Research article

Cutaneous allodynia association with migraine and their predictors among primary healthcare visitors

  • Received: 14 June 2024 Revised: 20 September 2024 Accepted: 22 October 2024 Published: 04 November 2024
  • Background 

    Migraine, affecting over 1.04 billion people globally, is a severe, recurrent headache disorder with significant impacts on life quality. Despite extensive research on risk factors, the association with cutaneous allodynia (CA) is underexplored.

    Objective 

    This study aims to assess the predictors contributing to both cutaneous allodynia (CA) and migraine and their prevalence among primary healthcare (PHC) visitors in Madinah City, Saudi Arabia.

    Methods 

    A total of 403 participants agreed to participate in our cross-sectional study between September 1, 2023, and November 1, 2023. Migraine screening questionnaire (MS-Q) was used to screen for migraine. To assess allodynia symptoms, we used Allodynia Symptoms Checklist-12 (ASC-12). Participants aged 15 and older who attended one of the major PHC centers in Madinah City were included in the study.

    Results 

    The prevalence of migraine among the participants was found to be 16.4%, with 57.6% of migraine patients exhibiting CA symptoms. Family history of migraine and high BMI were identified as significant predictors of migraine (P < 0.05), with odds ratio (OR) of 5.7 and 1.1, respectively. Additionally, female sex and high BMI were significant (P < 0.05) risk factors for CA among migraine patients, with ORs of 4.3 and 1.1, respectively.

    Conclusions 

    The prevalence of migraine in Madinah City was higher than the global average but lower than the national average. A significant proportion of migraine patients also experienced CA. Further research is warranted to elucidate the underlying mechanisms of migraine and CA, which could aid the development of targeted treatments and improve patient outcomes.

    Citation: Mohammed Qarah, Noura Alshammari, Ali Alsolami, Ahmed Abualkhair, Abdulaziz Aloufi, Anas Alzhrani, Shatha Almuyidi, Mayada Almohandes. Cutaneous allodynia association with migraine and their predictors among primary healthcare visitors[J]. AIMS Medical Science, 2024, 11(4): 452-463. doi: 10.3934/medsci.2024031

    Related Papers:

    [1] Chun-Chao Yeh, Ke-Jia Jhang, Chin-Chun Chang . An intelligent indoor positioning system based on pedestrian directional signage object detection: a case study of Taipei Main Station. Mathematical Biosciences and Engineering, 2020, 17(1): 266-285. doi: 10.3934/mbe.2020015
    [2] Xiaohao Chen, Maosheng Fu, Zhengyu Liu, Chaochuan Jia, Yu Liu . Harris hawks optimization algorithm and BP neural network for ultra-wideband indoor positioning. Mathematical Biosciences and Engineering, 2022, 19(9): 9098-9124. doi: 10.3934/mbe.2022423
    [3] Mingju Chen, Hongyang Li, Hongming Peng, Xingzhong Xiong, Ning Long . HPCDNet: Hybrid position coding and dual-frquency domain transform network for low-light image enhancement. Mathematical Biosciences and Engineering, 2024, 21(2): 1917-1937. doi: 10.3934/mbe.2024085
    [4] Diguo Zhai, Xinqi Bao, Xi Long, Taotao Ru, Guofu Zhou . Precise detection and localization of R-peaks from ECG signals. Mathematical Biosciences and Engineering, 2023, 20(11): 19191-19208. doi: 10.3934/mbe.2023848
    [5] Guohui Zhang, Gulbahar Tohti, Ping Chen, Mamtimin Geni, Yixuan Fan . SFEMM: A cotton binocular matching method based on YOLOv7x. Mathematical Biosciences and Engineering, 2024, 21(3): 3618-3630. doi: 10.3934/mbe.2024159
    [6] Kezhou Chen, Xu Lu, Rongjun Chen, Jun Liu . Wireless wearable biosensor smart physiological monitoring system for risk avoidance and rescue. Mathematical Biosciences and Engineering, 2022, 19(2): 1496-1514. doi: 10.3934/mbe.2022069
    [7] Bin Zhang, Linkun Sun, Yingjie Song, Weiping Shao, Yan Guo, Fang Yuan . DeepFireNet: A real-time video fire detection method based on multi-feature fusion. Mathematical Biosciences and Engineering, 2020, 17(6): 7804-7818. doi: 10.3934/mbe.2020397
    [8] Yongmei Ren, Xiaohu Wang, Jie Yang . Maritime ship recognition based on convolutional neural network and linear weighted decision fusion for multimodal images. Mathematical Biosciences and Engineering, 2023, 20(10): 18545-18565. doi: 10.3934/mbe.2023823
    [9] Wen Li, Xuekun Yang, Guowu Yuan, Dan Xu . ABCNet: A comprehensive highway visibility prediction model based on attention, Bi-LSTM and CNN. Mathematical Biosciences and Engineering, 2024, 21(3): 4397-4420. doi: 10.3934/mbe.2024194
    [10] Yujun Zhang, Yufei Wang, Shuijia Li, Fengjuan Yao, Liuwei Tao, Yuxin Yan, Juan Zhao, Zhengming Gao . An enhanced adaptive comprehensive learning hybrid algorithm of Rao-1 and JAYA algorithm for parameter extraction of photovoltaic models. Mathematical Biosciences and Engineering, 2022, 19(6): 5610-5637. doi: 10.3934/mbe.2022263
  • Background 

    Migraine, affecting over 1.04 billion people globally, is a severe, recurrent headache disorder with significant impacts on life quality. Despite extensive research on risk factors, the association with cutaneous allodynia (CA) is underexplored.

    Objective 

    This study aims to assess the predictors contributing to both cutaneous allodynia (CA) and migraine and their prevalence among primary healthcare (PHC) visitors in Madinah City, Saudi Arabia.

    Methods 

    A total of 403 participants agreed to participate in our cross-sectional study between September 1, 2023, and November 1, 2023. Migraine screening questionnaire (MS-Q) was used to screen for migraine. To assess allodynia symptoms, we used Allodynia Symptoms Checklist-12 (ASC-12). Participants aged 15 and older who attended one of the major PHC centers in Madinah City were included in the study.

    Results 

    The prevalence of migraine among the participants was found to be 16.4%, with 57.6% of migraine patients exhibiting CA symptoms. Family history of migraine and high BMI were identified as significant predictors of migraine (P < 0.05), with odds ratio (OR) of 5.7 and 1.1, respectively. Additionally, female sex and high BMI were significant (P < 0.05) risk factors for CA among migraine patients, with ORs of 4.3 and 1.1, respectively.

    Conclusions 

    The prevalence of migraine in Madinah City was higher than the global average but lower than the national average. A significant proportion of migraine patients also experienced CA. Further research is warranted to elucidate the underlying mechanisms of migraine and CA, which could aid the development of targeted treatments and improve patient outcomes.


    Abbreviations

    CA:

    Cutaneous allodynia; 

    PHC:

    Primary healthcare; 

    YLDs:

    Years lived with disability; 

    MS-Q:

    Migraine screening questionnaire; 

    ASC-12:

    Allodynia Symptoms Checklist-12

    Along with the rapid development of biology and biotechnology, the regulation and interaction of mRNAs and the produced proteins in genetic regulatory networks (GRNs) have attracted great research attention, and various related applications have been available to address the burgeoning areas [1,2,3]. Furthermore, much effort has been devoted to the biochemical dynamics of GRNs, which can better describe the expression mechanisms of genes from a dynamical system perspective [4,5]. The dynamical behaviors of GRNs can considerably provide deeper insights into the processing conditions. Generally speaking, differential equation and Boolean network models are employed and investigated to characterize complex properties of mRNA and protein concentrations in GRNs [6,7,8]. In particular, biological evidences have proved the existences of jumping mechanisms of GRNs. This means that the dynamical parameters of GRNs are varying according to different modes rather than kept constant owing to random abrupt changes during gene expressions. This means that the parameters of GRNs should be modified according to certain modes. With this context, mathematical models of Markovian jumping systems with Markov chains have been widely employed to mimic the intrinsic variate of GRNs [9,10,11]. As a result, many remarkable results on Markovian jumping GRNs have been reported in the literature, which includes stochastic state estimation [12], stability [13] and synchronization issues [14].

    In addition, the accessibility of true jumping mode information of GRNs has also drawn much interest, especially for some actual applications. It is noteworthy that the exact mode information of GRNs in practical applications is always difficult or expensive to acquire, which is mostly because of detection delays or unpredictable disturbances during the transcription and translation processes [15,16]. Especially, the mode information characterized by Markov chains for state estimation or control issues is also challenging to main synchronous design. On the other hand, nonsynchronous analysis and synthesis methods are more meaningful and practical for Markovian jumping GRNs with mode-dependent designs. Lately, hidden Markovian jumping systems have been initially investigated by external mode observations and encouraging results of the so-called nonsynchronous designs have been reported accordingly. More precisely, on the basis of conditional probability between true modes and observed modes, the observed models for mode information are effectively utilized without synchronous mode operations [17,18,19].

    On another active research line, distributed strategies for control systems have been extensively developed due to their increasing requirements for efficiency and robustness in engineering areas. Compared with traditional control techniques, the distributed architecture can process and fuse the information via multiple sensors with each domain data. With respect to its advances, many remarkable analysis and synthesis of distributed control systems can be found in recent works [20,21,22]. To name a few, in [23], a novel distributed-observer-based distributed control design is developed for affine nonlinear systems and is effectively applied to interconnected cruise control of intelligent vehicles. In [24], the distributed observer and controller design issue is discussed for spatially interconnected systems. In [25], the distributed state observers and disturbance observers are proposed for cooperative output regulation of LTI system to ensure the reference tracking properly. In [26], a distributed Nash equilibrium seeking scheme is designed with nonlinear dynamical system. In [27], the leader-following output consensus problem is concerned with distributed nonlinear observers. These notable works have proven that distributed frameworks can effective improve the system performance for complex dynamical systems. However, the problems of network communication burden must be faced among the nodes. It should be emphasized that traditional time-triggered periodic communication schedules have certain drawbacks in computation and network resources. Fortunately, the emerging event-triggered schemes are developed aiming at necessary transmission only when speechified triggering conditions are satisfied [28,29,30]. Hence, the event-triggered mechanism could lead to less network consumptions and could be more reliable in line with practical network implementation. Furthermore, in view of distributed control systems, distinguishing advantages can also been made by adopting event-triggered communications [31,32,33]. Nevertheless, there are challenging problems for distributed event-triggered control in corresponding algorithm complexity. For the consideration of GRNs with HMJPs, it is reasonable and significant to apply the distributed event-triggered design. Unfortunately, until now, distributed event-triggered state estimation problem of GRNs has not been entirely studied, not to mention the case of HMJPs with NSE. This motivates the authors for current study to shorten such a gap.

    To deal with the aforementioned issue, the key idea in this paper is to investigate the distributed event-triggered state estimation problem for GRNs with HMJPs based on the NSE scheme. Compared with most existing literature, the primary novelties of our work are highlighted as follows:

    1) The attempt to deal with the distributed NSE design of GRNs with HMJPs is made for the first time, which can better model GRNs dynamics and mode jumping phenomena during the state estimation procedures.

    2) The distributed nonsynchronous state estimation framework is also introduced for GRNs with nonsynchronous event-triggered communications, such that more estimation efficiency for concentrations of mRNAs and proteins can be achieved with effective mode information utilization.

    3) The sufficient mode-dependent analysis criteria are established by novel Lyapunov-Krasovski functions, and then the desired nonsynchronous mode-dependent estimator gains can be derived with convex optimization.

    The remainder of this paper is stated by the following lines. Section 2 introduces some background information regarding GRNs with HMJPs and formulates the state estimation problem. Subsequent session of Section 3 presents the main theoretical developments with details. Section 4 approves the correctness of our developed results through a numerical example. Section 5 concludes the paper and addresses future challenges.

    All referred notations are standardly utilized. Rn stands for n-Euclidean space. Matrix P>0 means that P is symmetric positive definite, and vise versa. (O,F,P) corresponds a probability space, where O denotes sample space, F represents δ-algebra of subsets within O and P stands for probability measurement. E means the mathematical expectation and implies a induced term in symmetry matrices, respectively.

    Consider the equilibrium points of GRNs model shifted to the origin and the following GRNs model with HMJPs can be described by:

    (ΣM):{˙xm(t)=A(r(t))xm(t)+B(r(t))g(xp(tdp(t)))+Em(r(t))ω1(t),˙xp(t)=C(r(t))xp(t)+D(r(t))xm(tdm(t))+Ep(r(t))ω2(t),zm(t)=Um(r(t))xm(t),zp(t)=Up(r(t))xp(t),xm(t)=φm(t),xp(t)=φp(t),t[max(ˉdp,ˉdm),0), (2.1)

    where xm(t)=[xm1(t),xm2(t),,xmn(t)]TRn, xp(t)=[xp1(t),xp2(t),,xpn(t)]TRn with xmi(t) and xpi(t), i=1,2,,n representing the concentrations of mRNAs and proteins, respectively; zm(t)=[zm1(t),zm2(t),,zml(t)]TRl, zp(t)=[zp1(t),zp2(t),,zpl(t)]TRl with zmk(t) and zpk(t), k=1,2,,l being the concentrations of certain mRNAs and proteins to be estimated through expression level; g(xp(tdp(t)))=[g1(xp1(tdp(t))),g2(xp2(tdp(t))),,gn(xpn(tdp(t)))]TRn stands for the nonlinear feedback regulation function of the protein on transcription, which satisfies the following assumption

    0gi(xi)xiςi,xi0;gi(0)=0,i=1,2,,n,ς=diag{ς1,ς2,,ςn}>0.

    i.e.,

    gT(x)(g(x)ςx)0;

    0dp(t)ˉdp and 0dm(t)ˉdm are the translation delay and the feedback regulation delay, respectively; ω1(t) and ω2(t) refers to the external disturbances that belongs to L2[0,).

    The degradation or dilution rates of mRNAs and proteins can be described by known matrices A(r(t))=diag{a1(r(t)),a2(r(t)),,an(r(t))}, C(r(t))=diag{c1(r(t)),c2(r(t)),,cn(r(t))}, D(r(t))=diag{d1(r(t)),d2(r(t)),,dn(r(t))}, and the coupling matrix B(r(t))=(bij(r(t)))Rn can be defined by the following

    bij(r(t))={ˉbij(r(t))0ˉbij(r(t))iftranscriptionfactorjisanactivatorofgenei,ifthereisnolinkfromnodejtoi,iftranscriptionfactorjisanrepressorofgenei.

    Furthermore, Um(r(t)), Up(r(t)), Em(r(t)) and Ep(r(t)) are also known matrices for a certain mode r(t).

    Moreover, the continuous-time discrete-state Markov process r(t)S={1,,N} on (O,F,P) is given to model the HMJPs, which can be defined by Π=(πij)N×N, with

    Pr(r(t+Δ)=j|r(t)=i)={πijΔ+o(Δ), ij,1+πiiΔ+o(Δ), i=j,, (2.2)

    and πii=Nj=1,ijπij.

    In this paper, a direct graph G={V,E,A} is given to describe the communication topology of N sensor nodes, where V={v1,v2,,vN} and EV×V stand for the set of nodes and edges, respectively, A=[aij]RN×N represent the adjacency matrix with aii=0 for any i. A is associated with the edges of G are positive, i.e., aij>0εijE. In addition, the corresponding Laplacian matrix of G is defined as L.

    Moreover, the distributed measurement is achieved by N mode-dependent sensor nodes as follows:

    (ΣS):{ylm(t)=Hlm(r(t))xm(t)+Glm(r(t))ω3(t),ylp(t)=Hlp(r(t))xp(t)+Glp(r(t))ω4(t), (2.3)

    where ylm(t) and ylp(t), l=1,2,,N, represent the measurements of mRNAs and proteins on sensor l, respectively; ω3(t) and ω4(t) are measurement disturbances; Hlm(r(t)), Hlp(r(t)), Glm(r(t)), Glp(r(t)) are known constant matrices.

    Then, define the sensor estimation errors ˜ylm(t) and ˜ylp(t) as follows

    {˜ylm(t)=ylm(t)Hlm(r(t))ˆxlm(t),˜ylp(t)=ylp(t)Hlp(r(t))ˆxlp(t), (2.4)

    where ˆxlm(t) and ˆxlp(t) denote the filter state for sensor l.

    By considering the event-triggered strategy for data transmission with ZOHs, it is assumed that the sampling period hk with sampling instants tk is assumed to be hk=tk+1tkˉh, ˉh>0. Furthermore, the transmission instant tlδ for sensor l is determined by the event generation functions as follows:

    tlδ+1=mintk>tlδ{tk˜yl(tk)˜yl(tlδ)κ˜yl(tlδ)}, (2.5)

    where ˜yl(tk)=[(˜ylm(t))T,(˜ylp(t))T]T and 0<κ<1 is a scalar parameter.

    Consequently, the following distributed mode-dependent state estimation filter (ΣF) can be designed for system (ΣM):

    (ΣF):{˙ˆxlm(t)=A(r(t))ˆxm(t)+B(r(t))g(ˆxp(tdp(t)))+Flm(σ(t))˜ylm(tlδ)+Klm(σ(t))Ns=1als[˜ysm(tsδ)˜ylm(tlδ)],˙ˆxlp(t)=C(r(t))ˆxp(t)+D(r(t))ˆxm(tdm(t))+Flp(σ(t))˜ylp(tlδ)+Klp(σ(t))Ns=1als[˜ysp(tsδ)˜ylp(tlδ)],ˆzlm(t)=Um(r(t))ˆxlm(t),ˆzlp(t)=Up(r(t))ˆxlp(t), (2.6)

    where t[tlδ,tlδ+1), δ=argminμ{ttsμ|ttsμ}, ˆzlm(t) and ˆzlp(t)  stand for estimation of zm(t) and zp(t), respectively; Flm(σ(t)),Flp(σ(t)) and Klm(σ(t)),Klp(σ(t)) represent the nonsynchronous mode-dependent filter gains to be determined later. More precisely, σ(t)F={1,,F} represents another Markov process corresponds to r(t) with

    Pr{σ(t)=ρ|r(t)=i}=λiρ,

    and Fρ=1λiρ=1.

    Remark 1. As event-triggered control strategy for networked control systems becomes more important, it is reasonable to investigate the analysis and synthesis issues for GRNs over sensor networks with event-triggered schemes. In comparison with common time-triggered strategies with extensive data transmissions, the event-triggered framework can considerably reduce the communication burden by generated events. Moreover, our developed event-triggered mechanism is related with both measurements of mRNAs and proteins, which is more efficient for potential applications.

    Then, it can be deduced by dividing [tlδ,tlδ+1) into tlδ+1hk+1ιk=tlδ[ιk,ιk+1) that

    {˙ˆxlm(t)=A(r(t))ˆxlm(t)+B(r(t))g(ˆxlp(tdp(t)))+Flm(σ(t))˜ylm(ιk)Flm(σ(t))εlm(ιk)+Klm(σ(t))Ns=1als[˜ysm(ιk)˜ylm(ιk)]Klm(σ(t))Ns=1als[εsm(ιk)εlm(ιk)],˙ˆxlp(t)=C(r(t))ˆxlp(t)+D(r(t))ˆxlm(tdm(t))+Flp(σ(t))˜ylp(ιk)Flp(σ(t))εlp(ιk)+Klp(σ(t))Ns=1als[˜ysp(ιk)˜ylp(ιk)]Klp(σ(t))Ns=1als[εsp(ιk)εlp(ιk)],ˆzlm(t)=Um(r(t))ˆxlm(t),ˆzlp(t)=Up(r(t))ˆxlp(t), (2.7)

    where εlm(ιk)=˜ylm(ιk)˜ylm(tlδ) and εlp(ιk)=˜ylp(ιk)˜ylp(tlδ), tlδιk<tlδ+1, represent the event-triggered measurement errors, respectively.

    As a result, by denoting elm(t)=x(t)ˆxlm(t), elp(t)=x(t)ˆxlp(t), ˜zlm(t)=z(t)ˆzlm(t) and ˜zlp(t)=z(t)ˆzlp(t), one can deduce that

    {˙elm(t)=A(r(t))elm(t)+B(r(t))g(xp(tdp(t)))B(r(t))g(ˆxlp(tdp(t)))Flm(σ(t))Hlm(r(t))elm(ιk)+Flm(σ(t))εlm(ιk)Klm(σ(t))Ns=1als[Hsm(r(t))esm(ιk)Hlm(r(t))elm(ιk)]+Km(σ(t))Ns=1als[εsm(ιk)εlm(ιk)]+Em(r(t))ω1(t)Flm(σ(t))Glm(r(t))ω3(ιk)Klm(σ(t))Ns=1als[Gsm(r(t))ω3(ιk)Glm(r(t))ω3(ιk)],˙elp(t)=C(r(t))elp(t)+D(r(t))elm(tdm(t))Flp(σ(t))Hlp(r(t))elp(ιk)+Flp(σ(t))εlp(ιk)Klp(σ(t))Ns=1als[Hsp(r(t))esp(ιk)Hlp(r(t))elp(ιk)]+Klp(σ(t))Ns=1als[εsp(ιk)εlp(ιk)]+Ep(r(t))ω2(t)Flp(σ(t))Glp(r(t))ω4(ιk)Klp(σ(t))Ns=1als[Gsp(r(t))ω4(ιk)Glp(r(t))ω4(ιk)],˜zlm(t)=Um(r(t))elm(t),˜zlp(t)=Up(r(t))elp(t), (2.8)

    For simplicity, the resulting closed-loop filter system can be rewritten as follows:

    {˙em(t)=ˉA(i)em(t)+ˉB(i)ˉg(ep(tdp(t)))(ˉFm(ρ)ˉKm(ρ)ˉL)ˉHm(i)em(ιk)+(ˉFm(ρ)ˉKm(ρ)ˉL)εm(ιk)+ˉEm(i)ω1(t)(ˉFm(ρ)ˉKm(ρ)ˉL)ˉGm(i)ω3(ιk),˙ep(t)=ˉC(i)ep(t)+ˉD(i)em(tdm(t))(ˉFp(ρ)ˉKp(ρ)ˉL)ˉHp(i)ep(ιk)+(ˉFp(ρ)ˉKp(ρ)ˉL)εp(ιk)+ˉEp(i)ω2(t)(ˉFp(ρ)ˉKp(ρ)ˉL)ˉGp(i)ω4(ιk),˜zm(t)=ˉUm(i)em(t),˜zp(t)=ˉUp(i)ep(t), t[ιk,ιk+1), (2.9)

    where

    em(t)=[eTm1(t),eTm2(t),,eTmN(t)]T,ep(t)=[eTp1(t),eTp2(t),,eTpN(t)]T,˜zm(t)=[˜zTm1(t),˜zTm2(t),,˜zTmN(t)]T,˜zp(t)=[˜zTp1(t),˜zTp2(t),,˜zTpN(t)]T,εm(t)=[εTm1(t),εTm2(t),,εTmN(t)]T,εp(t)=[εTp1(t),εTp2(t),,εTpN(t)]T,ˉA(i)=INA(i),ˉB(i)=INB(i),g(ep(t))=[(g(ep(t))g(ˆep1(t)))T,(g(ep(t))g(ˆep2(t)))T,,(g(ep(t))g(ˆep2(t)))T]T,ˉFm(ρ)=diag{F1m(ρ),F2m(ρ),,FNm(ρ)},ˉFp(ρ)=diag{F1p(ρ),F2p(ρ),,FNp(ρ)},ˉKm(ρ)=diag{K1m(ρ),K2m(ρ),,KNm(ρ)},ˉKp(ρ)=diag{K1p(ρ),K2p(ρ),,KNp(ρ)},ˉHm(i)=diag{H1m(i),H2m(i),,HNm(i)},ˉHp(i)=diag{H1p(i),H2p(i),,HNp(i)},ˉEm(i)=1NEm(i),ˉEp(i)=1NEp(i),ˉUm(i)=1NUm(i),ˉUp(i)=1NUp(i),ˉGm(i)=[(G1m(i))T,(G2m(i))T,,(GNm(i))T]T,ˉGp(i)=[(G1p(i))T,(G2p(i))T,,(GNp(i))T]T,ˉL=LIn.

    Remark 2. It is noticed that the adoption of conditional probability has been proved to be effective to cope with the Markov or semi-Markov jump systems with limited mode information. For the GRNs with hidden Markovian jumping parameters, lack of true operation modes of Markov chains would lead to control performance degradation or even unstable with mode-dependent designs. In this paper, the nonsynchronous mode information corresponds to the distributed sensor mode information, which implies that mode information mismatch between true GRNs model and our developed distributed state estimators is considered during the design. As a consequence, we have developed a novel distributed nonsynchronous filter framework, where the observed Markovian jumping modes are utilized for more practical distributed event-triggered state estimators.

    Consequently, by applying the input-delay approach, it can be obtained that

    {˙em(t)=ˉA(i)em(t)+ˉB(i)ˉg(ep(tdp(t)))(ˉFm(ρ)ˉKm(ρ)ˉL)ˉHm(i)em(tτ(t))+(ˉFm(ρ)ˉKm(ρ)ˉL)εm(tτ(t))+ˉEm(i)ω1(t)(ˉFm(ρ)ˉKm(ρ)ˉL)ˉGm(i)ω3(tτ(t)),˙ep(t)=ˉC(i)ep(t)+ˉD(i)em(tdm(t))(ˉFp(ρ)ˉKp(ρ)ˉL)ˉHp(i)ep(tτ(t))+(ˉFp(ρ)ˉKp(ρ)ˉL)εp(tτ(t))+ˉEp(i)ω2(t)(ˉFp(ρ)ˉKp(ρ)ˉL)ˉGp(i)ω4(tτ(t)),˜zm(t)=ˉUm(i)em(t),˜zp(t)=ˉUp(i)ep(t), t[ιk,ιk+1), (2.10)

    where τ(t):=tιk with 0τ(t)ˉτ.

    The aim of our paper is to design the desired nonsynchronous state estimator gains, such that the modified H performance γ can be satisfied in the mean-square sense for augmented state estimation error system with zero initial conditions, if it can hold that

    E{0(˜zTm(t)˜zm(t)+˜zTp(t)˜zp(t))dt}γ0(ωT1(t)ω1(t)+ωT2(t)ω2(t)+ωT3(tτ(t))ω3(tτ(t))+ωT4(tτ(t))ω4(tτ(t))dt. (2.11)

    In the sequel, the following lemmas are employed for later theoretical derivations.

    Lemma 1. [34] For any matrix M>0, scalars ˉξ>0, ξ(t) satisfying 0ξ(t)ˉξ, vector function ˙x(t):[ˉξ,0]Rn such that the concerned integrations are well defined in (2.12), then

    τttˉξ˙xT(s)M˙x(s)dsζT(t)Uζ(t), (2.12)

    where

    ζ(t)=[xT(t),xT(tξ(t)),xT(tˉξ)]T,U=[MM02MMM].

    Lemma 2. [35] If there exists a parameter ε and real matrices X, Y, Z, W, and it holds that

    [XZ+εWTεYTεY]<0, (2.13)

    then one has

    X+ZTεTWT+Wε1Z<0. (2.14)

    In this section, sufficient modified H performance conditions are first established for the augmented state estimation error system and the distributed state estimator gains are further designed in terms of convex optimization.

    Theorem 1. For given ˉdp, ˉdm, ˉτ and mode-dependent filter gains Flm(ρ),Flp(ρ) and Klm(ρ),Klp(ρ), the modified H filtering can be satisfied over distributed sensor networks according to Definition 1, if there exist mode-dependent matrices Pm(i)>0, Pp(i)>0, and matrices Qm>0, Qp>0, Qτ>0, Rm>0, Rp>0, Rτ>0, such that Ξi<0, for all iN, k=1,2,,N and ρF, k=1,2,,F, where

    Ξ(i)=[Ξ1(i)Ξ2(i)Ξ3(i)],Ξ1(i)=[Ξ11(i)Ξ12(i)Ξ13(i)],Ξ11(i)=[Ξ111(i)Ξ112(i)00Rm00Ξ113(i)Rτ0000QτRτ0000QmRmRTm002Rm00QpRpRp2Rp],Ξ111(i)=2Pm(i)ˉA(i)+Qm+QτRmRτ+ˉUTm(i)ˉUm(i)+jNπijPm(j),Ξ112(i)=Fρ=1λiρPm(i)ˉFm(ρ)ˉHm(i)+Fρ=1λiρPm(i)ˉKm(ρ)ˉLˉHm(i)+Rτ,Ξ113(i)=2Rτ+κ2ˉHTm(i)ˉHm(i),Ξ12(i)=[000Pm(i)ˉB(i)Ξ111(i)0000κ2ˉHTm(i)0000000000ˉDT(i)Pp(i)000000000Rp00ς0],Ξ121(i)=Fρ=1λiρPm(i)ˉFm(ρ)Fρ=1λiρPm(i)ˉKm(ρ)ˉL,Ξ13(i)=[Ξ131(i)Ξ132(i)000Ξ133(i)Rτ00Rτ002I0κ2II],Ξ131(i)=2Pp(i)ˉC(i)+Qp+QτRpRτ+ˉUTp(i)ˉUp(i)+jNπijPp(i),Ξ132(i)=Fρ=1λiρPp(i)ˉFp(ρ)ˉHp(i)+Fρ=1λiρPp(i)ˉKp(ρ)ˉLˉHp(i)+Rτ,Ξ133(i)=Qτ2Rτ+κ2ˉHTp(i)ˉHp(i),Ξ2(i)=[Ξ21(i),Ξ22(i)],Ξ21(i)=[0Pm(i)ˉEm(i)0Ξ211(i)0000κ2ˉHTm(i)ˉGm(i)00000000000000000000000000],Ξ22(i)=[ˉdmˉAT(i)0ˉτˉAT(i)0Ξ212(i)0Ξ213(i)0000000000ˉdpˉDT(i)0ˉτˉDT(i)00000000],Ξ211(i)=Fρ=1λiρPm(i)ˉFm(ρ)ˉGm(i)+Fρ=1λiρPm(i)ˉKm(ρ)ˉLˉGm(i),Ξ212(i)=ˉdmFρ=1λiρˉHTm(i)ˉFTm(ρ)+ˉdmFρ=1λiρˉHTm(i)ˉLTˉKTm(ρ),Ξ213(i)=ˉτFρ=1λiρˉHTm(i)ˉFTm(ρ)+ˉτFρ=1λiρˉHTm(i)ˉLTˉKTm(ρ),

    and

    Ξ3(i)=[Ξ31(i)Ξ32(i)Ξ33(i)],Ξ31(i)=[Ξ311(i)0Pp(i)ˉEp(i)0Ξ312(i)κ2ˉHTp(i)000κ2ˉHTp(i)ˉGp(i)0000000000000ˉGm(i)0κ2II000ˉGp(i)γI000γI00κ2ˉGTm(i)ˉGm(i)γI0κ2ˉGTp(i)ˉGp(i)γI],Ξ311(i)=Fρ=1λiρPp(i)ˉFp(ρ)Fρ=1λiρPp(i)ˉKp(ρ)ˉL,Ξ312(i)=Fρ=1λiρPp(i)ˉFp(ρ)ˉGp(i)+Fρ=1λiρPp(i)ˉKp(ρ)ˉLˉGp(i),Ξ32(i)=[0ˉdpˉCT(i)0ˉτˉCT(i)0Ξ321(i)0Ξ322(i)0000ˉdmˉBT(i)0ˉτˉBT(i)0Ξ323(i)0Ξ324(i)00Ξ325(i)0Ξ326(i)ˉdmˉEm(i)0ˉτˉEm(i)00ˉdpˉETp(i)0ˉτˉETp(i)],Ξ321(i)=ˉdpFρ=1λiρˉHTp(i)ˉFTp(ρ)+ˉdpFρ=1λiρˉHTp(i)ˉLTˉKTp(ρ),Ξ322(i)=ˉτFρ=1λiρˉHTp(i)ˉFTp(ρ)+ˉτFρ=1λiρˉHTp(i)ˉLTˉKTp(ρ),Ξ323(i)=ˉdmFρ=1λiρˉFTm(ρ)ˉdmFρ=1λiρˉLTˉKTm(ρ),Ξ324(i)=ˉτFρ=1λiρˉFTm(ρ)ˉτFρ=1λiρˉLTˉKTm(ρ),Ξ325(i)=ˉdpFρ=1λiρˉFTp(ρ)ˉdpFρ=1λiρˉLTˉKTp(ρ),Ξ326(i)=ˉτFρ=1λiρˉFTp(ρ)ˉτFρ=1λiρˉLTˉKTp(ρ),Ξ33(i)=[Ξ331(i)0Ξ332(i)00Ξ333(i)0Ξ334(i)R1m000R1p00R1τ0R1τ],Ξ331(i)=ˉdmFρ=1λiρˉGTm(i)ˉFTm(ρ)+ˉdmFρ=1λiρˉGTm(i)ˉLTˉKTm(ρ),Ξ332(i)=ˉτFρ=1λiρˉGTm(i)ˉFTm(ρ)+ˉτFρ=1λiρˉGTm(i)ˉLTˉKTm(ρ),Ξ333(i)=ˉdpFρ=1λiρˉGTp(i)ˉFTp(ρ)+ˉdpFρ=1λiρˉGTp(i)ˉLTˉKTp(ρ),Ξ334(i)=ˉτFρ=1λiρˉGTp(i)ˉFTp(ρ)+ˉτFρ=1λiρˉGTp(i)ˉLTˉKTp(ρ).

    Proof. Construct the following mode-dependent Lyapunov-Krasovski functions:

    V(i,t)=V1(i,t)+V2(i,t)+V3(i,t), (3.1)

    where

    V1(i,t)=eTm(t)Pm(i)em(t)+eTp(t)Pp(i)ep(t),V2(i,t)=ttˉdmeTm(s)Qmem(s)ds+ttˉdpeTp(s)Qpep(s)ds+ttˉτ(eTm(s)Qτem(s)+eTp(s)Qτep(s))ds,V3(i,t)=ˉdm0ˉdmtt+φeTm(φ)Rmem(φ)dφds+ˉdp0ˉdptt+φeTp(φ)Rpep(φ)dφds+ˉτ0ˉτtt+φ(eTm(φ)Rτem(φ)+eTp(φ)Rτep(φ))dφds.

    Then, for all r(t)=i and σ(t)=ρ, by defining the weak infinitesimal operator L of V(i,t) as follows

    LV(i,t)=limΔ0+1Δ{E{V(r(t+Δ),t+Δ)|r(t)=i,t}V(i,t)}, (3.2)

    it can be deduced that

    LV1(i,t)=E{2eTm(t)Pm(i)˙em(t)+2eTp(t)Pp(i)˙ep(t)+jNπijeTm(t)Pm(j)em(t)+jNπijeTp(t)Pp(i)ep(t)}=2eTm(t)[Pm(i)ˉA(i)]em(t)+2eTm(t)[Pm(i)ˉB(i)]ˉg(ep(tdp(t)))+2Fρ=1λiρeTm(t)[Pm(i)(ˉFm(ρ)+ˉKm(ρ)ˉL)ˉHm(i)]em(tτ(t))+2Fρ=1λiρeTm(t)[Pm(i)(ˉFm(ρ)ˉKm(ρ)ˉL)]εm(tτ(t))+2eTm(t)[Pm(i)ˉEm(i)]ω1(t)+2Fρ=1λiρeTm(t)[Pm(i)(ˉFm(ρ)ˉKm(ρ)ˉL)ˉGm(i)]ω3(tτ(t))+2eTp(t)[Pp(i)ˉC(i)]ep(t)+2eTp(t)[Pp(i)ˉD(i)]em(tdm(t))+2eTp(t)[Pp(i)ˉEp(i)]ω2(t)+2Fρ=1λiρeTp(t)[Pp(i)(ˉFp(ρ)ˉKp(ρ)ˉL)ˉHp(i)]ep(tτ(t))+2Fρ=1λiρeTp(t)[Pp(i)(ˉFp(ρ)ˉKp(ρ)ˉL)]εp(tτ(t))+2Fρ=1λiρeTp(t)[Pp(i)(ˉFp(ρ)ˉKp(ρ)ˉL)ˉGp(i)]ω4(tτ(t))+jNπijeTm(t)Pm(j)em(t)+jNπijeTp(t)Pp(i)ep(t). (3.3)

    Similarly, it can be deduced that

    LV2(i,t)=eTm(t)Qmem(t)eTm(tˉdm)Qmem(tˉdm)+eTp(t)Qpep(t)eTp(tˉdp)Qpep(tˉdp)+eTm(t)Qτem(t)+eTp(t)Qτep(t)eTm(tˉτ)Qτem(tˉτ)eTp(tˉτ)Qτep(tˉτ)=eTm(t)(Qm+Qτ)em(t)+eTp(t)(Qp+Qτ)ep(t)eTm(tˉdm)Qmem(tˉdm)eTp(tˉdp)Qmep(tˉdp)eTm(tˉτ)Qτem(tˉτ)eTp(tˉτ)Qτep(tˉτ), (3.4)

    and

    LV3(i,t)=E{ˉd2m˙eTm(t)Rm˙em(t)+ˉd2p˙eTp(t)Rp˙ep(t)+ˉτ2˙eTm(t)Rτ˙em(t)+ˉτ2˙eTp(t)Rτ˙ep(t)ˉdmttˉdm˙eTm(φ)Rm˙em(φ)dφˉdpttˉdp˙eTp(φ)Rp˙ep(φ)dφˉτttˉτ˙eTm(φ)Rτ˙em(φ)dφˉτttˉτ˙eTp(φ)Rτ˙ep(φ)dφ}=ψT(t)(ϝmRmϝTm+ϝpRpϝTp+ϝτRτϝTτ)ψ(t)ˉdmttˉdm˙eTm(φ)Rm˙em(φ)dφˉdpttˉdp˙eTp(φ)Rp˙ep(φ)dφˉτttˉτ˙eTm(φ)Rτ˙em(φ)dφˉτttˉτ˙eTp(φ)Rτ˙ep(φ)dφ, (3.5)

    where ψT(t)=[eTm(t),eTm(tτ(t)),eTm(tˉτ),eTm(tˉdm),eTm(tdm(t)),eTp(tˉdp),eTp(tdp(t)),eTp(t),eTp(tτ(t)),eTp(tˉτ),ˉgT(ep(tdp(t))),εTm(tτ(t)),εTp(tτ(t)),ωT1(t),ωT2(t),ωT3(tτ(t)),ωT4(tτ(t))]T and

    ϝm=[ˉdmˉAT(i)ˉdmFρ=1λiρˉHTm(i)(ˉFTm(ρ)ˉLTˉKTm(ρ))00000000ˉdmˉBT(i)ˉdmFρ=1λiρ(ˉFTm(ρ)ˉLTˉKTm(ρ))0ˉdmˉEm(i)0ˉdmFρ=1λiρˉGTm(i)(ˉFTm(ρ)ˉLTˉKTm(ρ))0],ϝp=[0000ˉdpˉDT(i)00ˉdpˉCT(i)ˉdpFρ=1λiρˉHTp(i)(ˉFTp(ρ)ˉLTˉKTp(ρ))000ˉdpFρ=1λiρ(ˉFTp(ρ)ˉLTˉKTp(ρ))0ˉdpˉETp(i)0ˉdpFρ=1λiρˉGTp(i)(ˉFTp(ρ)ˉLTˉKTp(ρ))],
    ϝτ=[ˉτˉAT(i)ˉτFρ=1λiρˉHTm(i)(ˉFTm(ρ)ˉLTˉKTm(ρ))00000000ˉτˉBT(i)ˉτFρ=1λiρ(ˉFTm(ρ)ˉLTˉKTm(ρ))0ˉτˉEm(i)0ˉτFρ=1λiρˉGTm(i)(ˉFTm(ρ)ˉLTˉKTm(ρ))0]+[0000ˉτˉDT(i)00ˉτˉCT(i)ˉτFρ=1λiρˉHTp(i)(ˉFTp(ρ)ˉLTˉKTp(ρ))000ˉτFρ=1λiρ(ˉFTp(ρ)ˉLTˉKTp(ρ))0ˉτˉETp(i)0ˉτFρ=1λiρˉGTp(i)(ˉFTp(ρ)ˉLTˉKTp(ρ))].

    In the sequel, by virtue of Lemma 1, one can obtain that

    ˉdmttˉdm˙eTm(φ)Rm˙em(φ)dφ[eTm(t)eTm(tdm(t))eTm(tˉdm)]T[RmRm02RmRmRm][em(t)em(tdm(t))em(tˉdm)], (3.6)
    ˉdpttˉdp˙eTp(φ)Rp˙ep(φ)dφ[eTp(t)eTp(tdp(t))eTp(tˉdp)]T[RpRp02RpRpRp][ep(t)ep(tdp(t))ep(tˉdp)] (3.7)
    ˉτttˉτ˙eTm(φ)Rτ˙em(φ)dφ[eTm(t)eTm(tτ(t))eTm(tˉτ)]T[RτRτ02RτRτRτ][em(t)em(tτ(t))em(tˉτ)], (3.8)
    ˉτttˉτ˙eTp(φ)Rτ˙ep(φ)dφ[eTp(t)eTp(tτ(t))eTp(tˉτ)]T[RτRτ02RτRτRτ][ep(t)ep(tτ(t))ep(tˉτ)]. (3.9)

    Then, it can be deduced that

    LV(i,t)ηT(t)Λη(t)

    where ηT(t)=[ηT1(t),ηT2(t),ηT3(t),ηT4(t)] with

    ηT1(t)=[eTm(t)eTm(tτ(t))eTm(tˉτ)eTm(tˉdm)eTm(tdm(t))],ηT2(t)=[eTp(tˉdp)eTp(tdp(t))eTp(t)eTp(tτ(t))eTp(tˉτ)],ηT3(t)=[ˉgT(ep(tdp(t)))εTm(tτ(t))εTp(tτ(t))],ηT4(t)=[ωT1(t)ωT2(t)ωT3(tτ(t))ωT4(tτ(t))],

    and Λ=Λ1+Λ2RmΛT2+Λ3RpΛT3+Λ4RτΛT4+Λ5RτΛT5 with

    Λ1=[Λ11Λ12Λ22],Λ11=[Λ111Λ11200Rm002RτRτ0000QτRτ0000QmRmRTm002Rm00QmRpRp2Rp],Λ111=2Pm(i)ˉA(i)+Qm+QτRmRτ+jNπijPm(j),Λ112=Fρ=1λiρPm(i)ˉFm(ρ)ˉHm(i)+Fρ=1λiρPm(i)ˉKm(ρ)ˉLˉHm(i)+RτΛ12=[000Pm(i)ˉB(i)Λ1210Pm(i)ˉEm(i)0Λ1220000000000000000000000000000000ˉDT(i)Pp(i)0000000000000000000Rp000000000],Λ121=Fρ=1λiρPm(i)ˉFm(ρ)Fρ=1λiρPm(i)ˉKm(ρ)ˉLΛ122=Fρ=1λiρPm(i)ˉFm(ρ)ˉGm(i)+Fρ=1λiρPm(i)ˉKm(ρ)ˉLˉGm(i)Λ22=[Λ221Λ222000Λ2230Pp(i)ˉEp(i)0Λ224Qτ2RτRτ0000000Rτ00000000000000000000000000000000000],Λ221=2Pp(i)ˉC(i)+Qp+QτRpRτ+jNπijPp(i),Λ222=Fρ=1λiρPp(i)ˉFp(ρ)ˉHp(i)+Fρ=1λiρPp(i)ˉKp(ρ)ˉLˉHp(i)+RτΛ223=Fρ=1λiρPp(i)ˉFp(ρ)Fρ=1λiρPp(i)ˉKp(ρ)ˉLΛ224=Fρ=1λiρPp(i)ˉFp(ρ)ˉGp(i)+Fρ=1λiρPp(i)ˉKp(ρ)ˉLˉGp(i)
    Λ2=[ˉdmˉAT(i)ˉdmFρ=1λiρˉHTm(i)(ˉFTm(ρ)ˉLTˉKTm(ρ))00000000ˉdmˉBT(i)ˉdmFρ=1λiρ(ˉFTm(ρ)ˉLTˉKTm(ρ))0ˉdmˉEm(i)0ˉdmFρ=1λiρˉGTm(i)(ˉFTm(ρ)ˉLTˉKTm(ρ))0],Λ3=[0000ˉdpˉDT(i)00ˉdpˉCT(i)ˉdpFρ=1λiρˉHTp(i)(ˉFTp(ρ)ˉLTˉKTp(ρ))000ˉdpFρ=1λiρ(ˉFTp(ρ)ˉLTˉKTp(ρ))0ˉdpˉETp(i)0ˉdpFρ=1λiρˉGTp(i)(ˉFTp(ρ)ˉLTˉKTp(ρ))],Λ4=[ˉτˉAT(i)ˉτFρ=1λiρˉHTm(i)(ˉFTm(ρ)ˉLTˉKTm(ρ))0000000ˉτˉBT(i)ˉτFρ=1λiρ(ˉFTm(ρ)ˉLTˉKTm(ρ))0ˉτˉEm(i)0ˉτFρ=1λiρˉGTm(i)(ˉFTm(ρ)ˉLTˉKTm(ρ))0],Λ5=[0000ˉτˉDT(i)0ˉτˉCT(i)ˉτFρ=1λiρˉHTp(i)(ˉFTp(ρ)ˉLTˉKTp(ρ))000ˉτFρ=1λiρ(ˉFTp(ρ)ˉLTˉKTp(ρ))0ˉτˉETp(i)0ˉτFρ=1λiρˉGTp(i)(ˉFTp(ρ)ˉLTˉKTp(ρ))].

    Furthermore, considering the nonlinear properties for the GRNs, it yields that

    [ˉg(ep(tdp(t)))ep(tdp(t))]T[2Iςς0][ˉg(ep(tdp(t)))ep(tdp(t))]0. (3.10)

    In addition, by recalling the event-triggering conditions, one has

    Nl=1κ2[˜yl(ιk)εl(ιk)]T[˜yl(ιk)εl(ιk)]Nl=1[εl(ιk)]Tεl(ιk)0, (3.11)

    where ˜yl(ιk)=[(˜ylm(t))T,(˜ylp(t))T]T, εl(ιk)=[(εlm(ιk))T,(εlp(ιk))T]T and it can be further verified that

    Nl=1κ2[Hlm(i)elm(ιk)+Glm(i)ω3(ιk)εlm(ιk)]T[Hlm(i)elm(ιk)+Glm(i)ω3(ιk)εlm(ιk)]+Nl=1κ2[Hlp(i)elp(ιk)+Glp(i)ω4(ιk)εlp(ιk)]T[Hlp(i)elp(ιk)+Glp(i)ω4(ιk)εlp(ιk)](εm(tτ(t)))Tεm(tτ(t))(εp(tτ(t)))Tεp(tτ(t))0. (3.12)

    As a consequence, it can be derived by Schur complement that the modified H performance can be achieved under the mean-square sense when Ξ(i)<0 is satisfied according to Theorem 1, which implies that

    LV(i,t)+eTm(t)ˉUTm(i)ˉUm(i)em(t)+eTp(t)ˉUTp(i)ˉUp(i)ep(t)γωT1(t)ω1(t)γωT2(t)ω2(t)γωT3(tτ(t))ω3(tτ(t))γωT4(tτ(t))ω4(tτ(t))<0 (3.13)

    and therefore completes the proof.

    Remark 3. The above established sufficient convex optimization conditions are derived with aid of linear matrix inequality technique, which can be easily solved by Matlab LMI toolbox or other mathematical softwares. It should be pointed out that the matrix dimension dependents on both system mode information and the sensor networks structure, which means that the more system modes and sensors are involved, the more computational consumption is needed. As a result, the distributed state estimators should be well designed for practical system implements with considerable computational efficiency.

    Theorem 2. For given ˉdp, ˉdm, ˉτ and the modified H filtering can be satisfied over distributed sensor networks according to Definition 1, if there exist mode-dependent matrices Pm(i)>0, Pp(i)>0, Xm(i)>0, Xp(i)>0, YF,m(ρ), YF,p(ρ), YK,m(ρ), YK,p(ρ), and matrices Qm>0, Qp>0, Qτ>0, Rm>0, Rp>0, Rτ>0, such that ˜Ξi<0, for all iN, k=1,2,,N and ρF, k=1,2,,F, where

    ˜Ξ(i)=[˜Ξ1(i)˜Ξ2(i)˜Ξ3(i)],˜Ξ1(i)=[˜Ξ11(i)˜Ξ12(i)˜Ξ13(i)],˜Ξ11(i)=[˜Ξ111(i)˜Ξ112(i)˜Ξ113(i)],˜Ξ111(i)=[˜Ξ1111(i)˜Ξ1112(i)00Rm00˜Ξ1113(i)Rτ0000QτRτ0000QmRmRTm002Rm00QpRpRp2Rp],˜Ξ112(i)=[000Pm(i)ˉB(i)˜Ξ1121(i)00000κ2ˉHTm(i)0000000000000ˉDT(i)Pp(i)00000000000Rp00ς00],˜Ξ113(i)=[˜Ξ1131(i)˜Ξ1132(i)000˜Ξ1133(i)˜Ξ1134(i)Rτ00κ2ˉHTp(i)Rτ0002I00κ2II0κ2II],˜Ξ1111(i)=2Pm(i)ˉA(i)+Qm+QτRmRτ+ˉUTm(i)ˉUm(i)+jNπijPm(j),˜Ξ1112(i)=Fρ=1λiρYF,m(ρ)ˉHm(i)+Fρ=1λiρYK,m(ρ)ˉLˉHm(i)+Rτ,˜Ξ1113(i)=2Rτ+κ2ˉHTm(i)ˉHm(i),˜Ξ1121(i)=Fρ=1λiρYF,m(ρ)Fρ=1λiρYK,m(ρ)ˉL,˜Ξ1131(i)=2Pp(i)ˉC(i)+Qp+QτRpRτ+ˉUTp(i)ˉUp(i)+jNπijPp(i),˜Ξ1132(i)=Fρ=1λiρYF,p(ρ)ˉHp(i)+Fρ=1λiρYK,p(ρ)ˉLˉHp(i)+Rτ,˜Ξ1133(i)=Fρ=1λiρYF,p(ρ)Fρ=1λiρYK,p(ρ)ˉL,˜Ξ1134(i)=Qτ2Rτ+κ2ˉHTp(i)ˉHp(i),
    ˜Ξ12(i)=[˜Ξ121(i)˜Ξ122(i)˜Ξ123(i)˜Ξ124(i)],˜Ξ121(i)=[Pm(i)ˉEm(i)0˜Ξ1211(i)000κ2ˉHTm(i)ˉGm(i)0000000000000000000000Pp(i)ˉEp(i)0˜Ξ1212(i)],˜Ξ1211(i)=Fρ=1λiρYF,m(ρ)ˉGm(i)+Fρ=1λiρYK,m(ρ)ˉLˉGm(i),˜Ξ1212(i)=Fρ=1λiρYF,p(ρ)ˉGp(i)+Fρ=1λiρYK,p(ρ)ˉLˉGp(i),˜Ξ122(i)=[ˉdmˉAT(i)Pm(i)0ˉτˉAT(i)Pm(i)0˜Ξ1221(i)0˜Ξ1222(i)0000000000ˉdpˉDT(i)Pp(i)0ˉτˉDT(i)Pp(i)000000000ˉdpˉCT(i)Pp(i)0ˉτˉCT(i)Pp(i)],˜Ξ1221(i)=ˉdmFρ=1λiρˉHTm(i)YTF,m(ρ)+ˉdmFρ=1λiρˉHTm(i)ˉLTYTK,m(ρ),˜Ξ1222(i)=ˉτFρ=1λiρˉHTm(i)YTF,m(ρ)+ˉτFρ=1λiρˉHTm(i)ˉLTYTK,m(ρ),˜Ξ123(i)=[000κ2ˉHTp(i)ˉGp(i)0000000000ˉdmˉBT(i)Pm(i)00ˉGm(i)0˜Ξ1231(i)000ˉGp(i)0],˜Ξ1231(i)=ˉdmFρ=1λiρYTF,m(ρ)ˉdmFρ=1λiρˉLTYTK,m(ρ),˜Ξ124(i)=[˜Ξ1241(i)0˜Ξ1242(i)0000ˉτˉBT(i)Pm(i)00˜Ξ1243(i)0˜Ξ1244(i)0˜Ξ1245(i)],˜Ξ1241(i)=ˉdpFρ=1λiρˉHTp(i)YTF,p(ρ)+ˉdpFρ=1λiρˉHTp(i)ˉLTYTK,p(ρ),˜Ξ1242(i)=ˉτFρ=1λiρˉHTp(i)YTF,p(ρ)+ˉτFρ=1λiρˉHTp(i)ˉLTYTK,p(ρ),˜Ξ1243(i)=ˉτFρ=1λiρYTF,m(ρ)ˉτFρ=1λiρˉLTYTK,m(ρ),˜Ξ1244(i)=ˉdpFρ=1λiρYTF,p(ρ)ˉdpFρ=1λiρˉLTYTK,p(ρ),˜Ξ1245(i)=ˉτFρ=1λiρYTF,p(ρ)ˉτFρ=1λiρˉLTYTK,p(ρ),
    ˜Ξ13(i)=[˜Ξ131(i)˜Ξ132(i)˜Ξ133(i)],˜Ξ131(i)=[γI000γI00κ2ˉGTm(i)ˉGm(i)γI0κ2ˉGTp(i)ˉGp(i)γI],˜Ξ132(i)=[ˉdmˉEm(i)Pm(i)0ˉτˉEm(i)Pm(i)00ˉdpˉETp(i)Pp(i)0ˉτˉETp(i)Pp(i)˜Ξ1311(i)0˜Ξ1312(i)00˜Ξ1313(i)0˜Ξ1314(i)],˜Ξ133(i)=[Rm2Pm(i)000Rm2Pp(i)00Rτ2Pm(i)0Rτ2Pp(i)],˜Ξ1311(i)=ˉdmFρ=1λiρˉGTm(i)YTF,m(ρ)+ˉdmFρ=1λiρˉGTm(i)ˉLTYTK,m(ρ),˜Ξ1312(i)=ˉτFρ=1λiρˉGTm(i)YTF,m(ρ)+ˉτFρ=1λiρˉGTm(i)ˉLTYTK,m(ρ),˜Ξ1313(i)=ˉdpFρ=1λiρˉGTp(i)YTF,p(ρ)+ˉdpFρ=1λiρˉGTp(i)ˉLTYTK,p(ρ),˜Ξ1314(i)=ˉτFρ=1λiρˉGTp(i)YTF,p(ρ)+ˉτFρ=1λiρˉGTp(i)ˉLTYTK,p(ρ),˜Ξ2(i)=[˜Ξ21(i)˜Ξ22(i)˜Ξ23(i)˜Ξ24(i)],˜Ξ21(i)=[˜Ξ211(i),˜Ξ212(i)],˜Ξ211(i)=[λi1(Xm(1)Pm(i))ϵmˉHTm(i)(YTF,m(1)ˉLTYTK,m(1))0],˜Ξ212(i)=[λi2(Xm(2)Pm(i))λiF(Xm(F)Pm(i))ϵmˉHTm(i)(YTF,m(2)ˉLTYTK,m(2))ϵmˉHTm(i)(YTF,m(F)ˉLTYTK,m(F))00],˜Ξ22(i)=[˜Ξ221(i),˜Ξ222(i)],˜Ξ221(i)=[0λi1(Xp(1)Pp(i))ϵpˉHTp(i)(YTF,p(1)ˉLTYTK,p(1))0],˜Ξ222(i)=[00λi2(Xp(2)Pp(i))λiF(Xp(F)Pp(i))ϵpˉHTp(i)(YTF,p(2)ˉLTYTK,p(2))ϵpˉHTp(i)(YTF,p(F)ˉLTYTK,p(F))00],˜Ξ23(i)=[˜Ξ231(i),˜Ξ232(i)],˜Ξ231(i)=[ϵm(ˉLTYTK,m(1)YTF,m(1))000ϵmˉGTm(i)(YTF,m(1)ˉLTYTK,m(1))0ˉdmλi1(Xm(1)Pm(i))0ˉdmλi1(Xm(1)Pm(i))0],˜Ξ232(i)=[ϵm(ˉLTYTK,m(2)YTF,m(2))ϵm(ˉLTYTK,m(F)YTF,m(F))000000ϵmˉGTm(i)(YTF,m(2)ˉLTYTK,m(2))ϵTmˉGTm(i)(YTF,m(F)ˉLTYTK,m(F))00ˉdmλi2(Xm(2)Pm(i))ˉdmλiF(Xm(F)Pm(i))00ˉdmλi2(Xm(2)Pm(i))ˉdmλiF(Xm(F)Pm(i))00],˜Ξ24(i)=[˜Ξ241(i),˜Ξ242(i)],˜Ξ241(i)=[0ϵp(ˉLTYTK,p(1)YTF,p(1))000ϵpˉGTp(i)(YTF,p(1)ˉLTYTK,p(1))0ˉdpλi1(Xp(1)Pp(i))0ˉdpλi1(Xp(1)Pp(i))],˜Ξ242(i)=[00ϵp(ˉLTYTK,p(2)YTF,p(2))ϵp(ˉLTYTK,p(F)YTF,p(F))000000ϵpˉGTp(i)(YTF,p(2)ˉLTYTK,p(2))ϵTpˉGTp(i)(YTF,p(F)ˉLTYTK,p(F))00ˉdpλi2(Xp(2)Pp(i))ˉdpλiF(Xp(F)Pp(i))00ˉdpλi2(Xp(2)Pp(i))ˉdpλiF(Xp(F)Pp(i))],

    and

    ˜Ξ3(i)=[˜Ξ31(i)˜Ξ32(i)˜Ξ33(i)], (3.14)
    ˜Ξ31(i)=[2ϵmXm(1)002ϵmXm(2)02ϵmXm(F)] (3.15)
    ˜Ξ32(i)=0, (3.16)
    ˜Ξ33(i)=[2ϵpXp(1)002ϵpXp(2)02ϵpXp(F)]. (3.17)

    With the aforementioned feasible solutions, the desired mode-dependent filter gains Flm(σ(t)),Flp(σ(t)) and Klm(σ(t)),Klp(σ(t)) can be obtained by the following calculation:

    YF,m(ρ)X1m(ρ)=ˉFm(ρ),YF,p(ρ)X1p(ρ)=ˉFp(ρ),YK,m(ρ)X1m(ρ)=ˉKm(ρ),YK,p(ρ)X1p(ρ)=ˉKp(ρ).

    Proof. By pre- and post-multiplying diag{I,I,I,I,I,I,I,I,I,I,I,Pm(i),Pp(i),Pm(i),Pp(i)} to Ξ(i)<0, Lemma 2 is employed accordingly.

    Eventually, define YF,m(ρ)=Xm(ρ)ˉFm(ρ), YF,p(ρ)=Xp(ρ)ˉFp(ρ), YK,m(ρ)=Xm(ρ)ˉKm(ρ), YK,p(ρ)=Xp(ρ)ˉKp(ρ), then the remainder of proof will follow directly from Theorem 1.

    Remark 4. The proposed modified H performance is more applicable for the distributed sensor networks design. In addition, the performance index γ can be further optimized by solving the following convex optimization problem:

    minimizeγ,subjectto˜Ξi<0,iN,ρF. (3.18)

    This section is dedicated to validate the applicability of our proposed distributed nonsynchronous designs, while illustrative studies have been performed with simulation results.

    Consider the following HMJP GRNs model with a set of biological simulated parameters as

    A(1)=[1001],A(2)=[1.3001.1],B(1)=[0.20.10.80.3],B(2)=[0.30.20.10.2],C(1)=[1001.2],C(2)=[1001],D(1)=[0.8000.8],D(2)=[1.1001.3],Em(1)=[1.11],Em(2)=[1.21.1],Ep(1)=[11.1],Ep(2)=[1.21],Um(1)=[1001],Um(2)=[1.02001.02],Up(1)=[1001],Up(2)=[1.01001.01],

    where the transition rate matrix with two modes of hidden Marko chain are assumed by

    Π=[0.20.20.80.8].

    For the sensor networks, it is assumed that two networked sensors are deployed for mRNAs as well as proteins, such that the communication topology matrix for each network is given by

    L=[1111].

    Moreover, the mode-dependent sensor parameters are set as follows:

    H1m(1)=[1001],H1m(2)=[1.1001.1],H2m(1)=[1001],H2m(2)=[1.2001.1],H1p(1)=[1001],H1p(2)=[0.9001.1],H2p(1)=[1001],H2p(2)=[1001.1],G1m(1)=[11],G1m(2)=[11.1],G2m(1)=[11],G2m(2)=[1.11],G1p(1)=[11],G1p(2)=[0.91],G2p(1)=[11],G2p(2)=[11.2].

    In the simulation example, the sampling interval of networked sensors is set by h=0.1s. Furthermore, the probability matrix of observed modes is supposed to be

    Λ=[0.70.30.20.8],

    which indicates that the nonsynchronous mode information is utilized instead of true system modes.

    Consequently, with these simulation parameters, the optimized nonsynchronous mode-dependent filter gains are solved by Theorem 2 as follows:

    F1m(1)=[0.00710.01530.03530.0983],F1m(2)=[0.00630.01470.03870.1017],F2m(1)=[0.01300.00750.02560.0718],F2m(2)=[0.01410.00610.02950.0782],F1p(1)=[0.01160.00510.01220.0406],F1p(2)=[0.01070.00880.01330.0464],F2p(1)=[0.01060.00500.01510.0461],F2p(2)=[0.00890.00440.02080.0444],K1m(1)=[0.01340.01130.03870.0323],K1m(2)=[0.01350.01270.03780.0351],K2m(1)=[0.01180.00820.02630.0177],K2m(2)=[0.01350.01150.02830.0232],K1p(1)=[0.00800.00790.01340.0149],K1p(2)=[0.00790.00750.01450.0153],K2p(1)=[0.00790.00660.01450.0097],K2p(2)=[0.00860.00610.01700.0102].

    As a result, the concentrations of mRNAs and proteins estimation errors over sensor networks are depicted in Figures 14, where the jumping modes of GRNs and sensors are illustrated in Figure 5, respectively. It can be seen that all the sensors can display effective estimations without true GRNs system mode information and thus provides an improved nonsynchronous distributed state estimation approach. Furthermore, the triggering events of the sensors are shown in Figures 6 and 7, respectively. Compared with common time-triggered strategies, one can clearly found that the event-triggered scheme can achieve a considerable improvement of communication efficiency. Therefore, these simulation results well demonstrate our distributed state estimation approach and supports our theoretical findings.

    Figure 1.  Concentrations of mRNAs estimation errors of sensor 1.
    Figure 2.  Concentrations of mRNAs estimation errors of sensor 2.
    Figure 3.  Concentrations of proteins estimation errors of sensor 1.
    Figure 4.  Concentrations of proteins estimation errors of sensor 2.
    Figure 5.  Jumping modes of GRNs and sensors.
    Figure 6.  Triggering instants and release intervals of sensor 1.
    Figure 7.  Triggering instants and release intervals of sensor 2.

    This paper is centered on the state estimation for GRNs with HMJPs over distributed sensor networks. More precisely, a novel event-triggered sensing scheme is developed for more effective estimation. In addition, since the modes of HMJPs might be nonsynchronous with the sensors, the nonsynchronous distributed state estimation is developed with aid of observed information, which is more practical for the implementations. On the basis of model transformation, sufficient mode-dependent conditions for ensuring the modified H performance are established and the desired nonsynchronous state estimation gains are designed by matrix manipulation techniques. In the end, numerical simulations are performed to show the usefulness and advantages of our theoretical results. It is noted that one interesting research issue of our future work is extending the current method to the cases with more complicated mode jumping features.

    This work is supported by the National Natural Science Foundation of China under Grant 62173326 and the National Key Research and Development Plan of China under Grant 2020AAA0105900, and supported by Beijing Natural Science Foundation under Grant L211023.

    The authors declare there is no conflict of interest.



    Ethics approval of research and informed consent



    The ethical approval is obtained from Institutional Review Board (IRB), General Directorate of Health Affairs in Madinah, and the informed consent has been received prior to study.

    Conflict of interest



    The authors declare no conflict of interest.

    [1] Olesen J, Steiner TJ, Bendtsen L, et al. (2018) Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. Cephalalgia 38: 1-211. https://doi.org/10.1177/0333102417738202
    [2] World Health Organization (2004) Atlas: country resources for neurological disorders 2004: results of a collaborative study of the World Health Organization and the World Federation of Neurology. Available from: https://iris.who.int/handle/10665/43075
    [3] Steiner TJ (2004) Lifting the burden: the global campaign against headache. Lancet Neurol 3: 204-205. https://doi.org/10.1016/S1474-4422(04)00703-3
    [4] GBD 2016 Headache Collaborators. (2018) Global, regional, and national burden of migraine and tension-type headache, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 17: 954-976. https://doi.org/10.1016/S1474-4422(18)30322-3
    [5] Woolf CJ, Wall PD (1986) Relative effectiveness of C primary afferent fibers of different origins in evoking a prolonged facilitation of the flexor reflex in the rat. J Neurosci 6: 1433-1442. https://doi.org/10.1523/JNEUROSCI.06-05-01433.1986
    [6] Lipton RB, Bigal ME, Ashina S, et al. (2008) Cutaneous allodynia in the migraine population. Ann Neurol 63: 148-158. https://doi.org/10.1002/ana.21211
    [7] Louter MA, Bosker JE, Van Oosterhout WPJ, et al. (2013) Cutaneous allodynia as a predictor of migraine chronification. Brain 136: 3489-3496. https://doi.org/10.1093/brain/awt251
    [8] Stovner LJ, Hagen K, Jensen R, et al. (2007) The global burden of headache: a documentation of headache prevalence and disability worldwide. Cephalalgia 27: 193-210. https://doi.org/10.1111/j.1468-2982.2007.01288.x
    [9] Al Jumah M, Al Khathaami AM, Kojan S, et al. (2020) The prevalence of primary headache disorders in Saudi Arabia: a cross-sectional population-based study. J Headache Pain 21: 1-9. https://doi.org/10.1186/s10194-020-1081-1
    [10] Muayqil T, Al-Jafen BN, Al-Saaran Z, et al. (2018) Migraine and headache prevalence and associated comorbidities in a large Saudi sample. Eur Neurol 79: 126-134. https://doi.org/10.1159/000487317
    [11] Burstein R, Yarnitsky D, Goor-Aryeh I, et al. (2000) An association between migraine and cutaneous allodynia. Ann Neurol 47: 614-624.
    [12] Burstein R, Collins B, Jakubowski M (2004) Defeating migraine pain with triptans: a race against the development of cutaneous allodynia. Ann Neurol 55: 19-26. https://doi.org/10.1002/ana.10786
    [13] Qarah M, Alshammari N, Alsharif R, et al. (2024) Prevalence of anxiety and depression and their association with migraine among PHC center visitors in Madina, Saudi Arabia. Cureus 16: e55404. https://doi.org/10.7759/cureus.55404
    [14] Láinez MJ, Domínguez M, Rejas J, et al. (2005) Development and validation of the Migraine Screen Questionnaire (MS-Q). Headache 45: 1328-1338. https://doi.org/10.1111/j.1526-4610.2005.00265.x
    [15] Alaqeel AM, Alaqeel SS, Andijani AI, et al. (2021) Validity and reliability of an Arabic version of the migraine screen questionnaire in the primary care setting for identifying hidden migraine. IJMDC 5: 906-910. https://doi.org/10.24911/IJMDC.51-1611922218
    [16] Marusich T, Szikszay TM, Sennholz A, et al. (2023) Translation, cross-cultural adaptation and measurement proprieties of the German version of the Allodynia Symptom Checklist (ASC-12). J Headache Pain 24: 160. https://doi.org/10.1186/s10194-023-01697-9
    [17] Bigal ME, Ashina S, Burstein R, et al. (2008) Prevalence and characteristics of allodynia in headache sufferers: a population study. Neurology 70: 1525-1533. https://doi.org/10.1212/01.wnl.0000310645.31020.b1
    [18] Han SM, Kim KM, Cho SJ, et al. (2021) Prevalence and characteristics of cutaneous allodynia in probable migraine. Sci Rep 11: 2467. https://doi.org/10.1038/s41598-021-82080-z
    [19] Almalki ZA, Alzhrani MA, Altowairqi AT, et al. (2018) Prevalence of migraine headache in Taif city, Saudi Arabia. J Clin Med Res 10: 125-133. https://doi.org/10.14740/jocmr3277w
    [20] Bigal ME, Lipton RB (2006) Modifiable risk factors for migraine progression. Headache 46: 1334-1343. https://doi.org/10.1111/j.1526-4610.2006.00577.x
    [21] May A, Schulte LH (2016) Chronic migraine: risk factors, mechanisms and treatment. Nat Rev Neurol 12: 455-464. https://doi.org/10.1038/nrneurol.2016.93
    [22] Winter AC, Berger K, Buring JE, et al. (2012) Associations of socioeconomic status with migraine and non-migraine headache. Cephalalgia 32: 159-170. https://doi.org/10.1177/0333102411430854
    [23] Nowaczewska M, Wiciński M, Kaźmierczak W (2020) The ambiguous role of caffeine in migraine headache: from trigger to treatment. Nutrients 12: 2259. https://doi.org/10.3390/nu12082259
    [24] Mínguez-Olaondo A, Quintas S, Morollón Sánchez-Mateos N, et al. (2022) Cutaneous allodynia in migraine: a narrative review. Front Neurol 12: 831035. https://doi.org/10.3389/fneur.2021.831035
    [25] Dodick DW, Reed ML, Fanning KM, et al. (2019) Predictors of allodynia in persons with migraine: results from the Migraine in America Symptoms and Treatment (MAST) study. Cephalalgia 39: 873-882. https://doi.org/10.1177/0333102418825346
    [26] Buoite Stella A, Filingeri D, Garascia G, et al. (2022) Skin wetness sensitivity across body sites commonly affected by pain in people with migraine. Headache 62: 737-747. https://doi.org/10.1111/head.14323
    [27] Deodato M, Granato A, Martini M, et al. (2024) Instrumental assessment of pressure pain threshold over trigeminal and extra-trigeminal area in people with episodic and chronic migraine: a cross-sectional observational study. Neurol Sci 45: 3923-3929. https://doi.org/10.1007/s10072-024-07372-4
    [28] Goadsby PJ, Holland PR, Martins-Oliveira M, et al. (2017) Pathophysiology of migraine: a disorder of sensory processing. Physiol Rev 97: 553-622. https://doi.org/10.1152/physrev.00034.2015
  • This article has been cited by:

    1. Ahmad Tavana, Sam Ziamanesh, Hadi S. Salimi, Amir Aminzadeh Ghavifekr, Paolo Visconti, 2023, A GOA-Optimized Visible Light Communication System For Indoor High-Precision 3-D Positioning Service, 979-8-3503-1140-2, 2585, 10.1109/CoDIT58514.2023.10284069
    2. 汝贵 Ru Gui, 秦岭 Qin Ling, 王凤英 Wang Fengying, 胡晓莉 Hu Xiaoli, 赵德胜 Zhao Desheng, 基于光电二极管阵列传感器的可见光定位系统, 2024, 44, 0253-2239, 2106005, 10.3788/AOS241001
    3. Jiahui Wang, Xiangqing Wang, Chaochuan Jia, Cui Yang, Indoor Visible Light 3D Localization System Based on Black Wing Kite Algorithm, 2025, 13, 2169-3536, 20960, 10.1109/ACCESS.2025.3535528
    4. Martin Dratnal, Lukas Danys, Radek Martinek, Bio-inspired optimization methods for visible light communication: a comprehensive review, 2025, 58, 1573-7462, 10.1007/s10462-025-11251-5
    5. Xiaotong Mao, Lei Jing, Zhengrong Tong, Weihua Zhang, Peng Li, Xue Wang, Hao Wang, Tianyi Cao, Zhen Sun, Indoor visible light positioning system driven by deep neural network based on Kalman filtering and clustering optimization., 2025, 00304018, 132090, 10.1016/j.optcom.2025.132090
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1084) PDF downloads(46) Cited by(0)

Figures and Tables

Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog