zz−1(z−t)δjJ(ξj)m,λ(δj)m,σ(ζ(z−t)ξj)×[g((z−t)y1+(1−z+t)y2)+g(1−z+t)x+(z−t)y2]]dt=J(ξj)m,λ(δj)m+1,σ(ζ)[g(m)+g(n)]−12[∫yx(y−uy−x)δjJ(ξj)m,λ(δj)m,σ(ζ(y−uy−x)ξj)×g(u)(y−x)du+∫xy(u−xy−x)δjJ(ξj)m,λ(δj)m,σ(ζ(u−xy−x)ξj)g(u)(y−x)du]=J(ξj)m,λ(δj)m+1,σ(ζ)[g(m)+g(n)]−12(y−x)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;y−g(x)], |
we get the desired inequality, as
g(m+n−x+y2)≤g(m)+g(n)−[J(ξj)m,λ(δj)m+1,σ(ζ)]−12(y−x)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;y−g(x)]. | (4.5) |
Thus, we get the inequality (4.1). Let t∈[z−1,z]. From the convexity of function g we have
g(x+y2)=g[(z−t)x+(1−z+t)y+(1−z+t)x+(z−t)y]2≤g((z−t)x+(1−z+t)y)+g((1−z+t)x+(z−t)y)2. | (4.6) |
Both sides multiply of Eq (4.6) by (z−t)δjJ(ξj)m,λ(δj)m,σ(ζ(z−t)ξj) and integrating with respect to t from [z−1,z], we obtain
J(ξj)m,λ(δj)m,σ(ζ)g(x+y2)≤∫zz−1(z−t)δjJ(ξj)m,λ(δj)m,σ(ζ(z−t)ξj)×[g((z−t)x+(1−z+t)y)+g((1−z+t)x+(z−t)y)]dt=12(y−x)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;y−g(x)]. |
We get the inequality of negative sign
−g(x+y2)≥−[J(ξj)m,λ(δj)m+1,σ(ζ)]−12(y−x)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;y−g(x)]. | (4.7) |
By adding g(m)+g(n) of both sides of inequality (4.7), we have
g(m)+g(n)−g(x+y2)≥g(m)+g(n)−[J(ξj)m,λ(δj)m+1,σ(ζ)]−12(y−x)[Œ(ξj,δj)mλ,σ,ζ;x+g(y)+Œ(ξj,δj)mλ,σ,ζ;y−g(x)]. |
Hence, we get the inequality (4.2).
Theorem 4.2. Let g:[m,n]→(0,∞) is convex function such that g∈χc(m,n) then we have the following inequalities:
g(m+n−x+y2)≤[J(ξj)m,λ(δj)m,σ(ζ)]−12(y−x)[Œ(ξj,δj)mλ,σ,ζ;(m+n−y)+g(m+n−x)+Œ(ξj,δj)mλ,σ,ζ;(m+n−x)−g(m+n−y)]. | (4.8) |
≤g(m+n−x)+g(m+n−y)2≤g(m)+g(n)−g(m)+g(n)2. | (4.9) |
Where ∀x,y∈[m,n].
Proof. We see that from the convexity of g as
g(m+n−y1+y22)=g(m+n−y1+m+n−y22)≤12[g(m+n−y1)+g(m+n−y2)],∀y1,y2∈[m,n]. | (4.10) |
Let x,y∈[m,n], t∈[z−1,z], m+n−y1=(z−t)(m+n−x)+(1−z+t)(m+n−y), m+n−y2=(1−z+t)(m+n−x)+(z−t)(m+n−y), then inequality (4.10) gives
g(m+n−y1+y22)≤12g[(z−t)(m+n−x)+(1−z+t)(m+n−y)]+12g[(1−z+t)(m+n−x)+(z−t)(m+n−y)], | (4.11) |
multiply of both sides of inequality (4.11) by (z−t)δjJ(ξj)m,λ(δj)m,σ(ζ(z−t)ξj) then integrate with respect to t from [z−1,z], we get
J(ξj)m,λ(δj)m,σ(ζ)g(m+n−x+y2)≤12∫zz−1(z−t)δjJ(ξj)m,λ(δj)m,σ(ζ(z−t)ξj)g[(z−t)(m+n−x)+(1−z+t)(m+n−y)]dt+12∫zz−1(z−t)δjJ(ξj)m,λ(δj)m,σ(ζ(z−t)ξj)g[(1−z+t)(m+n−x)+(z−t)(m+n−y)]dt=12(y−x)[∫m+n−xm+n−y(u−(m+n−y)y−x)δj)J(ξj)m,λ(δj)m,σ(ζ(u−(m+n−y)y−x)ξj)g(u)du+∫m+n−ym+n−x((m+n−y)−uy−x)δj)J(ξj)m,λ(δj)m,σ(ζ((m+n−y)−uy−x)ξj)g(u)du]=12(y−x)[Œ(ξj,δj)mλ,σ,ζ;(m+n−y)+g(m+n−x)+Œ(ξj,δj)mλ,σ,ζ;(m+n−x)−g(m+n−y)]. |
Thus, we get the inequality (4.8)
g(m+n−x+y2)≤[J(ξj)m,λ(δj)m,σ(ζ)]−12(y−x)[Œ(ξj,δj)mλ,σ,ζ;(m+n−y)+g(m+n−x)+Œ(ξj,δj)mλ,σ,ζ;(m+n−x)−g(m+n−y)]. |
From the convexity of g, we obtain
g((z−t)(m+n−x)+(1−z+t)(m+n−y))≤(z−t)g(m+n−x)+(1−z+t)g(m+n−y), | (4.12) |
and
g((1−z+t)(m+n−x)+(z−t)(m+n−y))≤(1−z+t)g(m+n−x)+(z−t)g(m+n−y). | (4.13) |
Adding up the above inequalities and applying Jensen-Mercer inequality, we get
g((z−t)(m+n−x)+(1−z+t)(m+n−y))+g((1−z+t)(m+n−x)+(z−t)(m+n−y))≤g(m+n−x)+g(m+n−y)≤2[g(m)+g(n)]−[g(x)+g(y)]. | (4.14) |
Multiply both sides of inequality (4.14) by (z−t)δjJ(ξj)m,λ(δj)m,σ(ζ(z−t)ξj) and then integrating with respect to t from [z−1,z] we obtain the two inequalities (4.9).
In this section, we derive some inequalities of (s−m) preinvex function involving new designed fractional integral operator Œ(ξj,δj)mλ,σ,ζg)(z) having generalized multi-index Bessel function as its kernel in the form of theorems.
Theorem 5.1. Suppose a real valued function g:[y1,y1+ξ(y2,y1)]→R be exponentially (s-m) preinvex function, then the following fractional inequality holds:
(Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)+(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+g)(z)≤(z−y1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[g(y1)eθ1y1+mg(z)eθ1z]+(y1+ξ(y2,y1)−z)s+1(Œ(ξj,μj)mλ,σ,ζ;(y1+ξ(y2,y1))+1)(z)[g(y1+ξ(y2,y1))eθ2(y1+ξ(y2,y1))+mg(z)eθ2z]. |
∀ z∈[y1,y1+ξ(y2,y1)], θ1,θ2∈R.
Proof. Let z∈[y1,y1+ξ(y2,y1)], and then for t∈[y1,z) and δj>−1, we have the subsequent inequality
(z−t)δjJ(ξj)m,λ(δj)m,σ(ζ(z−t)ξj)≤(z−y1)δjJ(ξj)m,λ(δj)m,σ(ζ(z−y1)ξj). | (5.1) |
For g is exponentially (s-m)-preinvex function, we obtain
g(t)≤(z−tz−y1)sg(y1)eθ1y1+m(t−y1z−y1)sg(z)eθ1z. | (5.2) |
Taking product (5.1) and (5.2), and integrating with respect to t from y1 to z, we get
∫zy1(z−t)δjJ(ξj)m,λ(δj)m,σ(ζ(z−t)ξj)g(t)dt≤∫zy1(z−y1)δjJ(ξj)m,λ(δj)m,σ(ζ(z−y1)ξj)×[(z−tz−y1)sg(y1)eθ1y1+m(t−y1z−y1)sg(z)eθ1z]dt, | (5.3) |
apply definition (13) in Eq (5.3), we have
(Œ(ξj,δj)mλ,σ,ζ;y+1g)(z)≤(z−y1)s+1(Œ(ξj,δj)mλ,σ,ζ;y+11)(z)[g(y1)eθ1y1+mg(z)eθ1z]. | (5.4) |
Analogously for t∈(z,y1+ξ(y2,y1)] and μj>−1, we have
(t−z)μjJ(ξj)m,λ(μj)m,σ(ζ(t−z)ξj)≤(y1+ξ(y2,y1)−z)μjJ(ξj)m,λ(μj)m,σ(ζ(y1+ξ(y2,y1)−z)ξj). | (5.5) |
Further, the exponentially (s-m) convexity of g, we get
g(t)≤(t−zy1+ξ(y2,y1)−z)sg(y1+ξ(y2,y1))eθ2(y1+ξ(y2,y1))+m(y1+ξ(y2,y1)−ty1+ξ(y2,y1)−z)sg(z)eθ2z. | (5.6) |
Taking product of (5.5) and (5.6) and integrating with respect to t from z to y1+ξ(y2,y1), we have
∫y1+ξ(y2,y1)z(t−z)μjJ(ξj)m,λ(μj)m,σ(ζ(t−z)ξj)g(t)dt≤∫y1+ξ(y2,y1)z(y1+ξ(y2,y1)−z)μjJ(ξj)m,λ(μj)m,σ(ζ(y1+ξ(y2,y1)−z)ξj)×[(t−zy1+ξ(y2,y1)−z)sg(y1+ξ(y2,y1))eθ2(y1+ξ(y2,y1))+m(y1+ξ(y2,y1)−ty1+ξ(y2,y1)−z)sg(z)eθ2z]dt, | (5.7) |
apply the definition (13) in inequality (5.7), we have
\begin{multline} (Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1}))^{+}} g)(z)\\ \leq\frac{(y_{1}+\xi(y_{2}, y_{1})-z)}{s+1}(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{+}} 1)(z)\bigg[\frac{g(y_{1}+\xi(y_{2}, y_{1}))}{e^{\theta_{2} (y_{1}+\xi(y_{2}, y_{1}))}}+m\frac{g(z)}{e^{\theta_{2} z}}\bigg]. \end{multline} | (5.8) |
Now, add the inequalities (5.4) and (5.8), we get the result
\begin{multline} (Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} g)(z)+(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1}))^{+}} g)(z)\\ \leq\frac{(z-y_{1})}{s+1}(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(z)\bigg[\frac{g(y_{1})}{e^{\theta_{1} y_{1}}}+m\frac{g(z)}{e^{\theta_{1} z}}\bigg]\\ +\frac{(y_{1}+\xi(y_{2}, y_{1})-z)}{s+1}(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{+}} 1)(z) \bigg[\frac{g(y_{1}+\xi(y_{2}, y_{1}))}{e^{\theta_{2} (y_{1}+\xi(y_{2}, y_{1}))}}+m\frac{g(z)}{e^{\theta_{2} z}}\bigg].\nonumber \end{multline} |
Corollary 5.1. If g\in L_{\infty}[y_{1}, y_{1}+\xi(y_{2}, y_{1})] , then under the assumption of theorem (5.1), we have
\begin{multline} (Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} g)(z)+(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1}))^{+}} g)(z)\\ \leq\frac{||g||_{\infty}}{s+1}\bigg[(z-y_{1})(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(z)\bigg(\frac{1}{e^{\theta_{1} y_{1}}}+m\frac{1}{e^{\theta_{1} z}}\bigg)\nonumber\\ +(y_{1}+\eta(y_{2}, y_{1})-z)(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{+}} 1)(z) \bigg(\frac{1}{e^{\theta_{2} (y_{1}+\xi(y_{2}, y_{1}))}}+m\frac{1}{e^{\theta_{2} z}}\bigg)\bigg].\nonumber \end{multline} |
Corollary 5.2. Setting m = 1 and g\in L_{\infty}[y_{1}, y_{1}+\xi(y_{2}, y_{1})] , then under the assumption of theorem (5.1), we have
\begin{multline} (Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} g)(z)+(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1}))^{+}} g)(z)\\ \leq\frac{||g||_{\infty}}{s+1}\bigg[(z-y_{1})(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(z)\bigg(\frac{1}{e^{\theta_{1} y_{1}}}+m\frac{1}{e^{\theta_{1} z}}\bigg)\\ +(y_{1}+\xi(y_{2}, y_{1})-z)(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{+}} 1)(z) \bigg(\frac{1}{e^{\theta_{2} (y_{1}+\xi(y_{2}, y_{1}))}}+\frac{1}{e^{\theta_{2} z}}\bigg)\bigg].\nonumber \end{multline} |
Corollary 5.3. Setting m = s = 1 and g\in L_{\infty}[y_{1}, y_{1}+\xi(y_{2}, y_{1})] , then under the assumption of theorem (5.1), we have
\begin{multline} (Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} g)(z)+(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1}))^{+}} g)(z)\\ \leq\frac{||g||_{\infty}}{2}\bigg[(z-y_{1})(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(z)\bigg(\frac{1}{e^{\theta_{1} y_{1}}}+m\frac{1}{e^{\theta_{1} z}}\bigg)\\ +(y_{1}+\xi(y_{2}, y_{1})-z)(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{+}} 1)(z) \bigg(\frac{1}{e^{\theta_{2} (y_{1}+\xi(y_{2}, y_{1}))}}+\frac{1}{e^{\theta_{2} z}}\bigg)\bigg].\nonumber \end{multline} |
Corollary 5.4. Setting \xi(y_{2}, y_{1}) = y_{2}-y_{1} and g\in L_{\infty}[y_{1}, y_{2}] , then under the assumption of theorem (5.1), we have
\begin{multline} (Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} g)(z)+(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1}))^{+}} g)(z)\\ \leq\frac{||g||_{\infty}}{s+1}\bigg[(z-y_{1})(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(z)\bigg(\frac{1}{e^{\theta_{1} y_{1}}}+m\frac{1}{e^{\theta_{1} z}}\bigg)\\ +(y_{2}-z)(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; y_{2}^{+}} 1)(z) \bigg(\frac{1}{e^{\theta_{2} y_{2}}}+\frac{1}{e^{\theta_{2} z}}\bigg)\bigg].\nonumber \end{multline} |
Theorem 5.2. Suppose a real value function g:[y_{1}, y_{1}+\xi(y_{2}, y_{1})]\rightarrow R is differentiable and |g|^{\prime} is exponentially (s-m) preinvex, then the following fractional inequality for (3.1) and (3.2) holds:
\begin{multline} \bigg|(Œ^{(\xi_j)_{m}, (\delta_j-1)_m}_{\lambda, \sigma, \zeta: y_{1} ^{+}} g)(z)+(Œ^{(\xi_j)_{m}, (\mu_j-1)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} g)(z)-\big[(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(z)\big]g(y_{1})\\ -\big[(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} 1)(z)\big]g(y_{1}+\xi(y_{2}, y_{1}))\bigg|\leq \frac{(z-y_{1})}{s+1} (Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(z) \bigg[\frac{|g^{\prime}(y_{1})|}{e^{\theta_{1}y_{1}}}+m\frac{|g^{\prime}(z)|}{e^{\theta_{1} z}}\bigg]\\ +\frac{((y_{1}+\xi(y_{2}, y_{1})-z)}{s+1}(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} 1)(z) \bigg[\frac{|g^{\prime}(y_{1}+\xi(y_{2}, y_{1}))|}{e^{\theta_{1}(y_{1}+\xi(y_{2}, y_{1}))}}+m\frac{|g^{\prime}(z)|}{e^{\theta_{1} z}}\bigg].\nonumber \end{multline} |
\forall z\in[y_{1}, y_{1}+\xi(y_{2}, y_{1})] , \theta_{1}, \theta_{2} \in \mathbb{R} .
Proof. Let z\in[y_{1}, y_{1}+\xi(y_{2}, y_{1})] , t\in[y_{1}, z) , and applying exponentially (s-m) preinvex of |g|^{\prime} , we get
\begin{equation} |g^{\prime}(t)|\leq\Big(\frac{z-t}{z-y_{1}}\Big)^{s}\frac{|g^{\prime}(y_{1})|}{e^{\theta_{1}y_{1}}}+m\Big(\frac{t-y_{1}}{z-x_{1}}\Big)^{s}\frac{|g^{\prime}(z)|}{e^{\theta_{1} z}}. \end{equation} | (5.9) |
Get the inequality (5.9), we have
\begin{equation} g^{\prime}(t)\leq\Big(\frac{z-t}{z-y_{1}}\Big)^{s}\frac{|g^{\prime}(y_{1})|}{e^{\theta_{1}y_{1}}}+m\Big(\frac{t-y_{1}}{z-y_{1}}\Big)^{s}\frac{|g^{\prime}(x)|}{e^{\theta_{1} z}}. \end{equation} | (5.10) |
Subsequently inequality as:
\begin{eqnarray} (z-t)^{\delta_{j}}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, k}(\zeta(z-t)^{\xi_{j}})}\leq(z-y_{1})^{\delta_{j}}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(z-y_{1})^{\xi_{j}})}. \end{eqnarray} | (5.11) |
Conducting product of inequality (5.10) and (5.11), we have
\begin{eqnarray} (z-t)^{\delta_{j}}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(z-t)^{\xi_{j}})}g^{\prime}(t)\leq(z-y_{1})^{\delta_{j}}{ \mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(z-y_{1})^{\xi_{j}})}\\ \times\bigg[\Big(\frac{z-t}{z-y_{1}}\Big)^{s}\frac{|g^{\prime}(y_{1})|}{e^{\theta_{1}y_{1}}}+m\Big(\frac{t-y_{1}}{z-y_{1}}\Big)^{s}\frac{|g^{\prime}(x)|}{e^{\theta_{1} z}}\bigg], \end{eqnarray} | (5.12) |
integrating before mention inequality with respect to t from y_{1} to z , we have
\begin{eqnarray} &&\int^{z}_{y_{1}}(z-t)^{\delta_{j}}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(z-t)^{\xi_{j}})}g^{\prime}(t)dt\\ &&\leq\int^{z}_{y_{1}}(z-y_{1})^{\delta_{j}}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, k}(\zeta(z-y_{1})^{\xi_{j}})} \bigg[\Big(\frac{z-t}{z-y_{1}}\Big)^{s}\frac{|g^{\prime}(y_{1})|}{e^{\theta_{1}y_{1}}}+m\Big(\frac{t-y_{1}}{z-y_{1}}\Big)^{s}\frac{|g^{\prime}(z)|}{e^{\theta_{1} z}}\bigg]dt\\ && = \frac{(z-y_{1})}{s+1}(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(z)\bigg[\frac{|g^{\prime}(y_{1})|}{e^{\theta_{1}y_{1}}}+m\frac{|g^{\prime}(z)|}{e^{\theta_{1} z}}\bigg]. \end{eqnarray} | (5.13) |
Now, solving left side of (5.13) by putting z-t = \alpha , then we have
\begin{multline} \int^{z}_{y_{1}}(z-t)^{\delta_{j}}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(z-t)^{\xi_{j}})}g^{\prime}(t)dt = \int^{z-y_{1}}_{0}\alpha^{\delta_{j}}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(\alpha)^{\xi_{j}})}g^{\prime}(z-\alpha)d\alpha\nonumber\\ = -(z-y_{1})^{\delta_{j}}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(z-y_{1})^{\xi_{j}})}g(y_{1})+\int^{z-y_{1}}_{0}\alpha^{\delta_{j}-1}{ \mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m-1, \sigma}(\zeta(\alpha)^{\xi_{j}})}g(z-\alpha)d\alpha. \end{multline} |
Now, again subsisting z-\alpha = t , we get
\begin{eqnarray} &&\int^{z}_{y_{1}}(z-t)^{\delta_{j}}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(z-t)^{\xi_{j}})}g^{\prime}(t)dt\\ && = \int^{z}_{y_{1}}(z-t)^{\delta_{j}-1}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m-1, \sigma}(\zeta(z-t)^{\xi_{j}})}g(t)dt-(z-y_{1})^{\delta_{j}}{ \mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(z-y_{1})^{\xi_{j}})}g(y_{1})\\ && = (Œ^{(\xi_j)_{m}, (\delta_j-1)_m}_{\lambda, \sigma, \zeta: y_{1} ^{+}} g)(z)-\big[(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(z)\big]g(y_{1}). \end{eqnarray} |
Therefore, the inequality (5.13) have the following form
\begin{multline} (Œ^{(\xi_j)_{m}, (\delta_j-1)_m}_{\lambda, \sigma, \zeta: y_{1} ^{+}} g)(x)-\big[(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(z)\big]g(y_{1})\\\leq\frac{(z-y_{1})}{s+1}(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(z)\bigg[\frac{|g^{\prime}(y_{1})|}{e^{\theta_{1}y_{1}}}+m\frac{|g^{\prime}(z)|}{e^{\theta_{1} z}}\bigg]. \end{multline} | (5.14) |
Also from (5.9), we get
\begin{eqnarray} g^{\prime}(t)\geq-\Big(\frac{z-t}{z-y_{1}}\Big)^{s}\frac{|g^{\prime}(y_{1})|}{e^{\theta_{1}y_{1}}}-m\Big(\frac{t-y_{1}}{z-y_{1}}\Big)^{s}\frac{|g^{\prime}(z)|}{e^{\theta_{1} z}}. \end{eqnarray} | (5.15) |
Adopting the same procedure as we have done for (5.10), we obtain
\begin{multline} (Œ^{(\xi_j)_{m}, (\delta_j-1)_m}_{\lambda, \sigma, \zeta: y_{1} ^{+}} g)(z)-\big[(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(z)\big]g(y_{1})\\\geq\frac{-(z-y_{1})}{s+1}(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(z)\bigg[\frac{|g^{\prime}(y_{1})|}{e^{\theta_{1}y_{1}}}+m\frac{|g^{\prime}(z)|}{e^{\theta_{1} z}}\bigg]. \end{multline} | (5.16) |
From (5.14) and (5.16), we get
\begin{multline} \bigg|(Œ^{(\xi_j)_{m}, (\delta_j-1)_m}_{\lambda, \sigma, \zeta: y_{1} ^{+}} g)(z)-\big[(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(z)\big]g(y_{1})\bigg|\\ \leq\frac{(z-y_{1})}{s+1}(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(z)\bigg[\frac{|g^{\prime}(y_{1})|}{e^{\theta_{1}y_{1}}}+m\frac{|g^{\prime}(z)|}{e^{\theta_{1} z}}\bigg]. \end{multline} | (5.17) |
Now, we let z\in[y_{1}, y_{1}+\eta(y_{2}, y_{1})] and t\in(z, y_{1}+\xi(y_{2}, y_{1})] , and by exponentially (s-m) preinvex of |g^{\prime}| , we get
\begin{align} |g^{\prime}(t)| \leq\Big(\frac{t-z}{y_{1}+\xi(y_{2}, y_{1})-z}\Big)^{s}\frac{|g^{\prime}(y_{1}+\xi(y_{2}, y_{1}))|}{e^{\theta_{2}(y_{1}+\xi(y_{2}, y_{1}))}}+m\Big(\frac{y_{1}+\xi(y_{2}, y_{1})-t}{y_{1}+\xi(y_{2}, y_{1})-z}\Big)^{s}\frac{|g^{\prime}(z)|}{e^{\theta_{2} z}}, \end{align} | (5.18) |
repeat the same procedure from Eq (5.9) to Eq (5.17), we get
\begin{multline} \bigg|(Œ^{(\xi_j)_{m}, (\mu_j-1)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} g)(z)-\big[(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} 1)(z)\big]g(y_{1}+\xi(y_{2}, y_{1}))\bigg|\\ \leq\frac{((y_{1}+\xi(y_{2}, y_{1})-z)}{s+1}(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} 1)(z)\bigg[\frac{|g^{\prime}(y_{1}+\xi(y_{2}, y_{1}))|}{e^{\theta_{1}(y_{1}+\xi(y_{2}, y_{1}))}}+m\frac{|g^{\prime}(z)|}{e^{\theta_{1} z}}\bigg].\; \; \; \; \; \; \; \; \end{multline} | (5.19) |
From inequalities (5.17) and (5.19), we have
\begin{multline} \bigg|(Œ^{(\xi_j)_{m}, (\delta_j-1)_m}_{\lambda, \sigma, \zeta: y_{1} ^{+}} g)(z)+(Œ^{(\xi_j)_{m}, (\mu_j-1)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} g)(z)-\big[(Œ^{(\xi_j, \delta_j)_m}_{\lambda, k, \zeta; y_{1} ^{+}} 1)(z)\big]g(y_{1})\nonumber\\ -\big[(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} 1)(z)\big]g(y_{1}+\xi(y_{2}, y_{1}))\bigg|\leq \frac{(z-y_{1})}{s+1} (Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(z) \bigg[\frac{|g^{\prime}(y_{1})|}{e^{\theta_{1}y_{1}}}+m\frac{|g^{\prime}(z)|}{e^{\theta_{1} z}}\bigg]\nonumber\\ +\frac{((y_{1}+\xi(y_{2}, y_{1})-z)}{s+1}(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} 1)(z) \bigg[\frac{|g^{\prime}(y_{1}+\xi(y_{2}, y_{1}))|}{e^{\theta_{1}(y_{1}+\xi(y_{2}, y_{1}))}}+m\frac{|g^{\prime}(z)|}{e^{\theta_{1} z}}\bigg].\nonumber \end{multline} |
Corollary 5.5. Setting \xi(y_{2}, y_{1}) = y_{2}-y_{1} , then under the assumption of theorem (5.2), we have
\begin{multline} \bigg|(Œ^{(\xi_j)_{m}, (\delta_j-1)_m}_{\lambda, \sigma, \zeta: y_{1} ^{+}} g)(z)+(Œ^{(\xi_j)_{m}, (\mu_j-1)_m}_{\lambda, \sigma, \zeta; y_{2}^{-}} g)(z)-\big[(Œ^{(\xi_j, \delta_j)_m}_{\lambda, k, \zeta; y_{1} ^{+}} 1)(z)\big]g(y_{1})\nonumber\\ -\big[(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; y_{2} ^{-}} 1)(z)\big]g(y_{2})\bigg|\leq \frac{(z-y_{1})}{s+1} (Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(z) \bigg[\frac{|g^{\prime}(y_{1})|}{e^{\theta_{1}y_{1}}}+m\frac{|g^{\prime}(z)|}{e^{\theta_{1} z}}\bigg]\nonumber\\ +\frac{(y_{2}-z)}{s+1}(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; y_{2} ^{-}} 1)(z) \bigg[\frac{|g^{\prime}(y_{2})|}{e^{\theta_{1}(y_{2})}}+m\frac{|g^{\prime}(z)|}{e^{\theta_{1} z}}\bigg].\nonumber \end{multline} |
\forall t\in[y_{1}, y_{2}] , \theta_{1}, \theta_{2} \in \mathbb{R} .
Corollary 5.6. Setting \xi(y_{2}, y_{1}) = y_{2}-y_{1} , along with m = s = 1 then under the assumption of theorem (5.2), we have
\begin{multline} \bigg|(Œ^{(\xi_j)_{m}, (\delta_j-1)_m}_{\lambda, \sigma, \zeta: y_{1} ^{+}} g)(z)+(Œ^{(\xi_j)_{m}, (\mu_j-1)_m}_{\lambda, \sigma, \zeta; y_{2}^{-}} g)(z)-\big[(Œ^{(\xi_j, \delta_j)_m}_{\lambda, k, \zeta; y_{1} ^{+}} 1)(z)\big]g(y_{1})\nonumber\\ -\big[(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; y_{2} ^{-}} 1)(z)\big]g(y_{2})\bigg|\leq \frac{(z-y_{1})}{2} (Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(z) \bigg[\frac{|g^{\prime}(y_{1})|}{e^{\theta_{1}y_{1}}}+\frac{|g^{\prime}(z)|}{e^{\theta_{1} z}}\bigg]\nonumber\\ +\frac{(y_{2}-z)}{2}(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; y_{2} ^{-}} 1)(z) \bigg[\frac{|g^{\prime}(y_{2})|}{e^{\theta_{1}(y_{2})}}+\frac{|g^{\prime}(z)|}{e^{\theta_{1} z}}\bigg].\nonumber \end{multline} |
\forall t\in[y_{1}, y_{2}] , \theta_{1}, \theta_{2} \in \mathbb{R} .
Definition 5.1. Let g: [y_{1}, y_{1}+\xi(y_{2}, y_{1})]\rightarrow R is a function, and g is exponentially symmetric about \frac{2y_{1}+\xi(y_{2}, y_{1})}{2} if
\begin{equation} \frac{g(z)}{e^{\theta z}} = \frac{g(2y_{1}+\xi(y_{2}, y_{1})-z)}{e^{\theta (2y_{1}+\xi(y_{2}, y_{1})-z)}},\; \; \; \; \theta\in R. \end{equation} | (5.20) |
Lemma 5.1. Let g:[y_{1}, y_{1}+\xi(y_{2}, y_{1})]\rightarrow R be exponentially symmetric, then
\begin{eqnarray} g\Big(\frac{2y_{1}+\xi(y_{2}, y_{1})}{2}\Big)\leq\frac{(1+m)g(z)}{2^{s}e^{\theta z}},\; \; \; \; \; \theta\in R. \end{eqnarray} | (5.21) |
Proof. For g is exponentially (s-m) preinvex, therefore
\begin{eqnarray} g\Big(\frac{2y_{1}+\xi(y_{2}, y_{1})}{2} \Big)\leq\frac{g(y_{1}+\delta\xi(y_{2}, _{1}))}{2^{s}e^{\theta(y_{1}+\delta\xi(y_{2}, y_{1}))}}+m\frac{g(y_{1}+(1-\delta)\xi(y_{2}, y_{1}))}{2^{s}e^{\theta (y_{1}+(1-\delta)\xi(y_{2}, y_{1}))}}. \end{eqnarray} | (5.22) |
Let t = y_{1}+\delta\xi(y_{2}, y_{1}) , where t\in[y_{1}, y_{1}+\xi(y_{2}, y_{1})] , and then 2y_{1}+\xi(y_{2}, y_{1}) = y_{1}+(1-\delta)\xi(y_{2}, y_{1}) , we have
\begin{eqnarray} g\Big(\frac{2y_{1}+\xi(y_{2}, y_{1})}{2} \Big)\leq\frac{g(z)}{2^{s}e^{\theta z}}+m\frac{g(2y_{1}+\xi(y_{2}, y_{1})-z)}{2^{s}e^{\theta(2y_{1}+\xi(y_{2}, y_{1})-z)}}. \end{eqnarray} | (5.23) |
applying that g is exponentially symmetric, we obtain
\begin{equation} g\Big(\frac{2y_{1}+\xi(y_{2}, y_{1})}{2}\Big)\leq\frac{(1+m)g(z)}{2^{s}e^{\theta z}}. \end{equation} | (5.24) |
Theorem 5.3. Suppose a real valued function g:[y_{1}, y_{1}+\xi(y_{2}, y_{1})]\rightarrow R is exponentially (s-m) preinvex and symmetric about exponentially \frac{2y_{1}+\xi(y_{2}, y_{1})}{2} , then the following integral inequality for (3.1) and (3.2) holds:
\begin{multline} \frac{2^{s}}{1+m}f\Big(\frac{2y_{1}+\xi(y_{2}, y_{1})}{2}\Big)\Big[e^{\theta y_{1}}(Œ^{(\mu_j, \tau_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} 1)(y_{1})+(Œ^{(\mu_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(y_{1}+\xi(y_{2}, y_{1}))\Big]\\ \leq(Œ^{(\mu_j, \tau_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} g)(z)+(Œ^{(\mu_j, \tau_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} g)(y_{1}+\xi(y_{2}, y_{1}))\\ \leq\frac{\xi(y_{2}, y_{1})}{s+1}\big(\frac{g(y_{1}+\xi(y_{2}, y_{1}))}{e^{\theta_{1}(y_{1}+\xi(y_{2}, y_{1}))}}+m\frac{g(y_{1})}{e^{\theta_{1} y_{1}}}\big)\\ \times\bigg[(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} 1)(z) +(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} 1)(y_{1}+\xi(y_{2}, y_{1}))\bigg]. \end{multline} | (5.25) |
Proof. For z\in[y_{1}, y_{1}+\xi(y_{2}, y_{1})] , we have
\begin{eqnarray} (z-y_{1})^{\delta_{j}}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(z-y_{1})^{\xi_{j}})}\leq(\xi(y_{2}, y_{1}))^{\delta_{j}}{ \mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(\xi(y_{2}, y_{1}))^{\xi_{j}})}, \end{eqnarray} | (5.26) |
the real value function g is exponentially (s-m) preinvex, then for z\in[y_{1}, y_{1}+\xi(y_{2}, y_{1})] , we get
\begin{eqnarray} g(z)\leq\Big(\frac{z-y_{1}}{\xi(y_{2}, y_{1})}\Big)^{s}\frac{g(y_{1}+\xi(y_{2}, y_{1}))}{e^{\theta_{1}(y_{1}+\xi(y_{2}, y_{1}))}}+m\Big(\frac{(y_{1}+\xi(y_{2}, y_{1})-z)}{\xi(y_{2}, y_{1})}\Big)^{s}\frac{g(y_{1})}{e^{\theta_{1} y_{1}}}. \end{eqnarray} | (5.27) |
Conducting product of (5.26) and (5.27), and integrating with respect to z from y_{1} to y_{2} , we get
\begin{multline} \int^{y_{2}}_{y_{1}}(z-y_{1})^{\delta_{j}}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(z-y_{1})^{\xi_{j}})}g(z)dz\leq\int^{y_{2}}_{y_{1}}(\xi(y_{2}, y_{1}))^{\delta_{j}}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(\xi(y_{2}, y_{1}))^{\xi_{j}})}\\ \times\bigg[\Big(\frac{z-y_{1}}{\xi(y_{2}, y_{1})}\Big)^{s}\frac{g(y_{1}+\xi(y_{2}, y_{1}))}{e^{\theta_{1}(y_{1}+\xi(y_{2}, y_{1}))}}+m\Big(\frac{(y_{1}+\xi(y_{2}, y_{1})-z)}{\xi(y_{2}, y_{1})}\Big)^{s}\frac{g(y_{1})}{e^{\theta_{1} y_{1}}}\bigg]dz, \end{multline} | (5.28) |
then we have
\begin{eqnarray} &&(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} g)(z)\\ &&\leq(\xi(y_{2}, y_{1}))^{\delta_{j}}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(\xi(y_{2}, y_{1}))^{\xi_{j}})}\frac{\xi(y_{2}, y_{1})}{s+1} \bigg[\frac{g(y_{1}+\xi(y_{2}, y_{1}))}{e^{\theta_{1}(y_{1}+\xi(y_{2}, y_{1}))}}+m\frac{g(y_{1})}{e^{\theta_{1} y_{1}}}\bigg]\\ && = (Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} 1)(z)\frac{\xi(y_{2}, y_{1})}{s+1} \bigg[\frac{g(y_{1}+\xi(y_{2}, y_{1}))}{e^{\theta_{1}(y_{1}+\xi(y_{2}, y_{1}))}}+m\frac{g(y_{1})}{e^{\theta_{1} y_{1}}}\bigg]. \end{eqnarray} | (5.29) |
Analogously for z\in[y_{1}, y_{1}+\xi(y_{2}, y_{1})] , we have
\begin{eqnarray} (y_{1}+\xi(y_{2}, y_{1})-z)^{\mu_{j}}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\mu_j)_m, \sigma}(\zeta(z-y_{1})^{\xi_{j}})}\leq(\xi(y_{2}, y_{1}))^{\mu_{j}}{ \mathrm{J}^{(\xi_j)_m, \lambda}_{(\mu_j)_m, \sigma}(\zeta(\xi(y_{2}, y_{1}))^{\xi_{j}})}. \end{eqnarray} | (5.30) |
Conducting product of (5.27) and (5.30), and integrating with respect to z from y_{1} to y_{2} , we have
\begin{multline} \int^{y_{2}}_{y_{1}}(y_{1}+\xi(y_{2}, y_{1})-z)^{\mu_{j}}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\mu_j)_m, \sigma}(\zeta(z-y_{1})^{\xi_{j}})}g(z)dz\\ \leq\int^{y_{2}}_{y_{1}}(\xi(y_{2}, y_{1}))^{\mu_{j}}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\mu_j)_m, \sigma}(\zeta(\xi(y_{2}, y_{1}))^{\xi_{j}})}\bigg[\Big(\frac{z-y_{1}}{\xi(y_{2}, y_{1})}\Big)^{s}\frac{g(y_{1}+\xi(y_{2}, y_{1}))}{e^{\theta_{1}(y_{1}+\xi(y_{2}, y_{1}))}}\\ +m\Big(\frac{(y_{1}+\xi(y_{2}, y_{1})-z)}{\xi(y_{2}, y_{1})}\Big)^{s}\frac{g(y_{1})}{e^{\theta_{1} y_{1}}}\bigg]dz\nonumber\\ = (\xi(y_{2}, y_{1}))^{\mu_{j}}{\mathrm{J}^{(\xi_j)_m, \lambda}_{(\mu_j)_m, \sigma}(\zeta(\xi(y_{2}, y_{1}))^{\xi_{j}})}\frac{\xi(y_{2}, y_{1})}{s+1}\bigg[\frac{g(y_{1}+\xi(y_{2}, y_{1}))}{e^{\theta_{1}(y_{1}+\xi(y_{2}, y_{1}))}}+m\frac{g(y_{1})}{e^{\theta_{1} y_{1}}}\bigg],\nonumber \end{multline} |
then
\begin{multline} (Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} g)(z)\\\leq(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} 1)(y_{1}+\xi(y_{2}, y_{1}))\frac{\xi(y_{2}, y_{1})}{s+1}\bigg[\frac{g(y_{1}+\xi(y_{2}, y_{1}))}{e^{\theta_{1}(y_{1}+\xi(y_{2}, y_{1}))}}+m\frac{g(y_{1})}{e^{\theta_{1} y_{1}}}\bigg]. \end{multline} | (5.31) |
Summing (5.29) and (5.31), we obtain
\begin{multline} (Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} g)(z)+(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} g)(z)\leq\frac{\xi(y_{2}, y_{1})}{s+1}\big(\frac{g(y_{1}+\xi(y_{2}, y_{1}))}{e^{\theta_{1}(y_{1}+\xi(y_{2}, y_{1}))}}\\+m\frac{g(y_{1})}{e^{\theta_{1} y_{1}}}\big) \bigg[(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} 1)(z) +(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} 1)(y_{1}+\xi(y_{2}, y_{1}))\bigg]. \end{multline} | (5.32) |
Take the product of Eq (5.21) with (z-y_{1})^{\tau_{j}}{\mathrm{J}^{(\mu_j)_m, \lambda}_{(\tau_j)_m, \sigma}(\zeta(z-y_{1})^{\mu_{j}})} and integrating with respect to t from y_{1} to y_{2} , we have
\begin{eqnarray} g\Big(\frac{2y_{1}+\xi(y_{2}, y_{1})}{2}\Big)\int^{y_{2}}_{y_{1}}(z-y_{1})^{\tau_{j}}{\mathrm{J}^{(\mu_j)_m, \lambda}_{(\tau_j)_m, \sigma}(\zeta(z-y_{1})^{\mu_{j}})}dz\\ \leq\frac{(1+m)}{2^{s}}\int^{y_{2}}_{y_{1}}(z-y_{1})^{\tau_{j}}{\mathrm{J}^{(\mu_j)_m, \lambda}_{(\tau_j)_m, \sigma}(\zeta(z-y_{1})^{\mu_{j}})}\frac{g(z)}{e^{\theta z}}dz \end{eqnarray} | (5.33) |
using definition (13), we have
\begin{align} g\Big(\frac{2y_{1}+\xi(y_{2}, y_{1})}{2}\Big)(Œ^{(\mu_j, \tau_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} 1)(y_{1})\leq\frac{(1+m)}{2^{s}e^{\theta y_{1}}}(Œ^{(\mu_j, \tau_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} g)(z). \end{align} | (5.34) |
Taking product (5.21) with (y_{1}+\xi(y_{2}, y_{1})-z)^{\delta_{j}}{\mathrm{J}^{(\mu_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(y_{1}+\xi(y_{2}, y_{1})-z)^{\mu_{j}})} and integrating with respect to variable z from y_{1} to y_{2} , we have
\begin{multline} g\Big(\frac{2y_{1}+\xi(y_{2}, y_{1})}{2}\Big)(Œ^{(\mu_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(y_{1}+\xi(y_{2}, y_{1}))\\\leq\frac{(1+m)}{2^{s}e^{\theta_{1}(y_{1}+\xi(y_{2}, y_{1}))}}(Œ^{(\mu_j, \tau_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} g)(y_{1}+\xi(y_{2}, y_{1})). \end{multline} | (5.35) |
Summing up (5.34) and (5.35), we get
\begin{multline} \frac{2^{s}}{1+m}g\Big(\frac{2y_{1}+\xi(y_{2}, y_{1})}{2}\Big)\Big[e^{\theta y_{1}}(Œ^{(\mu_j, \tau_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} 1)(y_{1})\\ +(Œ^{(\mu_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(y_{1}+\xi(y_{2}, y_{1}))\Big] \leq(Œ^{(\mu_j, \tau_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} g)(z)+(Œ^{(\mu_j, \tau_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} g)(y_{1}+\xi(y_{2}, y_{1})). \end{multline} | (5.36) |
Now, combining (5.32) and (5.36), we get inequality
\begin{multline} \frac{2^{s}}{1+m}g\Big(\frac{2y_{1}+\xi(y_{2}, y_{1})}{2}\Big)\Big[e^{\theta y_{1}}(Œ^{(\mu_j, \tau_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\eta(y_{2}, y_{1})) ^{-}} 1)(y_{1})+(Œ^{(\mu_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(y_{1}+\xi(y_{2}, y_{1}))\Big]\nonumber\\ \leq(Œ^{(\mu_j, \tau_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} g)(z)+(Œ^{(\mu_j, \tau_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} g)(y_{1}+\xi(y_{2}, y_{1}))\\ \leq\frac{\xi(y_{2}, y_{1})}{s+1}\big(\frac{g(y_{1}+\xi(y_{2}, y_{1}))}{e^{\theta_{1}(y_{1}+\xi(y_{2}, y_{1}))}}+m\frac{g(y_{1})}{e^{\theta_{1} y_{1}}}\big)\nonumber\\ \times\bigg[(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} 1)(z) +(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; (y_{1}+\xi(y_{2}, y_{1})) ^{-}} 1)(y_{1}+\xi(y_{2}, y_{1}))\bigg]. \end{multline} |
Corollary 5.7. Setting \xi(y_{2}, y_{1}) = y_{2}-y_{1} , then under the assumption of theorem (5.3), we have
\begin{eqnarray} &&\frac{2^{s}}{1+m}g\Big(\frac{y_{1}+y_{2}}{2}\Big)\Big[e^{\theta y_{1}}(Œ^{(\mu_j, \tau_j)_m}_{\lambda, \sigma, \zeta; y_{2} ^{-}} 1)(y_{1})+(Œ^{(\mu_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} 1)(y_{2})\Big]\\ &&\leq(Œ^{(\mu_j, \tau_j)_m}_{\lambda, \sigma, \zeta; y_{2} ^{-}} g)(z)+(Œ^{(\mu_j, \tau_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} g)(y_{2})\leq\frac{(y_{2}-y_{1})}{s+1}\big(\frac{g(y_{2}-y_{1})}{e^{\theta_{1}(y_{2}-y_{1})}}+m\frac{g(y_{1})}{e^{\theta_{1} y_{1}}}\big)\\ &&\times\bigg[(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{2} ^{-}} 1)(z) +(Œ^{(\xi_j, \mu_j)_m}_{\lambda, \sigma, \zeta; y_{2} ^{-}} 1)(y_{2})\bigg]. \end{eqnarray} | (5.37) |
In this section, we derive some Pólya-Szegö inequalities for four positive integrable functions having fractional operator Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma}(z) in the form of theorems.
Theorem 6.1. Let h and l are integrable functions on [y_{1}, \infty) . Suppose that there exist integrable functions \theta_{1}, \theta_{2}, \psi_{1} and \psi_{2} on [y_{1}, \infty) such that:
\begin{equation} (R1) \,\,\ 0 \lt \theta_{1}(b)\leq h(b)\leq\theta_{2}(b), 0 \lt \psi_{1}(b)\leq l(b)\leq\psi_{2}(b) \,\,\ (b\in[y_{1}, z], z \gt y_{1}).\nonumber \end{equation} |
Then, for z > y_{1}, y_{1}\geq0 , \xi_j, \delta_j, \lambda \in\mathbb{C}, (j = 1, \cdots, m), \Re(\lambda) > 0, \Re(\delta_{j}) > -1, \sum^{m}_{j = 1} \Re(\xi)_j > max\{0: \Re(\sigma)-1\}, \sigma > 0 and (z-b)\in \Omega , then the following inequalities hold:
\begin{align} \frac{Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}} [(\psi_{1}\psi_{2})h^{2}](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\theta_{1}\theta_{2})l^{2}](z)}{[Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\theta_{1}\psi_{1}+\theta_{2}\psi_{2})hl](z)]^{2}}\leq\frac{1}{4}. \end{align} | (6.1) |
Proof. From (R1) , for b\in[y_{1}, z] , z > y_{1} , we have
\begin{equation} \frac{h(b)}{l(b)}\leq\frac{\theta_{2}(b)}{\psi_{1}(b)}, \end{equation} | (6.2) |
the inequality write as
\begin{equation} \bigg(\frac{\theta_{2}(b)}{\psi_{1}(b)}-\frac{h(b)}{l(b)}\bigg)\geq0. \end{equation} | (6.3) |
Similarly, we get
\begin{equation} \frac{\theta_{1}(b)}{\psi_{2}(b)}\leq\frac{h(b)}{l(b)}, \end{equation} | (6.4) |
thus
\begin{equation} \bigg(\frac{h(b)}{l(b}-\frac{\theta_{1}(b)}{\psi_{2}(b)}\bigg)\geq0. \end{equation} | (6.5) |
Multiplying Eq (6.3) and Eq (6.5), it follows
\begin{equation} \bigg(\frac{\theta_{2}(b)}{\psi_{1}(b)}-\frac{h(b)}{l(b)}\bigg)\bigg(\frac{h(b)}{l(b)}-\frac{\theta_{1}(b)}{\psi_{2}(b)}\bigg)\geq0, \end{equation} | (6.6) |
i.e.
\begin{equation} \bigg(\frac{\theta_{2}(b)}{\psi_{1}(b)}+\frac{\theta_{1}(b)}{\psi_{2}(b)}\bigg)\frac{h(b)}{l(b)}\geq\frac{h^{2}(b)}{l^{2}(b)}+\frac{\theta_{1}(b)\theta_{2}(b)}{\psi_{1}(b)\psi_{2}(b)}. \end{equation} | (6.7) |
The last inequality can be written as
\begin{equation} (\theta_{1}(b)\psi_{1}(b)+\theta_{2}(b) \psi_{2}(b))h(b)l(b)\geq\psi_{1}(b)\psi_{2}(b)h^{2}(b)+\theta_{1}(b)\theta_{2}(b)l^{2}(b). \end{equation} | (6.8) |
Consequently, multiply both sides of (6.8) by (y_{1}-b)^{\delta_{j}}\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta(y_{1}-b)^{\xi_{j}}) , (z-b) \in \Omega and integrating with respect to b from y_{1} to z , we get
\begin{equation} Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[(\theta_{1}\psi_{1}+\theta_{2}\psi_{2})hl](z)\geqŒ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[\psi_{1}\psi_{2}h^{2}](z)+Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[\theta_{1}\theta_{2}l^{2}](z). \end{equation} | (6.9) |
Besides, by AM-GM (arithmetic mean- geometric mean) inequality, i.e., a_{1}+b_{1}\geq2\sqrt{a_{1}b_{1}} a_{1}, b_{1} \in \Re^{+} , we get
\begin{equation} Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[(\theta_{1}\psi_{1}+\theta_{2}\psi_{2})hl](x)\geq2\sqrt{Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[\psi_{1}\psi_{2}h^{2}](z)+Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[\theta_{1}\theta_{2}l^{2}](z)}, \end{equation} | (6.10) |
and it follows straightforward the statement of Eq (6.1).
Corollary 6.1.. Let h and l be two integrable functions on [0, \infty) and satisfying the inequality
\begin{equation} (R2) \,\ 0 \lt s\leq h(b)\leq S, 0 \lt k\leq l(b)\leq K (b\in[y_{1}, \tau], z \gt y_{1}). \end{equation} | (6.11) |
For z > y_{1}, y_{1}\geq0 , \xi_j, \delta_j, \lambda \in\mathbb{C}, (j = 1, \cdots, m), \Re(\lambda) > 0, \Re(\delta_{j}) > -1, \sum^{m}_{j = 1} \Re(\xi)_j > max\{0: \Re(\sigma)-1\}, \sigma > 0 and (z-b)\in \Omega , then the following inequalities hold:
\begin{equation} \frac{Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h^{2}](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[l^{2}](z)}{(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[hl](z))^{2}}\leq\frac{1}{4}\bigg(\frac{\sqrt{SK}}{\sqrt{sk}}+\frac{\sqrt{sk}}{\sqrt{SK}}\bigg)^{2}. \end{equation} | (6.12) |
Theorem 6.2. Let h and l are positive integrable functions on [y_{1}, \infty) . Suppose that there exist integrable functions \theta_{1}, \theta_{2}, \psi_{1} and \psi_{2} on [y_{1}, \infty) satisfying (R1) on [y_{1}, \infty) . Then, for z > y_{1}, y_{1}\geq0 , \xi_j, \delta_j, \lambda \in\mathbb{C}, (j = 1, \cdots, m), \Re(\lambda) > 0, \Re(\delta_{j}) > -1, \sum^{m}_{j = 1} \Re(\xi)_j > max\{0: \Re(\sigma)-1\}, \sigma > 0 and (z-b), (\tau-z)\in \Omega , then the following inequalities hold:
\begin{equation} \frac{Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}} [h^{2}](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[\psi_{1}\psi_{2}](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[\theta_{1}\theta_{2}](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[l^{2}](z)}{[Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[\theta_{1}h](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[\psi_{1}h](z)+Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[\theta_{2}h](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[\psi_{2}l](z)]^{2}}\leq\frac{1}{4}. \end{equation} | (6.13) |
Proof. By condition (R1) , it is clear that
\begin{equation} \bigg(\frac{\theta_{2}(b)}{\psi_{1}(\alpha)}-\frac{h(b)}{l(\alpha)}\bigg)\geq0, \end{equation} | (6.14) |
and
\begin{equation} \bigg(\frac{h(b)}{l(\alpha)}-\frac{\theta_{1}(b)}{\psi_{2}(\alpha)}\bigg)\geq0, \end{equation} | (6.15) |
these inequalities implies that
\begin{equation} \bigg(\frac{\theta_{1}(b)}{\psi_{2}(\alpha)}+\frac{\theta_{2}(b)}{\psi_{1}(\alpha)}\bigg)\frac{h(b)}{l(\alpha)}\geq\frac{h^{2}(b)}{l^{2}(\alpha)} +\frac{\theta_{1}(b)\theta_{2}(b)}{\psi_{1}(\alpha)\psi_{2}(\alpha)}. \end{equation} | (6.16) |
The Eq (6.16), multiply by \psi_{1}(\alpha)\psi_{2}(\alpha)l^{2}(\alpha) of both sides, we have
\begin{align} \theta_{1}(b)h(b)\psi_{1}(\alpha)l(\alpha)+\theta_{2}(b)h(b)\psi_{2}(\alpha)l(\alpha)\\ \geq\psi_{1}(\alpha)\psi_{2}(\alpha)h^{2}(b)+\theta_{1}(b)\theta_{2}(b)l^{2}(\alpha). \end{align} | (6.17) |
Hence, the Eq (6.17) multiply both sides by
\begin{equation} (z-b)^{\delta_{j}}\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta (z-b)^{\xi_{j}}), (\alpha-z)^{\delta_{j}}\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta (\alpha-z)^{\xi j}). \end{equation} | (6.18) |
And integrating double with respect to b and \alpha from y_{1} to z and z to y_{2} respectively, we have
\begin{align} Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[\theta_{1}h](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[\psi_{1}l](z)+Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[\theta_{2}h](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[\psi_{2}l](z)\\ \geqŒ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}} [h^{2}](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[\psi_{1}\psi_{2}](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[\theta_{1}\theta_{2}](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[l^{2}](z). \end{align} | (6.19) |
At last, we come to Eq (6.13) by using the arithmetic and geometric mean inequality to the upper inequality.
Theorem 6.3. Let h and l are integrable functions on [y_{1}, \infty) . Suppose that there exist integrable functions \theta_{1}, \theta_{2}, \psi_{1} and \psi_{2} on [y_{1}, \infty) satisfying (R1) on [y_{1}, \infty) . Then, for z > y_{1}, y_{1}\geq0 , \xi_j, \delta_j, \lambda \in\mathbb{C}, (j = 1, \cdots, m), \Re(\lambda) > 0, \Re(\delta_{j}) > -1, \sum^{m}_{j = 1} \Re(\xi)_j > max\{0: \Re(\sigma)-1\}, \sigma > 0 and (z-b), (\alpha-z)\in \Omega , then the following inequalities hold:
\begin{align} Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h^{2}](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[l^{2}](z)\leqŒ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[(\theta_{2}hl)/\psi_{1}](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[(\psi_{2}hl)/\theta_{1}]. \end{align} | (6.20) |
Proof. We have for any (z-b), (\alpha-z)\in \Omega , from Eq (6.2), thus
\begin{multline} \int^{z}_{y_{1}}(z-b)^{\delta_{j}} \mathrm{J}^{(\xi_j, \delta_j)_m}_{\lambda, \sigma}(\zeta (z-b)^{\xi_{j}}) h^{2}(b)db \leq\int^{y_{1}}_{z}(\alpha-z)^{\xi_{j}} \mathrm{J}^{(\xi_j, \delta_j)_m}_{\lambda, \sigma}(\zeta (\alpha-z)^{\xi_{j}}) \frac{\theta_{2}(\alpha)}{\psi_{1}(\alpha)}h(\alpha)l(\alpha)d\alpha,\nonumber \end{multline} |
which implies
\begin{equation} Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h^{2}](z)\leqŒ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[(\theta_{2}hl)/\psi_{1}](z). \end{equation} | (6.21) |
and analogously, by Eq (6.4), we get
\begin{equation} Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[l^{2}](x)\leqŒ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[(\psi_{2}hl)/\theta_{1}](z), \end{equation} | (6.22) |
hence, by multiplying Eq (6.21) and Eq (6.22), follow Eq (6.20).
Corollary 6.2. Let h and l be integrable functions on [y_{1}, \infty) satisfying (R2) . Then, for z > y_{1}, y_{1}\geq0 , \xi_j, \delta_j, \lambda \in\mathbb{C}, (j = 1, \cdots, m), \Re(\lambda) > 0, \Re(\delta_{j}) > -1, \sum^{m}_{j = 1} \Re(\xi)_j > max\{0: \Re(\sigma)-1\}, \sigma > 0 and (z-b), (\alpha-z)\in \Omega , we obtain
\begin{equation} \frac{Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h^{2}](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[l^{2}](z)}{Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[hl](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[hl](z)}\leq\frac{SK}{sk}. \end{equation} | (6.23) |
In this section, Chebyshev type integral inequalities established involving the fractional operator Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma}(z) and using the Pólya-Szegö fractional integral inequalities of theorem (6.1) in the form of theorem, and then discuss its corollary.
Theorem 7.1. Let h and l be integrable functions on [y_{1}, \infty) , and suppose that there exist integrable functions \theta_{1}, \theta_{2}, \psi_{1} and \psi_{2} on [y_{1}, \infty) satisfying (R1) . Then, for z > y_{1}, y_{1}\geq0 , \xi_j, \delta_j, \lambda \in\mathbb{C}, (j = 1, \cdots, m), \Re(\lambda) > 0, \Re(\delta_{j}) > -1, \sum^{m}_{j = 1} \Re(\xi)_j > max\{0: \Re(\sigma)-1\}, \sigma > 0 and (z-b)(\alpha-z)\in \Omega the following inequality hold:
\begin{align} |Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[hl](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[1](z)+Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[hl](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1](z)\\ -Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[l](z)-Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[l](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[h](z)|\\ \leq 2[G_{y_{1}, y_{2}}(h, \theta_{1}, \theta_{2})G_{y_{1}, y_{2}}(l, \psi_{1}, \psi_{2})]^{\frac{1}{2}}. \end{align} | (7.1) |
where
\begin{align} G_{y_{1}, y_{2}}(b, y, x)(z) = \frac{1}{8}\frac{[Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[(y+x)b](z)]^{2}}{Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[yx](z)}Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[1](z)\\ +\frac{1}{8}\frac{[Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[(y+x)b](z)]^{2}}{Œ^{(\mu_j, \nu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[yx](z)}Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1](z)\\ -Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[b](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[b](z). \end{align} |
Proof. For (b, \alpha)\in(y_{1}, z) (z > y_{1}) , we defined A(b, \alpha) = (h(b)-h(\alpha))(l(b)-l(\alpha)) which is the same
\begin{equation} A(b, \alpha) = h(b)l(b)+h(\alpha)l(\alpha)-h(b)l(\alpha)-h(\alpha)l(b). \end{equation} | (7.2) |
Further, the Eq (7.2), multiply both sides by
\begin{equation} (z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j, \delta_j)_m}_{\lambda, \sigma}(\zeta (z-b)^{\delta_{j}})(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}}), \end{equation} | (7.3) |
and integrating double with respect to b and \alpha from y_{1} to z and z to y_{2} respectively, we get
\begin{align} &\int^{z}_{y_{1}} \int^{y_{2}}_{z}(z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j, \delta_j)_m}_{\lambda, \sigma}(\zeta (z-b)^{\delta_{j}})(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}})A(b,\alpha)dbd\alpha\\ & = \int^{z}_{y_{1}}(z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j, \delta_j)_m}_{\lambda, \sigma}(\zeta (z-b)^{\delta_{j}})h(b)l(b)db\int^{y_{2}}_{z}(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}})d\alpha\\ &+\int^{z}_{y_{1}}(z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j, \delta_j)_m}_{\lambda, \sigma}(\zeta (z-b)^{\delta_{j}})db\int^{y_{2}}_{z}(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}})h(\alpha)l(\alpha)d\alpha\\ &-\int^{y_{1}}_{z}(z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j, \delta_j)_m}_{\lambda, \sigma}(\zeta (z-b)^{\delta_{j}})h(b)db\int^{y_{2}}_{z}(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}})h(\alpha)d\alpha\\ &-\int^{y_{1}}_{z}(z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j, \delta_j)_m}_{\lambda, \sigma}(\zeta (z-b)^{\delta_{j}})l(b)db\int^{y_{2}}_{z}(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}})h(\alpha)d\alpha\\ & = Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[hl](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[1](z)+Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[hl](z)\\ &-Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[l](z)-Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[l](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[h](z). \end{align} | (7.4) |
Now, applying Cauchy-Schwartz inequality for integrals, we get
\begin{multline} \bigg|\int^{z}_{y_{1}}\int^{y_{2}}_{z}(z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta (z-b)^{\delta_{j}})(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}})A(b, \alpha)dbd\alpha\bigg|\\ \leq\bigg(\int^{z}_{y_{1}}\int^{y_{2}}_{z}(z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta (z-b)^{\delta_{j}})(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}})\alpha[h(b)]^{2}dbd\alpha\\ +\int^{z}_{y_{1}}\int^{y_{2}}_{z}(z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta (z-b)^{\delta_{j}})(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}})[h(\alpha)]^{2}dbd\alpha\\ -2\int^{z}_{y_{1}}\int^{y_{2}}_{z}(z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta (z-b)^{\delta_{j}})(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}})h(b)h(\alpha)dbd\alpha \bigg)^{1/2}\\ \times\bigg(\int^{z}_{y_{1}}\int^{y_{2}}_{z}(z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta (z-b)^{\delta_{j}})(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}})\alpha[l(b)]^{2}dbd\alpha\\ +\int^{z}_{y_{1}}\int^{y_{2}}_{z}(z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta (z-b)^{\delta_{j}})(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}})[l(\alpha)]^{2}dbd\alpha\\ -2\int^{z}_{y_{1}}\int^{y_{2}}_{z}(z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta (z-b)^{\delta_{j}})(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}})l(b)l(\alpha)dbd\alpha \bigg)^{1/2}, \end{multline} | (7.5) |
it follow as
\begin{multline} \bigg|\int^{z}_{y_{1}}\int^{y_{2}}_{z}(z-b)^{\xi_{j}}\mathrm{J}^{(\xi_j)_m, \lambda}_{(\delta_j)_m, \sigma}(\zeta (z-b)^{\delta_{j}})(\alpha-z)^{\nu_{j}}\mathrm{J}^{(\mu_j)_m, \lambda}_{(\nu_j)_m, \sigma}(\zeta (\alpha-z)^{\mu_{j}})A(b, \alpha)dbd\alpha\bigg|\\ \leq2\{1/2Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h^{2}](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[1](z)+1/2Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[h^{2}](z)\\ -Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[h](z)\}^{1/2}\times\{1/2Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[l^{2}](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[1](z)\\+1/2Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[l^{2}](z) -Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[l](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[l](z)\}^{1/2}. \end{multline} | (7.6) |
By applying lemma (6.1) for \psi_{1}(z) = \psi_{2}(z) = l(z) = 1 , we get for any \mathrm{J}^{(\xi_j, \delta_j)_m}_{\lambda, \sigma}(z)^{\delta_{j}}\in \Omega
\begin{align} Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}} [h^{2}](z)\leq\frac{1}{4}\frac{[Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\theta_{1}+\theta_{2})h](z)]^{2}}{Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\theta_{1}\theta_{2})](z)}, \end{align} | (7.7) |
this implies
\begin{align} &1/2Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h^{2}](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[1](z)+1/2Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[h^{2}](z)\\ &-Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[h](z)\leq\frac{1}{8}\frac{[Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\theta_{1}+\theta_{2})h](z)]^{2}}{Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\theta_{1}\theta_{2})](z)}Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[1](z)\\ &+\frac{1}{8}Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1](z)\frac{[Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\theta_{1}+\theta_{2})h](z)]^{2}}{Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\theta_{1}\theta_{2})](z)} -Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[h](z)\\ & = G_{y_{1}, y_{2}}(h, \theta_{1}, \theta_{2}). \end{align} | (7.8) |
Analogously, it is clear when \theta_{1}(z) = \theta_{2}(z) = h(z) = 1 , according to Lemma (6.1), we get
\begin{align} &1/2Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[l^{2}](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[1](z)+1/2Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[l^{2}](z)\\ &-Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[l](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[l](x)\leq\frac{1}{8}\frac{[Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\psi_{1}+\psi_{2})l](z)]^{2}}{Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\psi_{1}\psi_{2})](z)}Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[1](z)\\ &+\frac{1}{8}Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1](z)\frac{[Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\psi_{1}+\psi_{2})l](z)]^{2}}{Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; y_{1} ^{+}} [(\psi_{1}\psi_{2})](z)} -Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[l](z)Œ^{(\nu_j, \mu_j)_m}_{\lambda, \sigma, \zeta; {y_{2}}^{-}}[l](z)\\ & = G_{y_{1}, y_{2}}(l, \psi_{1}, \psi_{2}). \end{align} | (7.9) |
Thus, by resulting Eqs (7.4), (7.6), (7.8) and (7.9), we get the desired inequality (7.1).
Corollary 7.1. Let h and l be integrable functions on [y_{1}, \infty) , suppose that there exist integrable functions \theta_{1}, \theta_{2}, \psi_{1} and \psi_{2} on [y_{1}, \infty) satisfying (R1) . Then, for z > y_{1}, y_{1}\geq0 , \xi_j, \delta_j, \lambda \in\mathbb{C}, (j = 1, \cdots, m), \Re(\lambda) > 0, \Re(\delta_{j}) > -1, \sum^{m}_{j = 1} \Re(\xi)_j > max\{0: \Re(\sigma)-1\}, \sigma > 0 and (z-b), (\alpha-z)\in \Omega the following inequalities hold:
\begin{align} |Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[hl](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1](z) -Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[h](z)Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[l](z)|\\ \leq [G_{y_{1}, y_{2}}(h, \theta_{1}, \theta_{2})G_{y_{1}, y_{1}}(l, \theta_{1}, \theta_{2})]^{\frac{1}{2}}, \end{align} |
where
\begin{align} G_{y_{1}, y_{1}}(b, y, x)(z) = \frac{1}{4}\frac{[Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[(y+x)b](z)]^{2}}{Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[yx](z)}Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[1]-(Œ^{(\xi_j, \delta_j)_m}_{\lambda, \sigma, \zeta; {y_{1}}^{+}}[b](z))^{2}. \end{align} |
This article analyzed the generalized fractional integral operator having nonsingular function (generalized multi-index Bessel function) as kernel and developed a new version of inequalities. We estimate some inequalities (Hermite Hadamard type Mercer inequality, exponentially (s-m) preinvex inequality, Pólya-Szegö type integral inequality and the Chebyshev type inequality) with the generalized fractional integral operator in which nonsingular function as the kernel. Introducing the new version of inequalities of newly constricted operators have strengthened the idea and results.
The authors declare that they have no competing interest.
[1] |
Herez A, El Hage H, Lemenand T, et al. (2020) Review on photovoltaic/thermal hybrid solar collectors: Classifications, applications and new systems. Sol Energy 207: 1321–1347. https://doi.org/10.1016/j.solener.2020.07.080 doi: 10.1016/j.solener.2020.07.080
![]() |
[2] |
Rashid M, Yousif M, Rashid Z, et al. (2023) Effect of dust accumulation on the performance of photovoltaic modules for different climate regions. Heliyon 9: 1–10. https://doi.org/10.1016/j.heliyon.2023 doi: 10.1016/j.heliyon.2023
![]() |
[3] |
Lin J, Wang W, Hao Z, et al. (2024) Investigation of sensitivity analysis for hybrid photovoltaic/thermal system based on splitting nanofluid. Energy Convers Manage 315: 1–15. https://doi.org/10.1016/j.enconman.2024.118791 doi: 10.1016/j.enconman.2024.118791
![]() |
[4] |
Kazem HA, Chaichan MT, Al-Waeli AH (2022) A comparison of dust impacts on polycrystalline and monocrystalline solar photovoltaic performance: An outdoor experimental study. Environ Sci Pollut Res 29: 88788–88802. https://doi.org/10.1007/s11356-022-22245-9 doi: 10.1007/s11356-022-22245-9
![]() |
[5] |
Kaiss ECA, Hassan NM (2023) Numerical modeling of dust deposition rate on ground-mounted solar photovoltaic panels. J Sol Energy Eng 145: 1–15. https://doi.org/10.1115/1.4056635 doi: 10.1115/1.4056635
![]() |
[6] |
Zhou Q, Dong P, Li M, et al. (2023) Analyzing the interactions between photovoltaic system and its ambient environment using CFD techniques: A review. Energy Build 315: 1–10. https://doi.org/10.1016/j.enbuild.2023.113394 doi: 10.1016/j.enbuild.2023.113394
![]() |
[7] |
Al-Ghussain L, Taylan O, Abujubbeh M, et al. (2023) Optimizing the orientation of solar photovoltaic systems considering the effects of irradiation and cell temperature models with dust accumulation. Sol Energy 249: 67–80. https://doi.org/10.1016/j.solener.2022.12.018 doi: 10.1016/j.solener.2022.12.018
![]() |
[8] |
Aïssa B, Isaifan RJ, Figgis BW, et al. (2023) A comprehensive review of a decade of field PV soiling assessment in QEERI's outdoor test facility in Qatar: Learned lessons and recommendations. Energies 16: 5224. https://doi.org/10.3390/en16135224 doi: 10.3390/en16135224
![]() |
[9] |
Kayri İ, Bayar MT (2024) A new approach to determine the long-term effect of efficiency losses due to different dust types accumulation on PV modules with artificial neural networks. J Clean Prod 434: 140282. https://doi.org/10.1016/j.jclepro.2023.140282 doi: 10.1016/j.jclepro.2023.140282
![]() |
[10] |
Adekanbi ML, Alaba ES, John TJ, et al. (2023) Soiling loss in solar systems: A review of its effect on solar energy efficiency and mitigation techniques. Clean Energy Syst 1: 100094. https://doi.org/10.1016/j.cles.2023.100094 doi: 10.1016/j.cles.2023.100094
![]() |
[11] |
Fatima K, Minai AF, Malik H, et al. (2024) Experimental analysis of dust composition impact on photovoltaic panel performance: A case study. Sol Energy 267: 112206. https://doi.org/10.1016/j.solener.2023.112206 doi: 10.1016/j.solener.2023.112206
![]() |
[12] | Obeidat MS, Al Abed Alhalim EAM, Melhim BR (2023) Systematic approach for selecting a cleaning method to solar panels based on the preference selection index approach. Jordan J Mech Ind Eng 17: 279–287. Available from:https://jjmie.hu.edu.jo/vol14-3/02-11-19.pdf. |
[13] |
Ahmadullah AB, Al-Sharafi A, Hassan G, et al. (2024) A techno-economic review of dust accumulation and cleaning techniques for solar energy harvesting devices. Arab J Sci Eng 49: 1343–1365. https://doi.org/10.1007/s13369-023-08433-6 doi: 10.1007/s13369-023-08433-6
![]() |
[14] |
Alkharusi T, Huang G, Markides CN (2024) Characterisation of soiling on glass surfaces and their impact on optical and solar photovoltaic performance. Renewable Energy 220: 119422. https://doi.org/10.1016/j.renene.2023.119422 doi: 10.1016/j.renene.2023.119422
![]() |
[15] |
Keskin V (2024) Energy-and exergy-based economical and environmental (4E) evaluation of the influence of natural pollutants on PV array performance. J Therm Anal Calorim 1: 1–19. https://doi.org/10.1007/s10973-023-12694-6 doi: 10.1007/s10973-023-12694-6
![]() |
[16] |
Wu Y, Du J, Liu G, et al. (2022) A review of self-cleaning technology to reduce dust and ice accumulation in photovoltaic power generation using superhydrophobic coating. Renewable Energy 185: 1034–1061. https://doi.org/10.1016/j.renene.2021.12.091 doi: 10.1016/j.renene.2021.12.091
![]() |
[17] |
Zhao W, Lv Y, Wei Z, et al. (2021) Review on dust deposition and cleaning methods for solar PV modules. J Renewable Sustainable Energy 13: 1–10. https://doi.org/10.1063/5.0047847 doi: 10.1063/5.0047847
![]() |
[18] |
Kaushal A, Dhingra A, Chauhan S, et al. (2023) Effect of dust accumulation on photovoltaic panel performance: A review. Energies 16: 6397. https://doi.org/10.3390/en16176397 doi: 10.3390/en16176397
![]() |
[19] |
Bashir A, Mehmood U, Ullah Z, et al. (2023) Dust deposition impact on photovoltaic systems performance under varying environmental conditions. Sustainability 15: 435. https://doi.org/10.3390/su15020435 doi: 10.3390/su15020435
![]() |
[20] |
Hassan A, Mansoor M, Aslam A (2023) Effects of dust particle size on the performance of solar panels: A case study. Energies 16: 2580. https://doi.org/10.3390/en16062580 doi: 10.3390/en16062580
![]() |
[21] |
Al-Kouz W, Alshboul A, Jafari S, et al. (2023) Investigation of the impact of limestone dust on solar PV panels in the Middle East. Sustainability 15: 1693. https://doi.org/10.3390/su15051693 doi: 10.3390/su15051693
![]() |
[22] |
Chen R, Zhang S, Chen Y, et al. (2023) Investigation of dust accumulation behavior on photovoltaic modules using an experimental approach. Energies 16: 8022. https://doi.org/10.3390/en16248022 doi: 10.3390/en16248022
![]() |
[23] |
Ibrahim H, Anis W, Ismail M (2023) Modeling and experimental analysis of dust removal techniques for photovoltaic modules. Appl Sci 13: 3736. https://doi.org/10.3390/app13093736 doi: 10.3390/app13093736
![]() |
[24] |
Li Y, Wu Q, Tang Z, et al. (2023) Influence of dust properties on the performance degradation of photovoltaic panels. Energies 16: 4792. https://doi.org/10.3390/en16134792 doi: 10.3390/en16134792
![]() |
[25] |
Singh R, Sharma P, Gupta D, et al. (2023) Experimental investigation of the cleaning cycles and dust types on PV panel efficiency. Sustainability 15: 6473. https://doi.org/10.3390/su15126473 doi: 10.3390/su15126473
![]() |
[26] |
Zhou Q, Dong P, Li M, et al. (2023) Analyzing the interactions between photovoltaic systems and their ambient environment using CFD techniques: A review. Energy Build 315: 113394. https://doi.org/10.1016/j.enbuild.2023.113394 doi: 10.1016/j.enbuild.2023.113394
![]() |
[27] |
Hideki K, Ryosuke A, Yoshinori K, et al. (2016) The eco-driving effect of electric vehicles compared to conventional gasoline vehicles. AIMS Energy 4: 804–816. https://doi.org/10.3934/energy.2016.6.804 doi: 10.3934/energy.2016.6.804
![]() |
[28] |
Kabeel AE, Attia MEH, Abdelgaie M, et al. (2023) Experimental study on energy and exergy assessments of a new PV system with a concave cover for active cooling and self-cleaning. Renewable Energy Focus 47: 100512. https://doi.org/10.1016/j.ref.2023.100512 doi: 10.1016/j.ref.2023.100512
![]() |
[29] |
Attia MEH, Kabeel AE, Khelifa A, et al. (2024) Thermal and electrical analysis of the performance of a skeleton-shaped tubes via hybrid PVT cooling system. Appl Thermal Eng 248: 123277. https://doi.org/10.1016/j.applthermaleng.2024.123277 doi: 10.1016/j.applthermaleng.2024.123277
![]() |
[30] |
Kabeel AE, Khelifa A, Attia MEH, et al. (2024) Optimal design and orientation of cooling technology for photovoltaic plants: A comparative simulation study. Sol Energy 269: 112362. https://doi.org/10.1016/j.solener.2024.112362 doi: 10.1016/j.solener.2024.112362
![]() |
[31] |
Attanayaka AMSMHS, Karunadasa JP, Hemapala KTMU (2019) Estimation of state of charge for lithium-ion batteries—A review. AIMS Energy 7: 186–210. https://doi.org/10.3934/energy.2019.2.186 doi: 10.3934/energy.2019.2.186
![]() |
[32] |
Abdelrahman K, Samir K, Taher E (2023) Prediction of the equivalent circulation density using machine learning algorithms based on real-time data. AIMS Energy 11: 425–453. https://doi.org/10.3934/energy.2023023 doi: 10.3934/energy.2023023
![]() |
1. | Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Artion Kashuri, Hassen Aydi, Eskandar Ameer, Ostrowski-type inequalities pertaining to Atangana–Baleanu fractional operators and applications containing special functions, 2022, 2022, 1029-242X, 10.1186/s13660-022-02899-6 | |
2. | Peng Xu, Saad Ihsan Butt, Saba Yousaf, Adnan Aslam, Tariq Javed Zia, Generalized Fractal Jensen–Mercer and Hermite–Mercer type inequalities via h-convex functions involving Mittag–Leffler kernel, 2022, 61, 11100168, 4837, 10.1016/j.aej.2021.10.033 | |
3. | Ravi Kumar Jain, Alok Bhargava, Mohd. Rizwanullah, Certain New Integrals Including Generalized Bessel-Maitland Function and M-Series, 2022, 8, 2349-5103, 10.1007/s40819-021-01202-3 | |
4. | Wedad Saleh, Abdelghani Lakhdari, Adem Kiliçman, Assia Frioui, Badreddine Meftah, Some new fractional Hermite-Hadamard type inequalities for functions with co-ordinated extended s,m-prequasiinvex mixed partial derivatives, 2023, 72, 11100168, 261, 10.1016/j.aej.2023.03.080 | |
5. | Anupam Das, Mohsen Rabbani, Bipan Hazarika, An iterative algorithm to approximate the solution of a weighted fractional integral equation, 2023, 1793-5571, 10.1142/S1793557123502418 | |
6. | Yong Tang, Ghulam Farid, M. Y. Youssif, Zakieldeen Aboabuda, Amna E. Elhag, Kahkashan Mahreen, Çetin Yildiz, Refinements of Various Types of Fractional Inequalities via Generalized Convexity, 2024, 2024, 2314-4629, 10.1155/2024/4082683 | |
7. | Saad Ihsan Butt, Praveen Agarwal, Juan J. Nieto, New Hadamard–Mercer Inequalities Pertaining Atangana–Baleanu Operator in Katugampola Sense with Applications, 2024, 21, 1660-5446, 10.1007/s00009-023-02547-3 |