Loading [MathJax]/jax/output/SVG/jax.js
Review Topical Sections

A review of PV solar energy system operations and applications in Dhofar Oman

  • Received: 22 April 2022 Revised: 26 June 2022 Accepted: 18 July 2022 Published: 22 July 2022
  • Energy is seen as one of the most determinant factors for a nation's economic development. The Sun is an incredible source of inexhaustible energy. The efficiency of the conversion and application of Photovoltaic (PV) systems is related to the PV module's electricity generation and the location's solar potentials. Thus, the solar parameters of a region are important for feasibility studies on the application of solar energy. Although solar energy is available everywhere in the world, countries closest to the equator receive the greatest solar radiation and have the highest potential for solar energy production and application. Dhofar in Salalah-Oman is one of the cities in Oman with high temperatures all year round. The city has been reported to exhibit a maximum solar flux of about 1360 w/m2 and a maximum accumulative solar flux of about 12,586,630 W/m2 in March. These interesting solar potentials motivated the call for investment in solar energy in the region as an alternative to other non-renewable energy sources such as fossil fuel-powered generators. As a consequence, several authors have reported on the application of different solar energy in the different cities in Oman, especially in remote areas and various results reported. Therefore, the present review highlighted the achievements reported on the availability of solar energy sources in different cities in Oman and the potential of solar energy as an alternative energy source in Dhofar. The paper has also reviewed different PV techniques and operating conditions with emphasis on the advanced control strategies used to enhance the efficiency and performance of the PV energy system. Applications of standalone and hybrid energy systems for in-house or remote power generation and consumption in Dhofar were discussed. It also focused on the relevance of global radiation data for the optimal application of PV systems in Dhofar. The future potential for the full application of solar systems in the region was mentioned and future work was recommended.

    Citation: Fadhil Khadoum Alhousni, Firas Basim Ismail, Paul C. Okonkwo, Hassan Mohamed, Bright O. Okonkwo, Omar A. Al-Shahri. A review of PV solar energy system operations and applications in Dhofar Oman[J]. AIMS Energy, 2022, 10(4): 858-884. doi: 10.3934/energy.2022039

    Related Papers:

    [1] Zhoujin Cui . Primary resonance and feedback control of the fractional Duffing-van der Pol oscillator with quintic nonlinear-restoring force. AIMS Mathematics, 2023, 8(10): 24929-24946. doi: 10.3934/math.20231271
    [2] Zhoujin Cui, Xiaorong Zhang, Tao Lu . Resonance analysis and time-delay feedback controllability for a fractional horizontal nonlinear roller system. AIMS Mathematics, 2024, 9(9): 24832-24853. doi: 10.3934/math.20241209
    [3] P. Pirmohabbati, A. H. Refahi Sheikhani, H. Saberi Najafi, A. Abdolahzadeh Ziabari . Numerical solution of full fractional Duffing equations with Cubic-Quintic-Heptic nonlinearities. AIMS Mathematics, 2020, 5(2): 1621-1641. doi: 10.3934/math.2020110
    [4] Huitzilin Yépez-Martínez, Mir Sajjad Hashemi, Ali Saleh Alshomrani, Mustafa Inc . Analytical solutions for nonlinear systems using Nucci's reduction approach and generalized projective Riccati equations. AIMS Mathematics, 2023, 8(7): 16655-16690. doi: 10.3934/math.2023852
    [5] Ridwanulahi Iyanda Abdulganiy, Shiping Wen, Yuming Feng, Wei Zhang, Ning Tang . Adapted block hybrid method for the numerical solution of Duffing equations and related problems. AIMS Mathematics, 2021, 6(12): 14013-14034. doi: 10.3934/math.2021810
    [6] Saleh Almuthaybiri, Tarek Saanouni . Inhomogeneous NLS with partial harmonic confinement. AIMS Mathematics, 2025, 10(4): 9832-9851. doi: 10.3934/math.2025450
    [7] Ali Khalouta, Abdelouahab Kadem . A new computational for approximate analytical solutions of nonlinear time-fractional wave-like equations with variable coefficients. AIMS Mathematics, 2020, 5(1): 1-14. doi: 10.3934/math.2020001
    [8] Ramazan Yazgan . An analysis for a special class of solution of a Duffing system with variable delays. AIMS Mathematics, 2021, 6(10): 11187-11199. doi: 10.3934/math.2021649
    [9] Xiaoguang Yuan, Quan Jiang, Zhidong Zhou, Fengpeng Yang . The method of fundamental solutions for analytic functions in complex analysis. AIMS Mathematics, 2022, 7(4): 6820-6851. doi: 10.3934/math.2022380
    [10] Anh Tuan Nguyen, Le Dinh Long, Devendra Kumar, Van Thinh Nguyen . Regularization of a final value problem for a linear and nonlinear biharmonic equation with observed data in Lq space. AIMS Mathematics, 2022, 7(12): 20660-20683. doi: 10.3934/math.20221133
  • Energy is seen as one of the most determinant factors for a nation's economic development. The Sun is an incredible source of inexhaustible energy. The efficiency of the conversion and application of Photovoltaic (PV) systems is related to the PV module's electricity generation and the location's solar potentials. Thus, the solar parameters of a region are important for feasibility studies on the application of solar energy. Although solar energy is available everywhere in the world, countries closest to the equator receive the greatest solar radiation and have the highest potential for solar energy production and application. Dhofar in Salalah-Oman is one of the cities in Oman with high temperatures all year round. The city has been reported to exhibit a maximum solar flux of about 1360 w/m2 and a maximum accumulative solar flux of about 12,586,630 W/m2 in March. These interesting solar potentials motivated the call for investment in solar energy in the region as an alternative to other non-renewable energy sources such as fossil fuel-powered generators. As a consequence, several authors have reported on the application of different solar energy in the different cities in Oman, especially in remote areas and various results reported. Therefore, the present review highlighted the achievements reported on the availability of solar energy sources in different cities in Oman and the potential of solar energy as an alternative energy source in Dhofar. The paper has also reviewed different PV techniques and operating conditions with emphasis on the advanced control strategies used to enhance the efficiency and performance of the PV energy system. Applications of standalone and hybrid energy systems for in-house or remote power generation and consumption in Dhofar were discussed. It also focused on the relevance of global radiation data for the optimal application of PV systems in Dhofar. The future potential for the full application of solar systems in the region was mentioned and future work was recommended.



    Nonlinear oscillators have been widely used in various engineering and applied sciences, such as mathematics, physics, structural dynamics, mechanical engineering and other related fields of science [1,2,3,4,5,6]. Nonlinear differential equations (NDEs) can model many phenomena in various scientific aspects to present their effects and behaviors through mathematical principles. Perturbation methods are extremely beneficial when the nonlinear response is small [7,8,9,10]. In general, solving strongly nonlinear differential equations is very difficult. In [11], Mickens suggested an approximate expression for solving a truly nonlinear Duffing oscillator. Recently, various powerful analytical and numerical approximation techniques have been suggested for dealing with nonlinear oscillator differential equations. These include He's frequency-amplitude formulation [12], the harmonic balance method [13,14], the straightforward frequency prediction method [15], the modified harmonic balance method [16,17], the energy balance method [18,19,20], the homotopy perturbation method [21,22,23,24,25], the Hamiltonian approach [26,27], the weighted averaging method [28], the global residue harmonic balance method [29,30,31], the max-min approach [32,33], Newton's harmonic balance method [34], the variational iteration method [35], the parameter-expansion method [36], the Lindstedt-Poincaré method [37,38] and the global error minimization method [39,40,41,42].

    The global error minimization method (GEMM) is one of the most frequently used techniques for dealing with the solutions of nonlinear oscillators, as it provides more accurate results valid for both weakly and strongly nonlinear oscillators than other known methods [39,40,41,42]. In the previous example, the solution up to the first approximation is calculated.

    In this study, we extend and improve the global error minimization method up to a third order approximation to achieve the higher-order analytical solution of strongly nonlinear Duffing-harmonic oscillators. The present method is applied for two different problems, and the analytical results show that the modified global error minimization method (MGEMM) has better agreement with numerical solutions than the other analytical methods. Excellent agreement is observed between the approximate and exact solutions even for large amplitudes of the oscillation. Comparing the exact solutions with the approximate results has proved that the MGEMM is quite an accurate method in strongly nonlinear oscillator systems.

    To describe the proposed modified global error minimization method (MGEMM), we consider general second order nonlinear oscillator differential equations as follows:

    ¨u+F(˙u,u,t)=0,u(0)=A,˙u(0)=0. (1)

    We introducing E(u)as a new function, defined as in [40,43], in the following form:

    E(u)=T0(¨u+F(˙u,u,t))2dt,T=2πω1. (2)

    By assuming that F(u) is an odd function, a general n-th order trial function of Eq (1) can be expressed as a sum of trigonometric functions as follows:

    u(t)=n=0(a2n+1)cos((2n+1)ωt)), (3)

    where a(2n+1) are unknown constant values which satisfy the relation

    A=n=0a(2n+1). (4)

    The following conditions were used to obtain the unknown parameters (i.e., a(2n+1) and ω):

    E(u)ω=0,E(u)a(2n+1)=0,n1. (5)

    By solving the n Eq (5) with the aid of Eq (4), the constants a1,a3,a5 and the frequency of vibration ω are obtained.

    In this section, two practical examples of nonlinear Duffing-harmonic oscillators are illustrated to show the effectiveness, accuracy and applicability of the proposed approach.

    In this application, we consider the following nonlinear Duffing-harmonic oscillator:

    ¨u+k1u+k3u1+k2u2=0,u(0)=A,˙u(0)=0, (6)

    where dots denote differentiation with respect to t. Now, we shall study some different relevant cases considering Eq (6).

    First, we consider k1=1, k2=1 and k3=1 in Eq (6). Then, we have a nonlinear oscillator system having an irrational elastic item [12,16].

    ¨u+u+u1+u2=0,u(0)=A,˙u(0)=0. (7)

    According to the basic idea of the global error minimization method, the minimization problem of Eq (7) is

    E(u)=T0(¨u+u+u1+u2)2dt,T=2π/ω. (8)

    The first-order approximate solution for Eq (7) can be represented as a trial function in the form

    u1(t)=a1cos(ωt). (9)

    Substituting Eq (9) into Eq (8) and choosing a1=A, it follows that

    E(u1)=4A2πω+3A4πω+5A6π8ω4A2πω92A4πω54A6πω+A2πω3+32A4πω3+58A6πω3=0. (10)

    Applying E(u1)/ω=0, the frequency of the nonlinear oscillator is obtained as follows:

    ω=ω1=16+18A2+5A4+2256+576A2+487A4+180A6+25A83(8+12A2+5A4). (11)

    In order to illustrate the capacity of the global error minimization method, the second-order approximation is applied to the Duffing-harmonic oscillator by using the following new trial solution:

    u2(t)=a1cos(ωt)+a3cos(3ωt), (12)

    where A=a1+a3. By substituting Eq (12) into Eq (8), we have

    E(u2)=π8ω(5(ω21)2a61+5(11ω414ω2+3)a51a3+2a31a3(8(29ω2+5ω4)+3(550ω2+109ω4)a23)+3a41(4(23ω2+ω4)+(15110ω2+159ω4)a23)+a23(8(29ω2)2+12(227ω2+81ω4)a23+5(19ω2)2a43)+a21(8(2+ω2)2+16(645ω2+59ω4)a23+3(15190ω2+559ω4)a43))=0.) (13)

    Setting E(u2)/ω=0 and E(u2)/a3=0 leads to

    π8ω(20ω(1+ω2)a61+5(28ω+44ω3)a51a3+2a31a3(8(18ω+20ω3)+3(100ω+436ω3)a23+3a41(4(6ω+4ω3)+(220ω+636ω3)a23)+a23(288ω(29ω2)+12(54ω+324ω3)a23180ω(19ω2)a43)+a21(32ω(2+ω2)+16(90ω+236ω3)a23+3(380ω+2236ω3)a43))18ω2π(5(1+ω2)2a61+5(314ω2+11ω4)a51a3+2a31a3(8(29ω2+5ω4)+3(550ω2+109ω4)a23)+3a41(4(23ω2+ω4)+(15110ω2+159ω4)a23)+a23(8(29ω2)2+12(227ω2+81ω4)a23+5(19ω2)2a43)+a21(8(2+ω2)2+16(645ω2+59ω4)a23+3(15190ω2+559ω4)a43))=0,) (14)
    π8ω(5(314ω2+11ω4)a51+6(15110ω2+159ω4)a41a3+12(550ω2+109ω4)a31a23+2a31(8(29ω2+5ω4)+3(550ω2+109ω4)a23)+a23(24(227ω281ω4)a3+20(19ω2)2a33)+a21(32(645ω2+59ω4)a3+12(15190ω2+559ω4)a33)+2a3(8(29ω2)2+12(227ω2+81ω4)a23+5(19ω2)2a23))=0.) (15)

    For a known amplitude, the parameters of a1, a3 and angular frequency ω can be obtained by using the condition A=a1+a3 and solving Eqs (14) and (15). The computations were performed using the Mathematica software program, version 9.

    To illustrate the capacity of this method, the third order approximation is applied by using the following trial function:

    u3(t)=a1cos(ωt)+a3cos(3ωt)+a5cos(5ωt), (16)

    where A=a1+a3+a5. Bringing Eq (16) into Eq (8) results in

    E(u3)=π8ω(5a61(ω21)2+a51(ω21)(5a3(11ω23)+3a5(9ω21))+5a63(19ω2)2+2a31a3(3a23(109ω450ω2+5)+3a5a3(663ω4230ω2+15)+8(5ω49ω2+2)+10a25(251ω462ω2+3))+3a43(a25(2911ω4430ω2+15)+4(81ω427ω2+2))+2a1a23a5(a23(2894ω4620ω2+30)+15a5a3(153ω426ω2+1)+8(287ω499ω2+6)+3a25(3399ω4470ω2+15))+a25(5a45(125ω2)2+12a25(625ω475ω2+2)+8(225ω2)2)+a23(3a45(5631ω4590ω2+15)+16a25(803ω4153ω2+6)+8(29ω2)2)+a23(3a45(5631ω4590ω2+15)+16a25(803ω4153ω2+6)+8(29ω2)ω2)2+3a25(277ω490ω2+5)))+a21(3a43(559ω4190ω2+15)+18a5a33(341ω490ω2+5)+8(ω22)2)+9a45(1317ω4170ω2+5)+48a25(121ω439ω2+2)4a23(3a25(1743ω4350ω2+15)+4(59ω445ω2+6))+6a3a5(a25(2719ω4430ω2+15)+8(49ω427ω2+2))))=0.) (17)

    Applying E(u3)/ω=0, E(u3)/a3=0 and E(u3)/a5=0 yields

    π8ω(20a61ω(ω21)+a51(ω21)(110a3ω+54a5ω)+2a51ω(5a3(11ω23)+3a5(9ω21))+3a5(9ω21))+2a31a3(3a23(436ω3100ω)+3a5a3(2652ω3460ω)+8(20ω318ω)+10a25(1004ω3124ω))+3a43(a25(11644ω3860ω)+4(324ω354ω))+2a1a23a5(a23(11576ω31240ω)+15a5a3(612ω352ω)+8(1148ω3198ω)+3a25(13596ω3940ω))+a25(12a25(2500ω3150ω)800ω(225ω2)500a45ω(125ω3))+a23(3a45(22524ω31180ω)+16a25(3212ω3306ω)288ω(29ω2))+a41(a23(1908ω3660ω)+4a5a3(1468ω3380ω)+3(3a25(1108ω3180ω)+4(4ω36ω)))a21(3a43(2236ω3380ω)+18a5a33(1364ω3180ω)+48a25(484ω378ω)+32ω(ω22)+9a45(5268ω3340ω)+4a23(3a25(6972ω3700ω)+4(236ω390ω))+6a3a5(a25(10876ω3860ω)+8(196ω354ω))))π8ω2(5a61(ω21)2+a51(ω21)(5a3(11ω23)+3a5(9ω21))+5a63(19ω2)2+2a31a3(3a23(109ω450ω2+5)+3a5a3(663ω4230ω2+15)+8(5ω49ω2+2)+10a25(251ω462ω2+3))+3a43(a25(2911ω4430ω2+15)+4(81ω427ω2+2))+2a1a23a5(a23(2894ω4620ω2+30)+15a5a3(153ω426ω2+1)+8(287ω499ω2+6)+3a25(3399ω4470ω2+15))+a25(5a43(125ω2)2+12a25(625ω475ω2+2)+8(225ω2)2)+a23(3a45(5631ω4590ω2+15)+16a25(803ω4153ω2+6)+8(29ω2)2)+a23(3a45(5631ω4590ω2+15)+16a25(803ω4153ω2+6)+8(29ω2)2)+3a25(277ω490ω2+5)))+a21(3a43(559ω4190ω2+15)+8(ω22)2+9a45(1317ω4170ω2+5)+48a25(121ω439ω2+2)+18a33a5(341ω490ω2+5)+4a23(3a25(1743ω4350ω2+15)+4(59ω445ω2+6))+6a3a5(a25(2719ω4430ω2+15)+8(49ω427ω2+2))))=0,) (18)
    π8ω(5a51(ω21)(11ω23)+30a53(19ω2)2+2a1a23a5(2a3(2894ω4620ω2+30)+15a5(153ω426ω2+1))+a41(2a3(477ω4330ω2+45)+4a5(367ω4190ω2+15))+2a31a3(6a3(109ω450ω2+5)+3a5(663ω4230ω2+15))+2a31(8(5ω49ω2+2)+3a23(109ω450ω2+5)+3a5a3(663ω4230ω2+15)+10a25(251ω462ω2+3))+12a33(a25(2911ω4430ω2+15)+4(81ω427ω2+2))+4a1a3a5(8(287ω499ω2+6)+a23(2894ω4620ω2+30)+15a5a3(153ω426ω2+1)+3a25(3399ω4470ω2+15))+2a3(3a45(5631ω4590ω2+15)+16a25(803ω4153ω2+6)+8(29ω2)2)+a21(12a33(559ω4190ω2+15)+54a23a5(341ω490ω2+5)+8a3(4(59ω445ω2+6)+3a25(1743ω4350ω2+15))+6a5(a25(2719ω4430ω2+15)+8(49ω427ω2+2))))=0,) (19)
    π8ω(3a51(ω21)(9ω21)+6a43a5(2911ω4430ω2+15)+2a31a3(3a3(663ω4230ω2+15)+20a5(251ω462ω2+3))+a41(4a3(367ω4190ω2+15)+18a5(277ω490ω2+5))+2a1a23a5(15a3(153ω426ω2+1)+6a5(3399ω4470ω2+15))+2a1a23(8(287ω499ω2+6)+a23(2894ω4620ω2+30)+15a5a3(153ω426ω2+1)+3a25(3399ω4470ω2+15))+a25(20a35(125ω2)2+24a5(625ω475ω2+2))+a23(32a5(803ω4153ω2+6)+12a35(5631ω4590ω2+15))+2a5(12a25(625ω475ω2+2)+8(225ω2)2+5a45(125ω2)2)+a21(18a33(341ω490ω2+5)+96a5(121ω439ω2+2)+36a35(1317ω4170ω2+5)+12a3a25(2719ω4430ω2+15)+24a23a5(1743ω4350ω2+15)+6a3(a25(2719ω4430ω2+15)+8(49ω427ω2+2))))=0.) (20)

    Now, by solving Eqs (18)–(20) and applying the condition A=a1+a3+a5, the parameters a1,a3,a5 and the angular frequency ω can be obtained for the known amplitude A, using the Mathematica software program, version 9. To examine the accuracy of the MGEMM solutions, the obtained results are compared with the frequency-amplitude formulation (FAF) [12], the energy balance method (EBM) [19], the modified harmonic balance method (MHBM) [16] and the exact solutions, as presented in Table 1 and Figure 1. We conclude that the third order approximation provides an excellent accuracy with respect to the exact numerical solutions.

    Table 1.  Comparison of the approximate analytical frequencies with the exact solutions.
    A ωFAF ωEBM ωMHBM ω3rdGEMM ωexact
    [12] [19] [16] present Exact
    0.01 1.41419 1.41419 1.41419 1.41419 1.41419
    0.1 1.41158 1.41158 1.41158 1.41158 1.41158
    0.2 1.40388 1.40389 1.40390 1.40390 1.40390
    0.4 1.37581 1.37595 1.37616 1.37616 1.37616
    0.6 1.33694 1.33743 1.33827 1.33827 1.33827
    0.8 1.29448 1.29550 1.29744 1.29743 1.29743
    1 1.25375 1.25514 1.25845 1.25840 1.25842
    5 1.02500 1.02588 1.03148 1.02945 1.03139
    10 1.00656 1.00681 1.00895 1.00790 1.00893
    100 1.00007 1.0000 1.00010 1.00010 1.00010
    1000 1.00000 1.00000 1.00000 1.00000 1.00000

     | Show Table
    DownLoad: CSV
    Figure 1.  Comparison of the approximate solution (red line) with the numerical solution (blue line).

    Now, if we put k1=0, k2=1 and k3=1 in Eq (6), we obtain the following nonlinear oscillator, in which the restoring force has a rational expression [21,26].

    ¨u+u1+u2=0,u(0)=A,˙u(0)=0. (21)

    Using the previously mentioned procedure, the solution up to a third-order approximation is calculated. Depending on the analytical approximation, first, second or third, the approximate solution is assumed in the forms of (9), (12) and (16), respectively.

    Finally, as in Case 1, the third order approximate solutions are compared with the homotopy perturbation method (HPM) [21], the Hamiltonian approach (HA) [26] and the exact solutions, as displayed in Table 2.

    Table 2.  Comparison of the approximate analytical frequencies with the exact solutions.
    A ωHPM ωHA ω3rdGEMM ωexact
    [21] [26] present Exact
    0.01 0.999963 0.9999625 0.999963 0.99999
    0.1 0.996271 0.99627403 0.996273 0.9991208
    1 0.755929 0.765366864 0.761539 0.76157808
    10 0.114708 0.13420106 0.11948 0.123322
    100 0.0115462 0.01407125 0.0120357 0.0125265

     | Show Table
    DownLoad: CSV

    In the second application, we will consider the following nonlinear Duffing-harmonic oscillator [18]:

    ¨u+k1u+k3u31+k2u2=0,u(0)=A,˙u(0)=0, (22)

    where dots denote differentiation with respect to t. Now, we consider some following cases to compare the present solutions with published solutions using different approximate analytical methods.

    First, we consider k1=1, k2=1 and k3=1 in Eq (22). Then, we have the following nonlinear Duffing-harmonic equation [18,28]:

    ¨u+u+u31+u2=0,u(0)=A,˙u(0)=0. (23)

    The minimization problem is

    E(u)=T0(¨u+u+u31+u2)2dt,T=2πω. (24)

    For the first-order approximation, assume that the trial function is given by

    u1(t)=a1cos(ωt), (25)

    where A=a1. By inserting Eq (25) into Eq (24), we obtain

    E(u1)=A2πω+3A4πω+5A6π2ω2A2πω92A4πω52A6πω+A2πω3+32A4πω3+58A6πω3=0. (26)

    The frequency can be found through the condition E(u1)/ω=0, as follows:

    ω=ω1=8+18A2+10A4+264+288A2+487A4+360A6+100A83(8+12A2+5A4). (27)

    To improve the analytical approximation, we add additional terms to the trial function:

    u2(t)=a1cos(ωt)+a3cos(3ωt). (28)

    The constraint of this minimization is A=a1+a3. Substituting the above new trial function into Eq (24), we obtain

    E(u2)=π8ω(5a61(ω22)2+5a51a3(11ω428ω2+12)+3a41(4(ω43ω2+2)+a23(159ω4220ω2+60))+2a31a3(a23(327ω4300ω2+60)+8(5ω49ω2+2))+a23(5a43(29ω2)2+12a23(81ω427ω2+2)+8(19ω2)2)+a21(3a43(559ω4380ω2+60)+16a23(59ω445ω2+6)+8(ω21)2))=0.) (29)

    By using E(u2)/ω=0 and E(u2)/a3=0, it follows that

    π8ω(5a3a51(44ω356ω)+3a41(a23(636ω3440ω)+4(4ω36ω))+20a61ω(ω22)+2a31a3(a23(1308ω3600ω)+8(20ω318ω))+a23(12a23(324ω354ω)288ω(19ω3)180a43ω(29ω3))+a21(3a43(2236ω3760ω)+16a23(236ω390ω)+32ω(ω21)))π8ω2(5a61(ω22)2+5a3a51(11ω428ω2+12)+3a41(a23(159ω4220ω2+60)+4(ω43ω2+2))+2a31a3(a23(327ω4300ω2+60)+8(5ω49ω2+2))+a23(12a23(81ω427ω2+2)+8(19ω2)2+5a43(29ω2)2)+a21(3a43(559ω4380ω2+60)+16a23(59ω445ω2+6)+8(ω21)2))=0,) (30)
    π8ω(5a51(11ω428ω2+12)+6a3a41(159ω4220ω2+60)+4a23a31(327ω4300ω2+60)+2a31(a23(327ω4300ω2+60)+8(5ω49ω2+2))+a23(24a3(81ω427ω2+2)+20a33(29ω2)2)+a21(12a33(559ω4380ω2+60)+32a3(59ω445ω2+6))+2a3(5a43(29ω2)2+12a23(81ω427ω2+2)+8(19ω2)2))=0.) (31)

    The minimization problem's conditions can be easily achieved by replacing a1=Aa3, and the parameters a1, a3 and angular frequency ω can be obtained for a known amplitude A.

    To show the accuracy of the MGEM method in higher order approximations, we apply the third order approximation and consider the following trial function:

    u3(t)=a1cos(ωt)+a3cos(3ωt)+a5cos(5ωt). (32)

    Using Eq (32) as the trial function in Eq (24), where A=a1+a3+a5, leads to

    E(u3)=πω8(5a61(ω24)+a51(5a3(11ω228)+3a5(9ω220))+45a63(9ω24)+2a31a3(a23(327ω2300)+10a25(251ω2124)+3a3a5(663ω2460)+40ω2)+a41(a23(477ω2660)+9a25(277ω2180)+4a3a5(367ω2380)+12ω2)+3a43(a25(2911ω2860)+324ω2)+2a1a23a5(2a23(1447ω2620)+2296ω2+3a25(3399ω2940)+15a3a5(153ω252))+125a25(60a25ω2+40ω2+a45(25ω24))+a21(3a43(559ω2380)+944a23ω2+8ω2+6a3a5(3a23(341ω2180)+392ω2)+12a25(7a23(249ω2100)+484ω2)+9a45(1317ω2340)+6a3a35(2719ω2860))+a23(12848a25ω2+648ω2+3a45(5631ω21180)))=0.) (33)

    By setting E(u3)/ω=0, E(u3)/a3=0 and E(u3)/a5=0, we obtain

    18ωπ(20a61ω(ω22)180a63ω(29ω2)+a51(ω22)(110a3ω+54a5ω)+2ω3a51(5a3(11ω26)+3a5(9ω22))+3a43(a25(11644ω31720ω)+4(324ω354ω))+2a1a23a5(8(1148ω3198ω)+2a23(5788ω31240ω)+15a5a3(612ω3104ω)+3a25(13596ω31880ω))+a25(800ω(125ω2)+12a25(2500ω3150ω)500a45ω(225ω2))+a23(16a25(3212ω3306ω)288ω(19ω2)+3a45(22524ω32360ω))+2a31a3(a23(1308ω3600ω)+3a5a3(2652ω3920ω)+2(5a25(1004ω3248ω)+4(20ω318ω)))+a41(3a23(636ω3440ω)+4a5a3(1468ω3760ω)+3(a25(3324ω31080ω)+4(4ω36ω)))+a21(3a43(2236ω3760ω)+32ω(ω21)+18a33a5(1364ω3360ω)+48a25(484ω378ω)+9a45(5268ω3680ω)+4a23(4(236ω390ω)+18a33a5(1364ω3360ω)+48a25(484ω378ω)+9a45(5268ω3680ω)+4a23(4(236ω390ω)1π8ω2)5a61(ω22)2+a51(ω22)(5a3(11ω26)+3a5(9ω22))+5a63(29ω2)2+3a43(a25(2911ω4860ω2+60)+4(81ω427ω2+2))+2a1a23a5(8(287ω499ω2+6)+2a23(1447ω4620ω2+60)+15a5a3(153ω452ω2+4)+3a25(3399ω4940ω2+60))+a25(5a45(225ω2)2+12a25(625ω475ω2+2)+8(125ω2)2)+a23(8(19ω2)2+3a45(5631ω41180ω2+60)+16a25(803ω4153ω2+6))+2a31a3(a23(327ω4300ω2+60)+3a3a5(663ω4460ω2+60)+2(5a25(251ω4124ω2+12)+4(5ω49ω2+2)))+a41(3a23(159ω4220ω2+60)+4a5a3(367ω4380ω2+60)+3(4(ω43ω2+2)a25+(831ω4540ω2+60)))+a21(3a43(559ω4380ω2+60)+8(ω21)2+9a45(1317ω4340ω2+20)+48a25(121ω439ω2+2)+18a33a5(341ω4180ω2+20)+4a23(3a25(1743ω4700ω2+60)+4(59ω445ω2+6))+6a3a5(8(49ω427ω2+2)+a25+(2719ω4860ω2+60))))=0,) (34)
    π8ω(3a51(ω22)(9ω22)+6a43a5(2911ω4860ω2+60)+2a31a3(3a3(663ω4460ω2+60)+20a5(251ω4124ω2+12))+a41(4a3(367ω4380ω2+60)+6a5(831ω4540ω2+60))+2a1a23a5(15a3(153ω452ω2+4)+6a5(3399ω4940ω2+60))+2a1a23(8(287ω499ω2+6)+2a23(1447ω4620ω2+60)+15a5a3(153ω452ω2+4)+3a25(3399ω4940ω2+60))+a25(20a35(225ω2)2+24a5(625ω475ω2+2))+a23(32a5(803ω4153ω2+6)+12a35(5631ω41180ω2+60))+2a5(12a25(625ω475ω2+2)+8(125ω2)2+5a45(225ω2)2)+a21(18a33(341ω4180ω2+20)+96a5(121ω439ω2+2)+24a5a23(1743ω4700ω2+60)+12a25a3(2719ω4860ω2+60)+36a35(1317ω4340ω2+20)+6a3(a25(2719ω4860ω2+60)+8(49ω427ω2+2))))=0,) (35)
    18ωπ(5a51(ω22)(11ω26)+30a53(29ω2)2+2a1a23a5(4a3(1447ω4620ω2+60)+15a5(153ω452ω2+4))+a41(6a3(159ω4220ω2+60)+4a5(367ω4380ω2+60))+2a31a3(2a3(327ω4300ω2+60)+3a5(663ω4460ω2+60))+12a33(4(81ω427ω2+2)+a25(2911ω4860ω2+60))+4a1a3a5(2a23(1447ω4620ω2+60)+8(287ω499ω2+6)+3a25(3399ω4940ω2+60)+15a3a5(153ω452ω2+4))+2a3(8(19ω2)2+3a45(5631ω41180ω2+60)+16a25(803ω4153ω2+6))+2a31(a23(327ω43300ω2+60)+3a3a5(663ω4460ω2+60)+2(5a25(251ω4124ω2+12)+4(5ω49ω2+2)))+a21(12a33(559ω4380ω2+60)+54a23a5(341ω4180ω2+20)+8a3(4(59ω445ω2+6)+3a25(1743ω4700ω2+60))+6a5(a25(2719ω4860ω2+60)+8(49ω427ω2+2))))=0.) (36)

    Putting a1=Aa3a5 in the minimization problem changes the constraint minimization problem to an unconstrained minimization problem, which is easier to find the solution of Eq (33) by using the conditions E(u3)/ω=0, E(u3)/a3=0 and E(u3)/a5=0.

    We plot the analytical solutions obtained from MGEMM (red line) Eq (32) and compare them with numerical solutions of Eq (23) obtained using the fourth order Runge-Kutta method (blue line). It is observed that for all different values of the amplitude A, the approximate solutions match extremely well with the numerical solutions (see Figure 2).

    Figure 2.  Comparison of the approximate solution (red line) with the numerical solution (blue line).

    Second, we consider k1=0, k2=1 and k3=1 in Eq (6). Hence, we have the one-dimensional nonlinear oscillator governed by [21,22,23,24,25,26]

    ¨u+u31+u2=0,u(0)=A,˙u(0)=0. (37)

    Finally, we can obtain the first and second-order approximations to Eq (37) given by Eqs (25) and (28), respectively. We remark that the third-order approximation in Eq (32) can be given by MGEMM in a similar manner. Generally, after three steps of MGEMM, one can obtain the approximated solutions to Eq (37) with sufficient accuracy. The analytical results of Eq (37) are compared with the iterative homotopy harmonic balance method (IHHBM) [34], the energy balance method (EBM) [20], the max-min approach (MMA) [32], the global residue harmonic balance method (GRHBM) [29], the Hamiltonian approach (HA) [26] and the exact solutions, as shown in Table 3.

    Table 3.  Comparison of the approximate analytical frequencies with the exact solutions.
    A ωEBM ωIHHBM ωMMA ωGRHBM ωHA ω3rdGEMM ωexact
    [20] [34] [32] [29] [26] present Exact
    0.01 0.00866 0.008478 0.00866 0.008472 0.00865 0.00847 0.00847
    0.1 0.08627 0.084418 0.08627 0.084394 0.08624 0.08439 0.08439
    1 0.65164 0.63136 0.65465 0.636795 0.64359 0.636783 0.63678
    5 0.97343 0.96667 0.97435 0.968107 0.96731 0.969202 0.96698
    10 0.99314 0.99090 0.99340 0.991591 0.99095 0.992005 0.99092
    50 0.99973 0.99961 0.99973 0.999657 0.999608 0.999676 0.99961
    100 0.99999 0.999901 0.99993 0.999914 0.99990 0.999919 0.99990

     | Show Table
    DownLoad: CSV

    In this paper, we test the analytical solutions of strongly nonlinear Duffing-harmonic oscillators to show the effectiveness of MGEMM. Comparisons of the analytical solutions and the exact numerical solutions of the Duffing-harmonic oscillators for small and large values of the amplitude have been illustrated in Figures 1 and 2 and Tables 13. In these Figures, the analytical solution is indicated by a red line, while the numerical solution is represented by a blue line. There is good compatibility between the analytical and numerical solutions, which confirms the accuracy of our results, and excellent matching is observed in these calculations. Moreover, as shown in Tables 13, the results produced using the MGEMM are in better agreement with those obtained using exact solutions than other existing ones in the literature. The calculations of the above applications were done using Mathematica software.

    In this paper, the modified global error minimization method has been presented successfully to obtain higher order approximate periodic solutions of strongly nonlinear Duffing-harmonic oscillators. The present method, which is proved to be a powerful mathematical tool to study nonlinear oscillators, can be easily extended to any nonlinear equation because of its efficiency and convenient applicability. We demonstrated the accuracy and efficiency of the proposed method by solving some examples. We showed that the obtained solutions are valid for the whole domain. Comparisons of the obtained solutions, whether numerical or analytical, revealed a clear match, highlighting the precision of the modified GEMM.

    M. Zayed and G. M. Ismail extend their appreciation to the Deanship of Scientific Research at King Khalid University, Saudi Arabia, for funding this work through the research groups program under grant R.G.P.2/207/43.

    The authors declare that they have no conflict of interest.



    [1] Khamisani AA (2019) Design methodology of off-grid PV solar powered system (A case study of solar powered bus shelter). Goolincoln Avenue Charleston, IL: Eastern Illinois University. Available from: https://castle.eiu.edu/energy/Design%20Methodology%20of%20Off-Grid%20PV%20Solar%20Powered%20System_5_1_2018.pdf.
    [2] Barhoumi EM, Farhani S, Okonkwo PC, et al. (2021) Techno-economic sizing of renewable energy power system case study Dhofar Region-Oman. Int J Green Energy 18: 856-865. https://doi.org/10.1080/15435075.2021.1881899 doi: 10.1080/15435075.2021.1881899
    [3] Jha SK (2013) Application of solar photovoltaic system in Oman—Overview of technology, opportunities and challenges. Int J Renewable Energy Research (IJRER) 3: 331-340. Available from: https://dergipark.org.tr/en/pub/ijrer/issue/16079/168241.
    [4] Wazwaz A, AlHabshi H, Gharbia Y (2013) Investigations of the measured solar radiation, relative humidity and atmospheric temperature and their relations at Dhofar University. Available from: http://www.i-asem.org/publication_conf/anbre13/M4D.6.ER654_526F.pdf.
    [5] Kazem H, Chaichan M (2016) Design and analysis of standalone solar cells in the desert of Oman. J Sci Eng Research 3: 62-72.
    [6] Abdul-Wahab S, Charabi Y, Al-Mahruqi AM, et al. (2019) Selection of the best solar photovoltaic (PV) for Oman. Sol Energy 188: 1156-1168. https://doi.org/10.1016/j.solener.2019.07.018 doi: 10.1016/j.solener.2019.07.018
    [7] Kazem HA, Khatib T, Alwaeli AA (2013) Optimization of photovoltaic modules tilt angle for Oman, 703-707. http:/doi.org/10.1109/PEOCO.2013.6564637
    [8] Delyannis E, Belessiotis V (2013) Solar water desalination. Ref Module Earth Syst Environ Sci, https://doi.org/10.1016/B978-0-12-409548-9.01492-5
    [9] Tripanagnostopoulos Y (2012) Photovoltaic/thermal solar collectors. Comprehensive Renewable Energy 3: 255-300. https://doi.org/10.1016/B978-0-12-819727-1.00051-0 doi: 10.1016/B978-0-12-819727-1.00051-0
    [10] Amelia A, Irwan Y, Leow W, et al. (2016) Investigation of the effect temperature on photovoltaic (PV) panel output performance. Int J Adv Sci Eng Inf Technol 6: 682-688.
    [11] Hirst L (2012) Principles of solar energy conversion. Compr Renewable Energy https://doi.org/10.1016/B978-0-08-087872-0.00115-3
    [12] Hachchadi O, Bououd M, Mechaqrane A (2021) Performance analysis of photovoltaic-thermal air collectors combined with a water to air heat exchanger for renewed air conditioning in building. Environ Sci Pollution Res 28: 18953-18962. https://doi.org/10.1007/s11356-020-08052-4 doi: 10.1007/s11356-020-08052-4
    [13] Lappalainen K, Kleissl J (2020) Analysis of the cloud enhancement phenomenon and its effects on photovoltaic generators based on cloud speed sensor measurements. J Renewable Sustainable Energy 12: 043502. https://doi.org/10.1063/5.0007550 doi: 10.1063/5.0007550
    [14] Aktaş A, Kirçiçek Y (2021) Examples of solar hybrid system layouts, design guidelines, energy performance, economic concern, and life cycle analyses. Sol Hybrid Syst: Design Appl, 331-349.
    [15] Aktas A, Kirçiçek Y (2021) Solar hybrid systems: Design and application.
    [16] Bini M, Capsoni D, Ferrari S, et al. (2015) Rechargeable lithium batteries: key scientific and technological challenges, 1-17. https://doi.org/10.1016/B978-1-78242-090-3.00001-8
    [17] Phadke AA, Jacobson A, Park WY, et al. (2017) Powering a home with just 25 watts of solar PV: super-efficient appliances can enable expanded off-grid energy service using small solar power systems. Available from: https://escholarship.org/uc/item/3vv7m0x7.
    [18] Huld T (2011) Estimating solar radiation and photovoltaic system performance, the PVGIS approach, 1-84.
    [19] Ibrahim K, Gyuk P, Aliyu S (2019) The effect of solar irradiation on solar cells. Sci World J 14: 20-22. Available from: https://www.ajol.info/index.php/swj/article/view/208351.
    [20] Narayan S (2015) Effects of various parameters on piston secondary motion. SAE Technical Paper. Available from: https://www.academia.edu/download/57982967/2015-01-0079.pdf.
    [21] Almosni S, Delamarre A, Jehl Z, et al. (2018) Material challenges for solar cells in the twenty-first century: Directions in emerging technologies. Sci Technol Adv Mater 19: 336-369.
    [22] Luceño-Sánchez JA, Díez-Pascual AM, Peña Capilla R (2019) Materials for photovoltaics: State of art and recent developments. Int J Molecular Sci 20: 976. https://doi.org/10.3390/ijms20040976 doi: 10.3390/ijms20040976
    [23] Zhou D, Zhou T, Tian Y, et al. (2017) Perovskite-based solar cells: Materials, methods, and future perspectives. J Nanomater 2018: 1-15. https://doi.org/10.1155/2018/8148072 doi: 10.1155/2018/8148072
    [24] Meroni SM, Worsley C, Raptis D, et al. (2021) Triple-Mesoscopic carbon perovskite solar cells: Materials, Processing and Applications. Energies 14: 386. https://doi.org/10.3390/en14020386 doi: 10.3390/en14020386
    [25] Duan L, Hu L, Guan X, et al. (2021) Quantum dots for photovoltaics: A tale of two materials. Adv Energy Mater 11: 2100354. https://doi.org/10.1002/aenm.202100354 doi: 10.1002/aenm.202100354
    [26] Li Z, Boyle F, Reynolds A (2011) Domestic application of solar PV systems in Ireland: The reality of their economic viability. Energy 36: 5865-5876. https://doi.org/10.1016/j.energy.2011.08.036 doi: 10.1016/j.energy.2011.08.036
    [27] Jones GJ (1980) Photovoltaic systems and applications perspective. Available from: https://www.osti.gov/servlets/purl/5496939.
    [28] Clarke R, Giddey S, Ciacchi F, et al. (2009) Direct coupling of an electrolyser to a solar PV system for generating hydrogen. Int J Hydrogen Energy 34: 2531-2542. https://doi.org/10.1016/j.ijhydene.2009.01.053 doi: 10.1016/j.ijhydene.2009.01.053
    [29] El Chaar L (2011) Photovoltaic system conversion. Alternative Energy Power Electron, 155-175. https://doi.org/10.1016/B978-0-12-416714-8.00003-2
    [30] Yi Z, Dong W, Etemadi AH (2017) A unified control and power management scheme for PV-battery-based hybrid microgrids for both grid-connected and islanded modes. IEEE Trans Smart Grid 9: 5975-5985. https/doi.org/10.1109/TSG.2017.2700332 doi: 10.1109/TSG.2017.2700332
    [31] Tudu B, Mandal K, Chakraborty N (2019) Optimal design and development of PV-wind-battery based nano-grid system: A field-on-laboratory demonstration. Front Energy 13: 269-283. https://doi.org/10.1007/s11708-018-0573-z doi: 10.1007/s11708-018-0573-z
    [32] Poompavai T, Kowsalya M (2019) Control and energy management strategies applied for solar photovoltaic and wind energy fed water pumping system: A review. Renewable Sustainable Energy Rev 107: 108-122. https://doi.org/10.1016/j.rser.2019.02.023 doi: 10.1016/j.rser.2019.02.023
    [33] Lage-Rivera S, Ares-Pernas A, Abad M-J (2022) Last developments in polymers for wearable energy storage devices. Int J Energy Res. https://doi.org/10.1002/er.7934
    [34] Kumar RR, Gupta AK, Ranjan R, et al. (2017) Off-grid and On-grid connected power generation: A review. Int J Comput Applications, 164.
    [35] Chang W (2013) The state of charge estimating methods for battery: A review. ISRN Appl Math. http://dx.doi.org/10.1155/2013/953792
    [36] Zhou W, Zheng Y, Pan Z, et al. (2021) Review on the battery model and SOC estimation method. Processes 9: 1685. https://doi.org/10.3390/pr9091685 doi: 10.3390/pr9091685
    [37] Adefarati T, Bansal RC (2019) Energizing renewable energy systems and distribution generation. Pathways Smarter Power Syst, 29-65. https://doi.org/10.1016/B978-0-08-102592-5.00002-8
    [38] Aghaei M, Kumar NM, Eskandari A, et al. (2020) Solar PV systems design and monitoring. Photovoltaic. Sol Energy Convers, 117-145. https://doi.org/10.1016/B978-0-12-819610-6.00005-3
    [39] Rehman S, Ahmed M, Mohamed MH, et al. (2017) Feasibility study of the grid connected 10 MW installed capacity PV power plants in Saudi Arabia. Renewable Sustainable Energy Rev 80: 319-329. https://doi.org/10.1016/j.rser.2017.05.218 doi: 10.1016/j.rser.2017.05.218
    [40] Al-Badi A, Malik A, Gastli A (2009) Assessment of renewable energy resources potential in Oman and identification of barrier to their significant utilization. Renewable Sustainable Energy Rev 13: 2734-2739. https://doi.org/10.1016/j.rser.2009.06.010 doi: 10.1016/j.rser.2009.06.010
    [41] Azam MH, Abushammala M (2017) Assessing the effectiveness of solar and wind energy in sultanate of Oman. J Stud Res. https://doi.org/10.47611/jsr.vi.539
    [42] Tabook M, Khan SA (2021) The future of the renewable energy in Oman: Case study of Salalah City. Int J Energy Econ Policy 11: 517. https://doi.org/10.32479/ijeep.11855 doi: 10.32479/ijeep.11855
    [43] Al-Badi A, Albadi M, Al-Lawati A, et al. (2011) Economic perspective of PV electricity in Oman. Energy 36: 226-232. https://doi.org/10.1016/j.energy.2010.10.047 doi: 10.1016/j.energy.2010.10.047
    [44] Chung MH (2020) Estimating solar insolation and power generation of photovoltaic systems using previous day weather data. Adv Civil Eng. https://doi.org/10.1155/2020/8701368
    [45] Jerez S, Tobin I, Vautard R, et al. (2015). The impact of climate change on photovoltaic power generation in Europe. Nat Commun 6: 10014. https://doi.org/10.1038/ncomms10014 doi: 10.1038/ncomms10014
    [46] Bendib B, Krim F, Belmili H, et al. (2014) Advanced Fuzzy MPPT controller for a stand-alone PV system. Energy Procedia 50: 383-392. https://doi.org/10.1016/j.egypro.2014.06.046 doi: 10.1016/j.egypro.2014.06.046
    [47] Kumar A, Bhat AH (2022) Role of dual active bridge isolated bidirectional DC-DC converter in a DC microgrid. Microgrids, 141-155. https://doi.org/10.1016/B978-0-323-85463-4.00006-X
    [48] Salas V (2017) Stand-alone photovoltaic systems. Perform Photovoltaic (PV) Syst, 251-296. https://doi.org/10.1016/B978-1-78242-336-2.00009-4
    [49] Liao C, Tan Y, Li Y, et al. (2022) Optimal operation for hybrid AC and DC systems considering branch switching and VSC control. IEEE Syst J. https://doi.org/10.1109/JSYST.2022.3151342
    [50] Bughneda A, Salem M, Richelli A, et al. (2021) Review of multilevel inverters for PV energy system applications. Energies 14: 1585. https://doi.org/10.3390/en14061585 doi: 10.3390/en14061585
    [51] Kolantla D, Mikkili S, Pendem SR, et al. (2020) Critical review on various inverter topologies for PV system architectures. IET Renewable Power Gener. https://doi.org/10.1049/iet-rpg.2020.0317
    [52] Roos CJ (2009) Solar electric system design, operation and installation: An overview for builders in the US Pacific Northwest. Available from: https://rex.libraries.wsu.edu.
    [53] Al-Ktranee M, Bencs P (2020) Overview of the hybrid solar system. Rev Faculty Eng Analecta Technica Szegedinensia, 100-108. Available from: http://real.mtak.hu/111309/1/20200709_MA_BP_Hybrid_solar_system.pdf.
    [54] Badwawi RA, Abusara M, Mallick T (2015) A review of hybrid solar PV and wind energy system. Smart Sci 3: 127-138. https://doi.org/10.1080/23080477.2015.11665647 doi: 10.1080/23080477.2015.11665647
    [55] Li K, Liu C, Jiang S, et al. (2020) Review on hybrid geothermal and solar power systems. J Cleaner Prod 250: 119481. https://doi.org/10.1016/j.jclepro.2019.119481 doi: 10.1016/j.jclepro.2019.119481
    [56] Konstantinou G, Hredzak B (2021) Power electronics for hybrid energy systems. Hybrid Renewable Energy Syst Microgrids, 215-234. https://doi.org/10.1016/B978-0-12-821724-5.00008-8
    [57] Beitelmal WH, Okonkwo PC, Al Housni F, et al. (2020) Accessibility and sustainability of hybrid energy systems for a cement factory in Oman. Sustainability 13: 93. https://doi.org/10.3390/su13010093 doi: 10.3390/su13010093
    [58] Kazem HA, Al-Badi HA, Al Busaidi AS, et al. (2017) Optimum design and evaluation of hybrid solar/wind/diesel power system for Masirah Island. Environ Develop Sustainability 19: 1761-1778. https://doi.org/10.1007/s10668-016-9828-1 doi: 10.1007/s10668-016-9828-1
    [59] Sarkar J, Bhattacharyya S (2012) Application of graphene and graphene-based materials in clean energy-related devices Minghui. Arch Thermodyn 33: 23-40. https://doi.org/10.1002/er.1598 doi: 10.1002/er.1598
    [60] Mbunwe MJ, Ogbuefi U, Nwankwo C (2017) Solar hybrid for power generation in a rural area: its technology and application. Proc World Congress Eng Comput Sci. Available from: https://www.researchgate.net/publication/321171586.
    [61] Al-Badi A, Al-Toobi M, Al-Harthy S, et al. (2012) Hybrid systems for decentralized power generation in Oman. Int J Sustainable Energy 31: 411-421. https://doi.org/10.1080/14786451.2011.590898 doi: 10.1080/14786451.2011.590898
    [62] Mustafa RJ, Gomaa MR, Al-Dhaifallah M, et al. (2020) Environmental impacts on the performance of solar photovoltaic systems. Sustainability 12: 608. https://doi.org/10.3390/su12020608 doi: 10.3390/su12020608
    [63] Chikate BV, Sadawarte Y, Sewagram B (2015) The factors affecting the performance of solar cell. Int J Comput Appl 1: 0975-8887. Available from: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.742.1259&rep=rep1&type=pdf.
    [64] Vidyanandan K (2017) An overview of factors affecting the performance of solar PV systems. Energy Scan 27: 216. Available from: https://www.researchgate.net/publication/319165448.
    [65] Yousif JH, Kazem HA (2016) Modeling of daily solar energy system prediction using soft computing methods for Oman. Res J Appl Sci Eng Technol 13: 237-244. https://doi.org/10.19026/rjaset.13.2936 doi: 10.19026/rjaset.13.2936
    [66] Bin Omar AM, Binti Zainuddin H (2014) Modeling and simulation of grid inverter in grid-connected photovoltaic system. Int J Renewable Energy Res (IJRER) 4: 949-957. Available from: https://dergipark.org.tr/en/pub/ijrer/issue/16073/168033.
    [67] Chakraborty S, Kumar R, Haldkar AK, et al. (2017) Mathematical method to find best suited PV technology for different climatic zones of India. Int J Energy Environ Eng 8: 153-166. https://doi.org/10.1007/s40095-016-0227-z doi: 10.1007/s40095-016-0227-z
    [68] Shukla AK, Sudhakar K, Baredar P (2016) Design, simulation and economic analysis of standalone roof top solar PV system in India. Sol Energy 136: 437-449. https://doi.org/10.1016/j.solener.2016.07.009 doi: 10.1016/j.solener.2016.07.009
    [69] Kumar R, Rajoria C, Sharma A, et al. (2021) Design and simulation of standalone solar PV system using PVsyst Software: A case study. Mater Today: Proc 46: 5322-5328. https://doi.org/10.1016/j.matpr.2020.08.785 doi: 10.1016/j.matpr.2020.08.785
    [70] Arulkumar K, Palanisamy K, Vijayakumar D (2016) Recent advances and control techniques in grid connected PV system—A review. Int J Renewable Energy Res 6: 1037-1049.
    [71] Gorjian S, Sharon H, Ebadi H, et al. (2021) Recent technical advancements, economics and environmental impacts of floating photovoltaic solar energy conversion systems. J Cleaner Prod 278: 124285. https://doi.org/10.1016/j.jclepro.2020.124285 doi: 10.1016/j.jclepro.2020.124285
    [72] Jing W, Lai CH, Wong WS, et al. (2018) A comprehensive study of battery-supercapacitor hybrid energy storage system for standalone PV power system in rural electrification. Appl Energy 224: 340-356. https://doi.org/10.1016/j.apenergy.2018.04.106 doi: 10.1016/j.apenergy.2018.04.106
    [73] Das P, Das BK, Mustafi NN, et al. (2021) A review on pump‐hydro storage for renewable and hybrid energy systems applications. Energy Storage 3: e223.https://doi.org/10.1002/est2.223 doi: 10.1002/est2.223
    [74] Liu L, Meng X, Liu C (2016) A review of maximum power point tracking methods of PV power system at uniform and partial shading. Renewable Sustainable Energy Rev 53: 1500-1507. https://doi.org/10.1016/j.rser.2015.09.065 doi: 10.1016/j.rser.2015.09.065
    [75] Murillo-Yarce D, Alarcón-Alarcón J, Rivera M, et al. (2020) A review of control techniques in photovoltaic systems. Sustainability 12: 10598. https://doi.org/10.3390/su122410598 doi: 10.3390/su122410598
    [76] Worighi I, Maach A, Hafid A, et al. (2019) Integrating renewable energy in smart grid system: Architecture, virtualization and analysis. Sustainable Energy Grids Networks 18: 100226. https://doi.org/10.1016/j.segan.2019.100226 doi: 10.1016/j.segan.2019.100226
    [77] Metri JI, Vahedi H, Kanaan HY, et al. (2016) Real-time implementation of model-predictive control on seven-level packed U-cell inverter. IEEE Trans Indust Electron 63: 4180-4186. https://doi.org/10.1109/TIE.2016.2542133 doi: 10.1109/TIE.2016.2542133
    [78] Hasanien HM (2018) Performance improvement of photovoltaic power systems using an optimal control strategy based on whale optimization algorithm. Electric Power Syst Res 157: 168-176. https://doi.org/10.1016/j.epsr.2017.12.019 doi: 10.1016/j.epsr.2017.12.019
    [79] Zhang W, Zhou G, Ni H, et al. (2019) A modified hybrid maximum power point tracking method for photovoltaic arrays under partially shading condition. IEEE Access 7: 160091-160100. https://doi.org/10.1109/ACCESS.2019.2950375 doi: 10.1109/ACCESS.2019.2950375
    [80] Agrawal S, Vaishnav SK, Somani R (2020) Active power filter for harmonic mitigation of power quality issues in grid integrated photovoltaic generation system. IEEE, 317-321. https://doi.org/10.1109/SPIN48934.2020.9070979
    [81] Smadi AA, Lei H, Johnson BK (2019.) Distribution system harmonic mitigation using a pv system with hybrid active filter features. IEEE, 1-6. https://doi.org/10.1109/NAPS46351.2019.9000238
    [82] Nanou SI, Papakonstantinou AG, Papathanassiou SA (2015) A generic model of two-stage grid-connected PV systems with primary frequency response and inertia emulation. Electric Power Syst Res 127: 186-196. https://doi.org/10.1016/j.epsr.2015.06.011 doi: 10.1016/j.epsr.2015.06.011
    [83] Khan MA, Haque A, Kurukuru VB, et al. (2020) Advanced control strategy with voltage sag classification for single-phase grid-connected photovoltaic system. IEEE J Emerging Selected Topics Indust Electron. https://doi.org/10.1109/JESTIE.2020.3041704
    [84] Shan Y, Hu J, Guerrero JM (2019) A model predictive power control method for PV and energy storage systems with voltage support capability. IEEE Trans on Smart Grid 11: 1018-1029. https://doi.org/10.1109/TSG.2019.2929751 doi: 10.1109/TSG.2019.2929751
    [85] Kerdphol T, Rahman FS, Mitani Y (2018) Virtual inertia control application to enhance frequency stability of interconnected power systems with high renewable energy penetration. Energies 11: 981. https://doi.org/10.3390/en11040981 doi: 10.3390/en11040981
    [86] Chakraborty A (2011) Advancements in power electronics and drives in interface with growing renewable energy resources. Renewable Sustainable Energy Rev 15: 1816-1827. https://doi.org/10.1016/j.rser.2010.12.005 doi: 10.1016/j.rser.2010.12.005
    [87] Rajan R, Fernandez FM, Yang Y (2021) Primary frequency control techniques for large-scale PV-integrated power systems: A review. Renewable Sustainable Energy Rev 144: 110998. https://doi.org/10.1016/j.rser.2021.110998 doi: 10.1016/j.rser.2021.110998
    [88] Jabir HJ, Teh J, Ishak D, et al. (2018) Impacts of demand-side management on electrical power systems: A review. Energies 11: 1050. https://doi.org/10.3390/en11051050 doi: 10.3390/en11051050
    [89] Li Z, Cheng Z, Si J, et al. (2022) Distributed Event-triggered Hierarchical Control of PV inverters to provide multi-time scale frequency response for AC microgrid. IEEE Trans Power Syst. https://doi.org/10.1109/TPWRS.2022.3177593
    [90] Lee H, Song HJ (2021) Current status and perspective of colored photovoltaic modules. Wiley Interdisciplinary Rev: Energy Environ 10: e403. https://doi.org/10.1002/wene.403 doi: 10.1002/wene.403
    [91] Shivashankar S, Mekhilef S, Mokhlis H, et al. (2016) Mitigating methods of power fluctuation of photovoltaic (PV) sources—A review. Renewable Sustainable Energy Rev 59: 1170-1184. https://doi.org/10.1016/j.rser.2016.01.059 doi: 10.1016/j.rser.2016.01.059
    [92] Rodriguez RnL (2021) Energy management optimization of a wind-storage based hybrid power plant connected to an island power grid. Available from: https://tel.archives-ouvertes.fr/tel-03338743.
    [93] Elkadeem M, Wang S, Sharshir SW, et al. (2019) Feasibility analysis and techno-economic design of grid-isolated hybrid renewable energy system for electrification of agriculture and irrigation area: A case study in Dongola, Sudan. Energy Convers Manage 196: 1453-1478. https://doi.org/10.1016/j.enconman.2019.06.085 doi: 10.1016/j.enconman.2019.06.085
    [94] Li Z, Cheng Z, Si J, et al. (2021) Adaptive power point tracking control of PV system for primary frequency regulation of AC microgrid with high PV integration. IEEE Trans Power Syst 36: 3129-3141. https://doi.org/10.1109/TPWRS.2021.3049616 doi: 10.1109/TPWRS.2021.3049616
    [95] Lee CG, Shin WG, Lim JR, et al. (2021) Analysis of electrical and thermal characteristics of PV array under mismatching conditions caused by partial shading and short circuit failure of bypass diodes. Energy 218: 119480. https://doi.org/10.1016/j.energy.2020.119480 doi: 10.1016/j.energy.2020.119480
    [96] Lappalainen K, Valkealahti S (2021) Experimental study of the maximum power point characteristics of partially shaded photovoltaic strings. Appl Energy 301: 117436. https://doi.org/10.1016/j.apenergy.2021.117436 doi: 10.1016/j.apenergy.2021.117436
    [97] Yang B, Zhu T, Wang J, et al. (2020) Comprehensive overview of maximum power point tracking algorithms of PV systems under partial shading condition. J Cleaner Prod 268: 121983.
    [98] Lappalainen K, Valkealahti S (2017) Photovoltaic mismatch losses caused by moving clouds. Sol Energy 158: 455-461. https://doi.org/10.1016/j.solener.2017.10.001 doi: 10.1016/j.solener.2017.10.001
    [99] Lappalainen K, Valkealahti S (2017) Effects of PV array layout, electrical configuration and geographic orientation on mismatch losses caused by moving clouds. Sol Energy 144: 548-555. https://doi.org/10.1016/j.solener.2017.01.066 doi: 10.1016/j.solener.2017.01.066
    [100] Refaat A, Elgamal M, Korovkin NV (2019) A novel photovoltaic current collector optimizer to extract maximum power during partial shading or mismatch conditions. IEEE, 407-412. https://doi.org/10.1109/EIConRus.2019.8657173
    [101] Bana S, Saini R (2017) Experimental investigation on power output of different photovoltaic array configurations under uniform and partial shading scenarios. Energy 127: 438-453. https://doi.org/10.1016/j.energy.2017.03.139 doi: 10.1016/j.energy.2017.03.139
    [102] Martins G, Mantelli S, Rüther R (2022) Evaluating the performance of radiometers for solar overirradiance events. Sol Energy 231: 47-56. https://doi.org/10.1016/j.solener.2021.11.050 doi: 10.1016/j.solener.2021.11.050
    [103] Neale RE, Barnes PW, Robson TM, et al. (2021) Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP environmental effects assessment panel, update 2020. Photochem Photobiol Sci 20: 1-67. https://doi.org/10.1007/s43630-020-00001-x doi: 10.1007/s43630-020-00001-x
    [104] Petrone G, Spagnuolo G, Teodorescu R, et al. (2008) Reliability issues in photovoltaic power processing systems. IEEE Trans Indust Electron 55: 2569-2580. https://doi.org/10.1109/TIE.2008.924016 doi: 10.1109/TIE.2008.924016
    [105] Gastli A, Charabi Y (2010) Solar electricity prospects in Oman using GIS-based solar radiation maps. Renewable Sustainable Energy Rev 14: 790-797. https://doi.org/10.1016/j.rser.2009.08.018 doi: 10.1016/j.rser.2009.08.018
  • This article has been cited by:

    1. Nadia M. Farea, Gamal M. Ismail, Analytical solution for strongly nonlinear vibration of a stringer shell, 2024, 1461-3484, 10.1177/14613484241278421
    2. Gamal M. Ismail, Alwaleed Kamel, Abdulaziz Alsarrani, Approximate analytical solutions to nonlinear oscillations via semi-analytical method, 2024, 98, 11100168, 97, 10.1016/j.aej.2024.04.040
    3. Livija Cveticanin, Miodrag Zukovic, Dragan Cveticanin, Approximate Analytic Frequency of Strong Nonlinear Oscillator, 2024, 12, 2227-7390, 3040, 10.3390/math12193040
    4. Nazmul Sharif, Helal Uddin Molla, M.S. Alam, Analytical solution of couple-mass-spring systems by novel homotopy perturbation method, 2024, 167, 00207462, 104923, 10.1016/j.ijnonlinmec.2024.104923
    5. Gamal M. Ismail, Nadia M. Farea, Mahmoud Bayat, Ji Wang, Investigation of the highly complex nonlinear problems via modified energy balance method, 2024, 23071877, 10.1016/j.jer.2024.07.006
    6. Gamal M. Ismail, Alwaleed Kamel, Abdulaziz Alsarrani, Studying nonlinear vibration analysis of nanoelectro-mechanical resonators via analytical computational method, 2024, 22, 2391-5471, 10.1515/phys-2024-0011
    7. Zhenbo Li, Jin Cai, Linxia Hou, A modified generalized harmonic function perturbation method and its application in analyzing generalized Duffing–Harmonic–Rayleigh–Liénard oscillator, 2024, 166, 00207462, 104832, 10.1016/j.ijnonlinmec.2024.104832
    8. M. K. Abohamer, T. S. Amer, A. A. Galal, Mona A. Darweesh, A. Arab, Taher A. Bahnasy, On chaotic behavior, stability analysis, and vibration control of the van der Pol–Mathieu–Duffing oscillator under parametric force and resonance, 2025, 1461-3484, 10.1177/14613484251341933
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5145) PDF downloads(389) Cited by(23)

Figures and Tables

Figures(8)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog