In this work, a novel approach based on a single-layer machine learning Legendre spectral neural network (LSNN) method is used to solve an elliptic partial differential equation. A Legendre polynomial based approach is utilized to generate neurons that fulfill the boundary conditions. The loss function is computed by using the error back-propagation principles and a feed-forward neural network model combined with automatic differentiation. The main advantage of using this methodology is that it does not need to solve a system of nonlinear and nonsparse equations compared with other traditional numerical schemes, which makes this algorithm more convenient for solving higher-dimensional equations. Further, the hidden layer is eliminated with the help of a Legendre polynomial to enlarge the input pattern. The neural network's training accuracy and efficiency were significantly enhanced by the innovative sampling technique and neuron architecture. Moreover, the Legendre spectral approach can handle equations on more complex domains because of numerous networks. Several test problems were used to validate the proposed scheme, and a comparison was made with other neural network schemes consisting of the physics-informed neural network (PINN) scheme. We found that our proposed scheme has a very good agreement with PINN, which further enhances the reliability and efficiency of our proposed method. The absolute and relative error in both and between exact and numerical solutions are provided, which shows that our numerical method converges exponentially.
Citation: Ishtiaq Ali. Advanced machine learning technique for solving elliptic partial differential equations using Legendre spectral neural networks[J]. Electronic Research Archive, 2025, 33(2): 826-848. doi: 10.3934/era.2025037
[1] | Dirk Helbing, Jan Siegmeier, Stefan Lämmer . Self-organized network flows. Networks and Heterogeneous Media, 2007, 2(2): 193-210. doi: 10.3934/nhm.2007.2.193 |
[2] | Mohamed Benyahia, Massimiliano D. Rosini . A macroscopic traffic model with phase transitions and local point constraints on the flow. Networks and Heterogeneous Media, 2017, 12(2): 297-317. doi: 10.3934/nhm.2017013 |
[3] | Tibye Saumtally, Jean-Patrick Lebacque, Habib Haj-Salem . A dynamical two-dimensional traffic model in an anisotropic network. Networks and Heterogeneous Media, 2013, 8(3): 663-684. doi: 10.3934/nhm.2013.8.663 |
[4] | Alexandre M. Bayen, Hélène Frankowska, Jean-Patrick Lebacque, Benedetto Piccoli, H. Michael Zhang . Special issue on Mathematics of Traffic Flow Modeling, Estimation and Control. Networks and Heterogeneous Media, 2013, 8(3): i-ii. doi: 10.3934/nhm.2013.8.3i |
[5] | Fabio Della Rossa, Carlo D’Angelo, Alfio Quarteroni . A distributed model of traffic flows on extended regions. Networks and Heterogeneous Media, 2010, 5(3): 525-544. doi: 10.3934/nhm.2010.5.525 |
[6] | Caterina Balzotti, Maya Briani, Benedetto Piccoli . Emissions minimization on road networks via Generic Second Order Models. Networks and Heterogeneous Media, 2023, 18(2): 694-722. doi: 10.3934/nhm.2023030 |
[7] | Edward S. Canepa, Alexandre M. Bayen, Christian G. Claudel . Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming. Networks and Heterogeneous Media, 2013, 8(3): 783-802. doi: 10.3934/nhm.2013.8.783 |
[8] | Alberto Bressan, Anders Nordli . The Riemann solver for traffic flow at an intersection with buffer of vanishing size. Networks and Heterogeneous Media, 2017, 12(2): 173-189. doi: 10.3934/nhm.2017007 |
[9] | F. A. Chiarello, J. Friedrich, S. Göttlich . A non-local traffic flow model for 1-to-1 junctions with buffer. Networks and Heterogeneous Media, 2024, 19(1): 405-429. doi: 10.3934/nhm.2024018 |
[10] | Paola Goatin, Chiara Daini, Maria Laura Delle Monache, Antonella Ferrara . Interacting moving bottlenecks in traffic flow. Networks and Heterogeneous Media, 2023, 18(2): 930-945. doi: 10.3934/nhm.2023040 |
In this work, a novel approach based on a single-layer machine learning Legendre spectral neural network (LSNN) method is used to solve an elliptic partial differential equation. A Legendre polynomial based approach is utilized to generate neurons that fulfill the boundary conditions. The loss function is computed by using the error back-propagation principles and a feed-forward neural network model combined with automatic differentiation. The main advantage of using this methodology is that it does not need to solve a system of nonlinear and nonsparse equations compared with other traditional numerical schemes, which makes this algorithm more convenient for solving higher-dimensional equations. Further, the hidden layer is eliminated with the help of a Legendre polynomial to enlarge the input pattern. The neural network's training accuracy and efficiency were significantly enhanced by the innovative sampling technique and neuron architecture. Moreover, the Legendre spectral approach can handle equations on more complex domains because of numerous networks. Several test problems were used to validate the proposed scheme, and a comparison was made with other neural network schemes consisting of the physics-informed neural network (PINN) scheme. We found that our proposed scheme has a very good agreement with PINN, which further enhances the reliability and efficiency of our proposed method. The absolute and relative error in both and between exact and numerical solutions are provided, which shows that our numerical method converges exponentially.
[1] | Y. Pinchover, J. Rubinstein, An Introduction to Partial Differential Equations, Cambridge University Press, 2005. https://doi.org/10.1017/CBO9780511801228 |
[2] |
J. Douglas, B. F. Jones, On predictor-corrector methods for nonlinear parabolic differential equations, J. Soc. Ind. Appl. Math., 11 (1963), 195–204. https://doi.org/10.1137/0111015 doi: 10.1137/0111015
![]() |
[3] |
A. Wambecq, Rational Runge-Kutta methods for solving systems of ordinary differential equations, Computing, 20 (1978), 333–342. https://doi.org/10.1007/BF02252381 doi: 10.1007/BF02252381
![]() |
[4] | J. N. Reddy, An Introduction to the Finite Element Method, McGraw-Hill, 1993. |
[5] | R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-state and Time-dependent Problems, SIAM, 2007. https://doi.org/10.1137/1.9780898717839 |
[6] |
I. E. Lagaris, A. Likas, D. I. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural Networks, 9 (1998), 987–1000. https://doi.org/10.1109/72.712178 doi: 10.1109/72.712178
![]() |
[7] |
S. Mall, S. Chakraverty, Application of Legendre neural network for solving ordinary differential equations, Appl. Soft Comput., 43 (2016), 347–356. https://doi.org/10.1016/j.asoc.2015.10.069 doi: 10.1016/j.asoc.2015.10.069
![]() |
[8] |
T. T. Dufera, Deep neural network for system of ordinary differential equations: Vectorized algorithm and simulation, Mach. Learn. Appl., 5 (2021), 100058. https://doi.org/10.1016/j.mlwa.2021.100058 doi: 10.1016/j.mlwa.2021.100058
![]() |
[9] |
J. A. Rivera, J. M. Taylor, A. J. Omella, D. Pardo, On quadrature rules for solving partial differential equations using neural networks, Comput. Methods Appl. Mech. Eng., 393 (2022), 114710. https://doi.org/10.1016/j.cma.2022.114710 doi: 10.1016/j.cma.2022.114710
![]() |
[10] |
L. S. Tan, Z. Zainuddin, P. Ong, Wavelet neural networks based solutions for elliptic partial differential equations with improved butterfly optimization algorithm training, Appl. Soft Comput., 95 (2020), 106518. https://doi.org/10.1016/j.asoc.2020.106518 doi: 10.1016/j.asoc.2020.106518
![]() |
[11] |
Z. Sabir, S. A. Bhat, M. A. Z. Raja, S. E. Alhazmi, A swarming neural network computing approach to solve the Zika virus model, Eng. Appl. Artif. Intell., 126 (2023), 106924. https://doi.org/10.1016/j.engappai.2023.106924 doi: 10.1016/j.engappai.2023.106924
![]() |
[12] |
M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378 (2019), 686–707. https://doi.org/10.1016/j.jcp.2018.10.045 doi: 10.1016/j.jcp.2018.10.045
![]() |
[13] |
E. Schiassi, R. Furfaro, C. Leake, M. De Florio, H. Johnston, D. Mortari, Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations, Neurocomputing, 457 (2021), 334–356. https://doi.org/10.1016/j.neucom.2021.06.015 doi: 10.1016/j.neucom.2021.06.015
![]() |
[14] |
S. Dong, Z. Li, Local extreme learning machines and domain decomposition for solving linear and nonlinear partial differential equations, Comput. Methods Appl. Mech. Eng., 387 (2021), 114129. https://doi.org/10.1016/j.cma.2021.114129 doi: 10.1016/j.cma.2021.114129
![]() |
[15] |
S. Dong, J. Yang, On computing the hyperparameter of extreme learning machines: Algorithm and application to computational PDEs, and comparison with classical and high-order finite elements, J. Comput. Phys., 463 (2022), 111290. https://doi.org/10.1016/j.jcp.2022.111290 doi: 10.1016/j.jcp.2022.111290
![]() |
[16] |
G. B. Huang, Q. Y. Zhu, C. K. Siew, Extreme learning machine: Theory and applications, Neurocomputing, 70 (2006), 489–501. https://doi.org/10.1016/j.neucom.2005.12.126 doi: 10.1016/j.neucom.2005.12.126
![]() |
[17] |
V. Dwivedi, B. Srinivasan, Physics-informed extreme learning machine (PIELM) – A rapid method for the numerical solution of partial differential equations, Neurocomputing, 391 (2020), 96–118. https://doi.org/10.1016/j.neucom.2019.12.099 doi: 10.1016/j.neucom.2019.12.099
![]() |
[18] |
F. Calabrò, G. Fabiani, C. Siettos, Extreme learning machine collocation for the numerical solution of elliptic PDEs with sharp gradients, Comput. Methods Appl. Mech. Eng., 387 (2021), 114188. https://doi.org/10.1016/j.cma.2021.114188 doi: 10.1016/j.cma.2021.114188
![]() |
[19] |
S. M. Sivalingam, P. Kumar, V. Govindaraj, A Chebyshev neural network-based numerical scheme to solve distributed-order fractional differential equations, Comput. Math. Appl., 164 (2024), 150–165. https://doi.org/10.1016/j.camwa.2024.04.005 doi: 10.1016/j.camwa.2024.04.005
![]() |
[20] |
A. Jafarian, M. Mokhtarpour, D. Baleanu, Artificial neural network approach for a class of fractional ordinary differential equations, Neural Comput. Appl., 28 (2017), 765–773. https://doi.org/10.1007/s00521-015-2104-8 doi: 10.1007/s00521-015-2104-8
![]() |
[21] |
I. Ali, S. U. Khan, A dynamic competition analysis of stochastic fractional differential equation arising in finance via the pseudospectral method, Mathematics, 11 (2023), 1328. https://doi.org/10.3390/math11061328 doi: 10.3390/math11061328
![]() |
[22] |
S. U. Khan, M. Ali, I. Ali, A spectral collocation method for stochastic Volterra integro-differential equations and its error analysis, Adv. Differ. Equ., 2019 (2019), 161. https://doi.org/10.1186/s13662-019-2096-2 doi: 10.1186/s13662-019-2096-2
![]() |
[23] |
I. Ali, S. U. Khan, Dynamics and simulations of stochastic COVID-19 epidemic model using Legendre spectral collocation method, AIMS Math., 8 (2023), 4220–4236. https://doi.org/10.3934/math.2023210 doi: 10.3934/math.2023210
![]() |
[24] |
S. U. Khan, I. Ali, Application of Legendre spectral-collocation method to delay differential and stochastic delay differential equations, AIP Adv., 8 (2018), 035301. https://doi.org/10.1063/1.5016680 doi: 10.1063/1.5016680
![]() |
[25] | C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer, 2006. https://doi.org/10.1007/978-3-540-30726-6 |
[26] |
G. Mastroianni, D. Occorsio, Optimal systems of nodes for Lagrange interpolation on bounded intervals: A survey, J. Comput. Appl. Math., 134 (2001), 325–341. https://doi.org/10.1016/S0377-0427(00)00557-4 doi: 10.1016/S0377-0427(00)00557-4
![]() |
[27] | D. Gottlieb, S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, SIAM, 1977. https://doi.org/10.1137/1.9781611970425 |
[28] | J. P. Boyd, Chebyshev and Fourier Spectral Methods, Dover Publications, 2001. |
[29] | J. S. Hesthaven, S. Gottlieb, D. Gottlieb, Spectral Methods for Time-dependent Problems, Cambridge University Press, 2007. https://doi.org/10.1017/CBO9780511618352 |
[30] | C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral Methods in Fluid Dynamics, Springer, 2012. https://doi.org/10.1007/978-3-642-84108-8 |
[31] | J. Shen, T. Tang, L. L. Wang, Spectral Methods: Algorithms, Analysis and Aapplications, Springer, 2011. https://doi.org/10.1007/978-3-540-71041-7 |
[32] | N. Liu, Theory and Applications and Legendre Polynomials and Wavelets, Ph.D thesis, The University of Toledo, 2008. |
[33] |
S. Wang, X. Yu, P. Perdikaris, When and why PINNs fail to train: A neural tangent kernel perspective, J. Comput. Phys., 449 (2022), 110768. https://doi.org/10.1016/j.jcp.2021.110768 doi: 10.1016/j.jcp.2021.110768
![]() |
[34] | P. Yin, S. Ling, W. Ying, Chebyshev spectral neural networks for solving partial differential equations, preprint, arXiv: 2407.03347. |
[35] |
Y. Yang, M. Hou, H. Sun, T. Zhang, F. Weng, J. Luo, Neural network algorithm based on Legendre improved extreme learning machine for solving elliptic partial differential equations, Soft Comput., 24 (2020), 1083–1096. https://doi.org/10.1007/s00500-019-03944-1 doi: 10.1007/s00500-019-03944-1
![]() |
[36] |
M. Xia, X. Li, Q. Shen, T. Chou, Learning unbounded-domain spatiotemporal differential equations using adaptive spectral methods, J. Appl. Math. Comput., 70, (2024), 4395–4421. https://doi.org/10.1007/s12190-024-02131-2 doi: 10.1007/s12190-024-02131-2
![]() |
[37] |
Y. Ye, Y. Li, H. Fan, X. Liu, H. Zhang, SLeNN-ELM: A shifted Legendre neural network method for fractional delay differential equations based on extreme learning machine, Netw. Heterog. Media, 18 (2023), 494–512. https://doi.org/10.3934/nhm.2023020 doi: 10.3934/nhm.2023020
![]() |
[38] |
Y. Yang, M. Hou, J. Luo, A novel improved extreme learning machine algorithm in solving ordinary differential equations by Legendre neural network methods, Adv. Differ. Equ., 2018 (2018), 469. https://doi.org/10.1186/s13662-018-1927-x doi: 10.1186/s13662-018-1927-x
![]() |
[39] |
Y. Wang, S. Dong, An extreme learning machine-based method for computational PDEs in higher dimensions, Comput. Methods Appl. Mech. Eng., 418 (2024), 116578. https://doi.org/10.1016/j.cma.2023.116578 doi: 10.1016/j.cma.2023.116578
![]() |
[40] |
D. Yuan, W. Liu, Y. Ge, G. Cui, L. Shi, F. Cao, Artificial neural networks for solving elliptic differential equations with boundary layer, Math. Methods Appl. Sci., 45 (2022), 6583–6598. https://doi.org/10.1002/mma.8192 doi: 10.1002/mma.8192
![]() |
[41] |
H. Liu, B. Xing, Z. Wang, L. Li, Legendre neural network method for several classes of singularly perturbed differential equations based on mapping and piecewise optimization technology, Neural Process. Lett., 51 (2020), 2891–2913. https://doi.org/10.1007/s11063-020-10232-9 doi: 10.1007/s11063-020-10232-9
![]() |
[42] |
X. Li, J. Wu, X. Tai, J. Xu, Y. Wang, Solving a class of multi-scale elliptic PDEs by Fourier-based mixed physics-informed neural networks, J. Comput. Phys., 508 (2024), 113012. https://doi.org/10.1016/j.jcp.2024.113012 doi: 10.1016/j.jcp.2024.113012
![]() |
[43] |
S. Zhang, J. Deng, X. Li, Z. Zhao, J. Wu, W. Li, et al., Solving the one-dimensional vertical suspended sediment mixing equation with arbitrary eddy diffusivity profiles using temporal normalized physics-informed neural networks, Phys. Fluids, 36 (2024), 017132. https://doi.org/10.1063/5.0179223 doi: 10.1063/5.0179223
![]() |
[44] |
X. Li, J. Deng, J. Wu, S. Zhang, W. Li, Y. Wang, Physics-informed neural networks with soft and hard boundary constraints for solving advection-diffusion equations using Fourier expansions, Comput. Math. Appl., 159 (2024), 60–75. https://doi.org/10.1016/j.camwa.2024.01.021 doi: 10.1016/j.camwa.2024.01.021
![]() |
[45] |
X. Li, J. Wu, L. Zhang, X. Tai, Solving a class of high-order elliptic PDEs using deep neural networks based on its coupled scheme, Mathematics, 10 (2022), 4186. https://doi.org/10.3390/math10224186 doi: 10.3390/math10224186
![]() |
[46] | X. Li, J. Wu, Y. Huang, Z. Ding, X. Tai, L. Liu, et al., Augmented physics informed extreme learning machine to solve the biharmonic equations via Fourier expansions, preprint, arXiv: 2310.13947. |
[47] |
Z. Fu, W. Xu, S. Liu, Physics-informed kernel function neural networks for solving partial differential equations, Neural Networks, 172 (2024), 106098. https://doi.org/10.1016/j.neunet.2024.106098 doi: 10.1016/j.neunet.2024.106098
![]() |
[48] |
J. Bai, G. Liu, A. Gupta, L. Alzubaidi, X. Feng, Y. Gu, Physics-informed radial basis network (PIRBN): A local approximating neural network for solving nonlinear partial differential equations, Comput. Methods Appl. Mech. Eng., 415 (2023), 116290. https://doi.org/10.1016/j.cma.2023.116290 doi: 10.1016/j.cma.2023.116290
![]() |
[49] | A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, et al., Automatic differentiation in PyTorch, in NIPS 2017 Workshop on Autodiff, (2017), 1–4. |
[50] | D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, preprint, arXiv: 1412.6980. |
1. | Giulia Ajmone Marsan, Nicola Bellomo, Andrea Tosin, 2013, Chapter 5, 978-1-4614-7241-4, 69, 10.1007/978-1-4614-7242-1_5 | |
2. | RINALDO M. COLOMBO, PAOLA GOATIN, BENEDETTO PICCOLI, ROAD NETWORKS WITH PHASE TRANSITIONS, 2010, 07, 0219-8916, 85, 10.1142/S0219891610002025 | |
3. | Max-Olivier Hongler, Olivier Gallay, Michael Hülsmann, Philip Cordes, Richard Colmorn, Centralized versus decentralized control—A solvable stylized model in transportation, 2010, 389, 03784371, 4162, 10.1016/j.physa.2010.05.047 | |
4. | S. Lämmer, R. Donner, D. Helbing, Anticipative control of switched queueing systems, 2008, 63, 1434-6028, 341, 10.1140/epjb/e2007-00346-5 | |
5. | Dirk Helbing, Amin Mazloumian, 2013, Chapter 7, 978-3-642-32159-7, 357, 10.1007/978-3-642-32160-3_7 | |
6. | Dirk Helbing, 2021, Chapter 7, 978-3-030-62329-6, 131, 10.1007/978-3-030-62330-2_7 | |
7. | Mauro Garavello, Benedetto Piccoli, Conservation laws on complex networks, 2009, 26, 0294-1449, 1925, 10.1016/j.anihpc.2009.04.001 | |
8. | Daniele De Martino, Luca Dall’Asta, Ginestra Bianconi, Matteo Marsili, A minimal model for congestion phenomena on complex networks, 2009, 2009, 1742-5468, P08023, 10.1088/1742-5468/2009/08/P08023 | |
9. | Giulia Ajmone Marsan, Nicola Bellomo, Andrea Tosin, 2013, Chapter 2, 978-1-4614-7241-4, 11, 10.1007/978-1-4614-7242-1_2 | |
10. | Martin Pilat, 2018, Evolving Ensembles of Traffic Lights Controllers, 978-1-5386-7449-9, 958, 10.1109/ICTAI.2018.00148 | |
11. | R. Donner, Multivariate analysis of spatially heterogeneous phase synchronisation in complex systems: application to self-organised control of material flows in networks, 2008, 63, 1434-6028, 349, 10.1140/epjb/e2008-00151-8 | |
12. | Reik Donner, 2009, Chapter 8, 978-3-642-04226-3, 237, 10.1007/978-3-642-04227-0_8 | |
13. | Giulia Ajmone Marsan, Nicola Bellomo, Andrea Tosin, 2013, Chapter 4, 978-1-4614-7241-4, 51, 10.1007/978-1-4614-7242-1_4 | |
14. | Gui-Jun Pan, Xiao-Qing Yan, Zhong-Bing Huang, Wei-Chuan Ma, Gradient networks on uncorrelated random scale-free networks, 2011, 83, 0031-8949, 035803, 10.1088/0031-8949/83/03/035803 | |
15. | Luigi Rarità, Ciro D'Apice, Benedetto Piccoli, Dirk Helbing, Sensitivity analysis of permeability parameters for flows on Barcelona networks, 2010, 249, 00220396, 3110, 10.1016/j.jde.2010.09.006 | |
16. | Massimiliano Daniele Rosini, 2013, Chapter 15, 978-3-319-00154-8, 193, 10.1007/978-3-319-00155-5_15 | |
17. | D. Helbing, Derivation of a fundamental diagram for urban traffic flow, 2009, 70, 1434-6028, 229, 10.1140/epjb/e2009-00093-7 | |
18. | Mauro Garavello, Benedetto Piccoli, 2013, Chapter 6, 978-1-4614-6242-2, 143, 10.1007/978-1-4614-6243-9_6 | |
19. | Carlos Gershenson, Guiding the Self-Organization of Cyber-Physical Systems, 2020, 7, 2296-9144, 10.3389/frobt.2020.00041 | |
20. | Qian Wan, Guoqing Peng, Zhibin Li, Felipe Hiroshi Tahira Inomata, Spatiotemporal trajectory characteristic analysis for traffic state transition prediction near expressway merge bottleneck, 2020, 117, 0968090X, 102682, 10.1016/j.trc.2020.102682 | |
21. | S. N. Dorogovtsev, A. V. Goltsev, J. F. F. Mendes, Critical phenomena in complex networks, 2008, 80, 0034-6861, 1275, 10.1103/RevModPhys.80.1275 | |
22. | D. Helbing, A. Mazloumian, Operation regimes and slower-is-faster effect in the controlof traffic intersections, 2009, 70, 1434-6028, 257, 10.1140/epjb/e2009-00213-5 | |
23. | S. Havlin, D. Y. Kenett, E. Ben-Jacob, A. Bunde, R. Cohen, H. Hermann, J. W. Kantelhardt, J. Kertész, S. Kirkpatrick, J. Kurths, J. Portugali, S. Solomon, Challenges in network science: Applications to infrastructures, climate, social systems and economics, 2012, 214, 1951-6355, 273, 10.1140/epjst/e2012-01695-x | |
24. | Emiliano Cristiani, Benedetto Piccoli, Andrea Tosin, 2012, How can macroscopic models reveal self-organization in traffic flow?, 978-1-4673-2066-5, 6989, 10.1109/CDC.2012.6426549 | |
25. | Giulia Ajmone Marsan, Nicola Bellomo, Andrea Tosin, 2013, Chapter 1, 978-1-4614-7241-4, 1, 10.1007/978-1-4614-7242-1_1 | |
26. | S. Blandin, G. Bretti, A. Cutolo, B. Piccoli, Numerical simulations of traffic data via fluid dynamic approach, 2009, 210, 00963003, 441, 10.1016/j.amc.2009.01.057 | |
27. | Lele Zhang, Jan de Gier, Timothy M. Garoni, Traffic disruption and recovery in road networks, 2014, 401, 03784371, 82, 10.1016/j.physa.2014.01.034 | |
28. | Gabriella Bretti, Benedetto Piccoli, A Tracking Algorithm for Car Paths on Road Networks, 2008, 7, 1536-0040, 510, 10.1137/070697768 | |
29. | Jan de Gier, Timothy M Garoni, Omar Rojas, Traffic flow on realistic road networks with adaptive traffic lights, 2011, 2011, 1742-5468, P04008, 10.1088/1742-5468/2011/04/P04008 | |
30. | Jorge E. Macías‐Díaz, Nauman Ahmed, Muhammad Jawaz, Muhammad Rafiq, Muhammad Aziz ur Rehman, Design and analysis of a discrete method for a time‐delayed reaction–diffusion epidemic model, 2021, 44, 0170-4214, 5110, 10.1002/mma.7096 | |
31. | Amin Mazloumian, Nikolas Geroliminis, Dirk Helbing, The spatial variability of vehicle densities as determinant of urban network capacity, 2010, 368, 1364-503X, 4627, 10.1098/rsta.2010.0099 | |
32. | Amin Mazloumian, Nikolas Geroliminis, Dirk Helbing, The Spatial Variability of Vehicle Densities as Determinant of Urban Network Capacity, 2009, 1556-5068, 10.2139/ssrn.1596042 | |
33. | Kai Lu, Jianwei Hu, Jianghui Huang, Deliang Tian, Chao Zhang, Optimisation model for network progression coordinated control under the signal design mode of split phasing, 2017, 11, 1751-9578, 459, 10.1049/iet-its.2016.0326 | |
34. | Dirk Helbing, The Automation of Society is Next: How to Survive the Digital Revolution, 2015, 1556-5068, 10.2139/ssrn.2694312 | |
35. | Gabor Karsai, Xenofon Koutsoukos, Himanshu Neema, Peter Volgyesi, Janos Sztipanovits, 2019, Chapter 18, 978-3-319-77491-6, 425, 10.1007/978-3-319-77492-3_18 | |
36. | Alessia Marigo, Benedetto Piccoli, A Fluid Dynamic Model for T-Junctions, 2008, 39, 0036-1410, 2016, 10.1137/060673060 | |
37. | Stefan Lämmer, Dirk Helbing, Self-control of traffic lights and vehicle flows in urban road networks, 2008, 2008, 1742-5468, P04019, 10.1088/1742-5468/2008/04/P04019 | |
38. | Xenofon Koutsoukos, Gabor Karsai, Aron Laszka, Himanshu Neema, Bradley Potteiger, Peter Volgyesi, Yevgeniy Vorobeychik, Janos Sztipanovits, SURE: A Modeling and Simulation Integration Platform for Evaluation of Secure and Resilient Cyber–Physical Systems, 2018, 106, 0018-9219, 93, 10.1109/JPROC.2017.2731741 | |
39. | Ding-wei Huang, Persistent oscillations in a traffic model with decision-making, 2020, 2, 2523-3963, 10.1007/s42452-019-1893-2 | |
40. | A. Cascone, R. Manzo, B. Piccoli, L. Rarità, Optimization versus randomness for car traffic regulation, 2008, 78, 1539-3755, 10.1103/PhysRevE.78.026113 | |
41. | Gui-Jun Pan, Sheng-Hong Liu, Mei Li, Jamming in the weighted gradient networks, 2011, 390, 03784371, 3178, 10.1016/j.physa.2011.03.018 | |
42. | CIRO D'APICE, BENEDETTO PICCOLI, VERTEX FLOW MODELS FOR VEHICULAR TRAFFIC ON NETWORKS, 2008, 18, 0218-2025, 1299, 10.1142/S0218202508003042 | |
43. | Martin Schönhof, Dirk Helbing, Criticism of three-phase traffic theory, 2009, 43, 01912615, 784, 10.1016/j.trb.2009.02.004 | |
44. | Massimiliano Caramia, Ciro D’Apice, Benedetto Piccoli, Antonino Sgalambro, Fluidsim: A Car Traffic Simulation Prototype Based on FluidDynamic, 2010, 3, 1999-4893, 294, 10.3390/a3030294 | |
45. | Hossein Zangoulechi, Shahram Babaie, An adaptive traffic engineering approach based on retransmission timeout adjustment for software-defined networks, 2024, 15, 1868-5137, 739, 10.1007/s12652-023-04732-4 |