Research article Special Issues

Intra-regular semihypergroups characterized by Fermatean fuzzy bi-hyperideals

  • Received: 26 September 2024 Revised: 02 December 2024 Accepted: 13 December 2024 Published: 24 December 2024
  • MSC : 08A72, 20M10, 20M17

  • The concept of Fermatean fuzzy sets was introduced by Senapati and Yager in 2019 as a generalization of fuzzy sets, intuitionistic fuzzy sets, and Pythagorean fuzzy sets. In this article, we apply the notions of Fermatean fuzzy left (resp., right) hyperideals and Fermatean fuzzy (resp., generalized) bi-hyperideals in semihypergroups to characterize intra-regular semihypergroups, such as S is an intra-regular semihypergroup if and only if LRLR, for every Fermatean fuzzy left hyperideal L and Fermatean fuzzy right hyperideal R of a semihypergroup S. Moreover, we introduce the concept of Fermatean fuzzy interior hyperideals of semihypergroups and use these properties to describe the class of intra-regular semihypergroups. Next, we demonstrate that Fermatean fuzzy interior hyperideals coincide with Fermatean fuzzy hyperideals in intra-regular semihypergroups. However, in general, Fermatean fuzzy interior hyperideals do not necessarily have to be Fermatean fuzzy hyperideals in semihypergroups. Finally, we discuss some characterizations of semihypergroups when they are both regular and intra-regular by means of different types of Fermatean fuzzy hyperideals in semihypergroups.

    Citation: Warud Nakkhasen, Teerapan Jodnok, Ronnason Chinram. Intra-regular semihypergroups characterized by Fermatean fuzzy bi-hyperideals[J]. AIMS Mathematics, 2024, 9(12): 35800-35822. doi: 10.3934/math.20241698

    Related Papers:

    [1] Swadesh Pal, Malay Banerjee, Vitaly Volpert . Spatio-temporal Bazykin’s model with space-time nonlocality. Mathematical Biosciences and Engineering, 2020, 17(5): 4801-4824. doi: 10.3934/mbe.2020262
    [2] Ming Mei, Yau Shu Wong . Novel stability results for traveling wavefronts in an age-structured reaction-diffusion equation. Mathematical Biosciences and Engineering, 2009, 6(4): 743-752. doi: 10.3934/mbe.2009.6.743
    [3] Zhongcai Zhu, Xiaomei Feng, Xue He, Hongpeng Guo . Mirrored dynamics of a wild mosquito population suppression model with Ricker-type survival probability and time delay. Mathematical Biosciences and Engineering, 2024, 21(2): 1884-1898. doi: 10.3934/mbe.2024083
    [4] Guangrui Li, Ming Mei, Yau Shu Wong . Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model. Mathematical Biosciences and Engineering, 2008, 5(1): 85-100. doi: 10.3934/mbe.2008.5.85
    [5] Changyong Dai, Haihong Liu, Fang Yan . The role of time delays in P53 gene regulatory network stimulated by growth factor. Mathematical Biosciences and Engineering, 2020, 17(4): 3794-3835. doi: 10.3934/mbe.2020213
    [6] Gonzalo Galiano, Julián Velasco . Finite element approximation of a population spatial adaptation model. Mathematical Biosciences and Engineering, 2013, 10(3): 637-647. doi: 10.3934/mbe.2013.10.637
    [7] Feng Rao, Carlos Castillo-Chavez, Yun Kang . Dynamics of a stochastic delayed Harrison-type predation model: Effects of delay and stochastic components. Mathematical Biosciences and Engineering, 2018, 15(6): 1401-1423. doi: 10.3934/mbe.2018064
    [8] Katarzyna Pichór, Ryszard Rudnicki . Stochastic models of population growth. Mathematical Biosciences and Engineering, 2025, 22(1): 1-22. doi: 10.3934/mbe.2025001
    [9] Blessing O. Emerenini, Stefanie Sonner, Hermann J. Eberl . Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects. Mathematical Biosciences and Engineering, 2017, 14(3): 625-653. doi: 10.3934/mbe.2017036
    [10] Peter Hinow, Pierre Magal, Shigui Ruan . Preface. Mathematical Biosciences and Engineering, 2015, 12(4): i-iv. doi: 10.3934/mbe.2015.12.4i
  • The concept of Fermatean fuzzy sets was introduced by Senapati and Yager in 2019 as a generalization of fuzzy sets, intuitionistic fuzzy sets, and Pythagorean fuzzy sets. In this article, we apply the notions of Fermatean fuzzy left (resp., right) hyperideals and Fermatean fuzzy (resp., generalized) bi-hyperideals in semihypergroups to characterize intra-regular semihypergroups, such as S is an intra-regular semihypergroup if and only if LRLR, for every Fermatean fuzzy left hyperideal L and Fermatean fuzzy right hyperideal R of a semihypergroup S. Moreover, we introduce the concept of Fermatean fuzzy interior hyperideals of semihypergroups and use these properties to describe the class of intra-regular semihypergroups. Next, we demonstrate that Fermatean fuzzy interior hyperideals coincide with Fermatean fuzzy hyperideals in intra-regular semihypergroups. However, in general, Fermatean fuzzy interior hyperideals do not necessarily have to be Fermatean fuzzy hyperideals in semihypergroups. Finally, we discuss some characterizations of semihypergroups when they are both regular and intra-regular by means of different types of Fermatean fuzzy hyperideals in semihypergroups.





    [1] A. K. Adak, G. Kumar, M. Bhowmik, Pythagorean fuzzy semi-prime ideals of ordered semigroups, International Journal of Computer Applications, 185 (2023), 4–10. http://dx.doi.org/10.5120/ijca2023922661 doi: 10.5120/ijca2023922661
    [2] A. K. Adak, Nilkamal, N. Barman, Fermatean fuzzy semi-prime ideals of ordered semigroups, Topological Algebra in its Applications, 11 (2023), 20230102. http://dx.doi.org/10.1515/taa-2023-0102 doi: 10.1515/taa-2023-0102
    [3] S. Ashraf, S. Abdullah, T. Mahmood, F. Gahni, T. Mahmood, Spherical fuzzy sets and their applications in multi-attribute decision making problems, J. Intell. Fuzzy Syst., 36 (2019), 2829–2844. http://dx.doi.org/10.3233/JIFS-172009 doi: 10.3233/JIFS-172009
    [4] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. http://dx.doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [5] S. Bashir, M. M. A. Al-Shamiri, S. Khalid, R. Mazhar, Regular and Intra-regular ternary semirings in terms of m-polar fuzzy ideals, Symmetry, 15 (2023), 591. http://dx.doi.org/10.3390/sym15030591 doi: 10.3390/sym15030591
    [6] P. Corsini, V. Leoreanu, Applications of hyperstructures theory, New York: Springer, 2003. http://dx.doi.org/10.1007/978-1-4757-3714-1
    [7] B. C. Cuong, V. Kreinovich, Picture fuzzy sets–A new concept for computational intelligence problems, 2013 Third World Congress on Information and Communication Technologies (WICT 2013), Hanoi, Vietnam, 2013, 1–6. http://dx.doi.org/10.1109/WICT.2013.7113099
    [8] B. Davvaz, P. Corsini, T. Changphas, Relationship between ordered semihypergroups and ordered semigroups by using pseudoorder, Eur. J. Combin., 44 (2015), 208–217. http://dx.doi.org/10.1016/j.ejc.2014.08.006 doi: 10.1016/j.ejc.2014.08.006
    [9] Y. Z. Diao, Q. Zhang, Optimization of management mode of small- and medium-sized enterprises based on decision tree model, J. Math., 2021 (2021), 2815086. http://dx.doi.org/10.1155/2021/2815086 doi: 10.1155/2021/2815086
    [10] J. Y. Dong, S. P. Wan, Interval-valued intuitionistic fuzzy best-worst method with additive consistency, Expert Syst. Appl., 236 (2024), 121213. http://dx.doi.org/10.1016/j.eswa.2023.121213 doi: 10.1016/j.eswa.2023.121213
    [11] Z. X. Duan, J. L. Liang, Z. R. Xiang, H control for continuous-discrete systems in T-S fuzzy model with finite frequency specifications, Discrete Cont. Dyn.-S, 15 (2022), 3155–3172. http://dx.doi.org/10.3934/dcdss.2022064 doi: 10.3934/dcdss.2022064
    [12] D. Fasino, D. Freni, Existence of proper semihypergroups of types U on the right, Discrete Math., 307 (2007), 2826–2836. http://dx.doi.org/10.1016/j.disc.2007.03.001 doi: 10.1016/j.disc.2007.03.001
    [13] A. Hussain, T. Mahmood, M. I. Ali, Rough Pythagorean fuzzy ideals in semigroups, Comp. Appl. Math., 38 (2019), 67. http://dx.doi.org/10.1007/s40314-019-0824-6 doi: 10.1007/s40314-019-0824-6
    [14] K. Hila, B. Davvaz, J. Dine, Study on the structure of Γ-semihypergroups, Commun. Algebra, 40 (2012), 2932–2948. http://dx.doi.org/10.1080/00927872.2011.587855 doi: 10.1080/00927872.2011.587855
    [15] K. Hila, B. Davvaz, K. Naka, On quasi-hyperideals in semihypergroups, Commun. Algebra, 39 (2011), 4183–4194. http://dx.doi.org/10.1080/00927872.2010.521932 doi: 10.1080/00927872.2010.521932
    [16] K. Hila, S. Abdullah, A. Saleem, A study on intuitionistic fuzzy sets in Γ-semihypergroups, J. Intell. Fuzzy Syst., 26 (2014), 1695–1710. http://dx.doi.org/10.3233/IFS-130849 doi: 10.3233/IFS-130849
    [17] U. Jittburus, P. Julatha, A. Pumila, N. Chunseem, A. Iampan, R. Prasertpong, New generalizations of sup-hesitant fuzzy ideals of semigroups, Int. J. Anal. Appl., 20 (2022), 58. http://dx.doi.org/10.28924/2291-8639-20-2022-58 doi: 10.28924/2291-8639-20-2022-58
    [18] N. Kehayopulu, M. Tsingelis, Regular ordered semigroups in terms of fuzzy subsets, Inform. Sciences, 176 (2006), 3675-3693. http://dx.doi.org/10.1016/j.ins.2006.02.004 doi: 10.1016/j.ins.2006.02.004
    [19] A. Khan, M. Shabir, Intuitionistic fuzzy semiprime ideals in ordered semigroups, Russ. Math., 54 (2010), 56–67. http://dx.doi.org/10.3103/S1066369X10050087 doi: 10.3103/S1066369X10050087
    [20] K. H. Kim, On intuitionistic fuzzy semiprime ideals in semigroups, Scientiae Mathematicae Japonicae, 65 (2007), 447–453. https://doi.org/10.32219/isms.65.3_447 doi: 10.32219/isms.65.3_447
    [21] B. X. Li, Y. M. Feng, Intuitionistic (λ,μ)-fuzzy sets in Γ-semigroups, J. Inequal. Appl., 2013 (2013), 107. http://dx.doi.org/10.1186/1029-242X-2013-107 doi: 10.1186/1029-242X-2013-107
    [22] X. Y. Lu, J. Y. Dong, S. P. Wan, H. C. Li, Interactively iterative group decision-making method with interval-valued intuitionistic fuzzy preference relations based on a new additively consistent concept, Appl. Soft Comput., 152 (2024), 111199. http://dx.doi.org/10.1016/j.asoc.2023.111199 doi: 10.1016/j.asoc.2023.111199
    [23] X. Y. Lu, J. Y. Dong, S. P. Wan, H. C. Li, The strategy of consensus and consistency improving considering bounded confidence for group interval-valued intuitionistic multiplicative best-worst method, Inform. Sciences, 669 (2024), 120489. http://dx.doi.org/10.1016/j.ins.2024.120489 doi: 10.1016/j.ins.2024.120489
    [24] F. Marty, On a generalization of the notion of group, The 8th Congres des Mathematiciens, Scandinaves, Stockholm, 1934, 45–49.
    [25] I. A. H. Masmali, Pythagorean picture fuzzy hyperideals in semihypergroups, Int. J. Math. Comput. Sc., 16 (2021), 1533–1553.
    [26] W. Nakkhasen, Characterizng regular and intra-regular semigroups in terms of picture fuzzy bi-ideals, Int. J. Innov. Comput. I., 17 (2021), 2115–2135. http://dx.doi.org/10.24507/ijicic.17.06.2115 doi: 10.24507/ijicic.17.06.2115
    [27] W. Nakkhasen, On picture fuzzy (m,n)-ideals of semigroups, IAENG International Journal of Applied Mathematics, 52 (2022), 1040–1051.
    [28] W. Nakkhasen, Semihypergroups characterized by means of their Fermatean fuzzy bi-hyperideals, Int. J. Innov. Comput. I., 19 (2023), 255–267. http://dx.doi.org/10.24507/ijicic.19.01.255 doi: 10.24507/ijicic.19.01.255
    [29] W. Nakkhasen, Regularity of semigroups in terms of Pythagorean fuzzy bi-ideals, J. Appl. Math. Inform., 42 (2024), 333–351. http://dx.doi.org/10.14317/jami.2024.333 doi: 10.14317/jami.2024.333
    [30] W. Nakkhasen, R. Chinram, Ternary semigroups characterized by spherical fuzzy bi-ideals, Science and Technology Asia, 28 (2023), 86–107. http://dx.doi.org/10.14456/scitechasia.2023.73 doi: 10.14456/scitechasia.2023.73
    [31] W. Nakkhasen, R. Chinram, A. Iampan, On (fuzzy) weakly almost interior Γ-hyperideals in ordered Γ-semihypergrouops, Int. J. Anal. Appl., 21 (2023), 77. http://dx.doi.org/10.28924/2291-8639-21-2023-77 doi: 10.28924/2291-8639-21-2023-77
    [32] A. Nongmenee, S. Leeratanavalee, Regularity in ternary semihypergroups induced by subsets of ternary semigroups, Thai J. Math., 22 (2024), 73–84.
    [33] M. Riaz, M. R. Hashmi, Linear Diophantine fuzzy set and its applications towards multi-attribute decision-making problems, J. Intell. Fuzzy Syst., 37 (2019), 5417–5439. http://dx.doi.org/10.3233/JIFS-190550 doi: 10.3233/JIFS-190550
    [34] T. Senapati, R. R. Yager, Fermatean fuzzy sets, J. Ambient Intell. Human. Comput., 11 (2019), 663–674. http://dx.doi.org/10.1007/s12652-019-01377-0 doi: 10.1007/s12652-019-01377-0
    [35] M. Shabir, T. Abbas, S. Bashir, R. Mazhar, Bipolar fuzzy hyperideals in regular and intra-regular semihypergroups, Comp. Appl. Math., 40 (2021), 196. http://dx.doi.org/10.1007/s40314-021-01574-8 doi: 10.1007/s40314-021-01574-8
    [36] M. Shabir, A. Khan, Intuitionistic fuzzy interior ideals in ordered semigroups, J. Appl. Math. Inform., 27 (2009), 1447–1457.
    [37] M. Shabir, T. Mahmood, Semihypergroups characterized by (,qk)-fuzzy hyperideals, Inf. Sci. Lett., 2 (2013), 101–121.
    [38] Q. D. Sun, J. C. Ren, F. Zhao, Sliding mode control of discrete-time interval type-2 fuzzy Markov jump systems with the preview target signal, Appl. Math. Comput., 435 (2022), 127479. http://dx.doi.org/10.1016/j.amc.2022.127479 doi: 10.1016/j.amc.2022.127479
    [39] J. Tang, B. Davvaz, X. Y. Xie, A study on (fuzzy) quasi-Γ-hyperideals on ordered Γ-semihypergroups, J. Intell. Fuzzy Syst., 32 (2017), 3821–3838. http://dx.doi.org/10.3233/IFS-162117 doi: 10.3233/IFS-162117
    [40] N. Tipachot, B. Pibaljommee, Fuzzy in interior hyperideals in ordered semihypergroups, Ital. J. Pure Appl. Mat., 36 (2016), 859–870.
    [41] S. P. Wan, J. Y. Dong, S. M. Chen, A novel intuitionistic fuzzy best-worst method for group decision making with intuitionistic fuzzy preference relations Inform. Sciences, 666 (2024), 120404. http://dx.doi.org/10.1016/j.ins.2024.120404 doi: 10.1016/j.ins.2024.120404
    [42] Y. D. Xia, J. Wang, B. Meng, X. Y. Chen, Further results on fuzzy sampled-data stabilization of chaotic nonlinear systems, Appl. Math. Comput., 379 (2020), 125225. http://dx.doi.org/10.1016/j.amc.2020.125225 doi: 10.1016/j.amc.2020.125225
    [43] X. Y. Xie, J. Tang, Regular ordered semigroups and intra-regular ordered semigroups in terms of fuzzy subsets, Iran. J. Fuzzy Syst., 7 (2010), 121–140.
    [44] R. R. Yager, Pythagorean fuzzy subsets, 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, AB, Canada, 2013, 57–61. http://dx.doi.org/10.1109/IFSA-NAFIPS.2013.6608375
    [45] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353. http://dx.doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [46] N. Zhang, W. H. Qi, G. C. Pang, J. Cheng, K. B. Shi, Observer-based sliding mode control for fuzzy stochastic switching systems with deception attacks, Appl. Math. Comput., 427 (2022), 127153. http://dx.doi.org/10.1016/j.amc.2022.127153 doi: 10.1016/j.amc.2022.127153
  • This article has been cited by:

    1. Yu Jin, Xiao-Qiang Zhao, Spatial Dynamics of a Nonlocal Periodic Reaction-Diffusion Model with Stage Structure, 2009, 40, 0036-1410, 2496, 10.1137/070709761
    2. Guanying Sun, Dong Liang, Wenqia Wang, Numerical analysis to discontinuous Galerkin methods for the age structured population model of marine invertebrates, 2009, 25, 0749159X, 470, 10.1002/num.20355
    3. Peter Y.H. Pang, Yifu Wang, Time periodic solutions of the diffusive Nicholson blowflies equation with delay, 2015, 22, 14681218, 44, 10.1016/j.nonrwa.2014.07.014
    4. Majid Bani-Yaghoub, David E. Amundsen, Oscillatory traveling waves for a population diffusion model with two age classes and nonlocality induced by maturation delay, 2015, 34, 0101-8205, 309, 10.1007/s40314-014-0118-y
    5. Cui-Ping Cheng, Wan-Tong Li, Zhi-Cheng Wang, Persistence of bistable waves in a delayed population model with stage structure on a two-dimensional spatial lattice, 2012, 13, 14681218, 1873, 10.1016/j.nonrwa.2011.12.016
    6. Majid Bani-Yaghoub, Numerical Simulations of Traveling and Stationary Wave Solutions Arising from Reaction-Diffusion Population Models with Delay and Nonlocality, 2018, 4, 2349-5103, 10.1007/s40819-017-0441-2
    7. Shangjiang Guo, Patterns in a nonlocal time-delayed reaction–diffusion equation, 2018, 69, 0044-2275, 10.1007/s00033-017-0904-7
    8. Dong Liang, Guanying Sun, Wenqia Wang, Second-order characteristic schemes in time and age for a nonlinear age-structured population model, 2011, 235, 03770427, 3841, 10.1016/j.cam.2011.01.031
    9. Majid Bani-Yaghoub, Guangming Yao, Hristo Voulov, Existence and stability of stationary waves of a population model with strong Allee effect, 2016, 307, 03770427, 385, 10.1016/j.cam.2015.11.021
    10. Taishan Yi, Xingfu Zou, Global attractivity of the diffusive Nicholson blowflies equation with Neumann boundary condition: A non-monotone case, 2008, 245, 00220396, 3376, 10.1016/j.jde.2008.03.007
    11. Majid Bani-Yaghoub, Guangming Yao, Masami Fujiwara, David E. Amundsen, Understanding the interplay between density dependent birth function and maturation time delay using a reaction-diffusion population model, 2015, 21, 1476945X, 14, 10.1016/j.ecocom.2014.10.007
    12. E. Ya. Frisman, O. L. Zhdanova, M. P. Kulakov, G. P. Neverova, O. L. Revutskaya, Mathematical Modeling of Population Dynamics Based on Recurrent Equations: Results and Prospects. Part II, 2021, 48, 1062-3590, 239, 10.1134/S1062359021030055
    13. Matvey Kulakov, Efim Frisman, Clustering Synchronization in a Model of the 2D Spatio-Temporal Dynamics of an Age-Structured Population with Long-Range Interactions, 2023, 11, 2227-7390, 2072, 10.3390/math11092072
    14. Khalaf M. Alanazi, Modeling and Simulating an Epidemic in Two Dimensions with an Application Regarding COVID-19, 2024, 12, 2079-3197, 34, 10.3390/computation12020034
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(740) PDF downloads(36) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog