Processing math: 85%
Research article Special Issues

High-order numerical method for the fractional Korteweg-de Vries equation using the discontinuous Galerkin method

  • The fractional Korteweg-de Vries (KdV) equation generalizes the classical KdV equation by incorporating truncation effects within bounded domains, offering a flexible framework for modeling complex phenomena. This paper develops a high-order, fully discrete local discontinuous Galerkin (LDG) method with generalized alternating numerical fluxes to solve the fractional KdV equation, enhancing applicability beyond the limitations of purely alternating fluxes. An efficient finite difference scheme approximates the fractional derivatives, followed by the LDG method for solving the equation. The scheme is proven unconditionally stable and convergent. Numerical experiments confirm the method's accuracy, efficiency, and robustness, highlighting its potential for broader applications in fractional differential equations.

    Citation: Yanhua Gu. High-order numerical method for the fractional Korteweg-de Vries equation using the discontinuous Galerkin method[J]. AIMS Mathematics, 2025, 10(1): 1367-1383. doi: 10.3934/math.2025063

    Related Papers:

    [1] Youchan Kim, Seungjin Ryu, Pilsoo Shin . Approximation of elliptic and parabolic equations with Dirichlet boundary conditions. Mathematics in Engineering, 2023, 5(4): 1-43. doi: 10.3934/mine.2023079
    [2] Peter Bella, Mathias Schäffner . Local boundedness for p-Laplacian with degenerate coefficients. Mathematics in Engineering, 2023, 5(5): 1-20. doi: 10.3934/mine.2023081
    [3] Lucio Boccardo . A "nonlinear duality" approach to W1,10 solutions in elliptic systems related to the Keller-Segel model. Mathematics in Engineering, 2023, 5(5): 1-11. doi: 10.3934/mine.2023085
    [4] Prashanta Garain, Kaj Nyström . On regularity and existence of weak solutions to nonlinear Kolmogorov-Fokker-Planck type equations with rough coefficients. Mathematics in Engineering, 2023, 5(2): 1-37. doi: 10.3934/mine.2023043
    [5] David Cruz-Uribe, Michael Penrod, Scott Rodney . Poincaré inequalities and Neumann problems for the variable exponent setting. Mathematics in Engineering, 2022, 4(5): 1-22. doi: 10.3934/mine.2022036
    [6] Edgard A. Pimentel, Miguel Walker . Potential estimates for fully nonlinear elliptic equations with bounded ingredients. Mathematics in Engineering, 2023, 5(3): 1-16. doi: 10.3934/mine.2023063
    [7] François Murat, Alessio Porretta . The ergodic limit for weak solutions of elliptic equations with Neumann boundary condition. Mathematics in Engineering, 2021, 3(4): 1-20. doi: 10.3934/mine.2021031
    [8] Huyuan Chen, Laurent Véron . Weak solutions of semilinear elliptic equations with Leray-Hardy potentials and measure data. Mathematics in Engineering, 2019, 1(3): 391-418. doi: 10.3934/mine.2019.3.391
    [9] Lucas C. F. Ferreira . On the uniqueness of mild solutions for the parabolic-elliptic Keller-Segel system in the critical Lp-space. Mathematics in Engineering, 2022, 4(6): 1-14. doi: 10.3934/mine.2022048
    [10] Boumediene Abdellaoui, Pablo Ochoa, Ireneo Peral . A note on quasilinear equations with fractional diffusion. Mathematics in Engineering, 2021, 3(2): 1-28. doi: 10.3934/mine.2021018
  • The fractional Korteweg-de Vries (KdV) equation generalizes the classical KdV equation by incorporating truncation effects within bounded domains, offering a flexible framework for modeling complex phenomena. This paper develops a high-order, fully discrete local discontinuous Galerkin (LDG) method with generalized alternating numerical fluxes to solve the fractional KdV equation, enhancing applicability beyond the limitations of purely alternating fluxes. An efficient finite difference scheme approximates the fractional derivatives, followed by the LDG method for solving the equation. The scheme is proven unconditionally stable and convergent. Numerical experiments confirm the method's accuracy, efficiency, and robustness, highlighting its potential for broader applications in fractional differential equations.



    We consider the general second order elliptic equation in divergence form

    ni=1xiai(x,u(x),Du(x))=b(x,u(x),Du(x)),xΩ, (1.1)

    where Ω is an open set of Rn, n2, the vector field (ai(x,u,ξ))i=1,,n and the right hand side b(x,u,ξ) are Carathéodory applications defined in Ω×R×Rn. We study the elliptic equations (1.1) under some general growth conditions on the gradient variable ξ=Du, named p,q conditions, which we are going to state in the next Section 3.2. Under these assumptions we will obtain the local boundedness of the weak solutions, as stated in Theorem 3.2.

    A strong motivation to study the local boundedness of solutions to (1.1) relies on the recent research in [53], where the local Lipschitz continuity of the weak solutions of the Eq (1.1) has been obtained under general growth conditions, precisely some p,qgrowth assumptions, with the explicit dependence of the differential equation on u, other than on its gradient Du and on the x variable. In [53] the Sobolev class of functions where to start in order to get more regularity of the weak solutions was pointed out, precisely uW1,qloc(Ω)Lloc(Ω). That is, in particular the local boundedness uLloc(Ω) of weak solutions is a starting assumption for more interior regularity; i.e., for obtaining uW1,loc(Ω) and more. When we refer to the classical cases this is a well known aspect which appears in the mathematical literature on a-priori regularity: in fact, for instance, under the so-called natural growth conditions, i.e., when q=p, then the a-priori boundedness of u often is a natural assumption to obtain the boundedness of its gradient Du too; see for instance the classical reference book by Ladyzhenskaya-Ural'tseva [45,Chapter 4,Section 3] and the C1,αregularity result by Tolksdorf [60].

    The aim of this paper is to derive the local boundedness of solutions to (1.1); i.e., to deduce the local boundedness of u only from the growth assumptions on the vector field (ai(x,u,ξ))i=1,,n and the right hand side b(x,u,ξ) in (1.1). The precise conditions and the related results are stated in Section 3.

    We start with a relevant aspect to remark in our context, which is different from what happens in minimization problems and it is peculiar for equations: although under p,qgrowth conditions (with p<q) the Eq (1.1) is elliptic and coercive in W1,ploc(Ω), it is not possible a-priori to look for weak solutions only in the Sobolev class W1,ploc(Ω), but it is necessary to emphasize that the notion of weak solution is consistent if a-priori we assume uW1,qloc(Ω). This is detailed in Section 2.

    Going into more detail, in this article we study the local boundedness of weak solutions to the pelliptic equation (1.1) with qgrowth, 1<pq<p+1, as in (3.2), (3.3) and (3.7)–(3.10). Starting from the integrability condition uW1,qloc(Ω) on the weak solution, under the bound on the ratio qp

    qp<1+1n1

    we obtain uLloc(Ω). The proof is based on the powerful De Giorgi technique [29], by showing first a Caccioppoli-type inequality and then applying an iteration procedure. The result is obtained via a Sobolev embedding theorem on spheres, a procedure introduced by Bella and Schäffner in [3], that allows a dimensional gain in the gap between p and q. This idea has been later used by the same authors in [4], by Schäffner [58] and, particularly close to the topic of our paper, by Hirsch and Schäffner [43] and De Rosa and Grimaldi [30], where the local boundedness of scalar minimizers of a class of convex energy integrals with p,qgrowth was obtained with the bound qp<1+qn1.

    Some references about the local boundedness of solutions to elliptic equations and systems, with general and p,qgrowth conditions, start by Kolodīĭ [44] in 1970 in the specific case of some anisotropic elliptic equations. The local boundedness of solution to classes of anisotropic elliptic equations or systems have been investigated by the authors [18,19,20,21,22,23,24] and by Di Benedetto, Gianazza and Vespri [31]. Other results on the boundedness of solutions of PDEs or of minimizers of integral functionals can be found in Boccardo, Marcellini and Sbordone [7], Fusco and Sbordone [37,38], Stroffolini [59], Cianchi [14], Pucci and Servadei [57], Cupini, Leonetti and Mascolo [17], Carozza, Gao, Giova and Leonetti [12], Granucci and Randolfi [42], Biagi, Cupini and Mascolo [5].

    Interior Lgradient bound, i.e., the local Lipschitz continuity, of weak solutions to nonlinear elliptic equations and systems under non standard growth conditions have been obtained since 1989 in [46,47,48,49,50]. See also the following recent references for other Lipschitz regularity results: Colombo and Mingione [16], Baroni, Colombo and Mingione [1], Eleuteri, Marcellini and Mascolo [34,35], Di Marco and Marcellini [32], Beck and Mingione [2], Bousquet and Brasco [9], De Filippis and Mingione [26,27], Caselli, Eleuteri and Passarelli di Napoli [13], Gentile [39], the authors and Passarelli di Napoli [25], Eleuteri, Marcellini, Mascolo and Perrotta [36]; see also [53]. For other related results see also Byun and Oh [10] and Mingione and Palatucci [55]. The local boundedness of the solution u can be used to achieve further regularity properties, as the Hölder continuity of u or of its gradient Du; we limit here to cite Bildhauer and Fuchs [6], Düzgun, Marcellini and Vespri [33], Di Benedetto, Gianazza and Vespri [31], Byun and Oh [11] as examples of this approach. For recent boundary regularity results in the context considered in this manuscript we mention Cianchi and Maz'ya [15], Bögelein, Duzaar, Marcellini and Scheven [8], De Filippis and Piccinini [28]. A well known reference about the regularity theory is the article [54] by Giuseppe Mingione. We also refer to [51,52,53] and to De Filippis and Mingione [27], Mingione and Rădulescu [56], who have outlined the recent trends and advances in the regularity theory for variational problems with non-standard growths and non-uniform ellipticity.

    In order to investigate the consistency of the notion of weak solution, we anticipate the ellipticity and growth conditions of Section 3, in particular the growth in (3.3), (3.4),

    {|ai(x,u,ξ)|Λ{|ξ|q1+|u|γ1+b1(x)},i=1,,n,|b(x,u,ξ)|Λ{|ξ|r+|u|γ2+b2(x)}. (2.1)

    As well known the integral form of the equation, for a smooth test function φ with compact support in Ω, is

    Ωni=1ai(x,u,Du)φxidx+Ωb(x,u,Du)φdx=0.

    Let us discuss the summability conditions for the pairings above to be well defined. Since each ai in the gradient variable ξ grows at most as |ξ|q1, more generally we can consider test functions φW1,q0(Ω). In fact, starting with the first addendum and applying the Young inequality with conjugate exponents qq1 and q, we obtain the L1 local summability

    |ai(x,u,Du)φxi|Λ{|Du|q1+|u|γ1+b1(x)}|φxi|Λq1q{|Du|q1+|u|γ1+b1(x)}qq1+Λq|φxi|qL1loc(Ω)

    if uW1,qloc(Ω) and if qq1γ1q, where q is the Sobolev conjugate exponent of q, and b1Lqq1loc(Ω). On γ1 equivalently we require (if q<n) γ1qq1q=nqnqq1q=n(q1)nq, which essentially corresponds to our assumption (3.8) below (the difference being the strict sign "<" for compactness reasons). We also observe that the summability condition b1Lqq1loc(Ω) is satisfied if b1Ls1loc(Ω), with s1>nq1, as in (3.10).

    Similar computations apply to |b(x,u,ξ)φ|, again if q<n and with conjugate exponents qq1 and q,

    |b(x,u,Du)φ|Λ{|Du|r+|u|γ2+b2(x)}|φ|Λq1q{|Du|r+|u|γ2+b2(x)}qq1+Λq|φ|qL1loc(Ω)

    and we obtain b2Lqq1loc(Ω) (compare with (3.10), where b2Ls2loc(Ω) with s2>np, since qq1pp1ppp=np) and the conditions for r and γ2 expressed by rqq1q and γ2qq1q; i.e., for the first one,

    rqq1q=qnqnq1nqnq=q+qn1,

    which correspond to the more strict assumption (3.9), with r<p+pn1, with the sign "<" and where q is replaced by p. Finally for γ2 we obtain γ2q1, which again corresponds to our assumption (3.8) with the strict sign.

    Therefore our assumptions for Theorem 3.2 are more strict than that ones considered in this section and they are consistent with a correct definition of weak solution to the elliptic equation (1.1).

    Let ai:Ω×R×RnR, i=1,...,n, and b:Ω×R×RnR be Carathéodory functions, Ω be an open set in Rn, n2. Consider the nonlinear partial differential equation

    ni=1xiai(x,u,Du)=b(x,u,Du). (3.1)

    For the sake of simplicity we use the following notation: a(x,u,ξ)=(ai(x,u,ξ))i=1,...,n, for all i=1,,n.

    We assume the following properties:

    pellipticity condition at infinity:

    there exist an exponent p>1 and a positive constant λ such that

    a(x,u,ξ),ξλ|ξ|p, (3.2)

    for a.e. xΩ, for every uR and for all ξRn such that |ξ|1.

    qgrowth condition:

    there exist exponents qp, γ10, s1>1, a positive constant Λ and a positive function b1Ls1loc(Ω) such that, for a.e. xΩ, for every uR and for all ξRn,

    |a(x,u,ξ)|Λ{|ξ|q1+|u|γ1+b1(x)}; (3.3)

    growth conditions for the right hand side b(x,u,ξ):

    there exist further exponents r0, γ20, s2>1 and a positive function b2Ls2loc(Ω) such that

    |b(x,u,ξ)|Λ{|ξ|r+|u|γ2+b2(x)}, (3.4)

    for a.e. xΩ, for every uR and for all ξRn.

    Without loss of generality we can assume Λ1 and b1,b21 a.e. in Ω. We recall the definition of weak solution to (3.1).

    Definition 3.1. A function uW1,qloc(Ω) is a weak solution to (3.1) if

    Ω{ni=1ai(x,u,Du)φxi+b(x,u,Du)φ}dx=0 (3.5)

    for all φW1,q(Ω), suppφΩ.

    Our aim is to study the local boundedness of weak solutions to (3.1). Since this regularity property is trivially satisfied for functions in W1,qloc(Ω) with q>n, from now on we only consider the case qn; more precisely

    1<p<n,pqn, (3.6)

    since if q>n then weak solutions are Hölder continuous as an application of the Sobolev-Morrey embedding theorem, see Remark 3.3.

    Other assumptions on the exponents are

    {q<1+pqp<1+1n1 (3.7)
    0γ1<n(q1)np,0γ2<n(p1)+pnp, (3.8)
    0r<p+pn1, (3.9)
    s1>nq1,s2>np. (3.10)

    Under the conditions described above the following local boundedness result holds.

    Theorem 3.2 (Boundedness result). Let uW1,qloc(Ω), 1<qn, be a weak solution to the elliptic equation (3.1). If (3.2)–(3.4) and (3.6)–(3.10) hold true, then u is locally bounded. Precisely, for every open set ΩΩ there exist constants R0,c>0 depending on the data n,p,q,r,γ1,γ2,s1,s2 and on the norm uW1,q(Ω) such that uL(BR/2(x0))c for every RR0, with BR0(x0)Ω.

    Remark 3.3. We already observed that if q>n then the weak solutions to (3.1) are locally Hölder continuous. Let us now discuss why in (3.6) we do not consider the case p=q=n. If p=q (n), the same computations in the proof of Theorem 3.2 work with the set of assumptions (3.8)–(3.10). They can be written, coherently with the previous ones, as

    0γ1<pp1p,0γ2<p1 (3.11)
    0r<ppp, (3.12)
    s1>pp(pp)(p1),s2>ppp. (3.13)

    Here p denotes the Sobolev exponent appearing in the Sobolev embedding theorem for functions in W1,p(Ω) with Ω bounded open set in Rn; i.e.,

    p:={npnp if p<nany real number >n, if p=n. (3.14)

    Following the computations in [40,Theorem 2.1] and [41,Chapter 6] it can be proved that the weak solutions to (3.1) are quasi-minima of the functional

    F(u):=Ω(|Du|p+|u|τ+bpp11+bpp12)dx, (3.15)

    with τ:=max{γ1pp1,γ2pp1}. It is known that if

    τ<pandbpp11+bpp12L1+δ  with δ>0 (3.16)

    then the gradient of quasi-minima of the functional (3.15) satisfies a higher integrability property; i.e., they belong to W1,p+ϵ, for some ϵ>0.

    Under our assumptions, (3.16) is satisfied; indeed, taking into account that we are considering p=q, by (3.10)

    s1>np1pp1

    and, by (3.13)

    s2>ppppp1.

    Analogously, by (3.11),

    γ1pp1<p,γ2pp1<(p1)pp1=p.

    In particular, if p=q=n the quasi-minima of (3.15) are in W1,n+ϵloc(Ω) for some ϵ>0, therefore the weak solutions to (3.1) are Hölder continuous. We refer to [41] Chapter 6 for more details.

    If p1 and dN, d2, we define

    (pd):={dpdp if p<dany real number >d, if p=d.

    The Sobolev exponent appearing in the Sobolev embedding theorem for functions in W1,p(Ω), p1, with Ω bounded open set in Rn, is (pn) and will be denoted, as usual, p.

    Let tR, t>0. We define t as follows:

    1t:=min{1t+1n1,1}.

    We have, if n3,

    t={t(n1)t+n1if t>n1n21if 1tn1n2,

    and, if n=2, t=1 for every t.

    We notice that, if n3,

    ((t)n1)={tif  t>n1n2n1n2if  1tn1n2

    and, if n=2, for every t, ((t)n1) stands for any real number greater than 1.

    Remark 4.1. Let us consider the exponents p,q satisfying (3.6) and (3.7) in Section 3. We notice that

    1(ppq+1)={1ppq+1+1n1if q>1+pn11if q1+pn1. (4.1)

    Due to assumption (3.7), if n=2, then (ppq+1)=1.

    Moreover, if we denote t:=(ppq+1) then, if n3,

    (tn1)={ppq+1if q>1+pn1n1n2if q1+pn1, (4.2)

    if instead n=2 than (tn1) is any real number greater than 1.

    Let p,q satisfy (3.6) and (3.7). It is easy to prove that

    ppq+1<q. (4.3)

    In the following it will be useful to introduce the following notation:

    ν:=1(ppq+1)1p,

    or, more explicitly,

    ν={p1pif q1+pn11qp+1n1if q>1+pn1. (4.4)

    Remark 4.2. Assume 1<pq. Then easy computations give

    ν>0q<pnn1,ν=0q=pnn1. (4.5)

    To get the sharp bound for q, we use a result proved in [43], see also [3,4,30,58]. Here we denote Sσ(x0) the boundary of the ball Bσ(x0) in Rn.

    Lemma 4.3. Let nN, n2. Consider Bσ(x0) ball in Rn and uL1(Bσ(x0)) and s>1. For any 0<ρ<σ<+, define

    I(ρ,σ,u):=inf{Bσ(x0)|u||Dη|sdx:ηC10(Bσ(x0)), 0η1, η=1  in  Bρ(x0)}.

    Then for every δ]0,1],

    I(ρ,σ,v)(σρ)s1+1δ(σρ(Sr(x0)|v|dHn1)δdr)1δ.

    The following result is the Sobolev inequality on spheres.

    Lemma 4.4. Let nN, n3, and γ[1,n1[. Then there exists c depending on n and γ such that for every uW1,p(S1(x0),dHn1)

    (S1(x0)|u|(γn1)dHn1)1(γn1)c(S1(x0)(|Du|γ+|u|γ)dHn1)1γ.

    Lemma 4.5. Let n=2. Then there exists c such that for every uW1,1(S1(x0),dH1) and every r>1,

    (S1(x0)|u|rdH1)1rc(S1(x0)(|Du|+|u|)dH1).

    Proof. By the one-dimensional Sobolev inequality

    uL(S1(x0))cuW1,1(S1(x0)).

    Then, for every r>1,

    (S1(x0)|u|rdHn1)1rcuL(S1(x0))cuW1,1(S1(x0)).

    We conclude this section, by stating a classical result; see, e.g., [41]. that will be useful to prove Theorem 3.2.

    Lemma 4.6. Let α>0 and (Jh) a sequence of real positive numbers, such that

    Jh+1AλhJ1+αh,

    with A>0 and λ>1.

    If J0A1αλ1α2, then JhλhαJ0 and limhJh=0.

    Under the assumptions in Section 3 we have the following Caccioppoli-type inequality.

    Given a measurable function u:ΩR, with Ω open set in Rn, and fixed x0Rn, kR and τ>0, we denote the super-level set of u as follows:

    Ak,τ(x0):={xBτ(x0):u(x)>k};

    usually dropping the dependence on x0. We denote |Ak,τ| its Lebesgue measure.

    Proposition 5.1 (Caccioppoli's inequality). Let uW1,qloc(Ω) be a weak solution to (3.1). If (3.6)–(3.10) hold true, then there exists a constant c>0, such that for any BR0(x0)Ω, 0<ρ<RR0

    Bρ|D(uk)+|pdxC(n,p,q,R0)(Rρ)(ppq+11+ppq+1(ppq+1))××(uk)+ppq+1W1,p(BR)|Ak,R|ppq+1ν+c(uk)+pγ1q1W1,p(BR)|Ak,R|1pγ1p(q1)+c(uk)+pprW1,p(BR)|Ak,R|11pprp+c(uk)+γ2+1W1,p(BR)|Ak,R|1γ2+1p+c(uk)+γ2W1,p(BR)|Ak,R|1γ2p+ckγ2(uk)+W1,p(BR)|Ak,R|11p+c(kpγ1q1+kγ2)|Ak,R|+c(uk)+W1,p(BR)|Ak,R|11s21p+c|Ak,R|1ps1(q1) (5.1)

    with ν as in (4.4) and c is a constant depending on n,p,q,r,R0, the Ls1-norm of b1 and the Ls2-norm of b2 in BR0.

    Proof. Without loss of generality we assume that the functions b1,b2 in (3.3) are a.e. greater than or equal to 1 in Ω. We split the proof into steps.

    Step 1. Consider BR0(x0)Ω, 0<R02ρ<RR01.

    We set

    A(ρ,R):={ηC0(BR(x0)):η=1in Bρ(x0), 0η1}. (5.2)

    For every ηA(ρ,R) and fixed k>1 we define the test function φk as follows

    φk(x):=(u(x)k)+[η(x)]μfor a.e. xBR0(x0),

    with

    μ:=ppq+1 (5.3)

    that is greater than 1 because q>1.

    Notice that φkW1,q0(BR0(x0)), suppφkBR(x0).

    Step 2. Let us consider the super-level sets:

    Ak,R:={xBR(x0):u(x)>k}.

    In this step we prove that

    Ak,ρ|Du|pdxc{Ak,R|Dη|ppq+1(uk)ppq+1dx+Ak,R((uk)pγ1q1+(uk)ppr+(uk)γ2+1+(uk)γ2)dx+cAk,R(kγ2(uk)+b2(uk)+kpγ1q1+kγ2+bpq11)dx} (5.4)

    for some constant c independent of u and η.

    Using φk as a test function in (3.5) we get

    I1:=Ak,Ra(x,u,Du),Duημdx=μAk,Ra(x,u,Du),Dηημ1(uk)dxAk,Rb(x,u,Du)(uk)ημdx=:I2+I3. (5.5)

    Now, we separately consider and estimate Ii, i=1,2,3.

    ESTIMATE OF I3

    Using (3.4) we obtain

    I3ΛAk,Rημ{|Du|r(uk)+|u|γ2(uk)+b2(uk)}dx.

    We estimate the right-hand side using the Young inequality, with exponents pr and ppr, and (3.2). There exists c, depending on λ, Λ, n, p, r, such that

    Λ|Du|r(uk)λ4|Du|p+c(uk)ppr14a(x,u,Du),Du+c(uk)ppra.e. in {|Du|1}. (5.6)

    and, recalling that b21,

    Λ|Du|r(uk)Λ(uk)Λb2(uk)a.e. in {|Du|<1}.

    Therefore,

    I314Ak,R{|Du|1}a(x,u,Du),Duημdx+cAk,Rημ{(uk)ppr+|u|γ2(uk)+b2(uk)}dx. (5.7)

    Collecting (5.5)–(5.7) we get

    34Ak,R{|Du|1}a(x,u,Du),DuημdxI2Ak,R{|Du|1}a(x,u,Du),Duημdx+cAk,Rημ{(uk)ppr+|u|γ2(uk)+b2(uk)}dx.

    Using (3.2) and (3.3) we get

    3λ4Ak,R{|Du|1}|Du|pημdxI2+2ΛAk,R{|Du|1}(|u|γ2+b1)ημdx+cAk,Rημ{(uk)ppr+|u|γ2(uk)+b2(uk)}dx. (5.8)

    ESTIMATE OF I2. For a.e. xAk,R{η0} we have

    μ|a(x,u,Du),Dη|(uk)ημ1μΛ{|Du|q1+|u|γ1+b1}|Dη|(uk)ημ1. (5.9)

    For a.e. x{|Du|1}Ak,R{η0}, by q<p+1 and the Young inequality with exponents pq1 and ppq+1, and noting that μ1=μq1p, we get

    μΛ|Du|q1|Dη|(uk)ημ1λ4|Du|pημ+c(λ,Λ)μppq+1|Dη|ppq+1(uk)ppq+1. (5.10)

    On the other hand we have

    μΛ|Du|q1|Dη|(uk)ημ1μΛ|Dη|(uk)ημ1 (5.11)

    a.e. in {|Du|<1}Ak,R{η0}.

    Therefore,

    I2λ4Ak,R{|Du|1}|Du|pημdx+c(λ,Λ)μppq+1Ak,R{|Du|1}|Dη|ppq+1(uk)ppq+1dx+Ak,R|Dη|(uk)ημ1dx+cAk,R|Dη|ημ1{|u|γ1+b1}(uk)dx.

    By (5.8) and the inequality above, we get

    λ2Ak,R{|Du|1}|Du|pημdxc(λ,Λ,p,q)Ak,R|Dη|ppq+1(uk)ppq+1dx+Ak,R|Dη|ημ1(|u|γ1+b1)(uk)dx+cAk,Rημ((uk)ppr+|u|γ2(uk)+|u|γ2+b2(uk)+b1)dx.

    Taking into account that b11

    Ak,R|Du|pημdx=Ak,R{|Du|1}|Du|pημdx+Ak,R{|Du|<1}|Du|pημdxAk,R{|Du|1}|Du|pημdx+Ak,Rb1ημdx,

    therefore

    Ak,R(|Du|pb1)ημdxAk,R{|Du|1}|Du|pημdx

    and we obtain

    Ak,ρ|Du|pdxcAk,R|Dη|ppq+1(uk)ppq+1dx+Ak,R|Dη|ημ1(|u|γ1+b1)(uk)dx+cAk,Rημ((uk)ppr+|u|γ2(uk)+|u|γ2+b2(uk)+b1)dx. (5.12)

    We have

    Ak,R|Dη|ημ1|u|γ1(uk)dxc(γ1)Ak,R|Dη|ημ1(uk)γ1+1dx
    +c(γ1)Ak,R|Dη|ημ1kγ1(uk)dx.

    By Hölder inequality with exponents pq1 and ppq+1, we get

    Ak,R|Dη|ημ1(uk)γ1+1dx=Ak,R|Dη|(uk)ημ1(uk)γ1dx
    cAk,R|Dη|ppq+1(uk)ppq+1dx+cAk,Rηp(μ1)q1(uk)pγ1q1dx.

    Analogously,

    Ak,R|Dη|ημ1kγ1(uk)dxcAk,R|Dη|ppq+1(uk)ppq+1dx
    +cAk,Rηp(μ1)q1kpγ1q1dx

    and

    Ak,R|Dη|ημ1b1(uk)dxcAk,R|Dη|ppq+1(uk)ppq+1dx
    +cAk,Rηp(μ1)q1bpq11dx,

    obtaining

    Ak,ρ|Du|pdxc{Ak,R|Dη|ppq+1(uk)ppq+1dx+Ak,R((uk)pγ1q1+kpγ1q1+bpq11)dx+cAk,R((uk)ppr+|u|γ2(uk)+|u|γ2+b2(uk)+b1)dx.}.

    Therefore,

    Ak,ρ|Du|pdxc{Ak,R|Dη|ppq+1(uk)ppq+1dx+Ak,R((uk)pγ1q1+(uk)ppr+(uk)γ2+1+(uk)γ2)dx+cAk,R(kγ2(uk)+kγ2+b2(uk)+b1+kpγ1q1+bpq11)dx.}.

    Since b11 and q<p+1, then

    b1+bpq112bpq11,

    and we get (5.4).

    Step 3. In this step we prove that

    Bρ|D(uk)+|pdxC(n,p,q,R0)(Rρ)(ppq+11+ppq+1(ppq+1))××(uk)+ppq+1W1,p(BR(x0))|Ak,R|ppq+1ν+cAk,R((uk)pγ1q1+(uk)ppr+(uk)γ2+1+(uk)γ2)dx+cAk,R(kγ2(uk)+b2(uk)+kpγ1q1+kγ2+bpq11)dx. (5.13)

    We obtain this estimate starting by (5.4).

    Consider τ(ρ,R) and define the function

    S1(0)yw(y):=(uk)+(x0+τy)

    where

    S1(0):={yRn:|y|=1}.

    This function w is in W1,(ppq+1)(S1,dHn1), with

    1(ppq+1)=min{1ppq+1+1n1,1}. (5.14)

    Let us consider the case

    q>1+pn1.

    By (4.1) in Remark 4.1, we get

    1(ppq+1)=1ppq+1+1n1. (5.15)

    By (4.2) and the Sobolev embedding theorem, see Lemma 4.4, we get

    (S1|w|ppq+1dHn1)pq+1pc(n,p,q)(S1(|Dw|(ppq+1)+|w|(ppq+1))dHn1)1/(ppq+1). (5.16)

    When

    q1+pn1,

    we distinguish among two cases: n3 and n=2. If n3, by using Hölder's inequality, we get

    (S1|w|ppq+1dHn1)pq+1pc(n,p,q)(S1|w|n1n2dHn1)n2n1,

    by (4.2) and the Sobolev embedding theorem, see Lemma 4.4, we obtain the inequality (5.16).

    If n=2, then (ppq+1)=1, then we obtain the inequality (5.16) by applying Lemma 4.5 with r=ppq+1.

    Let A(ρ,R) be as in (5.2). We apply Lemma 4.3, with

    BR(x0)yv(y):=(uk)ppq+1+(y),

    that is a function in L1(BR(x0)). Using (5.16) and recalling that R02ρ<RR0, reasoning as in [30], we get

    infA(ρ,R)BR(x0)|Dη|ppq+1(uk)ppq+1+dxC(n,p,q,R0)(Rρ)(ppq+11+ppq+1(ppq+1))××(RρSτ(0)(|D(uk)+(x0+y)|(ppq+1)+|(uk)+(x0+y)|(ppq+1))dHn1(y)dτ)ppq+1/(ppq+1). (5.17)

    By coarea formula, inequality (5.17) implies

    infA(ρ,R)BR(x0)|Dη|ppq+1(uk)ppq+1+dxC(n,p,q,R0)(Rρ)(ppq+11+ppq+1(ppq+1))××(uk)+ppq+1W1,(ppq+1)(BR(x0)Bρ(x0))

    and, taking into account (3.7), Remark 4.1 and (4.5)

    (ppq+1)<p1(ppq+1)>1pν>0qp<1+1n1,

    by Hölder's inequality we get

    infA(ρ,R)BR(x0)|Dη|ppq+1(uk)ppq+1+dxC(n,p,q,R0)(Rρ)(ppq+11+ppq+1(ppq+1))××(uk)+ppq+1W1,p(BR(x0))|Ak,R|ppq+1ν (5.18)

    By (5.4) we get

    Ak,ρ|Du|pdxC(n,p,q,R0)(Rρ)(ppq+11+ppq+1(ppq+1))××(uk)+ppq+1W1,p(BR(x0))|Ak,R|ppq+1ν+cAk,R((uk)pγ1q1+(uk)ppr+(uk)γ2+1+(uk)γ2)dx+cAk,R(kγ2(uk)+b2(uk)+kpγ1q1+kγ2+bpq11)dx.

    Since

    Bρ|D(uk)+|pdx=Ak,ρ|D(uk)+|pdx=Ak,ρ|Du|pdx

    we get (5.13).

    Step 4. In this step we estimate the integrals at the right hand side of (5.13).

    Consider

    J1:=Ak,R((uk)pγ1q1+(uk)ppr+(uk)γ2+1+(uk)γ2)dx.

    ESTIMATE OF J1.

    By assumptions (3.8) and (3.9),

    max{pγ1q1,γ2+1,ppr}<p.

    Therefore, by using Hölder inequality with exponent p(q1)pγ1 we get

    Ak,R(uk)pγ1q1dx(Ak,R(uk)pdx)pγ1p(q1)|Ak,R|1pγ1p(q1);

    Hölder inequality with exponent pprp implies

    Ak,R(uk)pprdx(Ak,R(uk)pdx)1pprp|Ak,R|11pprp.

    Moreover, by using Hölder inequality with exponent pγ2+1 we get

    Ak,R(uk)γ2+1dx(Ak,R(uk)pdx)γ2+1p|Ak,R|1γ2+1p;

    by using Hölder inequality with exponent pγ2 we get

    Ak,R(uk)γ2dx(Ak,R(uk)pdx)γ2p|Ak,R|1γ2p.

    Therefore, by using the Sobolev embedding theorem

    J1(uk)+pγ1q1W1,p(BR)|Ak,R|1pγ1p(q1)+(uk)+pprW1,p(BR)|Ak,R|11pprp+(uk)+γ2+1W1,p(BR)|Ak,R|1γ2+1p+(uk)+γ2W1,p(BR)|Ak,R|1γ2p.

    Let us consider now the following integral in (5.13):

    J2:=Ak,R(kγ2(uk)+b2(uk)+kpγ1q1+kγ2+bpq11)dx.

    Trivially,

    Ak,Rkγ2(uk)dxkγ2(uk)+1pLp(Ak,R)|Ak,R|11pkγ2(uk)+W1,p(Ak,R)|Ak,R|11p.

    By assumption b2Ls2, s2>np=ppp. Since ppp>pp1, then s2s21<p. Therefore, by Hölder inequality

    Ak,Rb2(uk)dxb2Ls2(Ak,R)(uk)+Ls2s21b2Ls2(BR)(uk)+Lp(Ak,R)|Ak,R|11s21p,

    which implies

    Ak,Rb2(uk)dxb2Ls2(BR)(uk)+W1,p(BR)|Ak,R|11s21p.

    Now, b1Ls1 with s1>pq1; by using Hölder inequality with exponent s1(q1)p we get

    Ak,Rbpq11dx(Ak,Rbs11dx)ps1(q1)|Ak,R|1ps1(q1).

    We obtain

    J2kγ2(uk)+W1,p((BR))|Ak,R|11p+(kpγ1q1+kγ2)|Ak,R|+b2Ls2(BR)(uk)+W1,p(BR)|Ak,R|11s21p+b1pq1Ls1(BR)|Ak,R|1ps1(q1).

    Step 5. By Steps 3, 4 we get

    Br|D(uk)+|pdxC(n,p,q,R0)(Rρ)(ppq+11+ppq+1(ppq+1))××(uk)+ppq+1W1,p(BR)|Ak,R|ppq+1ν+c(uk)+pγ1q1W1,p(BR)|Ak,R|1pγ1p(q1)+c(uk)+pprW1,p(BR)|Ak,R|11pprp+c(uk)+γ2+1W1,p(BR)|Ak,R|1γ2+1p+c(uk)+γ2W1,p(BR)|Ak,R|1γ2p+ckγ2(uk)+W1,p(BR)|Ak,R|11p+c(kpγ1q1+kγ2)|Ak,R|+cb2Ls2(BR)(uk)+W1,p(BR)|Ak,R|11s21p+cb1pq1Ls1(BR)|Ak,R|1ps1(q1)

    and the inequality (5.1) follows.

    Let uW1,qloc(Ω), 1<qn, be weak solution to (3.1). Consider ΩΩ an open set.

    I case q>p. Let BR0(x0)Ω.

    For every k0

    BR0(x0)(uk)p+dx+BR0(x0)|D(uk)+|pdxBR0(x0)(|u|k)p+χ{xBR0(x0):|u|>k}(x)dx+BR0(x0)|Du|pχ{xBR0(x0):|u|>k}(x)dxBR0(x0)(|u|p+|Du|p)χ{xBR0(x0):|u|>k}(x)dx(BR0(x0)(|u|q+|Du|q)dx)p/q|{xBR0(x0):|u|>k}|1p/qupW1,q(BR0(x0))|BR0(x0)|1p/q. (6.1)

    In particular, chosen R0 such that

    |BR0(x0)|upqqpW1,q(Ω)

    we get

    (uk)W1,p(BR0(x0))<1k0. (6.2)

    II case q=p. By a well known result by Giaquinta and Giusti [40], the gradient of the weak solution satisfies a higher integrability property: its gradient is in Lp+ε(BR0(x0)), for some ε>0 sufficiently small. Moreover, uLp(BR0(x0)); because p=q, we can repeat the above argument with q replaced by p+ε so obtaining (6.1). R0>0 depends on the norm uW1,p+ε(BR0(x0)). Again, by the Giaquinta and Giusti result, the norm uW1,p+ε(BR0(x0)) can be estimated in terms of the uW1,p(Ω) for BR0(x0)ΩΩ.

    Finally, we can summarize: in both cases, either if q>p or if q=p, we can choose R0 such that (6.2) holds with R0>0 depending on the norm uW1,q(Ω). We also assume R0<1 such that |BR0|<1, 0<RR0.

    Define the decreasing sequences

    ρh:=R2+R2h+1=R2(1+12h).

    Fixed a positive constant d2, to be chosen later, define the increasing sequence of positive real numbers (kh)

    kh:=d(112h+1),hN.

    Define the decreasing sequence (Jh),

    Jh:=(ukh)+pW1,p(Bρh(x0)).

    Notice that

    ρ0=R,limρ+R2(1+12h)=R2,
    k0:=d2,limh+kh=d.

    Moreover, by (6.2),

    JhJ0=(ud2)+pW1,p(BR(x0))<1.

    Let us introduce the following notation:

    τ:=max{pppq+1ν+(ppq+11+ppq+1(ppq+1)),p}, (6.3)
    θ:=min{pppq+1ν,ppγ1q1,pppr,pγ21,pp,p(11s2)1,p(1ps1(q1))} (6.4)

    and

    σ:=min{1pq+1+ppq+1ν,ppps1(q1),pp(11s2)}, (6.5)

    where ν is defined in (4.4).

    Proposition 6.1 (Estimate of Jh+1). Let uW1,qloc(Ω) be a weak solution to (3.1). Assume (3.2)–(3.4) with the exponents satisfying the inequalities listed in Section 3.1. Then for every hN

    Jh+1c(2τ)hdθJσh, (6.6)

    where c is a constant depending on n,p,q,r,R0, the Ls1-norm of b1 and the Ls2-norm of b2 in BR0.

    We precede the proof with the following remark.

    Remark 6.2. We remark that, by assumptions (3.6)–(3.10), then τ,θ>0 and σ>1. As far as these inequalities are concerned, we remark that

    p>p;
    ν>0(see (4.5));
    1pq+1+ppq+1ν>1pν>pq

    that is satisfied, because pq

    p>pprr<pppr<p+pn1;
    p>pγ1q1γ1<pq1pγ1<n(q1)np;
    γ2<p1;
    ppps1(q1)>1ps1(q1)<1pps1>nq1

    that is the first assumption in (3.10); this assumption also implies

    s1>pq1>0

    that is equivalent to

    1ps1(q1)>pp>0.

    By the second assumption in (3.10),

    s2>nps2>ppppp(11s2)>1.

    Proof of Proposition 6.1. By (5.1), used with k=kh+1, ρ=ρh+1, R=ρh, we have

    Bρh+1|D(ukh+1)+|pdxC(n,p,q,R0)(ρhρh+1)(ppq+11+ppq+1(ppq+1))××(ukh+1)+ppq+1W1,p(Bρh)|Akh+1,ρh|ppq+1ν+c(ukh+1)+pγ1q1W1,p(Bρh+1)|Akh+1,R|1pγ1p(q1)+c(ukh+1)+pprW1,p(Bρh+1)|Akh+1,R|11pprp+c(ukh+1)+γ2+1W1,p(Bρh+1)|Akh+1,R|1γ2+1p+c(ukh+1)+γ2W1,p(Bρh+1)|Akh+1,R|1γ2p+ckγ2h+1(ukh+1)+W1,p(Bρh+1)|Akh+1,R|11p+c(kpγ1q1h+1+kγ2h+1)|Akh+1,R|+c(ukh+1)+W1,p(Bρh+1)|Akh+1,R|11s21p+c|Akh+1,R|1ps1(q1). (6.7)

    Let us write the estimate above as

    Bρh+1|D(ukh+1)+|pdxc(ρhρh+1)(ppq+11+ppq+1(ppq+1))H1+c(H2+H3+H4+H5+H6+H7+H8+H9). (6.8)

    To estimate the sum at the right-hand side it is useful to remark that, for all h,

    kh+1kh=d2h+2 (6.9)

    and

    kh+1kh<ukhin Akh+1,ρh.

    Since

    |Akh+1,ρh|Akh+1,ρh(ukhkh+1kh)pdx(uk)+pLp(Bρh)1(kh+1kh)p,

    by the Sobolev inequality we get

    |Akh+1,ρh|c(n,p)Jpph(kh+1kh)p,

    that, together with (6.9), gives

    \begin{equation} | A_{k_{h+1}, \rho_h}|\le c(n, p) J_{h}^{\frac{p^*}{p}}\left(\frac{2^{h}}{d}\right)^{p^*}. \end{equation} (6.10)

    Moreover,

    \begin{align} \|(u-k_{h+1})_+\|^p_{W^{1, p}(B_{\rho_h}(x_0))} & = \int_{A_{k_{h+1}, \rho_h}}(u-k_{h+1})^p\, dx +\int_{A_{k_{h+1}, \rho_h}}|D(u-k_{h+1})|^p\, dx \\ & \le \int_{A_{k_{h}, \rho_h}}(u-k_{h})^p\, dx +\int_{A_{k_{h}, \rho_h}}|D(u-k_{h})|^p\, dx \\ & \le J_{h}. \end{align} (6.11)

    Inequalities (6.10) and (6.11) imply that

    \|(u-k_{h+1})_+\|_{W^{1, p}(B_{\rho_h}(x_0))}|A_{k_{h+1}, R}|^{-\frac{1}{p^*}}\le c(n, p)J_{h}^{\frac{1}{p}}\frac{J_{h}^{\frac{p^*}{p}\left(-\frac{1}{p^*}\right)}}{(k_{h+1}-k_h)^{p^*\left(-\frac{1}{p^*}\right)}}

    therefore, by (6.9),

    \begin{equation} \|(u-k_{h+1})_+\|_{W^{1, p}(B_{\rho_h}(x_0))}|A_{k_{h+1}, R}|^{-\frac{1}{p^*}}\le c(n, p)\left(\frac{2^{h}}{d}\right)^{-1}. \end{equation} (6.12)

    This estimate, together with (6.10), implies:

    \begin{equation} H_2\le c(n, p, q, \gamma_1)\left(\frac{2^{h}}{d}\right)^{-\frac{p\gamma_1}{q-1}}|A_{k_{h+1}, R}|\le c(n, p, q, \gamma_1) \left(\frac{2^{h}}{d}\right)^{p^*-\frac{p\gamma_1}{q-1}} J_{h}^{\frac{p^*}{p}}, \end{equation} (6.13)

    and, analogously,

    \begin{equation} H_3\le c(n, p, r)\left(\frac{2^{h}}{d}\right)^{p^*-\frac{p}{p-r}}J_{h}^{\frac{p^*}{p}}, \end{equation} (6.14)
    \begin{equation} H_4\le c(n, p, \gamma_2)\left(\frac{2^{h}}{d}\right)^{p^*-\gamma_2-1}J_{h}^{\frac{p^*}{p}}, \end{equation} (6.15)
    \begin{equation} H_5\le c(n, p, \gamma_2)\left(\frac{2^{h}}{d}\right)^{p^*-\gamma_2}J_{h}^{\frac{p^*}{p}}, \end{equation} (6.16)
    \begin{equation} H_8\le c(n, p)\left(\frac{2^{h}}{d}\right)^{-1}|A_{k_{h+1}, R}|^{1-\frac{1}{s_2}} \le c(n, p, s_2) \left(\frac{2^{h}}{d}\right)^{p^*\left(1-\frac{1}{s_2}\right)-1} J_{h}^{\frac{p^*}{p}\left(1-\frac{1}{s_2}\right)}, \end{equation} (6.17)
    \begin{equation} H_9\le c(n, p, q, s_1) \left(\frac{2^{h}}{d}\right)^{p^*\left(1-\frac{p}{s_1(q-1)}\right)}J_{h}^{\frac{p^*}{p}-\frac{p^*}{s_1(q-1)}}. \end{equation} (6.18)

    Moreover, taking into account that

    k_{h+1} = d\left( 1-\frac{1}{2^{h+2}}\right)\le d,
    \begin{equation} H_6\le c(n, p) d^{\gamma_2}\left(\frac{2^{h}}{d}\right)^{p^*-1}J_{h}^{\frac{p^*}{p}} = c(n, p)\frac{2^{h(p^*-1)}}{d^{p^*-\gamma_2-1}}J_{h}^{\frac{p^*}{p}} \end{equation} (6.19)
    \begin{equation} H_7\le c\left( \frac{2^{hp^*}}{d^{p^*-\frac{p\gamma_1}{q-1}}} + \frac{2^{hp^*}}{d^{p^*-\gamma_2}} \right) J_{h}^{\frac{p^*}{p}}. \end{equation} (6.20)

    Let us now estimate H_1 .

    Inequalities (6.10) and (6.11) imply

    \begin{align*} \nonumber & H_1: = \|(u-k_{h+1})_+\|_{W^{1, p}(B_{\rho_h}(x_0))}^{\frac{p}{p-q+1}} |A_{k_{h+1}, \rho_h}|^{\frac{p}{p-q+1}\nu} \\ \nonumber &\le c(n, p, q)J_{h}^{\frac{1}{p-q+1}} \left( \frac{J_{h}^{\frac{p^*}{p}}}{(k_{h+1}-k_h)^{p^*}}\right)^{\frac{p}{p-q+1}\nu} \end{align*}

    that gives

    H_1\le c(n, p, q) \left(\frac{2^{h}}{d}\right)^{\frac{pp^*}{p-q+1}\nu} J_{h}^{\frac{1}{p-q+1}+\frac{p^*}{p-q+1}\nu}.

    Taking into account that for every h

    \frac{1}{4} \frac{R_0}{2^{h+1}}\le \rho_h-\rho_{h+1} = \frac{R}{2^{h+2}}\le \frac{1}{4} \frac{R_0}{2^{h}},

    we conclude that

    \begin{align} & \left(\rho_h-\rho_{h+1}\right)^{-\left(\frac{p}{p-q+1}-1+\frac{\frac{p}{p-q+1}}{\left(\frac{p}{p-q+1}\right)_{*}}\right)}H_1\\ & \le c(n, p, q, R_0) \frac{(2^h)^{\frac{pp^*}{p-q+1}\nu+\left(\frac{p}{p-q+1}-1+\frac{\frac{p}{p-q+1}} {\left(\frac{p}{p-q+1}\right)_{*}}\right)}}{d^{\frac{pp^*}{p-q+1}\nu}}J_{h}^{\frac{1}{p-q+1}+\frac{p^*}{p-q+1}\nu}. \end{align} (6.21)

    Collecting (6.13)–(6.21), by (6.8) we get

    \begin{align} & \int_{B_{\rho_{h+1}}}|D(u-k_{h+1})_+|^p\, dx\le c\frac{(2^h)^{\frac{pp^*}{p-q+1}\nu+\left(\frac{p}{p-q+1}-1+\frac{\frac{p}{p-q+1}} {\left(\frac{p}{p-q+1}\right)_{*}}\right)}}{d^{\frac{pp^*}{p-q+1}\nu}}J_{h}^{\frac{1}{p-q+1}+\frac{p^*}{p-q+1}\nu} \\ &+c\left\{\left(\frac{2^{h}}{d}\right)^{p^*-\frac{p\gamma_1}{q-1}}+ \left(\frac{2^{h}}{d}\right)^{p^*-\frac{p}{p-r}} +\left(\frac{2^{h}}{d}\right)^{p^*-\gamma_2-1} +\left(\frac{2^{h}}{d}\right)^{p^*-\gamma_2}\right.\\ &\left. +\frac{2^{h(p^*-1)}}{d^{p^*-\gamma_2-1}} +\frac{2^{hp^*}}{d^{p^*-\frac{p\gamma_1}{q-1}}}+\frac{2^{hp^*}}{d^{p^*-\gamma_2}} \right\} J_{h}^{\frac{p^*}{p}} \\ & +c\left(\frac{2^{h}}{d}\right)^{p^*\left(1-\frac{1}{s_2}\right)-1} J_{h}^{\frac{p^*}{p}\left(1-\frac{1}{s_2}\right)} +c\left(\frac{2^{h}}{d}\right)^{p^*\left(1-\frac{p}{s_1(q-1)}\right)}J_{h}^{\frac{p^*}{p}-\frac{p^*}{s_1(q-1)}}. \end{align} (6.22)

    Let us now add to both sides of (6.22) the integral \int_{B_{\rho_{h+1}}}|(u-k_{h+1})_+|^p\, dx .

    By Hölder inequality

    \int_{B_{\rho_{h+1}}}((u-k_{h+1})_+)^p\, dx \le \left(\int_{B_{\rho_{h+1}}}((u-k_{h+1})_+)^{p^*}\, dx\right)^{\frac{p}{p^*}}|A_{k_{h+1}, \rho_{h+1}}|^{1-\frac{p}{p^*}}.

    Since

    \int_{B_{\rho_{h+1}}}((u-k_{h+1})_+)^{p^*}\, dx\le \int_{B_{\rho_{h+1}}}((u-k_{h})_+)^{p^*}\, dx\le \int_{B_{\rho_{h}}}((u-k_{h})_+)^{p^*}\, dx,

    the Sobolev embedding theorem gives

    \begin{equation} \int_{B_{\rho_{h+1}}}((u-k_{h+1})_+)^p\, dx\le c\|(u-k_{h})_+\|_{W^{1, p}(B_{\rho_{h}})}^{p}|A_{k_{h+1}, \rho_{h+1}}|^{1-\frac{p}{p^*}}. \end{equation} (6.23)

    Taking into account (6.10), we obtain

    |A_{k_{h+1}, \rho_{h+1}}|^{1-\frac{p}{p^*}}\le |A_{k_{h+1}, \rho_{h}}|^{1-\frac{p}{p^*}}\le c(n, p)\left(\frac{2^{h}}{d}\right)^{p^*-p} J_{h}^{\frac{p^*}{p}-1};

    therefore, the inequality (6.23) implies

    \begin{equation} \int_{B_{\rho_{h+1}}}((u-k_{h+1})_+)^p\, dx\le c(n, p) \left(\frac{2^{h}}{d}\right)^{p^*-p} J_{h}^{\frac{p^*}{p}}. \end{equation} (6.24)

    Inequalities (6.22) and (6.24) give

    \begin{align} & J_{h+1}\le c\frac{(2^h)^{\frac{pp^*}{p-q+1}\nu+\left(\frac{p}{p-q+1}-1+\frac{\frac{p}{p-q+1}} {\left(\frac{p}{p-q+1}\right)_{*}}\right)}}{d^{\frac{pp^*}{p-q+1}\nu}}J_{h}^{\frac{1}{p-q+1}+\frac{p^*}{p-q+1}\nu} \\ &+c\left\{\left(\frac{2^{h}}{d}\right)^{p^*-\frac{p\gamma_1}{q-1}}+ \left(\frac{2^{h}}{d}\right)^{p^*-\frac{p}{p-r}} +\left(\frac{2^{h}}{d}\right)^{p^*-\gamma_2-1} +\left(\frac{2^{h}}{d}\right)^{p^*-\gamma_2}\right.\\ & \left.+\frac{2^{h(p^*-1)}}{d^{p^*-\gamma_2-1}} +\frac{2^{hp^*}}{d^{p^*-\frac{p\gamma_1}{q-1}}} +\frac{2^{hp^*}}{d^{p^*-\gamma_2}} +\left(\frac{2^{h}}{d}\right)^{p^*-p} \right\} J_{h}^{\frac{p^*}{p}} \\ & +c\left(\frac{2^{h}}{d}\right)^{p^*\left(1-\frac{1}{s_2}\right)-1} J_{h}^{\frac{p^*}{p}\left(1-\frac{1}{s_2}\right)} +c\left(\frac{2^{h}}{d}\right)^{p^*\left(1-\frac{p}{s_1(q-1)}\right)}J_{h}^{\frac{p^*}{p}-\frac{p^*}{s_1(q-1)}}. \end{align} (6.25)

    where c is a constant depending on n, p, q, r, R_0 , the L^{s_1} -norm of b_1 and the L^{s_2} -norm of b_2 in B_{R_0} .

    By taking in account the notation in (6.3)–(6.5), we get, by (6.25), the inequality (6.6).

    We are now ready to prove our regularity result.

    Proof of Theorem 3.2. By Proposition 6.1, for every h\in \mathbb{N} ,

    J_{h+1}\le c\frac{(2^h)^{\tau}}{d^{\theta}}J_h^{\sigma},

    where c is a constant depending on n, p, q, R_0 , the L^{s_1} -norm of b_1 and the L^{s_2} -norm of b_2 in B_{R_0} and for every d\ge 2 . Thus, the following inequality holds:

    J_{h+1}\le A\lambda^hJ_h^{1+\alpha},

    with

    A = \frac {c}{d^{\theta}}, \ \ \lambda = 2^{\tau}, \ \ \alpha = \sigma-1,

    where \theta , \tau and \sigma are defined in (6.4), (6.3), (6.5). We recall that \theta, \tau > 0, \sigma-1 > 0 , see Remark 6.2.

    To apply Lemma 4.6, we need

    \begin{equation} \|\big(u-\frac{d}{2})_+\|^p_{W^{1, p}(B_{R}(x_0))} = J_0 \leq A^{-\frac{1}{\alpha}}\lambda^{-\frac{1}{\alpha^2}} = c^{-\frac{1}{\sigma-1}}2^{-\frac{\tau}{(\sigma-1)^2}}d^{\frac{\theta}{\sigma-1}}. \end{equation} (6.26)

    Since

    \|\big(u-\frac{d}{2})_+\|^p_{W^{1, p}(B_{R}(x_0))} \leq \|u\|^p_{W^{1, p}(B_{R}(x_0))},

    if we choose d\ge 2 satisfying

    \begin{equation} d^{\frac{\theta}{\sigma-1}} = 2+c^{\frac{1}{\sigma-1}}2^{\frac{\tau}{(\sigma-1)^2}}\|u\|^p_{W^{1, p}(B_{R}(x_0))}, \end{equation} (6.27)

    we get 0 = \lim_{h\to +\infty}J_h = \|\big(u-d)_+\|^p_{W^{1, p}(B_{\frac{R}{2}})} and we conclude that

    u(x)\le d\qquad \text{a.e. in } B_{\frac{R}{2}}(x_0) .

    To prove that u is locally bounded from below, we proceed as follows. The function -u is a weak solution to

    \sum\limits_{i = 1}^{n}\frac{\partial }{\partial x_{i}} \overline{a}^i(x, u, Du) = \overline{b}( x, u, Du).

    where

    \overline{a}(x, u, \xi): = a(x, -u, -\xi)\qquad \text{and } \qquad \overline{b} (x, u, \xi): = b(x, -u, -\xi).

    Notice that, by (3.2)–(3.4) the following properties hold:

    p- ellipticity condition at infinity:

    for a.e. x\in \Omega and for every u\in \mathbb{R} ,

    \langle \overline{a}(x, u, \xi), -\xi\rangle \ge \lambda|\xi|^{p} \qquad \forall \xi\in \mathbb{R}^n, |\xi| > 1,

    q- growth condition:

    for a.e. x\in \Omega and every u\in \mathbb{R} and \xi\in \mathbb{R}^{n}

    \left|\overline{a}(x, u, \xi)\right| \le \Lambda\left\{ |\xi|^{q-1}+|u|^{\gamma_1} +b_1(x)\right\},

    growth condition for the right hand side b\left(x, u, \xi \right) :

    |\overline{b}(x, u, \xi)|\le \Lambda \left\{|\xi|^{r}+|u|^{\gamma_2} +b_2(x)\right\}.

    To prove the analogue of Proposition 5.1 we now consider the test function \varphi_{k}(x): = (k-u(x))_+[\eta (x)]^{\mu} where \eta is a cut-off function. Let us consider the sub-level sets:

    B_{k, R}: = \{x \in B_R(x_0)\, :\, u(x) < k \}, \qquad k\in \mathbb{R}.

    Then we obtain, in place of (5.5),

    \begin{align*} \nonumber \int_{B_{k, R}} \langle \overline{a}(x, u, Du), -Du\rangle \, \eta^{\mu}\, dx & = -\mu \int_{B_{k, R}} \langle \overline{a}(x, u, Du), D\eta\rangle \eta^{\mu-1}(k-u)\, dx \\&+ \int_{B_{k, R}} \overline{f}(x, u, Du) (k-u)\eta^{\mu}\, dx. \end{align*}

    The proof goes on with no significant changes with respect the previous case, arriving to the conclusion that there exists d' such that we obtain that B_{\frac{R}{2}}\subseteq \{u\ge d'\} , and

    u(x)\ge d'\qquad \text{a.e. in } B_{\frac{R}{2}}(x_0) .

    Collecting the estimates from below and from above for u , we conclude.

    The authors are members of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

    The authors declare no conflict of interest.



    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [2] C. P. Li, F. H. Zeng, Numerical methods for fractional calculus, CRC Press, 2015.
    [3] M. Abbas, C. Ciobanescu, M. Asghar, A. Omame, Solution approximation of fractional boundary value problems and convergence analysis using AA-iterative scheme, AIMS Math., 9 (2024), 13129–13158. https://doi.org/10.3934/math.2024641 doi: 10.3934/math.2024641
    [4] I. Podlubny, Fractional differential equations, Mathematics in Science and Engineering, 1999.
    [5] M. Caputo, F. Mainardi, A new dissipation model based on memory mechanism, Pure Appl. Geophys., 91 (1971), 134–147. https://doi.org/10.1007/BF00879562 doi: 10.1007/BF00879562
    [6] J. H. He, Some applications of nonlinear fractional differential equations and their applications, Bull. Sci. Technol., 15 (1999), 86–90.
    [7] Y. Q. Chen, I. Podlubny, Distributed-order dynamic systems: Stability, simulation, applications and perspectives, London: Springer, 2012.
    [8] X. Yang, L. Wu, H. Zhang, A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity, Appl. Math. Comput., 457 (2023), 128192. https://doi.org/10.1016/j.amc.2023.128192 doi: 10.1016/j.amc.2023.128192
    [9] H. G. Sun, W. Chen, H. Wei, Y. Q. Chen, A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems, Eur. Phys. J. Spec. Top., 193 (2011), 185–192. https://doi.org/10.1140/epjst/e2011-01390-6 doi: 10.1140/epjst/e2011-01390-6
    [10] Q. Li, Y. Chen, Y. Huang, Y. Wang, Two-grid methods for nonlinear time fractional diffusion equations by L1-Galerkin FEM, Math. Comput. Simulat., 185 (2021), 436–451. https://doi.org/10.1016/j.matcom.2020.12.033 doi: 10.1016/j.matcom.2020.12.033
    [11] X. Zheng, H. Wang, Optimal-order error estimates of finite element approximations to variable-order time-fractional diffusion equations without regularity assumptions of the true solutions, IMA J. Numer. Anal., 41 (2021), 1522–1545. https://doi.org/10.1093/imanum/draa013 doi: 10.1093/imanum/draa013
    [12] L. B. Feng, P. Zhuang, F. Liu, I. Turner, Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation, Appl. Math. Comput., 257 (2015), 52–65. https://doi.org/10.1016/j.amc.2014.12.060 doi: 10.1016/j.amc.2014.12.060
    [13] F. Liu, P. Zhuang, I. Turner, K. Burrage, V. Anh, A new fractional finite volume method for solving the fractional diffusion equation, Appl. Math. Model., 38 (2014), 3871–3878. https://doi.org/10.1016/j.apm.2013.10.007 doi: 10.1016/j.apm.2013.10.007
    [14] X. D. Zhang, Y. L. Feng, Z. Y. Luo, J. Liu, A spatial sixth-order numerical scheme for solving fractional partial differential equation, Appl. Math. Lett., 159 (2025), 109265. https://doi.org/10.1016/j.aml.2024.109265 doi: 10.1016/j.aml.2024.109265
    [15] J. Y. Cao, C. J. Xu, A high order schema for the numerical solution of the fractional ordinary differential equations, J. Comput. Phys., 238 (2013), 154–168. https://doi.org/10.1016/j.jcp.2012.12.013 doi: 10.1016/j.jcp.2012.12.013
    [16] H. F. Ding, C. P. Li, High-order compact difference schemes for the modified anomalous sub-diffusion equation, Numer. Meth. Part. D. E., 32 (2016), 213–242. https://doi.org/10.1002/num.21992 doi: 10.1002/num.21992
    [17] M. Dehghan, M. Abbaszadeh, W. H. Deng, Fourth-order numerical method for the space-time tempered fractional diffusion-wave equation, Appl. Math. Lett., 73 (2017), 120–127. https://doi.org/10.1016/j.aml.2017.04.011 doi: 10.1016/j.aml.2017.04.011
    [18] X. M. Gu, H. W. Sun, Y. L. Zhao, X. C. Zheng, An implicit difference scheme for time-fractional diffusion equations with a time-invariant type variable order, Appl. Math. Lett., 120 (2021), 107270. https://doi.org/10.1016/j.aml.2021.107270 doi: 10.1016/j.aml.2021.107270
    [19] C. P. Li, H. F. Ding, Higher order finite difference method for the reaction and anomalous-diffusion equation, Appl. Math. Model., 38 (2014), 3802–3821. https://doi.org/10.1016/j.apm.2013.12.002 doi: 10.1016/j.apm.2013.12.002
    [20] R. Lin, F. Liu, V. Anh, I. Turner, Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation, Appl. Math. Comput., 212 (2009), 435–445. https://doi.org/10.1016/j.amc.2009.02.047 doi: 10.1016/j.amc.2009.02.047
    [21] J. C. Ren, Z. Z. Sun, Efficient numerical solution of the multi-term time fractional diffusion-wave equation, East Asian J. Appl. Math., 5 (2015), 1–28. https://doi.org/10.4208/eajam.080714.031114a doi: 10.4208/eajam.080714.031114a
    [22] H. X. Rui, J. Huang, Uniformly stable explicitly solvable finite difference method for fractional diffusion equations, East Asian J. Appl. Math., 5 (2015), 29–47. https://doi.org/10.4208/eajam.030614.051114a doi: 10.4208/eajam.030614.051114a
    [23] V. R. Hosseini, E. Shivanian, W. Chen, Local integration of 2-D fractional telegraph equation via local radial point interpolant approximation, Eur. Phys. J. Plus, 130 (2015), 33. https://doi.org/10.1140/epjp/i2015-15033-5 doi: 10.1140/epjp/i2015-15033-5
    [24] X. J. Li, C. J. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47 (2009), 2108–2131. https://doi.org/10.1137/080718942 doi: 10.1137/080718942
    [25] C. Li, F. Zeng, F. Liu, Spectral approximations to the fractional integral and derivative, Fract. Calc. Appl. Anal., 15 (2012), 383–406. https://doi.org/10.2478/s13540-012-0028-x doi: 10.2478/s13540-012-0028-x
    [26] Y. Lin, C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533–1552. https://doi.org/10.1016/j.jcp.2007.02.001 doi: 10.1016/j.jcp.2007.02.001
    [27] F. Y. Song, C. J. Xu, Spectral direction splitting methods for two-dimensional space fractional diffusion equations, J. Comput. Phys., 299 (2015), 196–214. https://doi.org/10.1016/j.jcp.2015.07.011 doi: 10.1016/j.jcp.2015.07.011
    [28] M. Ahmadinia, Z. Safari, M. Abbasi, Local discontinuous Galerkin method for time variable order fractional differential equations with sub-diffusion and super-diffusion, Appl. Numer. Math., 157 (2020), 602–618. https://doi.org/10.1016/j.apnum.2020.07.015 doi: 10.1016/j.apnum.2020.07.015
    [29] M. Ahmadinia, Z. Safari, Analysis of local discontinuous Galerkin method for time-space fractional sine-Gordon equations, Appl. Numer. Math., 148 (2020), 1–17. https://doi.org/10.1016/j.apnum.2019.08.003 doi: 10.1016/j.apnum.2019.08.003
    [30] Y. Chen, L. Wang, L. Yi, Exponential convergence of hp-discontinuous Galerkin method for nonlinear Caputo fractional differential equations, J. Sci. Comput., 92 (2022), 99. https://doi.org/10.1007/s10915-022-01947-z doi: 10.1007/s10915-022-01947-z
    [31] Y. Du, Y. Liu, H. Li, Z. Fang, S. He, Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation, J. Comput. Phys., 344 (2017), 108–126. https://doi.org/10.1016/j.jcp.2017.04.078 doi: 10.1016/j.jcp.2017.04.078
    [32] L. Guo, Z.B. Wang, Fully discrete local discontinuous Galerkin methods for some time-fractional fourth-order problems, Int. J. Comput. Math., 93 (2016), 1665–1682. https://doi.org/10.1080/00207160.2015.1070840 doi: 10.1080/00207160.2015.1070840
    [33] Y. Liu, M. Zhang, H. Li, J. Li, High-order local discontinuous Galerkin method combined with WSGD-approximation for a fractional sub-diffusion equation, Comput. Math. Appl., 73 (2017), 1298–1314. https://doi.org/10.1016/j.camwa.2016.08.015 doi: 10.1016/j.camwa.2016.08.015
    [34] L. Wei, Y. F. Yang, Optimal order finite difference/local discontinuous Galerkin method for variable-order time-fractional diffusion equation, J. Comput. Appl. Math., 383 (2021), 113129. https://doi.org/10.1016/j.cam.2020.113129 doi: 10.1016/j.cam.2020.113129
    [35] W. Li, L. Wei, Analysis of local discontinuous Galerkin method for the variable-order subdiffusion equation with the Caputo-Hadamard derivative, Taiwanese J. Math., 28 (2024), 1095–1110. https://doi.org/10.11650/tjm/240801 doi: 10.11650/tjm/240801
    [36] Y. Yang, Y. P. Chen, Y. Q. Huang, H. Wei, Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis, Comput. Math. Appl., 73 (2017), 1218–1232. https://doi.org/10.1016/j.camwa.2016.08.017 doi: 10.1016/j.camwa.2016.08.017
    [37] N. Wang, J. Wang, Y. Liu, H. Li, Local discontinuous Galerkin method for a nonlocal viscous water wave model, Appl. Numer. Math., 192 (2023), 431–453. https://doi.org/10.1016/j.apnum.2023.07.007 doi: 10.1016/j.apnum.2023.07.007
    [38] L. Wei, W. Li, Local discontinuous Galerkin approximations to variable-order time-fractional diffusion model based on the Caputo-Fabrizio fractional derivative, Math. Comput. Simul., 188 (2021), 280–290. https://doi.org/10.1016/j.matcom.2021.04.001 doi: 10.1016/j.matcom.2021.04.001
    [39] R. Du, A. A. Alikhanov, Z. Sun, Temporal second order difference schemes for the multi-dimensional variable-order time fractional sub-diffusion equations, Comput. Math. Appl., 79 (2020), 2952–2972. https://doi.org/10.1016/j.camwa.2020.01.003 doi: 10.1016/j.camwa.2020.01.003
    [40] C. P. Li, Z. Wang, The local discontinuous Galerkin finite element methods for Caputo-type partial differential equations: Numerical analysis, Appl. Numer. Math., 140 (2019), 1–22. https://doi.org/10.1016/j.apnum.2019.01.007 doi: 10.1016/j.apnum.2019.01.007
    [41] Q. Zhang, J. Zhang, S. Jiang, Z. Zhang, Numerical solution to a linearized time fractional KdV equation on unbounded domains, Math. Comp., 87 (2018), 693–719. https://doi.org/10.1090/mcom/3229 doi: 10.1090/mcom/3229
    [42] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. https://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [43] M. Zhang, Y. Liu, H. Li, High-order local discontinuous Galerkin method for a fractal mobile/immobile transport equation with the Caputo-Fabrizio fractional derivative, Numer. Meth. Part. D. E., 35 (2019), 1588–1612. https://doi.org/10.1002/num.22366 doi: 10.1002/num.22366
    [44] B. Cockburn, C. W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws Ⅱ: general framework, Math. Comput., 52 (1989), 411–435. https://doi.org/10.2307/2008474 doi: 10.2307/2008474
    [45] Y. Cheng, Q. Zhang, H. Wang, Local analysis of the local discontinuous Galerkin method with the generalized alternating numerical flux for two-dimensional singularly perturbed problem, Int. J. Numer. Anal. Model., 15 (2018), 785–810.
  • This article has been cited by:

    1. Emilia Anna Alfano, Luisa Fattorusso, Lubomira Softova, Boundedness of the solutions of a kind of nonlinear parabolic systems, 2023, 360, 00220396, 51, 10.1016/j.jde.2023.02.042
    2. Rakesh Arora, Alessio Fiscella, Tuhina Mukherjee, Patrick Winkert, Existence of ground state solutions for a Choquard double phase problem, 2023, 73, 14681218, 103914, 10.1016/j.nonrwa.2023.103914
    3. Michał Borowski, Iwona Chlebicka, Błażej Miasojedow, Boundedness of Wolff-type potentials and applications to PDEs, 2024, 76, 14681218, 104025, 10.1016/j.nonrwa.2023.104025
    4. Tianxiang Gou, Vicenţiu D. Rădulescu, Non‐autonomous double phase eigenvalue problems with indefinite weight and lack of compactness, 2024, 56, 0024-6093, 734, 10.1112/blms.12961
    5. Antonio Giuseppe Grimaldi, Elvira Mascolo, Antonia Passarelli di Napoli, Regularity for minimizers of scalar integral functionals with (p, q)-growth conditions, 2024, 31, 1021-9722, 10.1007/s00030-024-00999-4
    6. Hongya Gao, Aiping Zhang, Siyu Gao, An extension of De Giorgi class and applications, 2024, 286, 00221236, 110301, 10.1016/j.jfa.2023.110301
    7. Nikolaos S. Papageorgiou, Zijia Peng, Singular double phase problems with convection, 2025, 81, 14681218, 104213, 10.1016/j.nonrwa.2024.104213
    8. Filomena Feo, Antonia Passarelli di Napoli, Maria Rosaria Posteraro, Local Boundedness for Minimizers of Anisotropic Functionals with Monomial Weights, 2024, 201, 0022-3239, 1313, 10.1007/s10957-024-02432-3
    9. Weiqiang Zhang, Jiabin Zuo, Vicenţiu D. Rădulescu, Concentration of solutions for non-autonomous double-phase problems with lack of compactness, 2024, 75, 0044-2275, 10.1007/s00033-024-02290-z
    10. Ángel Crespo-Blanco, Leszek Gasiński, Patrick Winkert, Least energy sign-changing solution for degenerate Kirchhoff double phase problems, 2024, 411, 00220396, 51, 10.1016/j.jde.2024.07.034
    11. Zhenhai Liu, Nikolaos S. Papageorgiou, Positive solutions for parametric equations with unbalanced growth and indefinite perturbation, 2024, 22, 0219-5305, 1447, 10.1142/S0219530524500222
    12. Giovanni Cupini, Paolo Marcellini, Elvira Mascolo, Regularity for Nonuniformly Elliptic Equations with p,\!q-Growth and Explicit x,\!u-Dependence, 2024, 248, 0003-9527, 10.1007/s00205-024-01982-0
    13. Yasi Lu, Yongjian Liu, Xiezhen Huang, Calogero Vetro, A new kind of double phase elliptic inclusions with logarithmic perturbation terms II: Applications, 2024, 131, 10075704, 107860, 10.1016/j.cnsns.2024.107860
    14. Eleonora Amoroso, Ángel Crespo-Blanco, Patrizia Pucci, Patrick Winkert, Superlinear elliptic equations with unbalanced growth and nonlinear boundary condition, 2024, 197, 00074497, 103534, 10.1016/j.bulsci.2024.103534
    15. Andrea Cianchi, Mathias Schäffner, Local boundedness of minimizers under unbalanced Orlicz growth conditions, 2024, 401, 00220396, 58, 10.1016/j.jde.2024.04.016
    16. Giovanni Cupini, Paolo Marcellini, Elvira Mascolo, The Leray-Lions existence theorem under general growth conditions, 2025, 416, 00220396, 1405, 10.1016/j.jde.2024.10.025
    17. Michela Eleuteri, Stefania Perrotta, Giulia Treu, Local Lipschitz continuity for energy integrals with slow growth and lower order terms, 2025, 82, 14681218, 104224, 10.1016/j.nonrwa.2024.104224
    18. Ala Eddine Bahrouni, Anouar Bahrouni, Patrick Winkert, Double phase problems with variable exponents depending on the solution and the gradient in the whole space RN, 2025, 85, 14681218, 104334, 10.1016/j.nonrwa.2025.104334
    19. Giovanni Cupini, Paolo Marcellini, Global boundedness of weak solutions to a class of nonuniformly elliptic equations, 2025, 0025-5831, 10.1007/s00208-025-03126-5
    20. Rakesh Arora, Ángel Crespo-Blanco, Patrick Winkert, On logarithmic double phase problems, 2025, 433, 00220396, 113247, 10.1016/j.jde.2025.113247
    21. Andrea Gentile, Teresa Isernia, Antonia Passarelli di Napoli, On a class of obstacle problems with (p, q)-growth and explicit u-dependence, 2025, 1864-8258, 10.1515/acv-2024-0111
    22. Pasquale Ambrosio, Giovanni Cupini, Elvira Mascolo, Regularity of vectorial minimizers for non-uniformly elliptic anisotropic integrals, 2025, 261, 0362546X, 113897, 10.1016/j.na.2025.113897
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(681) PDF downloads(59) Cited by(1)

Figures and Tables

Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog