Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Case Report Special Issues

Effects of the Guando Slump on the tectonic interpretation of the Boquerón Thrust in the Guando oilfield [Tolima, Colombia]

  • Received: 30 October 2024 Revised: 13 March 2025 Accepted: 09 April 2025 Published: 06 May 2025
  • A detailed geological study of the Guando oilfield has identified a modern landslide phenomenon that significantly alters the previous structural model and affects production challenges. The multi-compositional nature of the oil-bearing Cretaceous sequences of the Villeta Group, the rugged relief, the climatic incidence, and seismic activity in the Upper Magdalena Valley trigger the Guando Slump, which adjusts the topography to levels of greater stability. The previous tectonic model of the Guando oilfield was based on the superposition of an internally disturbed block by the Boquerón thrust. However, in its westernmost segment, this structure shows angular incompatibilities with the expected horizontal stress fields. Therefore, based on a detailed 3D interpretation of geological maps, DEM, and available geophysical data, we propose that this segment must be associated with the surface of the underlying detachment of the Guando Slump. The horizontal displacement of the landslide, ranging from 1 to 2 km, deforms and collapses the wells that reach the underlying productive reservoirs. This study describes the relationship of this new tectonic model of the Guando oilfield, considering the westernmost segment of the Boquerón thrust as a detachment of the Guando Slump. This real-life example, if properly monitored, will contribute to a better management of the possible causes and consequences of technical problems encountered in the Guando oilfield exploration and prevent catastrophic risks to the production facilities.

    Citation: Eduardo Antonio Rossello. Effects of the Guando Slump on the tectonic interpretation of the Boquerón Thrust in the Guando oilfield [Tolima, Colombia][J]. AIMS Geosciences, 2025, 11(2): 370-386. doi: 10.3934/geosci.2025016

    Related Papers:

    [1] Margaret Jane Moore, Nele Demeyere . Neglect Dyslexia in Relation to Unilateral Visuospatial Neglect: A Review. AIMS Neuroscience, 2017, 4(4): 148-168. doi: 10.3934/Neuroscience.2017.4.148
    [2] Wanda M. Snow, Brenda M. Stoesz, Judy E. Anderson . The Cerebellum in Emotional Processing: Evidence from Human and Non-Human Animals. AIMS Neuroscience, 2014, 1(1): 96-119. doi: 10.3934/Neuroscience.2014.1.96
    [3] Chiyoko Kobayashi Frank . Reviving pragmatic theory of theory of mind. AIMS Neuroscience, 2018, 5(2): 116-131. doi: 10.3934/Neuroscience.2018.2.116
    [4] Erick H. Cheung, Joseph M. Pierre . The Medical Ethics of Cognitive Neuroenhancement. AIMS Neuroscience, 2015, 2(3): 105-122. doi: 10.3934/Neuroscience.2015.3.105
    [5] Brion Woroch, Alex Konkel, Brian D. Gonsalves . Activation of stimulus-specific processing regions at retrieval tracks the strength of relational memory. AIMS Neuroscience, 2019, 6(4): 250-265. doi: 10.3934/Neuroscience.2019.4.250
    [6] Md Mahbub Hossain . Alice in Wonderland syndrome (AIWS): a research overview. AIMS Neuroscience, 2020, 7(4): 389-400. doi: 10.3934/Neuroscience.2020024
    [7] Mani Pavuluri, Amber May . I Feel, Therefore, I am: The Insula and Its Role in Human Emotion, Cognition and the Sensory-Motor System. AIMS Neuroscience, 2015, 2(1): 18-27. doi: 10.3934/Neuroscience.2015.1.18
    [8] Laura Mandolesi, Noemi Passarello, Eillyn Leiva Ramirez, Deny Menghini, Patrizia Turriziani, Teresa Vallelonga, Francesco Aristei, Angela Galeotti, Stefano Vicari, Vito Crincoli, Maria Grazia Piancino . Enhancing cognition and well-being by treating the malocclusion unilateral posterior crossbite: preliminary evidence by a single case study. AIMS Neuroscience, 2025, 12(2): 95-112. doi: 10.3934/Neuroscience.2025007
    [9] Amory H. Danek, Virginia L. Flanagin . Cognitive conflict and restructuring: The neural basis of two core components of insight. AIMS Neuroscience, 2019, 6(2): 60-84. doi: 10.3934/Neuroscience.2019.2.60
    [10] Laura Serra, Sara Raimondi, Carlotta di Domenico, Silvia Maffei, Anna Lardone, Marianna Liparoti, Pierpaolo Sorrentino, Carlo Caltagirone, Laura Petrosini, Laura Mandolesi . The beneficial effects of physical exercise on visuospatial working memory in preadolescent children. AIMS Neuroscience, 2021, 8(4): 496-509. doi: 10.3934/Neuroscience.2021026
  • A detailed geological study of the Guando oilfield has identified a modern landslide phenomenon that significantly alters the previous structural model and affects production challenges. The multi-compositional nature of the oil-bearing Cretaceous sequences of the Villeta Group, the rugged relief, the climatic incidence, and seismic activity in the Upper Magdalena Valley trigger the Guando Slump, which adjusts the topography to levels of greater stability. The previous tectonic model of the Guando oilfield was based on the superposition of an internally disturbed block by the Boquerón thrust. However, in its westernmost segment, this structure shows angular incompatibilities with the expected horizontal stress fields. Therefore, based on a detailed 3D interpretation of geological maps, DEM, and available geophysical data, we propose that this segment must be associated with the surface of the underlying detachment of the Guando Slump. The horizontal displacement of the landslide, ranging from 1 to 2 km, deforms and collapses the wells that reach the underlying productive reservoirs. This study describes the relationship of this new tectonic model of the Guando oilfield, considering the westernmost segment of the Boquerón thrust as a detachment of the Guando Slump. This real-life example, if properly monitored, will contribute to a better management of the possible causes and consequences of technical problems encountered in the Guando oilfield exploration and prevent catastrophic risks to the production facilities.



    Population dynamics has always been an important research object of biomathematics. Various groups often have complex interspecific relationships, such as predation, competition, parasitism and mutualism [1]. Predation behavior, as a widespread interspecies relationship, has been widely studied. Lotka and Volterra were the first to propose a predator-prey system to describe the widespread interspecies relationship of predation [2]. Holling further proposed three functional responses of predators to describe the energy transfer between predators and prey [3]. These three functional responses have been applied and perfected by many scientists [4]. In 1991, Hastings and Powell proposed a food chain system with chaotic dynamics and studied the dynamics of the model [5]. In recent years, many mathematicians have also studied the development and improvement of Hastings-Powell food chain models [6,7,8,9].

    Fractional calculus is a generalization of traditional calculus, and its order can be composed of integers, fractions or complex numbers[10]. Fractional calculus can better describe some systems or processes with memory and hereditary properties, and it has been widely used in many fields, such as physics, secure communication, system control, neural networks, and chaos[11,12]. The method of solving the fractional model has also been widely studied[13,14]. In [15], the Caputo fractional derivative operator is used instead of the integer first derivative to establish an effective numerical method for solving the dynamics of the reaction-diffusion model based on a new implicit finite difference scheme. In [16], a numerical approximation for the Caputo-Fabrizio derivative is used to study the dynamic complexity of a predator-prey system with a Holling-type functional response. In [17], a new fractional chaotic system described by the Caputo fractional derivative is presented, and how to use the bifurcation diagram of this chaotic system to detect chaotic regions is analyzed. In [18], the generalization of Lyapunov's direct method applying Bihari's and Bellman-Gronwall's inequalities to Caputo-type fractional-order nonlinear systems is proposed. In [19], the Fourier spectral method is introduced to explore the dynamic richness of two-dimensional and three-dimensional fractional reaction-diffusion equations. In [20], the spatial pattern formation of the predator-prey model with different functional responses was studied. [21] studied the numerical solution of the space-time fractional reaction-diffusion problem that simulates the dynamic and complex phenomena of abnormal diffusion.

    Since most biological mathematical models have long-term memory, fractional differential equations can more accurately and reliably describe the actual dynamic process [1,22]. [23] proposed fractional predator-prey models and fractional rabies models and studied their equilibrium points, stability and numerical solutions. In [24], the authors studied the stability of a fractional-order system by the Lyapunov direct method, which substantially developed techniques to study the stability of fractional-order population models. In [9], the authors extended the Hastings-Powell food chain system to fractional order and analyzed its dynamic behavior.

    As an important research object of biological mathematics and control theory, population model control has received extensive research and development in recent years [25,26,27]. In [28], the authors conducted random detection and contacted tracking on the HIV/AIDS epidemic model and used the Adams-type predictor-corrector method to perform fractional optimal control of the model, which significantly reduced the number of AIDS patients and HIV-infected patients. In [29], the authors applied the time-delay feedback controller to the fractional-order competitive Internet model to solve the bifurcation control problem of this model. In [30], the author considered the influence of additional predators on the Hastings-Powell food chain model and studied the control of chaos in this model.

    Biological models are widely studied by scientists, but many classic models study food chain models composed of herbivores and carnivores, and omnivores are rarely considered. In fact, omnivores are widespread in nature and play an important role in the food chain. In this article, the existence of omnivores is fully considered, and a food chain model in which herbivores, omnivores and carnivores coexist is studied. Based on these works, this paper proposes a fractional food chain model with a Holling type-II functional response. The main contributions of this paper are as follows. First, this paper proves the existence and uniqueness of the solution and the nonnegativity and boundedness of the solution. Second, the equilibrium point of the model is calculated, and the local stability of the equilibrium point is proven. Third, a controller is designed to prove the global asymptotic stability of the system by using the Lyapunov method.

    This paper is organized as follows. In Section 2, the definitions and lemmas are given, and the food chain model is established. In Section 3, the existence, uniqueness, nonnegativity and boundedness are proven, and the local stability of the equilibrium point of the model is studied. The global stability of the model is studied through the controller. In Section 4, numerical simulations are performed to verify the theoretical results. The conclusion of this article is given in Section 5.

    In this section, some basic knowledge about fractional equations and the theorems and lemmas used in this paper are given, and the fractional food chain system is introduced.

    Definition 1. [10]. The Caputo fractional derivative of order α of a function f, R+R, is defined by

    Dαtf(t)=1Γ(nα)t0fn(τ)(tτ)α+1ndτ,(n1<α<n), nZ+,

    where Γ() is the Gamma function. When 0<α<1,

    Dαtf(t)=1Γ(1α)t0f(τ)(tτ)αdτ.

    Definition 2. [31]. When the order a>0, for a function f:(0,)R, the Riemann-Liouville representation of the fractional integral operator is defined by

    RLDatf(t)=RLIatf(t)=1Γ(a)t0(tτ)a1f(τ)dτ,t>0,
    RLI0tg(t)=g(t),

    where a>0 and Γ() is the Gamma function.

    Lemma 1. (Generalized Gronwall inequality) [32]. Assume that m0, γ>0, and a(t) are nonnegative, locally integrable, and nondecreasing functions defined on 0tT(T). In addition, h(t) is a nonnegative, locally integrable function defined in 0tT and satisfies

    h(t)a(t)+mt0(ts)γ1h(t)ds,

    then,

    h(t)=a(t)Eγ(mΓ(γ)tγ),

    where the Mittag-Leffler function Eγ(z)=k=0zkΓ(kγ+1).

    Lemma 2. [10]. Consider the fractional-order system

    {Dαtx(t)=f(t,x(t)),x(0)=x0, (2.1)

    where f(t,x(t)) defined in R+×RnRn and α(0,1].

    The local asymptotic stability of the equilibrium point of this system can be derived from |arg(λi)|>απ2, where λi are the eigenvalues of the Jacobian matrix at the equilibrium points.

    Lemma 3. [24]. Consider the system

    {Dαtx(t)=f(t,x(t)),x(0)=xt0, (2.2)

    where α(0,1], f:[t0,)×ΩRn, and ΩRn; if f(t,x) satisfies the local Lipschitz condition about x on [t0,)×Ω, then there exists a unique solution of (2.2).

    Lemma 4. [33]. The function x(t)R+ is continuous and derivable; then, for any tt0

    Dαt[x(t)xxlnx(t)x](1xx(t))Dαtx(t),xR+,α(0,1).

    There are a variety of complex biological relationships in nature. Predation is the most important biological relationship, and it has received attention from and been studied by many scientists. In [5], the author proposed a three-species food chain model. The model consists of one prey ˆX and two predators ˆY and ˆZ. The top predator ˆZ feeds on the secondary predator ˆY, and the secondary predator ˆY feeds on the prey ˆX. This is the famous Hastings-Powell model:

    {dˆXdT=ˆRˆX(1ˆXˆK)^C1^A1ˆXˆY^B1+ˆX,dˆYdT=^A1ˆXˆY^B1+ˆX^A2ˆYˆZ^B2+ˆY^D1ˆY,dˆZdT=^C2^A2ˆYˆZ^B2+ˆY^D2ˆZ, (2.3)

    where ˆR and ˆK represent the intrinsic growth rates and environmental carrying capacity, respectively. For i=1,2, parameters^Ai, ^Bi, ^Ci and ^Di are the predation coefficients, half-saturation constant, food conversion coefficients and death rates.

    The Hastings-Powell model considers a food chain composed of herbivores, small carnivores and large carnivores but does not consider the existence of omnivores. We consider a food chain consisting of small herbivores X, medium omnivores Y and large carnivores Z. Among them, omnivores Y prey on herbivores X, and carnivores Z prey on omnivores Y. They all respond according to Holling II type. This system can be expressed mathematically as

    {dXdT=R1X(1XK1)C1A1XYB1+X,dYdT=R2Y(1YK2)+A1XYB1+XA2YZB2+Y,dZdT=C2A2YZB2+YDZ, (2.4)

    where X, Y and Z represent the densities of the prey population, primary predator population and top-predator population, respectively. For i=1,2, parameters Ri, Ki, Ai, Bi and Ci are the intrinsic growth rates, environmental carrying capacity, predation coefficients, half-saturation constant and food conversion coefficients, respectively. The parameter D is the death rates for Z.

    Then, we obtain the following dimensionless version of the food chain model:

    {dxdt=r1x(1xK1)a1xy1+b1x,dydt=r2y(1yK2)+a1xy1+b1xa2yz1+b2y,dzdt=a2yz1+b2ydz, (2.5)

    the independent variables x, y and z are dimensionless population variables; t represents a dimensionless time variable; and ai, bi(i=1,2) and d are positive.

    Research results show that using fractional derivatives to model real-life biological problems is more accurate than classical derivatives[15]. To better analyze the dynamics between these three populations, we studied the following fractional-order Hastings-Powell System food chain model:

    {Dαtx=r1x(1xK1)a1xy1+b1x,Dαty=r2y(1yK2)+a1xy1+b1xa2yz1+b2y,Dαtz=a2yz1+b2ydz, (2.6)

    where α(0,1) is the fractional order.

    Theorem 1. The fractional-order Hastings-Powell System food chain model (2.6) has a unique solution.

    Proof: We will study the existence and uniqueness of the system (2.6) in [0,T]×Ω, where Ω={(x,y,z)R3:0x,y,zH}. Let S=(x,y,z), ˉS=(ˉx,ˉy,ˉz), F(S)=(F1(S),F2(S),F3(S)) and

    {F1(S)=Dαtx=r1x(1xK1)a1xy1+b1x,F2(S)=Dαty=r2y(1yK2)+a1xy1+b1xa2yz1+b2y,F3(S)=Dαtz=a2yz1+b2ydz, (3.1)

    For any S,ˉSΩ, it follows from (3.1) that

    F(S)F(ˉS)=|F1(S)F1(ˉS)|+|F2(S)F2(ˉS)|+|F3(S)F3(ˉS)|=|r1x(1xK1)a1xy1+b1x(r1ˉx(1ˉxK1)a1ˉxˉy1+b1ˉx)|+|r2y(1yK2)+a1xy1+b1xa2yz1+b2y(r2ˉy(1ˉyK2)+a1ˉxˉy1+b1ˉxa2ˉyˉz1+b2ˉy)|+|a2yz1+b2ydz(a2ˉyˉz1+b2ˉydˉz)|r1|x(1xK1)ˉx(1ˉxK1)|+r2|y(1yK2)ˉy(1ˉyK2)|+2a1|xy1+b1xˉxˉy1+b1ˉx|+2a2|yz1+b2yˉyˉz1+b2ˉy|+d|zˉz|r1|xˉx|+r2|yˉy|+r1K1|x2ˉx2|+r2K2|y2ˉy2|+d|zˉz|+|xyˉxˉy+b1ˉxxyb1ˉxxˉy(1+b1x)(1+b1ˉx)|+|yzˉyˉz+b2ˉyyzb2ˉyyˉz(1+b2y)(1+b2ˉy)|r1|xˉx|+r2|yˉy|+r1K1|(x+ˉx)(xˉx)|+r2K2|(y+ˉy)(yˉy)|+d|zˉz|+|xyˉxˉy+b1xˉx(yˉy)|+|yzˉyˉz+b2yˉy(zˉz)|r1|xˉx|+r2|yˉy|+r1MK1|(xˉx)|+r2MK2|(yˉy)|+d|zˉz|+|xyxˉy+xˉyˉxˉy|+b1|xˉx||yˉy|+|yzyˉz+yˉzˉyˉz|+b2|yˉy||zˉz|(r1+r1MK1)|xˉx|+(r2+r2MK2)|yˉy|+d|zˉz|+M|yˉy|+M|xˉx|+b1M2|yˉy|+M|zˉz|+M|yˉy|+b2M2|zˉz|=(r1+r1MK1+M)|xˉx|+(r2+r2MK2+2M+b1M2)|yˉy|+(d+M+b2M2)|zˉz|LSˉS.

    where L=max{r1+r1MK1+M,r2+r2MK2+2M+b1M2,d+M+b2M2}, Based on Lemma 3, F(S) satisfies the Lipschitz condition with respect to S in Ω. According to the Banach fixed point theorem in [34], system (2.6) has a unique solution in Ω.

    Theorem 2. Set A={x,y,z)R3:0<x+y+z<K1(r1+v)24r1v+K2(r2+v)24r2v} as a positively invariant set of system (2.6), and the solutions are bounded.

    Proof: let g(t)g(x(t),y(t),z(t))=x(t)+y(t)+z(t),

    Dαtg(t)+vg(t)=(r1+v)x(t)r1K1x2(t)+(r2+v)y(t)r2K2y2(t)(dv)z(t)=r1K1(x(t)K1(r1+v)2r1)2r2K2(y(t)K2(r2+v)2r2)2(dv)z(t)+K1(r1+v)24r1+K2(r2+v)24r2,

    let

    u=K1(r1+v)24r1+K2(r2+v)24r2,v=d.

    According to the positive knowledge of all parameters and the nonnegativity of the solutions,

    Dαtg(t)+vg(t)u,

    we obtain

    g(t)uv+[g(0)uv]Eα(vtα),

    Since Eα(vtα)0, when g(0)uv, lim. According to the nonnegativity of the system (2.6), g(t)\geq 0 (\forall t \geq 0) ; hence, A = \{{x, y, z)\in \mathbb{R}}^{3} : 0 < x+y+z < \frac{K_{1}(r_{1}+v)^{2}}{4r_{1}v}+ \frac{K_{2}(r_{2}+v)^{2}}{4r_{2}v} \} is a positively invariant set of system (2.6), and the solutions are bounded.

    Let

    \left\{ \begin{array}{ll} r_{1}x(1-\frac{x}{K_{1}})-\frac{a_{1}xy}{1+b_{1}x} = 0, \\ r_{2}y(1-\frac{y}{K_{2}})+\frac{a_{1}xy}{1+b_{1}x}-\frac{a_{2}yz}{1+b_{2}y} = 0, \\ \frac{a_{2}yz}{1+b_{2}y}-dz = 0, \end{array} \right.

    Then, the equilibrium points are E_{0} = (0, 0, 0) , E_{1} = (K_{1}, 0, 0) , E_{2} = (0, K_{2}, 0) and E_{*} = (x_{*}, y_{*}, z_{*}) , where

    \begin{align} & x_{*} = \frac{b_{1}K_{1}-1}{2b_{1}}+\frac{\sqrt{b_{1}^{2}K_{1}^{2}r_{1}^{2}+2b_{1}K_{1}r_{1}^{2}-4a_{1}b_{1}K_{1}r_{1}y_{*}+y_{*}^{2}}}{2b_{1}r_{1}}, \\ & y_{*} = \frac{d}{a_{2}-b_{2}d}, \\ & z_{*} = \frac{a_{1}x_{*}(b_{2}y_{*}+1)}{a_{2}(b_{1}x_{*}+1)}-\frac{r_{2}(b_{2}y_{*}+1)(y_{*}-K_{2})}{a_{2}K_{2}}. \end{align}

    For system (2.6), the Jacobian matrix at the equilibrium point (x', y', z') is

    \begin{equation*} \begin{array}{lll} J(x', y', z') = \left[ \begin{array}{ccccccccc} r_{1}-\frac{2r_{1}x'}{K_{1}}-\frac{a_{1}d}{e_{1}e_{3}^{2}} & -e_{5} & 0 \\ e_{4} & r_{1}+e_{5}-\frac{a_{2}z'}{e_{2}}-\frac{2dr_{2}}{K_{2}e_{1}}+\frac{a_{2}b_{2}dz'}{e_{1}e_{2}^{2}} & -d \\ 0 & \frac{e_{1}^{2}z'}{a_{2}} & 0 \\ \end{array} \right], \end{array} \end{equation*}

    where e_{1} = a_{2}-b_{2}d , e_{2} = \frac{b_{2}d}{e_{1}}+1 , e_{3} = 1+b_{1}x' , e_{4} = \frac{2r_{1}x'}{K_{1}}+\frac{a_{1}d}{e_{1}e_{3}^{2}} , e_{5} = \frac{a_{1}x'}{e_{3}} .

    Theorem 3.3. For system (2.6), the equilibrium points E_{0} and E_{1} are saddle points.

    Proof: The Jacobian matrices evaluated at E_{0} and E_{1} are

    \begin{equation*} \begin{array}{lll} J(0, 0, 0) = \left[ \begin{array}{ccccccccc} r_{1} & 0 & 0 \\ 0 & r_{2} & 0 \\ 0 & 0 & -d \\ \end{array} \right], J(K_{1}, 0, 0) = \left[ \begin{array}{ccccccccc} -r_{1} & -\frac{a_{1}K_{1}}{b_{1}K_{1}+1} & 0 \\ 0 & r_{2}+\frac{a_{1}K_{1}}{b_{1}K_{1}+1} & 0 \\ 0 & 0 & -d \\ \end{array} \right], \end{array} \end{equation*}

    According to Lemma 2, when the eigenvalues are all real numbers and all negative, the equilibrium points are locally asymptotically stable.

    The eigenvalues of J(E_{0}) are \lambda_{01} = r_{1} , \lambda_{02} = r_{2} and \lambda_{03} = -d . The eigenvalues of J(E_{1}) are \lambda_{11} = -r_{1} , \lambda_{12} = r_{2}+\frac{a_{1}K_{1}}{b_{1}K_{1}+1} and \lambda_{13} = -d .

    Then, we have \lambda_{01}, \lambda_{02} > 0 , \lambda_{03}, \lambda_{11} < 0, and \lambda_{13} < 0 , so the equilibrium points E_{0} and E_{1} are saddle points.

    Theorem 4. For system (2.6), if r_{1} < a_{1}K_{2} and \frac{a_{2}K_{2}}{(b_{2}K_{2}+1)} < d , then the equilibrium point E_{2} = (0, K_{2}, 0) is locally asymptotically stable.

    Proof: The Jacobian matrix evaluated at E_{2} is

    \begin{equation*} \begin{array}{lll} J(0, K_{2}, 0) = \left[ \begin{array}{ccccccccc} r_{1}-a_{1}K_{2} & 0 & 0 \\ a_{1}K_{2} & -r_{2} & -\frac{a_{2}K_{2}}{b_{2}K_{2}+1} \\ 0 & 0 & \frac{a_{2}K_{2}}{b_{2}K_{2}+1}-d \\ \end{array} \right], \end{array} \end{equation*}

    The eigenvalues of J(E_{2}) are \lambda_{1} = r_{1}-a_{1}K_{2} , \lambda_{2} = -r_{2} and \lambda_{3} = \frac{a_{2}K_{2}}{b_{2}K_{2}+1}-d .

    Therefore, if r_{1} < a_{1}K_{2} and \frac{a_{2}K_{2}}{(b_{2}K_{2}+1)} < d , the equilibrium point E_{2} is locally asymptotically stable.

    The characteristic equation of equilibrium points E_{*} = (x_{*}, y_{*}, z_{*}) is given as

    \begin{equation} P(\lambda) = \lambda^{3}+A\lambda^{2}+B\lambda+C = 0, \end{equation} (3.2)

    where

    A = 2f_{4}-2r_{1}-e_{5}+f_{2}z_{*}+f_{1}de_{3}^{2}+f_{5}-\frac{f_{2}b_{2}dz_{*}}{e_{1}e_{2}} ,

    B = (B_{1}+B_{2}) ,

    B_{1} = e_{4}e_{5}+e_{5}r_{1}+r_{1}^{2}-2r_{1}f_{4}-f_{2}r_{1}z_{*}-2e_{5}f_{4}+\frac{e_{1}^{2}dz_{*}}{a_{2}} - f_{6}e_{5}-f_{6}r_{1}-2r_{1}f_{5} ,

    B_{2} = 2e_{3}^{2}f_{1}f_{5}+2f_{2}f_{4}z_{*}+a_{1}f_{3}e_{3}^{2}z_{*} +\frac{4dr_{2}f_{4}}{e_{1}k_{1}}+r_{1}f_{7}-f_{1}f_{7}de_{3}-2f_{4}f_{7} ,

    C = \frac{dz_{*}(a_{1}dK_{1}e_{3}^{2}-e_{1}K_{1}r_{1}+2e_{1}r_{1}x_{*})}{f_{1}K_{1}} ,

    where f_{1} = \frac{a_{1}}{e_{1}} , f_{2} = \frac{a_{2}}{e_{2}} , f_{3} = \frac{f_{2}d}{e_{1}} , f_{4} = \frac{r_{1}x_{*}}{K_{1}} , f_{5} = \frac{r_{2}d}{e_{1}K_{2}} , f_{6} = \frac{a_{1}de_{3}^{2}}{e_{1}} , f_{7} = \frac{b_{2}f_{3}z_{*}}{e_{2}} .

    For Eq. (3.2), define the discriminant as

    D(P) = 18ABC+(AB)^{2}-4CA^{2}-4B^{3}-27C^{2},

    With reference to the results of [35] and [36], we obtain the following fractional Routh-Hurwitz conditions:

    1. If D(P) > 0 , A > 0 , C > 0 , and AB-C > 0 , E_{*} is locally asymptotically stable.

    2. If D(P) < 0 and A\geq0 , B\geq0 , and C > 0 , when \alpha < \frac{2}{3} , E_{*} is locally asymptotically stable.

    3. If D(P) < 0 , A > 0 , B > 0 , and AB = C , then for all \alpha \in (0, 1) , E_{*} is locally asymptotically stable.

    Theorem 5. If D(P) < 0 , C > 0 and AB\neq C , then \alpha_{*}\in(0, 1) exists; when \alpha\in(0, \alpha_{*}) , E_{*} is locally asymptotically stable; when \alpha\in(\alpha_{*}, 1) , E_{*} is unstable. The system diverges at the critical value E_{*} .

    Proof: If D(P) < 0 , then the eigenvalues of Eq. (3.2) have one real root \lambda_{1} = a and two complex conjugate roots \lambda_{2, 3} = b\pm ci . Then, Eq. (3.2) can be written as

    \begin{equation} P(\lambda) = (\lambda-a)[\lambda-(b+ci)][\lambda-(b-ci)] = 0, \end{equation} (3.3)

    where A = -a-2b , B = b^{2}+c^{2}+2ab , C = -a(b^{2}+c^{2}) , c > 0 , a, b, c \in\mathbb{R} .

    From C > 0 , then a < 0 , and then |arg(\lambda_{1})| = \pi > \frac{\alpha\pi}{2} .

    From AB\neq C , then -a^{2}b+b(b^{2}+c^{2})\neq -2ab^{2} \Longrightarrow -2b[(a+b)^{2}+c^{2}]\neq0 \Longrightarrow b\neq0 and (a+b)^{2}+c^{2}\neq0 .

    Thus, we can obtain |arg(\lambda_{2, 3})| = |arctan(\frac{c}{b})| = arctan|\frac{c}{b}|\in(0, \frac{\pi}{2}) .

    Then, \alpha_{*}\in(0, 1) exists; when \alpha\in(0, \alpha_{*}) , \frac{\alpha\pi}{2} < arctan|\frac{c}{b}| , according to Lemma 2, E_{*} is locally asymptotically stable, and when \alpha\in(\alpha_{*}, 1) , \frac{\alpha\pi}{2} > arctan|\frac{c}{b}| , E_{*} is unstable.

    To study the asymptotic stability of system (2.6), three controllers will be added. The controller is proposed as follows: \mu_{1} = m_{1}x(x-x_{*}) , \mu_{2} = m_{2}y(y-y_{*}) , and \mu_{3} = m_{3}z(z-z_{*}) . where m_{1} , m_{2} and m_{3} represent negative feedback gains, which are defined as real numbers. Clearly, if m_{i} = 0 (i = 1, 2, 3) or x = x_{*} (y = y_{*}, z = z_{*}) , then \mu_{i} = 0 (i = 1, 2, 3) , so it will not change the equilibrium point of system (2.6).

    Controllers added into system (2.6) as follows

    \begin{equation} \left\{ \begin{array}{ll} D_{t}^{\alpha}x = r_{1}x(1-\frac{x}{K_{1}})-\frac{a_{1}xy}{1+b_{1}x}-m_{1}x(x-x_{*}), \\ D_{t}^{\alpha}y = r_{2}y(1-\frac{y}{K_{2}})+\frac{a_{1}xy}{1+b_{1}x}-\frac{a_{2}yz}{1+b_{2}y}-m_{2}y(y-y_{*}), \\ D_{t}^{\alpha}z = \frac{a_{2}yz}{1+b_{2}y}-dz-m_{3}z(z-z_{*}), \end{array} \right. \end{equation} (3.4)

    One gives a Lyapunov function as:

    V(x, y, z) = x-x_{*}-x_{*}\ln\frac{x}{x_{*}}+y-y_{*}-y_{*}\ln\frac{y}{y_{*}}+z-z_{*}-z_{*}\ln\frac{z}{z_{*}}.

    then,

    \begin{align} D_{t}^{\alpha}V & \leq \frac{x-x_{*}}{x}D^{\alpha}x+\frac{y-y_{*}}{y}D^{\alpha}y+\frac{z-z_{*}}{z}D^{\alpha}z \\ & = (x-x_{*})(r_{1}-r_{1}\frac{x}{K_{1}}-\frac{a_{1}y}{1+b_{1}x})-m_{1}(x-x_{*})^{2} \\ & +(y-y_{*})(r_{2}-r_{2}\frac{y}{K_{2}}+\frac{a_{1}x}{1+b_{1}x}-\frac{a_{2}z}{1+b_{2}y})-m_{2}(y-y_{*})^{2} \\ & +(z-z_{*})(\frac{a_{2}y}{1+b_{2}y}-d)-m_{3}(z-z_{*})^{2}. \end{align}

    Consider E_{*} to be the equilibrium point:

    \left\{ \begin{array}{ll} r_{1}-r_{1}\frac{x_{*}}{K_{1}}-\frac{a_{1}y_{*}}{1+b_{1}x_{*}} = 0, \\ r_{2}-r_{2}\frac{y_{*}}{K_{2}}+\frac{a_{1}x_{*}}{1+b_{1}x_{*}}-\frac{a_{2}z_{*}}{1+b_{2}y_{*}} = 0, \\ \frac{a_{2}y_{*}}{1+b_{2}y_{*}}-d = 0, \end{array} \right.

    According to Lemma 4, we can obtain

    \begin{align} D_{t}^{\alpha}V & \leq (x-x_{*})(r_{1}\frac{x_{*}}{K_{1}}+\frac{a_{1}y_{*}}{1+b_{1}x_{*}}-r_{1}\frac{x}{K_{1}}-\frac{a_{1}y}{1+b_{1}x})-m_{1}(x-x_{*})^{2} \\ & +(y-y_{*})(r_{2}\frac{y_{*}}{K_{2}}-\frac{a_{1}x_{*}}{1+b_{1}x_{*}}+\frac{a_{2}z_{*}}{1+b_{2}y_{*}}-r_{2}\frac{y}{K_{2}}+\frac{a_{1}x}{1+b_{1}x}-\frac{a_{2}z}{1+b_{2}y})-m_{2}(y-y_{*})^{2} \\ & +(z-z_{*})(\frac{a_{2}y}{1+b_{2}y}-\frac{a_{2}y_{*}}{1+b_{2}y_{*}})-m_{3}(z-z_{*})^{2} \\ & = a_{1}(x-x_{*})(\frac{y_{*}}{1+b_{1}x_{*}}-\frac{y}{1+b_{1}x})+a_{1}(y-y_{*})(\frac{x}{1+b_{1}x}-\frac{x_{*}}{1+b_{1}x_{*}}) \\ & +a_{2}(y-y_{*})(\frac{z_{*}}{1+b_{2}y_{*}}-\frac{z}{1+b_{2}y})+a_{2}(z-z_{*})(\frac{y}{1+b_{2}y}-\frac{y_{*}}{1+b_{2}y_{*}}) \\ & -(m_{1}+\frac{r_{1}}{K_{1}})(x-x_{*})^{2}-(m_{2}+\frac{r_{2}}{K_{2}})(y-y_{*})^{2}-m_{3}(z-z_{*})^{2} \\ & = a_{1}(x-x_{*})(\frac{y_{*}}{1+b_{1}x_{*}}-\frac{y_{*}}{1+b_{1}x}+\frac{y_{*}}{1+b_{1}x}-\frac{y}{1+b_{1}x}) \\ & +a_{1}(y-y_{*})(\frac{x}{1+b_{1}x}-\frac{x_{*}}{1+b_{1}x}+\frac{x_{*}}{1+b_{1}x}-\frac{x_{*}}{1+b_{1}x_{*}}) \\ & +a_{2}(y-y_{*})(\frac{z_{*}}{1+b_{2}y_{*}}-\frac{z_{*}}{1+b_{2}y}+\frac{z_{*}}{1+b_{2}y}-\frac{z}{1+b_{2}y}) \\ & +a_{2}(z-z_{*})(\frac{y}{1+b_{2}y}-\frac{y_{*}}{1+b_{2}y}+\frac{y_{*}}{1+b_{2}y}-\frac{y_{*}}{1+b_{2}y_{*}}) \\ & -(m_{1}+\frac{r_{1}}{K_{1}})(x-x_{*})^{2}-(m_{2}+\frac{r_{2}}{K_{2}})(y-y_{*})^{2}-m_{3}(z-z_{*})^{2} \\ & = a_{1}(x-x_{*})(\frac{b_{1}y_{*}(x-x_{*})}{(1+b_{1}x_{*})(1+b_{1}x)}+\frac{y_{*}-y}{1+b_{1}x}) +a_{1}(y-y_{*})(\frac{x-x_{*}}{1+b_{1}x}+\frac{b_{1}x_{*}(x_{*}-x)}{(1+b_{1}x_{*})(1+b_{1}x)}) \\ & +a_{2}(y-y_{*})(\frac{b_{2}z_{*}(y-y_{*})}{(1+b_{2}y_{*})(1+b_{2}y)}+\frac{z_{*}-z}{1+b_{2}y}) +a_{2}(z-z_{*})(\frac{y-y_{*}}{1+b_{2}y}+\frac{b_{2}y_{*}(y_{*}-y)}{(1+b_{2}y_{*})(1+b_{2}y)}) \\ & -(m_{1}+\frac{r_{1}}{K_{1}})(x-x_{*})^{2}-(m_{2}+\frac{r_{2}}{K_{2}})(y-y_{*})^{2}-m_{3}(z-z_{*})^{2} \\ & \leq \frac{a_{1}b_{1}y_{*}}{1+b_{1}x_{*}}(x-x_{*})^{2}+\frac{a_{2}b_{2}z_{*}}{1+b_{2}y_{*}}(y-y_{*})^{2} +\frac{a_{1}b_{1}x_{*}}{1+b_{1}x_{*}}(x-x_{*})(y_{*}-y)+\frac{a_{2}b_{2}y_{*}}{1+b_{2}y_{*}}(y-y_{*})(z_{*}-z) \\ & -(m_{1}+\frac{r_{1}}{K_{1}})(x-x_{*})^{2}-(m_{2}+\frac{r_{2}}{K_{2}})(y-y_{*})^{2}-m_{3}(z-z_{*})^{2} \\ & \leq\frac{a_{1}b_{1}x_{*}}{2(1+b_{1}x_{*})}((x-x_{*})^{2}+(y-y_{*})^{2})+\frac{a_{2}b_{2}y_{*}}{2(1+b_{2}y_{*})}((y-y_{*})^{2}+(z-z_{*})^{2}) \\ & +(\frac{a_{1}b_{1}y_{*}}{1+b_{1}x_{*}}-m_{1}-\frac{r_{1}}{K_{1}})(x-x_{*})^{2}+(\frac{a_{2}b_{2}z_{*}}{1+b_{2}y_{*}}-m_{2}-\frac{r_{2}}{K_{2}})(y-y_{*})^{2}-m_{3}(z-z_{*})^{2} \\ & = (\frac{a_{1}b_{1}(2y_{*}+x_{*})}{2(1+b_{1}x_{*})}-m_{1}-\frac{r_{1}}{K_{1}})(x-x_{*})^{2} +(\frac{a_{2}b_{2}y_{*}}{2(1+b_{2}y_{*})}-m_{3})(z-z_{*})^{2} \\ & +(\frac{a_{2}b_{2}(2z_{*}+y_{*})}{2(1+b_{2}y_{*})}+\frac{a_{1}b_{1}x_{*}}{2(1+b_{1}x_{*})}-m_{2}-\frac{r_{2}}{K_{2}})(y-y_{*})^{2}. \end{align}

    When m_{1}\geq\frac{a_{1}b_{1}(2y_{*}+x_{*})}{2(1+b_{1}x_{*})}-\frac{r_{1}}{K_{1}} , m_{2}\geq\frac{a_{2}b_{2}(2z_{*}+y_{*})}{2(1+b_{2}y_{*})}+\frac{a_{1}b_{1}x_{*}}{2(1+b_{1}x_{*})}-\frac{r_{2}}{K_{2}} , and m_{3}\geq\frac{a_{2}b_{2}y_{*}}{2(1+b_{2}y_{*})} , it follows that D^{\alpha}V\leq0 . We can show that the equilibrium point E_{*} is uniformly asymptotically stable.

    In this section, we use the Adams-Bashforth-Molton predictor-corrector algorithm numerical simulation. This method is described in detail in [37] and [38].

    Example 1. In system (2.6), let r_{1} = 1 , r_{2} = 0.6 , K_{1} = 50 , K_{2} = 10 , a_{1} = 1 , a_{2} = 0.6 , b_{1} = 5 , b_{2} = 0.01 and d = 0.5 . System (2.6) has a positive equilibrium point E_{*} = (49.8479, 0.8403, 1.2597) . According to Theorem 3.5, when \alpha = 1 , \alpha = 0.9 , \alpha = 0.8 , and E_{*} is locally asymptotically stable, it can be seen from Figure 1 that the order \alpha will affect the speed at which the system converges to the equilibrium point. The relevant results are shown in Figure 1.

    Figure 1.  Stability of the equilibrium E_{*} for \alpha = 1 , \alpha = 0.9 and \alpha = 0.8 .

    Example 2. In system (2.6), let r_{1} = 1 , r_{2} = 0.6 , K_{1} = 50 , K_{2} = 30 , a_{1} = 1 , a_{2} = 0.6 , b_{1} = 5 , b_{2} = 0.2 and d = 0.2 . System (2.6) has a positive equilibrium point E_{*} = (49.9382, 0.3571, 1.4158) . It follows from Theorem 3.5 that system (2.6) has a bifurcation at \alpha_{*} . When \alpha = 0.95 and \alpha = 0.8 , E_{*} is locally asymptotically stable, and when \alpha = 0.98 , E_{*} is unstable. The relevant results are shown in Figure 2.

    Figure 2.  Stability of the equilibrium E_{*} for \alpha = 0.98 , \alpha = 0.95 and \alpha = 0.8 .

    Example 3. To verify the sensitivity of the system (2.6) to initial conditions and other parameters, according to the method in [39], apply the positive Euler format to transform the differential model into the following discrete form:

    \begin{equation} \left\{ \begin{array}{ll} x_{t+1} = x_{t}+\delta(r_{1}x_{t}(1-\frac{x_{t}}{K_{1}})-\frac{a_{1}x_{t}y_{t}}{1+b_{1}x_{t}}), \\ y_{t+1} = y_{t}+\delta(r_{2}y_{t}(1-\frac{y_{t}}{K_{2}})+\frac{a_{1}x_{t}y_{t}}{1+b_{1}x_{t}}-\frac{a_{2}y_{t}z_{t}}{1+b_{2}y_{t}}), \\ z_{t+1} = z_{t}+\delta(\frac{a_{2}y_{t}z_{t}}{1+b_{2}y_{t}}-dz_{t}), \end{array} \right. \end{equation} (4.1)

    where \delta is the time step size. We use the parameters of Example 1 to study Lyapunov exponents. Figure 3 shows that system (2.6) is in a stable state and is less sensitive to initial conditions.

    Figure 3.  Spectrum of Lyapunov exponent of system (2.6).

    This paper studies a new fractional-order food chain model with a Holling type-II functional response. First, the existence, uniqueness, nonnegativity and boundedness of the solution of the model are discussed. Second, the local stability of each equilibrium point is discussed. Third, controllers \mu_{1} = m_{1}x(x-x_{*}) , \mu_{2} = m_{2}y(y-y_{*}) and \mu_{3} = m_{3}z(z-z_{*}) are proposed and added to the system. Using the Lyapunov method, sufficient conditions for the positive equilibrium point to reach the global uniformly asymptotically stable state are obtained. Finally, we use numerical simulations to verify the theoretical results.

    This work was supported by the Shandong University of Science and Technology Research Fund (2018 TDJH101).

    The author declares no conflicts of interest in this paper.



    [1] Buitrago J (1994) Petroleum systems of the Neiva Area, Upper Magdalena Valley, Colombia. In: Magoon LB, WG Dow (eds.), The Petroleum System – from source to trap. AAPG, Memoir 60: 483–497. https://doi.org/10.1306/M60585C30
    [2] Mojica J, Franco R (1990) Estructura y evolución tectónica del Valle Medio y Superior del Magdalena, Colombia. Geol Colombiana 17: 41–64.
    [3] Rincón G, Garzón JC, de Moraes JJ (2003) Campo Guando, Primer Descubrimiento de la Antesala del Siglo XXI en el Valle Superior del Magdalena, Colombia. 8th Simposio Bolivariano - Exploración Petrolera en las Cuencas Subandinas. Cartagena, Colombia. https://www.earthdoc.org/content/papers/10.3997/2214-4609-pdb.33.Paper66
    [4] Sarmiento LF, Rangel A (2004) Petroleum systems of the Upper Magdalena Valley, Colombia. Mar Petrol Geol 21: 373–391. https://doi.org/10.1016/j.marpetgeo.2003.11.019 doi: 10.1016/j.marpetgeo.2003.11.019
    [5] Ramón J, Rosero A (2006) Multiphase structural evolution of the western margin of the Girardot Subbasin, Upper Magdalena Valley, Colombia. J S Am Earth Sci 21: 493–509. https://doi.org/10.1016/j.jsames.2006.07.012 doi: 10.1016/j.jsames.2006.07.012
    [6] Barrero D, Pardo A, Vargas CA, et al. (2007) Colombian sedimentary basins: nomenclature, boundaries and petroleum geology, a new proposal. Agencia Nacional de Hidrocarburos - B&M Exploration Ltda. 35pp. Bogotá.
    [7] Roncancio J, Martínez M (2011) Upper Magdalena Basin. In: Cediel F, Colmenares F (eds.), Petroleum Geology of Colombia. Fondo Editorial Universidad Eafit, vol. 14: 183 pp. Medellin.
    [8] Rossello EA, Saavedra JL (2020) El deslizamiento gravitatorio de Guando (Tolima, Colombia): características morfoestructurales y consecuencias de su interpretación. Bol Geol 42: 151–170. https://doi.org/10.18273/revbol.v42n3-2020007 doi: 10.18273/revbol.v42n3-2020007
    [9] Arévalo-Chaves DA, Parias-Villalba JP (2013) Análisis de amenaza por fenómenos de remoción en masa en la región del Boquerón ubicada entre los departamentos de Cundinamarca y Tolima mediante el uso de un Sistema de información geográfica de libre distribución. Tesis, Universidad Católica de Colombia, Bogotá, Colombia, 73.
    [10] Pfiffner OA (2017) Thick-skinned and thin-skinned tectonics: A global perspective. Geosciences 7: 1–89. https://doi.org/10.3390/geosciences7030071 doi: 10.3390/geosciences7030071
    [11] Nemčok A, Pašek J, Rybář J (1972) Classification of landslides and other mass movements. Rock Mechanics 4: 71–78. https://doi.org/10.1007/BF01239137 doi: 10.1007/BF01239137
    [12] Hutchinson JN, Bhandari RK (1971) Undrained loading, a fundamental mechanism of mudflows and other mass movements. Géotechnique 21: 353–358. https://doi.org/10.1680/geot.1971.21.4.353 doi: 10.1680/geot.1971.21.4.353
    [13] Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds.), Landslides, analysis and control. Transportation research board, National Academy of Sciences. Special report 176: Chapter 2: 11–33. https://trid.trb.org/view/86168
    [14] Crozier MJ (1986) Landslides: causes, consequences and environment. Croom Helm. 252. London, https://doi.org/10.1080/03036758.1988.10429158
    [15] Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds.), Landslides investigation and mitigation. US National Research Council. Special Report 247, Chapter 3: 36–75.
    [16] Dikau R, Brunsdsen D, Schrott L, et al. (1996) Landslides recognition: identification, movement and causes. John Wiley & Sons. 274.
    [17] Leroueil S, Locat J, Vaunat J, et al. (1996) Geotechnical characterization of slope movements. In: Senneset K (ed.), Landslides. Balkema, Rotterdam 1: 53–74.
    [18] Sassa K (1999) Introduction. In: Sassa K (ed.), Landslides of the world. Kyoto University Press. 3–18. https://doi.org/10.1007/3-540-27129-5_5
    [19] Alcántara-Ayala I (2000) Landslides: ¿deslizamientos o movimientos del terreno? Definición, clasificaciones y terminología. Investigaciones Geográficas: Boletín – Instituto de Geografía, Universidad Nacional Autónoma de México, 41: 7–25. https://doi.org/10.14350/rig.59101 doi: 10.14350/rig.59101
    [20] Alsop GI, Marco S, Weinberger R, et al. (2017) Upslope-verging back thrusts developed during downslope-directed slumping of mass transport deposits. J Struct Geol 100: 45–61. https://doi.org/10.1016/j.jsg.2017.05.006 doi: 10.1016/j.jsg.2017.05.006
    [21] Easterbrook DJ (1993) Surfaces processes and landforms. 2nd Ed. Prentice Hall. Nueva York, 230.
    [22] Glade T, Anderson M, Crozier MJ (2012) Landslide hazard and risk. John Wiley & Sons. Chichester, 807. https://doi.org/10.1002/9780470012659
    [23] Ng KS, Chew YM (2019) Slope stability analysis of embankment over stone column improved ground. J Eng Sci Technol 14: 3582–3596.
    [24] Hennings P, Olson J, Thompson L (2000) Combining outcrop data and three-dimensional structural models to characterize fracture reservoirs: an example from Wyoming. AAPG Bulletin 84: 830–849. https://doi.org/10.1306/A967340A-1738-11D7-8645000102C1865D doi: 10.1306/A967340A-1738-11D7-8645000102C1865D
    [25] Hergarten S, Robl J, Stüwe K (2014) Extracting topographic swath profiles across curved geomorphic features. Earth Surf Dynam 2: 97–104. https://doi.org/10.5194/esurf-2-97-2014 doi: 10.5194/esurf-2-97-2014
    [26] Jaimes E, De Freitas M (2006) An Albian-Cenomanian unconformity in the Northern Andes: Evidence and tectonic significance. J S Am Earth Sci 21: 466–492. https://doi.org/10.1016/j.jsames.2006.07.011 doi: 10.1016/j.jsames.2006.07.011
    [27] Mantilla M, Salazar CC, Rossello EA (2024) The geology of the La Hocha High and its associated oil fields (southern Upper Magdalena Valley, Colombia): a new 3D structural model based on 3D subsurface data. Geociências 43: 537–557. https://doi.org/10.5016/geociencias.v43i4.18579 doi: 10.5016/geociencias.v43i4.18579
    [28] Cediel F, Mojica J, Macía C (1981) Definición estratigráfica del Triásico de Colombia, Suramérica. Las Formaciones Luisa, Payandé, Saldaña. Sus columnas estratigráficas. Newsl Stratigr 9: 73–104. https://doi.org/10.1127/nos/9/1980/73 doi: 10.1127/nos/9/1980/73
    [29] Horton BK, Parra M, Mora A (2020) Construction of the Eastern Cordillera of Colombia: Insights from the sedimentary record. In: Gómez J, Mateus-Zabala D (eds.), The Geology of Colombia, Volume 3 Paleogene – Neogene. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 37: 67–88. Bogotá. https://doi.org/10.32685/pub.esp.37.2019.03
    [30] Cobbold PR, Davy P, Gapais D, et al. (1993) Sedimentary basins and crustal thickening. Sediment Geol 86: 77–89. https://doi.org/10.1016/0037-0738(93)90134-Q doi: 10.1016/0037-0738(93)90134-Q
    [31] Schamel S (1991) Middle and Upper Magdalena Basins, Colombia. In: Biddle KT (ed.), Active margin basin. AAPG, Memoir, 52. Chapter 10: 283–301. https://doi.org/10.1306/M52531C10
    [32] Cooper MA, Addison FT, Alvarez R, et al. (1995) Basin development and tectonic history of the Llanos Basin, Eastern Cordillera and Magdalena Valley, Colombia. AAPG Bulletin 79: 1421–1443. https://doi.org/10.1306/7834D9F4-1721-11D7-8645000102C1865D doi: 10.1306/7834D9F4-1721-11D7-8645000102C1865D
    [33] Toro J, Roure F, Bordas-Le Floch N, et al. (2004) Thermal and kinematic evolution of the Eastern Cordillera fold and thrust belt, Colombia. In: Swennen R et al. (eds.), Deformation, fluid flow, and reservoir appraisal in foreland fold and thrust belts. AAPG, Hedberg Series, 1: 79–115. https://doi.org/10.1306/1025687H13114
    [34] Sarmiento-Rojas LF, Van Wess JD, Cloetingh S (2006) Mesozoic transtensional basin history of the Eastern Cordillera, Colombian Andes: Inferences from tectonic models. J S Am Earth Sci 21: 383–411. https://doi.org/10.1016/j.jsames.2006.07.003 doi: 10.1016/j.jsames.2006.07.003
    [35] Mora-Páez H, Mencin, DJ, Molnar P, et al. (2016) GPS velocities and the construction of the Eastern Cordillera of the Colombian Andes. Geophys Res Lett 43: 8407–8416. http://doi.org/10.1002/2016GL069795 doi: 10.1002/2016GL069795
    [36] Rossello EA, Gallardo A (2022) The Sierra Nevada de Santa Marta (Colombia) and Nevado de Famatina (Argentina) positive syntaxes: two comparable exceptional relieves in the Andes foreland. J Struct Geol 160: https://doi.org/10.1016/j.jsg.2022.104618 doi: 10.1016/j.jsg.2022.104618
    [37] Cobbold PR, Rossello EA, Roperch P, et al. (2007) Distribution, timing, and causes of Andean deformation across South America. Geological Society, London, Special Publications 272: 321–343. https://doi.org/10.1144/GSL.SP.2007.272.01.17 doi: 10.1144/GSL.SP.2007.272.01.17
    [38] Lewis KB (1971) Slumping on a continental slope inclined at 1–4°. Sedimentology 16: 97–110. http://doi.org/10.1111/j.1365-3091.1971.tb00221.x doi: 10.1111/j.1365-3091.1971.tb00221.x
    [39] Martinsen OJ (1994) Mass movements. In: Maltman A (ed.), The geological deformation of sediments. Chapman & Hall, London, 27–165. http://doi.org/10.1007/978-94-011-0731-0_5
    [40] Bull S, Cartwright J, Huuse M (2009) A review of kinematic indicators from mass-transport complexes using 3D seismic data. Mar Petrol Geol 26: 1132–1151. http://doi:10.1016/j.marpetgeo.2008.09.011 doi: 10.1016/j.marpetgeo.2008.09.011
    [41] Sobiesiak MS, Kneller B, Alsop GI, et al. (2018) Styles of basal interaction beneath mass transport deposits. Mar Petrol Geol 98: 629–639. http://doi.org/10.1016/j.marpetgeo.2018.08.028 doi: 10.1016/j.marpetgeo.2018.08.028
    [42] Rossello EA, López-Isaza JA (2023) The structural control of mineralizations by dilatancies due to differential thermal expansivity (in disseminated deposits) and faults bending (in veins): revision and working hypothesis. Rev Mex Cienc Geol 40: 16–34. http://dx.doi.org/10.22201/cgeo.20072902e.2023.1.1716 doi: 10.22201/cgeo.20072902e.2023.1.1716
    [43] Gostelow TP (1991) Rainfall and landslides. In: Almeida-Teixeira F et al. (eds.), Prevention and control of landslides and other mass movements. Commission of the European Communities. Report EUR 12918: 139–161.
    [44] Girty GH (2009) Perilous Earth: Understanding processes behind natural disasters. Chapter 7, 1–17, Montezuma Publishing, San Diego. Available from: https://studylib.net/doc/8423341/chapter-1.
    [45] Hungr O, Leroueil S, Picarelli L (2013) The Varnes classification of landslide types, an update. Landslides 11: 167–194. https://doi.org/10.1007/s10346-013-0436-y doi: 10.1007/s10346-013-0436-y
    [46] Ramsay JG, Huber MI (1983) The techniques of modern structural geology: strain analyses. Academic Press. 393.
    [47] Price NJ, Cosgrove JW (1990) Analysis of geological structures. Cambridge University Press. 502.
    [48] Working Party for World Landslide Inventory (1995) A suggested method for describing the rate of movement of a landslide. Bulletin of the International Association of Engineering Geology 52: 75–78. https://doi.org/10.1007/BF02639593 doi: 10.1007/BF02639593
    [49] Tofani V, Raspini F, Catani F, et al. (2013) Persistent Scatterer Interferometry (PSI) technique for landslide characterization and monitoring. Remote Sens 5: 1045–1065. https://doi.org/10.3390/rs5031045 doi: 10.3390/rs5031045
    [50] Tiampo KF, González PJ, Samsonov SS (2013) Results for aseismic creep on the Hayward fault using polarization persistent scatterer InSAR. Earth Planet Sc Lett 367: 157–165. https://doi.org/10.1016/j.epsl.2013.02.019 doi: 10.1016/j.epsl.2013.02.019
    [51] Záruba Q, Mencl V (1969) Landslides and their control. Elsevier. Amsterdam, 270.
    [52] Schuster RL, Salcedo DA, Valenzuela L (2002) Overview of catastrophic landslides of South America in the twentieth century. In: Evans SG, DeGraff JV (eds.). Catastrophic Landslides: effects, occurrence, and mechanisms The Geological Society of America. Reviews in Engineering Geology, XV: 1–34. https://doi.org/10.1130/REG15-p1
  • This article has been cited by:

    1. Emily Frith, Paul D. Loprinzi, Stephanie E. Miller, Role of Embodied Movement in Assessing Creative Behavior in Early Childhood: A Focused Review, 2019, 126, 0031-5125, 1058, 10.1177/0031512519868622
    2. Ignatius G.P. Gous, The quest for context-relevant online education, 2019, 75, 2072-8050, 10.4102/hts.v75i1.5346
    3. Dean D'Souza, Annette Karmiloff-Smith, Why a developmental perspective is critical for understanding human cognition, 2016, 39, 0140-525X, 10.1017/S0140525X15001569
    4. Darren J. Yeo, Eric D. Wilkey, Gavin R. Price, The search for the number form area: A functional neuroimaging meta-analysis, 2017, 78, 01497634, 145, 10.1016/j.neubiorev.2017.04.027
    5. Richard J. Binney, Richard Ramsey, Social Semantics: The role of conceptual knowledge and cognitive control in a neurobiological model of the social brain, 2020, 112, 01497634, 28, 10.1016/j.neubiorev.2020.01.030
    6. Ruth Campos, If you want to get ahead, get a good master. Annette Karmiloff-Smith: the developmental perspective / Si quieres avanzar, ten una buena maestra. Annette Karmiloff-Smith: la mirada desde el desarrollo, 2018, 41, 0210-3702, 90, 10.1080/02103702.2017.1401318
    7. Ruth Campos, Like mermaids or centaurs: psychological functions that are constructed through interaction (Como sirenas o centauros: funciones psicológicas que se construyen en interacción), 2020, 43, 0210-3702, 713, 10.1080/02103702.2020.1810942
    8. Mauricio de Jesus Dias Martins, Laura Desirèe Di Paolo, Hierarchy, multidomain modules, and the evolution of intelligence, 2017, 40, 0140-525X, 10.1017/S0140525X16001710
    9. André Knops, Hans-Christoph Nuerk, Silke M. Göbel, Domain-general factors influencing numerical and arithmetic processing, 2017, 3, 2363-8761, 112, 10.5964/jnc.v3i2.159
    10. Rebecca J. Landa, Efficacy of early interventions for infants and young children with, and at risk for, autism spectrum disorders, 2018, 30, 0954-0261, 25, 10.1080/09540261.2018.1432574
    11. Julia Siemann, Franz Petermann, Innate or Acquired? – Disentangling Number Sense and Early Number Competencies, 2018, 9, 1664-1078, 10.3389/fpsyg.2018.00571
    12. Manja Attig, Sabine Weinert, What Impacts Early Language Skills? Effects of Social Disparities and Different Process Characteristics of the Home Learning Environment in the First 2 Years, 2020, 11, 1664-1078, 10.3389/fpsyg.2020.557751
    13. Janna M. Gottwald, Sheila Achermann, Carin Marciszko, Marcus Lindskog, Gustaf Gredebäck, An Embodied Account of Early Executive-Function Development, 2016, 27, 0956-7976, 1600, 10.1177/0956797616667447
    14. Chiara Colliva, Marta Ferrari, Cristina Benatti, Azzurra Guerra, Fabio Tascedda, Joan M.C. Blom, Executive functioning in children with epilepsy: Genes matter, 2019, 95, 15255050, 137, 10.1016/j.yebeh.2019.02.019
    15. Ruth Campos, Carmen Nieto, María Núñez, Research domain criteria from neuroconstructivism: A developmental view on mental disorders, 2019, 10, 1939-5078, e1491, 10.1002/wcs.1491
    16. Arturo E. Hernandez, Hannah L. Claussenius-Kalman, Juliana Ronderos, Kelly A. Vaughn, Symbiosis, Parasitism and Bilingual Cognitive Control: A Neuroemergentist Perspective, 2018, 9, 1664-1078, 10.3389/fpsyg.2018.02171
    17. Luca Rinaldi, Annette Karmiloff-Smith, Intelligence as a Developing Function: A Neuroconstructivist Approach, 2017, 5, 2079-3200, 18, 10.3390/jintelligence5020018
    18. David C. Geary, Daniel B. Berch, Kathleen Mann Koepke, 2019, 9780128159521, 1, 10.1016/B978-0-12-815952-1.00001-3
    19. Giacomo Vivanti, Taralee Hamner, Nancy Raitano Lee, Neurodevelopmental Disorders Affecting Sociability: Recent Research Advances and Future Directions in Autism Spectrum Disorder and Williams Syndrome, 2018, 18, 1528-4042, 10.1007/s11910-018-0902-y
    20. Stephen Ramanoël, Elena Hoyau, Louise Kauffmann, Félix Renard, Cédric Pichat, Naïla Boudiaf, Alexandre Krainik, Assia Jaillard, Monica Baciu, Gray Matter Volume and Cognitive Performance During Normal Aging. A Voxel-Based Morphometry Study, 2018, 10, 1663-4365, 10.3389/fnagi.2018.00235
    21. Renata Sarmento-Henrique, Laura Quintanilla, Beatriz Lucas-Molina, Patricia Recio, Marta Giménez-Dasí, The longitudinal interplay of emotion understanding, theory of mind, and language in the preschool years, 2020, 44, 0165-0254, 236, 10.1177/0165025419866907
    22. Tuukka Kaidesoja, Matti Sarkia, Mikko Hyyryläinen, Arguments for the cognitive social sciences, 2019, 49, 0021-8308, 480, 10.1111/jtsb.12226
    23. Phillip Hamrick, Jarrad A. G. Lum, Michael T. Ullman, Child first language and adult second language are both tied to general-purpose learning systems, 2018, 115, 0027-8424, 1487, 10.1073/pnas.1713975115
    24. Jeremy I.M. Carpendale, Stuart I. Hammond, The development of moral sense and moral thinking, 2016, 28, 1040-8703, 743, 10.1097/MOP.0000000000000412
    25. David M. G. Lewis, Laith Al-Shawaf, Mike Anderson, Contemporary evolutionary psychology and the evolution of intelligence, 2017, 40, 0140-525X, 10.1017/S0140525X16001692
    26. Antonella Nonnis, Nick Bryan-Kinns, 2019, Mazi, 9781450366908, 672, 10.1145/3311927.3325340
    27. Hana D'Souza, Annette Karmiloff‐Smith, Neurodevelopmental disorders, 2017, 8, 1939-5078, e1398, 10.1002/wcs.1398
    28. Chiyoko Kobayashi Frank, Reviving pragmatic theory of theory of mind, 2018, 5, 2373-7972, 116, 10.3934/Neuroscience.2018.2.116
    29. Karen L Campbell, Lorraine K Tyler, Language-related domain-specific and domain-general systems in the human brain, 2018, 21, 23521546, 132, 10.1016/j.cobeha.2018.04.008
    30. Thiago T. Varella, Asif A. Ghazanfar, Cooperative care and the evolution of the prelinguistic vocal learning, 2021, 0012-1630, 10.1002/dev.22108
    31. Mauricio Martínez, José Manuel Igoa, 2022, Chapter 5, 978-3-031-08922-0, 123, 10.1007/978-3-031-08923-7_5
    32. Selma Dündar-Coecke, To What Extent Is General Intelligence Relevant to Causal Reasoning? A Developmental Study, 2022, 13, 1664-1078, 10.3389/fpsyg.2022.692552
    33. Lisa S. Scott, Michael J. Arcaro, A domain-relevant framework for the development of face processing, 2023, 2731-0574, 10.1038/s44159-023-00152-5
    34. Dilara Berkay, Adrianna C. Jenkins, A Role for Uncertainty in the Neural Distinction Between Social and Nonsocial Thought, 2022, 1745-6916, 174569162211120, 10.1177/17456916221112077
    35. Miriam D. Lense, Eniko Ladányi, Tal-Chen Rabinowitch, Laurel Trainor, Reyna Gordon, Rhythm and timing as vulnerabilities in neurodevelopmental disorders, 2021, 376, 0962-8436, 10.1098/rstb.2020.0327
    36. Raamy Majeed, Does the Problem of Variability Justify Barrett’s Emotion Revolution?, 2022, 1878-5158, 10.1007/s13164-022-00650-0
    37. Ulrike Malmendier, Experience Effects in Finance: Foundations, Applications, and Future Directions, 2021, 25, 1572-3097, 1339, 10.1093/rof/rfab020
    38. Santeri Yrttiaho, Anneli Kylliäinen, Tiina Parviainen, Mikko J. Peltola, Neural specialization to human faces at the age of 7 months, 2022, 12, 2045-2322, 10.1038/s41598-022-16691-5
    39. Giulia Calignano, Eloisa Valenza, Francesco Vespignani, Sofia Russo, Simone Sulpizio, The unique role of novel linguistic labels on the disengagement of visual attention, 2021, 74, 1747-0218, 1755, 10.1177/17470218211014147
    40. Raamy Majeed, The “puzzle” of emotional plasticity, 2022, 35, 0951-5089, 546, 10.1080/09515089.2021.2002293
    41. Christina M. Vanden Bosch der Nederlanden, Xin Qi, Sarah Sequeira, Prakhar Seth, Jessica A. Grahn, Marc F. Joanisse, Erin E. Hannon, Developmental changes in the categorization of speech and song, 2022, 1363-755X, 10.1111/desc.13346
    42. Claudia Karwath, Manja Attig, Jutta von Maurice, Sabine Weinert, Does Poverty Affect Early Language in 2-year-old Children in Germany?, 2022, 1062-1024, 10.1007/s10826-022-02500-0
    43. Rebecca Merkley, Eric D. Wilkey, Anna A. Matejko, Exploring the Origins and Development of the Visual Number Form Area: A Functionally Specialized and Domain-Specific Region for the Processing of Number Symbols?, 2016, 36, 0270-6474, 4659, 10.1523/JNEUROSCI.0710-16.2016
    44. Ulrike Malmendier, FBBVA Lecture 2020 Exposure, Experience, and Expertise: Why Personal Histories Matter in Economics, 2021, 19, 1542-4766, 2857, 10.1093/jeea/jvab045
    45. Lorijn Zaadnoordijk, Tarek R. Besold, Rhodri Cusack, Lessons from infant learning for unsupervised machine learning, 2022, 4, 2522-5839, 510, 10.1038/s42256-022-00488-2
    46. Ulrike Malmendier, Experience Effects in Finance: Foundations, Applications, and Future Directions, 2021, 1556-5068, 10.2139/ssrn.3893355
    47. Zhian Lv, Chong Liu, Liya Liu, Qi Zeng, Past Exposure, Risk Perception, and Risk-Taking During a Local Covid-19 Shock, 2022, 1556-5068, 10.2139/ssrn.4113772
    48. Raamy Majeed, On How to Develop Emotion Taxonomies, 2024, 1754-0739, 10.1177/17540739241259566
    49. Andreas Demetriou, George Spanoudis, Timothy C. Papadopoulos, The typical and atypical developing mind: a common model, 2024, 0954-5794, 1, 10.1017/S0954579424000944
    50. K. J. Hiersche, E. Schettini, J. Li, Z. M. Saygin, Functional dissociation of the language network and other cognition in early childhood, 2024, 45, 1065-9471, 10.1002/hbm.26757
    51. Maeve R. Boylan, Bailey Garner, Ethan Kutlu, Jessica Sanches Braga Figueira, Ryan Barry‐Anwar, Zoe Pestana, Andreas Keil, Lisa S. Scott, How labels shape visuocortical processing in infants, 2024, 1525-0008, 10.1111/infa.12621
    52. Itziar Lozano, Ruth Campos, Mercedes Belinchón, Sensitivity to temporal synchrony in audiovisual speech and language development in infants with an elevated likelihood of autism: A developmental review, 2025, 78, 01636383, 102026, 10.1016/j.infbeh.2024.102026
    53. Emily E. Meyer, Marcelina Martynek, Sabine Kastner, Margaret S. Livingstone, Michael J. Arcaro, Expansion of a conserved architecture drives the evolution of the primate visual cortex, 2025, 122, 0027-8424, 10.1073/pnas.2421585122
    54. Valeria Costanzo, Fabio Apicella, Lucia Billeci, Alice Mancini, Raffaella Tancredi, Carolina Beretta, Filippo Muratori, Giacomo Vivanti, Sara Calderoni, Altered Visual Attention at 12 Months Predicts Joint Attention Ability and Socio-Communicative Development at 24 Months: A Single-Center Eye-Tracking Study on Infants at Elevated Likelihood to Develop Autism, 2025, 15, 2076-3417, 3288, 10.3390/app15063288
    55. Ioannis Xenakis, Argyris Arnellos, Relating creativity to aesthetics through learning and development: an Interactivist-Constructivist framework, 2025, 1568-7759, 10.1007/s11097-025-10084-5
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(346) PDF downloads(18) Cited by(0)

Figures and Tables

Figures(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog