Loading [MathJax]/extensions/TeX/boldsymbol.js
Research article

The impact of stock liquidity on corporate environmental information disclosure: Does climate risk matter?

  • Received: 06 July 2024 Revised: 30 September 2024 Accepted: 16 October 2024 Published: 24 October 2024
  • JEL Codes: F36, G32, Q56

  • From the perspective of the Chinese market microstructure, we took Chinese A-share listed companies as samples to explore the impact and mechanism of stock liquidity on the quality of corporate environmental information disclosure (EID). Our results indicated that stock liquidity has a positive impact on the quality of corporate EID. Using the stock market interconnection events of the 2014 Shanghai-Hong Kong Stock Connect and the 2016 Shenzhen-Hong Kong Stock Connect as a quasi-natural experiment and applying the Ⅳ approach, the research results remained robust after controlling for endogeneity issues. Moreover, both climate physical risk and climate transition risk positively regulated the relationship between stock liquidity and the quality of corporate EID. Further analysis revealed that the positive impact of stock liquidity on the quality of corporate EID is determined by the information effect path and governance effect path of stock liquidity, and the role of the information effect path is more important. In summary, stock liquidity has had an important feedback effect on Chinese companies' active EID behavior through two pathways: Information effect and governance effect.

    Citation: Jinyu Chen, Junqi Liu, Meng He. The impact of stock liquidity on corporate environmental information disclosure: Does climate risk matter?[J]. Quantitative Finance and Economics, 2024, 8(4): 678-704. doi: 10.3934/QFE.2024026

    Related Papers:

    [1] Jing Yang, Shaojuan Ma, Dongmei Wei . Dynamical analysis of SIR model with Gamma distribution delay driven by Lévy noise and switching. Electronic Research Archive, 2025, 33(5): 3158-3176. doi: 10.3934/era.2025138
    [2] Meng Gao, Xiaohui Ai . A stochastic Gilpin-Ayala nonautonomous competition model driven by mean-reverting OU process with finite Markov chain and Lévy jumps. Electronic Research Archive, 2024, 32(3): 1873-1900. doi: 10.3934/era.2024086
    [3] Yuan Tian, Yang Liu, Kaibiao Sun . Complex dynamics of a predator-prey fishery model: The impact of the Allee effect and bilateral intervention. Electronic Research Archive, 2024, 32(11): 6379-6404. doi: 10.3934/era.2024297
    [4] Ran Yan, Ying Yang, Yuquan Du . Stochastic optimization model for ship inspection planning under uncertainty in maritime transportation. Electronic Research Archive, 2023, 31(1): 103-122. doi: 10.3934/era.2023006
    [5] Yu Chen, Qingyang Meng, Zhibo Liu, Zhuanzhe Zhao, Yongming Liu, Zhijian Tu, Haoran Zhu . Research on filtering method of rolling bearing vibration signal based on improved Morlet wavelet. Electronic Research Archive, 2024, 32(1): 241-262. doi: 10.3934/era.2024012
    [6] Peng Yu, Shuping Tan, Jin Guo, Yong Song . Data-driven optimal controller design for sub-satellite deployment of tethered satellite system. Electronic Research Archive, 2024, 32(1): 505-522. doi: 10.3934/era.2024025
    [7] Hao Wen, Yantao Luo, Jianhua Huang, Yuhong Li . Stochastic travelling wave solution of the N-species cooperative systems with multiplicative noise. Electronic Research Archive, 2023, 31(8): 4406-4426. doi: 10.3934/era.2023225
    [8] Hongze Zhu, Chenguang Zhou, Nana Sun . A weak Galerkin method for nonlinear stochastic parabolic partial differential equations with additive noise. Electronic Research Archive, 2022, 30(6): 2321-2334. doi: 10.3934/era.2022118
    [9] Yuan Tian, Jing Zhu, Jie Zheng, Kaibiao Sun . Modeling and analysis of a prey-predator system with prey habitat selection in an environment subject to stochastic disturbances. Electronic Research Archive, 2025, 33(2): 744-767. doi: 10.3934/era.2025034
    [10] Jiaqi Chang, Xiangxin Yin, Caoyuan Ma, Donghua Zhao, Yongzheng Sun . Estimation of the time cost with pinning control for stochastic complex networks. Electronic Research Archive, 2022, 30(9): 3509-3526. doi: 10.3934/era.2022179
  • From the perspective of the Chinese market microstructure, we took Chinese A-share listed companies as samples to explore the impact and mechanism of stock liquidity on the quality of corporate environmental information disclosure (EID). Our results indicated that stock liquidity has a positive impact on the quality of corporate EID. Using the stock market interconnection events of the 2014 Shanghai-Hong Kong Stock Connect and the 2016 Shenzhen-Hong Kong Stock Connect as a quasi-natural experiment and applying the Ⅳ approach, the research results remained robust after controlling for endogeneity issues. Moreover, both climate physical risk and climate transition risk positively regulated the relationship between stock liquidity and the quality of corporate EID. Further analysis revealed that the positive impact of stock liquidity on the quality of corporate EID is determined by the information effect path and governance effect path of stock liquidity, and the role of the information effect path is more important. In summary, stock liquidity has had an important feedback effect on Chinese companies' active EID behavior through two pathways: Information effect and governance effect.



    The theory of cellular algebra was first introduced by Graham and Lehrer [1]. K¨onig and Xi [2] later gave a more structural equivalent definition of cellular theory. Suppose K is a field and A is an associative unital free K-algebra. In the sense of Graham and Lehrer, A is cellular if it has a K-basis {cs,t|λΛ, s,tT(λ)}, where (Λ,) is a poset (partially ordered set) and T(λ) are finite index sets, such that

    (i) The K-linear map :AA defined by cstcts for all λΛ, s,tT(λ) is an anti-isomorphism of A.

    (ii) For any λΛ, tT(λ), and aA, there exists ratvK such that for all sT(λ),

    cstavT(λ)ratvcsvmodA>λ.

    The basis {cst|λΛ, s,tT(λ)} is the so called cellular basis. The existence of a cellular basis implies rich information on representations of A. One of the main uses of a cellular basis is to give the complete set of simple modules of A. According to Graham and Lehrer's theory, the cellular basis determines a cell filtration (a two-sided ideal filtration) A(λ1)A(λ2)A(λk) of A with respect to a total ordering λ1,λ2,,λk of the poset Λ. As an A-module, each quotient A(λi)/A(λi1) of the filtration is a direct sum of |T(λi)| copies of cell module C(λi). Moreover, for each λΛ, the cellular basis attaches C(λ) a bilinear form ,λ such that C(λ)/rad,λ is either 0 or an irreducible module. Denote by D(λ) the quotient C(λ)/rad,λ; all the nonzero D(λ)s consist of a complete set of non-isomorphic simple A-modules. For a cellular algebra, it may possess different constructions of cellular bases. By Graham and Lehrer's theory, different cellular bases may determine different parameterizations of simple modules. So the study of the relationship between different parameterizations of simple modules becomes an interesting topic.

    In this paper, we fix n as a natural number and a positive integer. The cyclotomic Hecke algebras of G(,1,n) was introduced by Ariki, Koike [3] and Brouˊe, Malle [4] independently. Many authors have constructed different cellular bases of cyclotomic Hecke algebras of G(,1,n). For example, Dipper, James, and Mathas [5] constructed the cellular basis \{m_{{\mathfrak{s}}{\mathfrak{t}}}| {\boldsymbol\lambda}\in\mathcal{P}^\ell_n\ \text{and}\ {\mathfrak{s}}, {\mathfrak{t}}\in\text{Std}({\boldsymbol\lambda})\} with respect to the poset ({\mathcal{P}}^\ell_n, \unrhd) , where {\mathcal{P}}^\ell_n is the set of \ell -partitions of n and \unrhd is the dominance order on {\mathcal{P}}^\ell_n . Through the cellular basis m_{{\mathfrak{s}}{\mathfrak{t}}} , Ariki [6] proved that the simple modules of cyclotomic Hecke algebras of G(\ell, 1, n) are paramaterized by Kleshchev multipartitons. By Brundan–Kleshchev's isomorphism [7], Hu and Mathas [8] constructed the graded cellular basis \{\psi_{{\mathfrak{s}}{\mathfrak{t}}}| {\boldsymbol\lambda}\in{\mathcal{P}}^\ell_n\ \text{and}\ {\mathfrak{s}}, {\mathfrak{t}}\in\text{Std}({\boldsymbol\lambda})\} of cyclotomic Hecke algebras of G(\ell, 1, n) with respect to the poset ({\mathcal{P}}^\ell_n, \unrhd) . Different from m_{{\mathfrak{s}}{\mathfrak{t}}} and \psi_{{\mathfrak{s}}{\mathfrak{t}}} , Bowman [9] constructed an integral graded cellular basis \{c_{{\mathfrak{s}}{\mathfrak{t}}}^\theta| {\boldsymbol\lambda}\in\mathcal{P}^\ell_n\ \text{and}\ {\mathfrak{s}}, {\mathfrak{t}}\in\text{Std}_\theta({\boldsymbol\lambda})\} of cyclotomic Hecke algebras of G(\ell, 1, n) with respect to the poset ({\mathcal{P}}^\ell_n, \unrhd_\theta) , where \unrhd_\theta is the \theta -dominance order on {\mathcal{P}}^\ell_n . Corresponding to Bowman's basis, the simple modules of cyclotomic Hecke algebra of G(\ell, 1, n) are labeled by Uglov multipartitions. We want to study the relationship between these different paramaterizations of simple modules of cyclotomic Hecke algebra of G(\ell, 1, n) . To this aim, it's necessary for us to understand the relationship between dominance order and \theta -dominance order on {\mathcal{P}}_n^\ell .

    The content of this paper is organized as follows; In Section 2, we introduce some notations and definitions. In Section 3, we give a combinatorial description of the neighbors with weak \theta -dominance order whenever the loading \theta is strongly separated. In Section 4, we give the main results of this paper: The relationship between weak \theta -dominance order, \theta -dominance order, and dominance order. Throughout this paper, we denote by {\mathbb{N}} the set of natural numbers and {\mathbb{Z}} the set of integers.

    A partition of n is a finite non-increasing sequence \lambda = (\lambda_1, \lambda_2, \dots) of non-negative integers with |\lambda| = \sum_i\lambda_i = n . If \lambda is a partition of n , we write \lambda\vdash n . Let {\mathcal{P}}_n be the set of partitions of n . The Young diagram of \lambda is a set

    [\lambda] = \{(i,j)|1\leq j\leq\lambda_i,\forall i\geq 1\}.

    The elements of [\lambda] are called the nodes of \lambda . The Young diagram can be identified with a tableau. For example, \lambda = (3, 2, 1) is a partition of 6; its Young diagram

    [\lambda] = \{(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)\},

    it can be identified with the tableau

    where (i, j) corresponds to the box in the i -th row and j -th column. For a partition \lambda , define its height h(\lambda) = \max\{k\in{\mathbb{N}}|\lambda_k\neq0\} .

    A multipartition of n with \ell components is an ordered sequence {\boldsymbol\lambda} = (\lambda^{(1)}, \dots, \lambda^{(\ell)}) of partitions such that |\lambda^{(1)}|+\dots+|\lambda^{(\ell)}| = n . We denote by {\mathcal{P}}_n^\ell the set of multipartitions of n with \ell components. For {\boldsymbol\lambda}\in{\mathcal{P}}_n^\ell , we write {\boldsymbol\lambda}\vdash_\ell n and call {\boldsymbol\lambda} an \ell -partition of n . When \ell = 1 , it is clear {\mathcal{P}}_n^1 = {\mathcal{P}}_n . The Young diagram of {\boldsymbol\lambda} is a set

    [ {\boldsymbol\lambda}] = \{(i,j,s)|1\leq s\leq\ell,1\leq j\leq\lambda_i^{(s)},\forall i\geq 1\}.

    The elements of [ {\boldsymbol\lambda}] are called the nodes of {\boldsymbol\lambda} . The Young diagram [ {\boldsymbol\lambda}] can be identified with an ordered sequence of tableaux. For example, {\boldsymbol\lambda} = ((2, 1), \emptyset, (3, 2, 1)) is a 3-partition of 9, the Young diagram

    [ {\boldsymbol\lambda}] = \{(1,1,1),(1,2,1),(2,1,1),(1,1,3),(1,2,3),(1,3,3),(2,1,3),(2,2,3),(3,1,3)\},

    it can be identified with the following ordered sequence of tableaux;

    where (i, j, s) corresponds to the box in the i -th row and j -th column of the s -th tableau. For simplicity, we identify {\boldsymbol\lambda} with its Young diagram [ {\boldsymbol\lambda}] .

    Suppose {\boldsymbol\lambda}\in{\mathcal{P}}_n^\ell . If \alpha\in[ {\boldsymbol\lambda}] and [ {\boldsymbol\lambda}]\setminus\{\alpha\} is a Young diagram of \ell -partition of n-1 , then we call \alpha a removable node of {\boldsymbol\lambda} . If \beta\notin[ {\boldsymbol\lambda}] and [ {\boldsymbol\lambda}]\cup\{\beta\} is a Young diagram of \ell -partition of n+1 , then we call \beta an addable node of {\boldsymbol\lambda} .

    Let {\boldsymbol\lambda} = (\lambda^{(1)}, \dots, \lambda^{(\ell)}), {\boldsymbol\mu} = (\mu^{(1)}, \dots, \mu^{(\ell)}) be \ell -partitions of n ; write {\boldsymbol\mu}\unrhd {\boldsymbol\lambda} if

    \sum\limits^{s-1}_{a = 1}|\mu^{(a)}|+\sum\limits^{t}_{i = 1}\mu^{(s)}_j\geq\sum\limits^{s-1}_{a = 1}|\lambda^{(a)}|+\sum\limits^{t}_{i = 1}\lambda^{(s)}_j\quad\forall\,1\leq s\leq \ell\ \ \forall\,t\geq1.

    If {\boldsymbol\mu}\unrhd {\boldsymbol\lambda} and {\boldsymbol\mu}\neq {\boldsymbol\lambda} , we write {\boldsymbol\mu}\rhd {\boldsymbol\lambda} . In particular, for \lambda, \mu\in{\mathcal{P}}_n , write \mu\unrhd\lambda if

    \sum\limits^{t}_{i = 1}\mu_i\geq\sum\limits^{t}_{i = 1}\lambda_i\quad\forall\,t\geq1.

    We call \unrhd the dominance order.

    Let \mathcal{N}^\ell_n = \{(r, c, l)|r, c, l\in{\mathbb{N}}_{\geq1}, r+c\leq2(n+1), 1\leq l\leq\ell\}. The elements of \mathcal{N}^\ell_n are also called nodes and the subsets of \mathcal{N}^\ell_n are called configurations of nodes. By definition, the Young diagrams of \ell -partitions of n are configurations of nodes.

    We fix e an element in {\mathbb{N}}_{\geq2}\cup\{\infty\} and I = {\mathbb{Z}}/e{\mathbb{Z}} , where I = {\mathbb{Z}} whenever e = \infty . An e -multicharge is a sequence (\kappa_1, \kappa_2, \dots, \kappa_\ell)\in I^\ell . For \alpha = (r, c, l)\in\mathcal{N}_n^\ell , we define its residue to be \text{res}(\alpha) = c-r+\kappa_l\in I . A loading is a sequence of integers \theta = (\theta_1, \dots, \theta_\ell) such that \theta_i-\theta_j\notin\ell{\mathbb{Z}} for i < j.

    Definition 2.1. [9, Definition 1.2] Let \alpha = (r, c, l), \alpha^\prime = (r^\prime, c^\prime, l^\prime)\in\mathcal{N}^\ell_n . We write \alpha^\prime < _{\theta}\alpha if either

    (i) \theta_l+\ell(r-c) < \theta_{l^\prime}+\ell(r^\prime-c^\prime) or

    (ii) \theta_l+\ell(r-c) = \theta_{l^\prime}+\ell(r^\prime-c^\prime) and r+c < r^\prime+c^\prime .

    Moreover, if \text{res}(\alpha) = \text{res}(\alpha^\prime) , then we write \alpha^\prime\lhd_\theta\alpha .

    Definition 2.2. [9, Definition 1.2] Let {\boldsymbol\lambda}, {\boldsymbol\mu}\in{\mathcal{P}}^\ell_n , we write {\boldsymbol\mu}\unlhd_\theta {\boldsymbol\lambda} if

    |\{\beta\in {\boldsymbol\mu}|\gamma\lhd_{\theta}\beta\}|\leq|\{\beta\in {\boldsymbol\lambda}|\gamma\lhd_{\theta}\beta\}|\quad\forall\gamma\in\mathcal{N}^\ell_n.

    We call \unlhd_\theta the \theta -dominance order.

    Deleting the residue condition in the definition of \theta -dominance order, we can get a weak version of it.

    Definition 2.3. Let {\boldsymbol\lambda}, {\boldsymbol\mu}\in{\mathcal{P}}^\ell_n , we write {\boldsymbol\mu}\leq_\theta {\boldsymbol\lambda} if

    |\{\beta\in {\boldsymbol\mu}|\gamma < _{\theta}\beta\}|\leq|\{\beta\in {\boldsymbol\lambda}|\gamma < _{\theta}\beta\}|\quad \forall\gamma\in\mathcal{N}^\ell_n.

    We call \leq_\theta the weak \theta -dominance order.

    Fix a loading \theta = (\theta_1, \dots, \theta_\ell) , if \theta_{i+1}-\theta_i > \ell n for each i = 1, 2, \dots, \ell-1 , then we call \theta a strongly separated loading.

    Let {\boldsymbol\lambda} be a configuration of nodes. For i\in{\mathbb{Z}} , we call \{(r, c, l)\in {\boldsymbol\lambda}|\theta_l+\ell(r-c) = i\} the i -diagonal of {\boldsymbol\lambda} and d_{i}^ {\boldsymbol\lambda} = |\{(r, c, l)\in {\boldsymbol\lambda}|\theta_l+\ell(r-c) = i\}| the length of the i -diagonal. Let (r, c, l) be a node in the i -diagonal of {\boldsymbol\lambda} . We call (r, c, l) the terminal node (respectively, head node) in the i -diagonal of {\boldsymbol\lambda} if r^{\prime}+c^{\prime}\leq r+c (respectively, r^{\prime}+c^{\prime}\geq r+c ) for each (r^{\prime}, c^{\prime}, l) in the i -diagonal of {\boldsymbol\lambda} .

    We give a rough description of the weak \theta -dominance order by the length of diagonals.

    Lemma 3.1. Let {\boldsymbol\lambda}, {\boldsymbol\mu}\in{\mathcal{P}}_{n}^\ell , then {\boldsymbol\mu}\leq_\theta {\boldsymbol\lambda} if and only if

    \sum\limits_{i = -\infty}^{t}d_{i}^ {\boldsymbol\lambda}\geq\sum\limits_{i = -\infty}^{t}d_{i}^{ {\boldsymbol\mu}}\quad\forall t\in{\mathbb{Z}}.

    Proof. Firstly, let us prove the necessity. Assume t to be an integer such that

    \sum\limits_{i = -\infty}^{t}d_{i}^ {\boldsymbol\lambda} < \sum\limits_{i = -\infty}^{t}d_{i}^{ {\boldsymbol\mu}}.

    Since | {\boldsymbol\lambda}| = | {\boldsymbol\mu}| = n , hence there exists an integer t^\prime > t such that

    ● the t^\prime -diagonal of {\boldsymbol\lambda} is non-empty, and

    \forall t < t^{\prime\prime} < t^\prime , the t^{\prime\prime} -diagonal of {\boldsymbol\lambda} is empty.

    Let \alpha be the head node in the t^\prime -diagonal of {\boldsymbol\lambda} ; then we have

    |\{\beta\in {\boldsymbol\lambda}|\alpha < _\theta\beta\}| = \sum\limits_{i = -\infty}^{t}d_{i}^ {\boldsymbol\lambda} < \sum\limits_{i = -\infty}^{t}d_{i}^{ {\boldsymbol\mu}}\leq|\{\beta\in {\boldsymbol\mu}|\alpha < _\theta\beta\}|.

    This contradicts to {\boldsymbol\lambda}\geq_\theta {\boldsymbol\mu} .

    Next, let us prove the sufficiency. Suppose \sum_{i = -\infty}^{t}d_{i}^ {\boldsymbol\lambda}\geq\sum_{i = -\infty}^{t}d_{i}^{ {\boldsymbol\mu}} for all t\in{\mathbb{Z}} . Let \gamma = (r, c, l) be a node in the t -diagonal of \mathcal{N}_n^\ell and (r^\prime, c^\prime, l^\prime) be the head node in the t -diagonal of \mathcal{N}_n^\ell . If \gamma\notin {\boldsymbol\lambda}\cup {\boldsymbol\mu} , then

    |\{\alpha\in {\boldsymbol\lambda}|\gamma < _\theta\alpha\}| = \sum\limits_{i = -\infty}^{t}d_i^ {\boldsymbol\lambda}\geq\sum\limits_{i = -\infty}^{t}d_{i}^{ {\boldsymbol\mu}} = |\{\beta\in {\boldsymbol\mu}|\gamma < _\theta\beta\}|.

    If \gamma\in {\boldsymbol\lambda}\setminus {\boldsymbol\mu} , then

    |\{\alpha\in {\boldsymbol\lambda}|\gamma < _\theta\alpha\}| = r-r^\prime+\sum\limits_{i = -\infty}^{t-1}d_i^ {\boldsymbol\lambda}\geq r-r^\prime+\sum\limits_{i = -\infty}^{t-1}d_{i}^{ {\boldsymbol\mu}}\geq|\{\beta\in {\boldsymbol\mu}|\gamma < _\theta\beta\}|.

    If \gamma\in {\boldsymbol\mu}\setminus {\boldsymbol\lambda} , then

    |\{\alpha\in {\boldsymbol\lambda}|\gamma < _\theta\alpha\}| = \sum\limits_{i = -\infty}^{t}d_i^ {\boldsymbol\lambda}\geq \sum\limits_{i = -\infty}^{t}d_{i}^{ {\boldsymbol\mu}} > r-r^\prime+\sum\limits_{i = -\infty}^{t-1}d_{i}^{ {\boldsymbol\mu}} = |\{\beta\in {\boldsymbol\mu}|\gamma < _\theta\beta\}|.

    If \gamma\in {\boldsymbol\lambda}\cap {\boldsymbol\mu} , then

    |\{\alpha\in {\boldsymbol\lambda}|\gamma < _\theta\alpha\}| = r-r^\prime+\sum\limits_{i = -\infty}^{t-1}d_i^ {\boldsymbol\lambda}\geq r-r^\prime+\sum\limits_{i = -\infty}^{t-1}d_{i}^{ {\boldsymbol\mu}} = |\{\beta\in {\boldsymbol\mu}|\gamma < _\theta\beta\}|.

    Therefore, {\boldsymbol\lambda}\geq_\theta {\boldsymbol\mu} .

    Remark 3.2. Suppose \theta = (\theta_1, \dots, \theta_{\ell}) are strongly separated and {\boldsymbol\lambda} = (\lambda^{(1)}, \dots, \lambda^{(\ell)})\in{\mathcal{P}}_{n}^\ell . Let \alpha = (r, c, s) be a node in the i -diagonal of {\boldsymbol\lambda} and \alpha^\prime = (r^\prime, c^\prime, s+1) be a node in the i^\prime -diagonal of {\boldsymbol\lambda} . Then i^\prime > i . In fact, {\boldsymbol\lambda} is a multipartition of n , hence

    i^\prime-i = \theta_{s+1}+\ell(r^\prime-c^\prime)-(\theta_{s}+\ell(r-c)) = (\theta_{s+1}-\theta_{s})+\ell(r^\prime+c-c^\prime-r) > \ell n+\ell(2-n) = 2\ell > 0.

    That is, the s -component \lambda^{(s)} is completely separated from the (s+1) -component \lambda^{(s+1)} .

    For {\boldsymbol\lambda}, {\boldsymbol\mu}\in{\mathcal{P}}_n^\ell , we say that {\boldsymbol\lambda} and {\boldsymbol\mu} are neighbors with the weak \theta -dominance order if {\boldsymbol\mu} > _\theta {\boldsymbol\lambda} and there is no {\boldsymbol\gamma}\in{\mathcal{P}}_n^\ell such that {\boldsymbol\mu} > _\theta\boldsymbol\gamma > _\theta {\boldsymbol\lambda} .

    In [[10], Theorem 1.4.10], there is a characterization of partitions that are neighbors with the usual dominance order. In the following lemma, let us prove a similar combinatorial description of neighbors with weak \theta -dominance order on partitions. Consequently, it will be clear that the weak \theta -dominance order coincides with the usual dominance order on partitions.

    Lemma 3.3. Suppose \lambda, \mu\in{\mathcal{P}}_n and \mu > _\theta\lambda , then \lambda, \mu are neighbors with the weak \theta -dominance order if and only if there exist positive integers r < r^\prime such that one of the following (a) and (b) occurs, where

    (a) r^\prime = r+1, \quad\mu_r = \lambda_r+1, \quad\mu_{r+1} = \lambda_{r+1}-1\quad\mathit{\text{and}}\quad\mu_t = \lambda_t\quad\forall t\neq r, r+1 ,

    (b) \lambda_r = \lambda_{r^\prime}, \quad\mu_r = \lambda_r+1, \quad \mu_{r^\prime} = \lambda_{r^\prime}-1\quad\mathit{\text{and}}\quad \mu_{t} = \lambda_t\quad\forall t\neq r, r^{\prime} .

    Proof. Let \ell = 1 and \theta, \theta^\prime\in{\mathbb{Z}} be different integers. For \alpha, \alpha^\prime\in\mathcal{N}_n^\ell , we have \alpha > _\theta\alpha^\prime if and only if \alpha > _{\theta^\prime}\alpha^\prime . Therefore, for each \lambda, \mu\in{\mathcal{P}}_n , we have \mu > _\theta\lambda if and only if \mu > _{\theta^\prime}\lambda . Hence, for simplicity, we assume \theta = 0 . By this assumption, node (a, b) lies in the (a-b) -diagonal.

    First, let us prove the necessity. Assume \mu > _\theta\lambda to be partitions of n and there exist no \gamma\in{\mathcal{P}}_n such that \mu > _\theta\gamma > _\theta\lambda . Define i: = \min\{k\in{\mathbb{Z}}|d^\mu_k\neq d^\lambda_k\} . Then i is well defined since \mu\neq\lambda . Define i^\prime: = \min\Bigl\{k\in{\mathbb{Z}}\big|\sum_{t = -\infty}^kd^\mu_t = \sum_{t = -\infty}^kd^\lambda_t, i < k\Bigr\} . Then i^\prime is well defined since |\lambda| = |\mu| = n . By definition, -n < i < i^\prime < n . Combining with Lemma 3.1, we derive

    \begin{align} 0\leq d^\lambda_i < d^\mu_i,\quad d^\mu_{i-1} = d^\lambda_{i-1} \end{align} (3.4)

    and

    \begin{align} d^\lambda_{i^\prime} > d^\mu_{i^\prime}\geq0,\quad d^\mu_{i^\prime+1}\geq d^\lambda_{i^\prime+1}. \end{align} (3.5)

    We will give the proof of necessity in 3 steps:

    Step 1. Let \alpha = (r, c) be the terminal node in the i -diagonal of \mu . Let us prove \lambda_{r-1}\geq\lambda_r+1 and (r, c) is the last node in the r -th row of \mu .

    If i\leq 0 , let us prove d_{i-1}^\mu = d_i^\mu-1 . We should prove the i -diagonal and (i-1) -diagonal of \mu is like

    where \clubsuit and \alpha = (r, c) are the i -diagonal of \mu and \spadesuit are the (i-1) -diagonal of \mu . If d^\mu_{i-1} > d^\mu_{i} , then we derive \eta = (r+1, c+2)\in\mu , hence \gamma = (r+1, c+1)\in\mu . Then the i -diagonal and (i-1) -diagonal of \mu is like

    where \clubsuit , \alpha = (r, c) and \gamma = (r+1, c+1) are the i -diagonal of \mu , while \spadesuit and \eta = (r+1, c+2) are the (i-1) -diagonal of \mu . This contradicts that \alpha = (r, c) is the terminal node in the i -diagonal of \mu ; therefore, d^\mu_{i-1}\leq d^\mu_i . Similarly, one can prove d_{i-1}^\lambda\leq d_{i}^\lambda . If d^\mu_{i-1} = d^\mu_i , by (3.4), we have d^\lambda_{i-1} = d^\mu_{i-1} = d^\mu_i > d_i^\lambda ; this contradicts d_{i-1}^\lambda\leq d_i^\lambda , hence d^\mu_{i-1} < d^\mu_i . If d_{i-1}^\mu < d_{i}^\mu-1 , then (r-1, c)\notin\mu . Then the i -diagonal and (i-1) -diagonal of \mu are like

    where \clubsuit and \alpha = (r, c) are the i -diagonal of \mu and \spadesuit are the (i-1) -diagonal of \mu . This contradicts to \alpha = (r, c)\in\mu and \mu_{r-1}\geq\mu_r . Therefore, d_{i-1}^\mu = d_i^\mu-1 . By (3.4), we have d_{i-1}^\lambda = d_{i-1}^\mu = d^\mu_i-1 > d_i^\lambda-1 , hence d_i^\lambda = d_{i-1}^\lambda = d_{i-1}^\mu = d_{i}^\mu-1 . So we derive \alpha = (r, c)\notin\lambda and \delta = (r-1, c)\in\lambda . Hence, the i -diagonal and (i-1) -diagonal of \lambda are like

    where \clubsuit are the i -diagonal of \lambda and \spadesuit , \delta = (r-1, c) are the (i-1) -diagonal of \lambda . The i -diagonal and (i-1) -diagonal of \mu are like

    where \clubsuit , \alpha = (r, c) are the i -diagonal of \mu and \spadesuit are the (i-1) -diagonal of \mu . Therefore \lambda_{r-1}\geq\lambda_r+1 . Moreover, (r, c) is the last node in the r -th row of \mu .

    For the case when i > 0 , the discussion is tedious and similar to that of i\leq0 , so we don't show it here again.

    Step 2. Let \beta = (r^\prime, c^\prime) be the terminal node in the i^\prime -diagonal of \lambda . Let us prove \lambda_{r^\prime}-1\geq\lambda_{r^\prime+1} and r^\prime > r .

    If i^\prime\geq 0 , let us prove d_{i^\prime+1}^\lambda = d_{i^\prime}^\lambda-1 . We should prove the i^\prime -diagonal and (i^\prime+1) -diagonal of \lambda are like

    where \clubsuit and \beta = (r^\prime, c^\prime) are the i^\prime -diagonal of \lambda and \spadesuit are the (i^\prime+1) -diagonal of \lambda . If d_{i^\prime+1}^\lambda > d_{i^\prime}^\lambda , then \eta = (r^\prime+2, c^\prime+1)\in\lambda , hence \gamma = (r^\prime+1, c^\prime+1)\in\lambda . The i^\prime -diagonal and (i^\prime+1) -diagonal of \lambda are like

    where \clubsuit , \beta = (r^\prime, c^\prime) and \gamma = (r^\prime+1, c^\prime+1) are the i^\prime -diagonal of \lambda and \spadesuit , \eta = (r^\prime+2, c^\prime+1) are the (i^\prime+1) -diagonal of \lambda . This contradicts that \beta = (r^\prime, c^\prime) is the terminal node in the i^\prime -diagonal of \lambda . Therefore, d_{i^\prime+1}^\lambda\leq d_{i^\prime}^\lambda . Similarly, we can prove d^\mu_{i^\prime+1}\leq d_{i^\prime}^\mu . If d_{i^\prime+1}^\lambda = d_{i^\prime}^\lambda , by (3.5), we have d^\mu_{i^\prime+1}\geq d^\lambda_{i^\prime+1} = d_{i^\prime}^\lambda > d^\mu_{i^\prime}. This contradicts to d^\mu_{i^\prime+1}\leq d_{i^\prime}^\mu . If d_{i^\prime+1}^\lambda < d_{i^\prime}^\lambda-1 , then \eta = (r^\prime, c^\prime-1)\notin\lambda. Then the i^\prime -diagonal and (i^\prime+1) -diagonal of \lambda are like

    where \clubsuit and \beta = (r^\prime, c^\prime) are the i^\prime -diagonal of \lambda and \spadesuit are the (i^\prime+1) -diagonal of \lambda . This contradicts to \beta = (r^\prime, c^\prime)\in\lambda . Therefore, d_{i^\prime+1}^\lambda = d^\lambda_{i^\prime}-1 , by (3.5), we have d_{i^\prime+1}^\mu\geq d^\lambda_{i^\prime+1} = d^\lambda_{i^\prime}-1 > d_{i^\prime}^\mu-1. Therefore, we derive d^\mu_{i^\prime} = d^\mu_{i^\prime+1} = d_{i^\prime+1}^\lambda = d_{i^\prime}^\lambda-1. Hence, (r^\prime+1, c^\prime)\notin\lambda, \quad \beta = (r^\prime, c^\prime)\notin\mu. Then the i^\prime -diagonal and (i^\prime+1) -diagonal of \lambda are like

    where \clubsuit and \beta = (r^\prime, c^\prime) are the i^\prime -diagonal of \lambda and \spadesuit are the (i^\prime+1) -diagonal of \lambda . The i^\prime -diagonal and (i^\prime+1) -diagonal of \mu are like

    where \clubsuit are the i^\prime -diagonal of \mu and \spadesuit are the (i^\prime+1) -diagonal of \mu . Therefore, we have \lambda_{r^\prime}-1\geq\lambda_{r^\prime+1} . Next, let us prove r^\prime > r . If r^\prime = r , since (r^\prime, c^\prime)\notin\mu and (r, c) is the last node in the r -th row of \mu , so we have c^\prime > c , hence i^\prime = r-c^\prime < r-c = i , this contradicts to i^\prime > i . If r^\prime < r , since r^\prime-c^\prime = i^\prime > i = r-c , then c^\prime+s < c , where s = r-r^\prime > 0 . Since (r, c) is the last node in the r -th row of \mu , so (r, c^\prime+s)\in\mu . Moreover, since r-(c^\prime+s) = r^\prime-c^\prime = i^\prime , so (r, c^\prime+s) lies in the i^\prime -diagonal of \mu and (r, c^\prime+s) < _\theta(r^\prime, c^\prime) , this contradicts to (r^\prime, c^\prime)\notin\mu . Therefore, we derive r^\prime > r .

    For the case when i < 0 , the discussion is also tedious and similar to that of i\geq0 , so we do not show it here again.

    Step 3. Now we have proved r^\prime > r , \lambda_{r-1}\geq\lambda_r+1 and \lambda_{r^\prime}-1\geq\lambda_{r^\prime+1} . Hence

    \gamma = (\lambda_1,\dots,\lambda_{r-1},\lambda_r+1,\lambda_{r+1},\dots,\lambda_{r^\prime-1},\lambda_{r^\prime}-1,\lambda_{r^\prime+1},\dots)

    is a partition of n . Let \alpha^\prime = (r, \lambda_{r}+1) , \beta^\prime = (r^\prime, \lambda_{r^\prime}) and j = r-(\lambda_r+1) , j^\prime = r^\prime-\lambda_{r^\prime} . Then \alpha^\prime is the terminal node in the j -diagonal of \gamma , and \beta^\prime is the terminal node in the j^\prime -diagonal of \lambda . We can obtain \gamma from \lambda by removing \beta^\prime to \alpha^\prime . Since r^\prime > r , \lambda_{r}+1 > \lambda_{r^\prime} , hence j^\prime = r^\prime-\lambda_{r^\prime} > r-(\lambda_r+1) = j and \beta^\prime = (r^\prime, \lambda_{r^\prime}) < _\theta(r, \lambda_r+1) = \alpha^\prime . So we have \gamma > _{\theta}\lambda . Next, let us prove \mu\geq_{\theta}\gamma . Since \alpha = (r, c)\notin\lambda , so \lambda_r+1\leq c , hence j = r-(\lambda_r+1)\geq r-c = i and \alpha^\prime = (r, \lambda_r+1)\leq_\theta(r, c) = \alpha. Since \beta = (r^\prime, c^\prime)\in\lambda , so \lambda_{r^\prime}\geq c^\prime and j^\prime = r^\prime-\lambda_{r^\prime}\leq r^\prime-c^\prime = i^\prime . Hence \beta = (r^\prime, c^\prime)\leq_\theta(r^\prime, \lambda_{r^\prime}) = \beta^\prime . Therefore,

    \alpha = (r,c)\geq_\theta\alpha^\prime = (r,\lambda_r+1) > _\theta\beta^\prime = (r^\prime,\lambda_{r^\prime})\geq_\theta\beta = (r^\prime,c^\prime)\quad\text{and}\quad i\leq j < j^\prime\leq i^\prime.

    Combining with the choice of i, i^\prime and Lemma 3.1, we derive \mu\geq_\theta\gamma . Hence \mu\geq_\theta\gamma > _\theta\lambda . Since \lambda and \mu are neighbors with \geq_\theta , so we have \mu = \gamma .

    Finally, let us prove r = r^\prime-1 or \lambda_r = \lambda_{r^\prime} . Otherwise, suppose r\neq r^\prime-1 and \lambda_r\neq\lambda_{r^\prime} , then r < r^\prime-1 and \lambda_r > \lambda_{r^\prime} . Let t = 1+\min\{k|\lambda_{k} > \lambda_{k+1}, r\leq k < r^\prime\} . If t = r^\prime , then \lambda_r = \dots = \lambda_{r^\prime-1} > \lambda_{r^\prime} > 0 , let \nu = (\lambda_1, \dots, \lambda_{r-1}, \lambda_{r}+1, \lambda_{r+1}, \dots, \lambda_{r^\prime-2}, \lambda_{r^\prime-1}-1, \lambda_{r^\prime}, \dots) . Since (r^\prime, \lambda_{r^\prime}) < _\theta(r^\prime-1, \lambda_{r^\prime-1}) < _\theta(r, \lambda_r+1) , hence \mu > _\theta\nu > _\theta\lambda , this contradicts that \mu and \lambda are neighbors with \geq_\theta . If t < r^\prime , then \lambda_r = \dots = \lambda_{t-1} > \lambda_t\geq\dots\geq\lambda_{r^\prime} > 0 , let

    \eta: = (\lambda_1,\dots,\lambda_{t-1},\lambda_{t}+1,\dots,\lambda_{r^\prime-1},\lambda_{r^\prime}-1,\lambda_{r^\prime+1},\dots).

    Since (r^\prime, \lambda_{r^\prime}) < _\theta(t, \lambda_{t}+1) < _\theta(r, \lambda_r+1), then \mu > _\theta\eta > _\theta\lambda , this contradicts that \mu and \lambda are neighbors with \geq_\theta . Therefore, r = r^\prime-1 or \lambda_r = \lambda_{r^\prime} . Now we complete the proof of necessity.

    Next, let us prove the sufficiency. Suppose \lambda, \mu\in{\mathcal{P}}_n and there exist positive integers r < r^\prime satisfying

    (a) r^\prime = r+1, \quad\mu_r = \lambda_r+1, \quad\mu_{r+1} = \lambda_{r+1}-1\quad\text{and}\quad\mu_t = \lambda_t\quad\forall t\neq r, r+1 , or

    (b) \lambda_r = \lambda_{r^\prime}, \quad\mu_r = \lambda_r+1, \quad \mu_{r^\prime} = \lambda_{r^\prime}-1\quad\text{and}\quad \mu_{t} = \lambda_t\quad\forall t\neq r, r^{\prime} .

    Let \nu\in{\mathcal{P}}_n^\ell such that \mu\geq_\theta\nu > _\theta\lambda and \lambda, \nu are neighbors with \geq_\theta . Let us prove \mu = \nu . Let i = r-(\lambda_r+1) , i^\prime = r^\prime-\lambda_{r^\prime} , it is clear i < i^\prime . By assumption, \mu can be obtained from \lambda by removing (r^\prime, \lambda_{r^\prime}) to (r, \lambda_r+1) . By Lemma 3.1 and the the choice of \nu , we have

    \begin{align} d^\mu_t = d^\nu_t = d^\lambda_t,\quad\quad\text{for all}\ t < i\ \text{or}\ t > i^\prime. \end{align} (3.6)

    By the necessity of this lemma, there exist integers s < s^\prime such that

    \nu_s = \lambda_s+1,\quad \nu_{s^\prime} = \lambda_{s^\prime}-1,\quad \nu_t = \lambda_t\quad\forall t\neq s,s^\prime.

    Let j = s-(\lambda_{s}+1), \ j^\prime = s^\prime-\lambda_{s^\prime} , it is clear j < j^\prime . In other words, \nu can be obtained from \lambda by removing (s^\prime, \lambda_{s^\prime}) to (s, \lambda_s+1) . Combining with (3.6), we know i\leq j < j^\prime\leq i^\prime .

    If (a) occurs, r = r^\prime-1 , the i -diagonal and i^\prime -diagonal of \lambda are like

    where \spadesuit are the i -diagonal and \clubsuit are the i^\prime -diagonal. The i -diagonal and i^\prime -diagonal of \mu are like

    where \spadesuit are the i -diagonal and \clubsuit are the i^\prime -diagonal. By the above arguments, we have s^\prime-\lambda_{s^\prime} = j^\prime = i^\prime = r^\prime-\lambda_{r^\prime} , s-\lambda_s-1 = j = i = r-\lambda_r-1 . Since the addable node and removable node are unique for the i -diagonal and i^\prime -diagonal of \lambda , respectively. Hence, s = r, \ s^\prime = r^\prime and \mu = \nu .

    If (b) occurs, r < r^\prime-1 and \lambda_r = \lambda_{r+1} = \dots = \lambda_{r^\prime} , the i -diagonal and i^\prime -diagonal of \lambda are like

    where \spadesuit are the i -diagonal and nodes \clubsuit are the i^\prime -diagonal. The i -diagonal and i^\prime -diagonal of \lambda are like

    where \spadesuit are the i -diagonal and \clubsuit are the i^\prime -diagonal. By the above arguments, we have s^\prime-\lambda_{s^\prime} = j^\prime = i^\prime = r^\prime-\lambda_{r^\prime}, \quad s-\lambda_s-1 = j = i = r-\lambda_r-1 . Since the addable node and removable node are unique for the i -diagonal and i^\prime -diagonal of \lambda respectively. Hence, s = r, \ s^\prime = r^\prime , and \mu = \nu .

    Now we can give a combinatorial description of neighbors with weak \theta -dominance order on multipartitions.

    Proposition 3.7. Suppose \theta = (\theta_1, \dots, \theta_\ell) be strongly separated, {\boldsymbol\lambda} = (\lambda^{(1)}, \dots, \lambda^{(\ell)}) and {\boldsymbol\mu} = (\mu^{(1)}, \dots, \mu^{(\ell)}) be \ell -partitions of n with {\boldsymbol\mu} > _\theta {\boldsymbol\lambda} . Then {\boldsymbol\lambda}, {\boldsymbol\mu} are neighbors with the weak \theta -dominance order if and only if one of (a) , (b) , and (c) occurs, where

    (a) there exists s < \ell such that

    \begin{align*} &\mu^{(r)} = \lambda^{(r)}\quad \forall r\neq s,s+1\\ &\mu^{(s)} = (\lambda_1^{(s)},\dots,\lambda^{(s)}_{k_s},1)\quad\mathit{\text{where }}\quad k_s = h(\lambda^{(s)}) \\ &\mu^{(s+1)}_1 = \lambda^{(s+1)}_1-1\quad\mathit{\text{and}}\quad\mu^{(s+1)}_j = \lambda^{(s+1)}_j\quad \forall j > 1. \end{align*}

    (b) there exist s and i such that

    \begin{align*} &\mu^{(r)} = \lambda^{(r)}\quad \forall r\neq s\\ &\mu^{(s)}_j = \lambda_j^{(s)}\quad \forall j\neq i,i+1\\ &\mu^{(s)}_i = \lambda^{(s)}_i+1\quad\mathit{\text{and}}\quad\mu^{(s)}_{i+1} = \lambda^{(s)}_{i+1}-1. \end{align*}

    (c) there exist s and i < i^\prime such that

    \begin{align*} &\mu^{(r)} = \lambda^{(r)}\quad \forall r\neq s\\ &\mu^{(s)}_j = \lambda_j^{(s)}\quad \forall j\neq i,i^\prime\\ &\mu^{(s)}_i-1 = \mu^{(s)}_{i^\prime}+1 = \lambda^{(s)}_i = \lambda^{(s)}_{i^\prime}. \end{align*}

    Proof. Let us prove the necessity. We assume {\boldsymbol\lambda} = (\lambda^{(1)}, \dots, \lambda^{(\ell)}) and {\boldsymbol\mu} = (\mu^{(1)}, \dots, \mu^{(\ell)}) are \ell -partitions of n with {\boldsymbol\mu} > _\theta {\boldsymbol\lambda} and there exists no \boldsymbol\gamma = (\gamma^{(1)}, \dots, \gamma^{(\ell)})\in{\mathcal{P}}_n^\ell such that {\boldsymbol\mu} > _\theta\boldsymbol\gamma > _\theta {\boldsymbol\lambda} . Define

    s: = \min\{k|\mu^{(k)}\neq\lambda^{(k)}\},

    then \lambda^{(s)}\neq\mu^{(s)} and \lambda^{(r)} = \mu^{(r)} for all r < s . Since {\boldsymbol\mu} > _\theta {\boldsymbol\lambda} and \theta is strongly separated, combining with Lemma 3.1 and Remark 3.2, we have

    \begin{align} \sum\limits_{k = 1}^{t}|\mu^{(k)}|\geq\sum\limits_{k = 1}^{t}|\lambda^{(k)}|\quad\forall 1\leq t\leq\ell. \end{align} (3.8)

    Hence |\mu^{(s)}|\geq|\lambda^{(s)}| .

    Suppose |\mu^{(s)}| > |\lambda^{(s)}| , then s < \ell . Set m_s = h(\mu^{(s)}) , let us prove \mu^{(s)}_{m_s} = 1 . Otherwise, assume \mu^{(s)}_{m_s} > 1 . Let \boldsymbol\gamma = (\gamma^{(1)}, \dots, \gamma^{(s)}, \dots, \gamma^{(\ell)}) , where

    \begin{align*} &\gamma^{(r)} = \mu^{(r)}\quad \forall r\neq s,\\ &\gamma^{(s)} = (\mu^{(s)}_1,\dots,\mu^{(s)}_{m_s-1},\mu^{(s)}_{m_s}-1,1). \end{align*}

    Since (m_s, \mu^{(s)}_{m_s}, s) > _\theta(m_s+1, 1, s) , so {\boldsymbol\mu} > _\theta\boldsymbol\gamma . Let us prove \boldsymbol\gamma > _\theta {\boldsymbol\lambda} . Let

    u = \theta_s+\ell(1-\mu^{(s)}_1),\ p = \theta_{s}+\ell(m_s-\mu^{(s)}_{m_s}),\ q = \theta_{s}+\ell(m_s+1-1) = \theta_s+\ell m_s.

    Where u\leq p < q . Define

    \bigstar: = (1,\mu^{(s)}_1,s)\text{ is the unique node in the } u \text{-diagonal of } {\boldsymbol\mu}
    \clubsuit: = (m_s,\mu^{(s)}_{m_s},s)\text{ is the terminal node in the } p \text{-diagonal of } {\boldsymbol\mu}
    \spadesuit: = (m_s+1,1,s)\text{ is the unique node in the } q \text{-diagonal of } \boldsymbol\gamma .

    \boldsymbol\gamma can be obtained from {\boldsymbol\mu} by removing \clubsuit to \spadesuit . The Young diagrams of \mu^{(s)} and \gamma^{(s)} are like

    By the construction of \boldsymbol\gamma , we have d_{t}^{ {\boldsymbol\mu}} = d_{t}^{\boldsymbol\gamma} for all t\neq p, q . By Remark 3.2 and the choice of s , we have

    \sum\limits_{t = -\infty}^{u-1}d_t^{\boldsymbol\gamma} = \sum\limits_{t = -\infty}^{u-1}d_t^{ {\boldsymbol\mu}} = \sum\limits_{t = 1}^{s-1}|\mu^{(t)}| = \sum\limits_{t = 1}^{s-1}|\lambda^{(t)}| = \sum\limits_{t = -\infty}^{u-1}d_t^{ {\boldsymbol\lambda}}.

    By Lemma 3.1, we derive

    \begin{align} \sum\limits_{t = u}^{k}d_t^{\boldsymbol\gamma} = \sum\limits_{t = u}^{k}d_t^{ {\boldsymbol\mu}}\geq\sum\limits_{t = u}^{k}d_t^{ {\boldsymbol\lambda}}\quad\forall u\leq k < p \end{align} (3.9)
    \begin{align} 1+\sum\limits_{t = u}^{k}d_t^{\boldsymbol\gamma} = \sum\limits_{t = u}^{k}d_t^{ {\boldsymbol\mu}}\geq\sum\limits_{t = u}^{k}d_t^{ {\boldsymbol\lambda}}\quad\forall p\leq k < q \end{align} (3.10)

    and

    \sum\limits_{t = -\infty}^{k}d_t^{\boldsymbol\gamma} = \sum\limits_{t = -\infty}^{k}d_t^{ {\boldsymbol\mu}}\geq\sum\limits_{t = -\infty}^{k}d_t^{ {\boldsymbol\lambda}}\quad \forall k\geq q.

    If \boldsymbol\gamma\ngeq_\theta {\boldsymbol\lambda} , then there exists p\leq\epsilon < q such that

    \begin{align} \sum\limits_{t = u}^{\epsilon-1}d_{t}^{\boldsymbol\gamma}\geq\sum\limits_{t = u}^{\epsilon-1}d_t^{ {\boldsymbol\lambda}},\qquad\sum\limits_{t = u}^{\epsilon}d_{t}^{\boldsymbol\gamma} < \sum\limits_{t = u}^{\epsilon}d_t^{ {\boldsymbol\lambda}}. \end{align} (3.11)

    If \epsilon = p , by (3.9)–(3.11), we have

    \sum\limits_{t = u}^{p-1}d_t^{\boldsymbol\gamma} = \sum\limits_{t = u}^{p-1}d_t^{ {\boldsymbol\mu}}\geq\sum\limits_{t = u}^{p-1}d_t^{ {\boldsymbol\lambda}}\quad\text{and} \quad 1+\sum\limits_{t = u}^{p}d_t^{\boldsymbol\gamma} = \sum\limits_{t = u}^{p}d_t^{ {\boldsymbol\mu}} = \sum\limits_{t = u}^{p}d_t^{ {\boldsymbol\lambda}},

    hence d_p^{ {\boldsymbol\lambda}}\geq d_p^{ {\boldsymbol\mu}} . So \clubsuit = (m_s, \mu^{(s)}_{m_s}, s)\in\lambda^{(s)} and hence |\lambda^{(s)}|\geq|\mu^{(s)}| , this contradicts to |\mu^{(s)}| > |\lambda^{(s)}| . If p < \epsilon < q , by (3.9)–(3.11), we have

    \sum\limits_{t = u}^{\epsilon-1}d_{t}^{ {\boldsymbol\mu}} > \sum\limits_{t = u}^{\epsilon-1}d_{t}^{\boldsymbol\gamma}\geq\sum\limits_{t = u}^{\epsilon-1}d_t^{ {\boldsymbol\lambda}},\qquad\sum\limits_{t = u}^{\epsilon}d_{t}^{ {\boldsymbol\mu}} = 1+\sum\limits_{t = u}^{\epsilon}d_{t}^{\boldsymbol\gamma} = \sum\limits_{t = u}^{\epsilon}d_t^{ {\boldsymbol\lambda}}

    then d_\epsilon^{ {\boldsymbol\lambda}} > d_\epsilon^{ {\boldsymbol\mu}} and |\lambda^{(s)}| > |\mu^{(s)}| ; this contradicts to |\mu^{(s)}| > |\lambda^{(s)}| . Therefore \boldsymbol\gamma\geq_\theta {\boldsymbol\lambda} . Since |\gamma^{(s)}| = |\mu^{(s)}| > |\lambda^{(s)}| , hence \boldsymbol\gamma\neq {\boldsymbol\lambda} . So we derive

    {\boldsymbol\mu} > _\theta\boldsymbol\gamma > _\theta {\boldsymbol\lambda}.

    This contradicts that {\boldsymbol\lambda} and {\boldsymbol\mu} are neighbors with \geq_\theta . So we have \mu^{(s)}_{m_s} = 1 .

    Let \boldsymbol\nu: = (\nu^{(1)}, \dots, \nu^{(s)}, \nu^{(s+1)}, \dots, \nu^{(\ell)}) , where

    \begin{align*} &\nu^{(r)} = \mu^{(r)}\quad \forall r\neq s,s+1,\\ &\nu^{(s)} = (\mu^{(s)}_1,\dots,\mu^{(s)}_{m_s-1}) \end{align*}

    and \nu^{(s+1)} = (\nu^{(s+1)}_1, \nu^{(s+1)}_2\dots) , where

    \nu^{(s+1)}_1 = \mu^{(s+1)}_1+1,\ \nu^{(s+1)}_t = \mu^{(s+1)}_t\quad t > 1.

    Let

    \clubsuit: = (m_s,1,s),\quad\spadesuit: = (1,\nu^{(s+1)}_1,s+1)

    and

    \begin{align*} u^\prime:& = \theta_s+\ell(m_s-1),\\ q^\prime:& = \theta_{s+1}+\ell(1-\nu_1^{(s+1)}),\\ p^\prime:& = \theta_{s+1}+\ell(1-\lambda^{(s+1)}_1). \end{align*}

    Let r^\prime: = \min\{q^\prime, p^\prime\} , by Remark 3.2, we have u^\prime < r^\prime . Since \mu^{(s)}_{m_s} = 1 , so \clubsuit is the unique node in the u^\prime -diagonal of {\boldsymbol\mu} and \spadesuit is the unique node in the q^\prime -diagonal of \boldsymbol\nu . That is, \boldsymbol\nu can be obtained from {\boldsymbol\mu} by removing the node \clubsuit to \spadesuit . From the point of Young's diagram

    By Lemma 3.1, we have {\boldsymbol\mu} > _\theta\boldsymbol\nu . Next, let us prove \boldsymbol\nu\geq_\theta {\boldsymbol\lambda} . By Lemma 3.1, we have

    \sum\limits_{t = -\infty}^{k}d_t^{\boldsymbol\nu} = \sum\limits_{t = -\infty}^{k}d_t^{ {\boldsymbol\mu}}\geq\sum\limits_{t = -\infty}^{k}d_t^ {\boldsymbol\lambda}\quad\text{where}\ k < u^\prime\text{ or }k\geq q^\prime.

    Moreover, by (3.8) and the assumption |\mu^{(s)}| > |\lambda^{(s)}| , we have

    \sum\limits_{t = 1}^{s}|\mu^{(t)}| > \sum\limits_{t = 1}^{s}|\lambda^{(t)}|.

    Combining with Remark 3.2 and the definition of u^\prime, r^\prime , we derive

    \sum\limits_{t = -\infty}^{k}d_t^{\boldsymbol\nu} = \sum\limits_{t = -\infty}^{k}d_t^{ {\boldsymbol\mu}}-1 = \sum\limits_{t = 1}^{s}|\mu^{(t)}|-1 \geq\sum\limits_{t = 1}^{s}|\lambda^{(t)}|\geq\sum\limits_{t = -\infty}^{k}d_t^{ {\boldsymbol\lambda}}

    where u^\prime\leq k < r^\prime . If r^\prime = q^\prime , then we have proved

    \sum\limits_{t = -\infty}^{k}d_t^{\boldsymbol\nu}\geq\sum\limits_{t = -\infty}^{k}d_t^{ {\boldsymbol\lambda}}\quad \forall k\in{\mathbb{Z}}.

    Therefore, \boldsymbol\nu\geq_\theta {\boldsymbol\lambda} . If r^\prime = p^\prime < q^\prime , suppose \boldsymbol\nu\ngeq_\theta {\boldsymbol\lambda} , there exists some r^\prime\leq\epsilon^\prime < q^\prime such that

    \sum\limits_{t = -\infty}^{\epsilon^\prime}d_t^{\boldsymbol\nu} < \sum\limits_{t = -\infty}^{\epsilon^\prime}d_t^{ {\boldsymbol\lambda}},\quad \sum\limits_{t = -\infty}^{\epsilon^\prime+1}d_t^{\boldsymbol\nu}\geq\sum\limits_{t = -\infty}^{\epsilon^\prime+1}d_t^{ {\boldsymbol\lambda}}.

    On the other hand, by the definition of p^\prime and q^\prime , we have

    \sum\limits_{t = -\infty}^{\epsilon^\prime+1}d_t^{\boldsymbol\nu}\leq 1+\sum\limits_{t = -\infty}^{\epsilon^\prime}d_t^{\boldsymbol\nu} < 1+\sum\limits_{t = -\infty}^{\epsilon^\prime}d_t^{ {\boldsymbol\lambda}} \leq\sum\limits_{t = -\infty}^{\epsilon^\prime+1}d_t^{ {\boldsymbol\lambda}},

    this contradicts to the choice of \epsilon^\prime .

    So we derive \boldsymbol\nu\geq_\theta {\boldsymbol\lambda} , then {\boldsymbol\mu} > _\theta\boldsymbol\nu\geq_\theta {\boldsymbol\lambda} . Since {\boldsymbol\lambda}, {\boldsymbol\mu} are neighbors with \geq_\theta , we derive \boldsymbol\nu = {\boldsymbol\lambda} . That is, {\boldsymbol\lambda} and {\boldsymbol\mu} satisfy (a) .

    Suppose |\lambda^{(s)}| = |\mu^{(s)}| . Let \boldsymbol\nu = (\mu^{(1)}, \dots, \mu^{(s)}, \lambda^{(s+1)}, \dots, \lambda^{(\ell)}) , then {\boldsymbol\mu}\geq_\theta\boldsymbol\nu > _\theta {\boldsymbol\lambda} , so \boldsymbol\nu = {\boldsymbol\mu} since {\boldsymbol\lambda} and {\boldsymbol\mu} are neighbors with \geq_\theta . Hence \mu^{(r)} = \lambda^{(r)}, \forall r\neq s . Let m: = |\lambda^{(s)}| = |\mu^{(s)}| , then \mu^{(s)} and \lambda^{(s)} are partitions of m with \mu^{(s)} > _\theta\lambda^{(s)} . If there exist partition \eta of m with \mu^{(s)} > _\theta\eta > _\theta\lambda^{(s)} , then \boldsymbol\eta = (\lambda^{(1)}, \dots, \lambda^{(s-1)}, \eta, \lambda^{(s+1)}, \dots, \lambda^{(\ell)}) , satisfy {\boldsymbol\mu} > _\theta\boldsymbol\eta > _\theta {\boldsymbol\lambda} , this contradicts that {\boldsymbol\lambda} and {\boldsymbol\mu} are neighbors with \geq_\theta . So \mu^{(s)} and \lambda^{(s)} are neighbors with \geq_\theta . Applying the necessity of Lemma 3.3 to \lambda^{(s)} and \mu^{(s)} , we derive that {\boldsymbol\lambda} and {\boldsymbol\mu} satisfy either (b) or (c) .

    Next, let us prove the sufficiency. Suppose {\boldsymbol\mu} and {\boldsymbol\lambda} are \ell -partitions of n with {\boldsymbol\mu} > _\theta {\boldsymbol\lambda} and one of (a), (b), (c) holds. Suppose \boldsymbol\nu be a \ell -partition of n with {\boldsymbol\mu}\geq_\theta\boldsymbol\nu > _\theta {\boldsymbol\lambda} and {\boldsymbol\lambda}, \boldsymbol\nu are neighbors with \geq_\theta . Now let us prove {\boldsymbol\mu} = \boldsymbol\nu .

    If (a) holds, let p = \theta_s+\ell(k_s+1-1) = \theta_s+\ell k_s and q = \theta_{s+1}+\ell(1-\lambda_1^{(s+1)}) . We have d_p^{ {\boldsymbol\mu}} = d_q^{ {\boldsymbol\lambda}} = 1 . Moreover, by Remark 3.2, Lemma 3.1, and the choice of \boldsymbol\nu , we derive

    \begin{align*} d_t^{ {\boldsymbol\mu}}& = d_t^{ {\boldsymbol\lambda}} = d_t^{\boldsymbol\nu}\quad t < p\text{ or }t > q\\ d_{t^\prime}^{ {\boldsymbol\mu}}& = d^{ {\boldsymbol\lambda}}_{t^{\prime\prime}} = 0\quad p < t^\prime\leq q,\ p\leq t^{\prime\prime} < q. \end{align*}

    Therefore,

    \begin{align} \sum\limits_{p\leq t\leq q}d_{t}^{\boldsymbol\nu} = \sum\limits_{p\leq t\leq q}d_{t}^{ {\boldsymbol\mu}} = \sum\limits_{p\leq t\leq q}d_{t}^{ {\boldsymbol\lambda}} = 1. \end{align} (3.12)

    We claim d_t^{\boldsymbol\nu} = 0 for all q < t < p ; otherwise, there must be d_p^{\nu^{(s)}}\neq0 or d_q^{\nu^{(s+1)}}\neq0 , this contradicts (3.12). If d_q^{\boldsymbol\nu} = 1 , then d_q^{\nu^{(s+1)}} = 1 and \boldsymbol\nu = {\boldsymbol\lambda} ; this contradicts {\boldsymbol\lambda}\neq\boldsymbol\nu . Therefore d_{p}^{\boldsymbol\nu} = 1 , hence d_p^{\nu^{(s)}} = 1 , and {\boldsymbol\mu} = \boldsymbol\nu .

    If (b) or (c) holds. Combining with the choice of \boldsymbol\nu , we have

    \begin{align*} &\mu^{(r)} = \nu^{(r)} = \lambda^{(r)}\quad \text{where}\ r\neq s,\\ &\mu^{(s)}\geq_\theta\nu^{(s)} > _\theta\lambda^{(s)}. \end{align*}

    Apply the sufficiency of Lemma 3.3 to \mu^{(s)} and \lambda^{(s)} ; we derive \mu^{(s)} and \lambda^{(s)} are neighbors with \geq_{\theta} ; hence, \mu^{(s)} = \nu^{(s)} and {\boldsymbol\mu} = \boldsymbol\nu .

    Now we can give the relationship between dominance order and weak \theta -dominance order on multipartitions.

    Theorem 4.1. Suppose {\boldsymbol\lambda}, {\boldsymbol\mu}\in{\mathcal{P}}^\ell_n and \theta = (\theta_1, \dots, \theta_\ell) are strongly separated. Then {\boldsymbol\mu}\unrhd {\boldsymbol\lambda} if and only if {\boldsymbol\mu}\geq_\theta {\boldsymbol\lambda} .

    Proof. The conclusion is clear by Proposition 3.7 and [11, Lemma 6.3].

    For {\boldsymbol\lambda}\in{\mathcal{P}}_n^\ell , we define \text{res}({\boldsymbol\lambda}) = \{\text{res}(\alpha)|\alpha\in {\boldsymbol\lambda}\} to be a multi-set. According to Definitions 2.2 and 2.3, by a trivial discussion, one can prove {\boldsymbol\mu}\geq_\theta {\boldsymbol\lambda} and \text{res}({\boldsymbol\mu}) = \text{res}({\boldsymbol\lambda}) whenever {\boldsymbol\mu}\unrhd_\theta {\boldsymbol\lambda} . Finally, as a corollary of Theorem 4.1, we obtain the relationship between dominance order and \theta -dominance order.

    Theorem 4.2. Suppose {\boldsymbol\lambda}, {\boldsymbol\mu}\in{\mathcal{P}}_n^\ell and \theta = (\theta_1, \dots, \theta_\ell) be strongly separated. If {\boldsymbol\lambda}\unlhd_\theta {\boldsymbol\mu} , then {\boldsymbol\lambda}\unlhd {\boldsymbol\mu} and \text{res}({\boldsymbol\lambda}) = \text{res}({\boldsymbol\mu}) .

    We point out that the inverse of Theorem 4.2 is not true. We can give a counterexample as follows:

    Example 4.3. Let \ell = 2 , n = 6 , (\sigma_1, \sigma_2) = (0, 1) , \theta = (0, 25) , \theta is strongly separated. Let {\boldsymbol\lambda} = ((2, 1), (2, 1)) , {\boldsymbol\mu} = ((3), (3)) , the Young diagrams with residue are as follows:

    On one hand, {\boldsymbol\mu}\rhd {\boldsymbol\lambda} and \text{res}({\boldsymbol\lambda}) = \text{res}({\boldsymbol\mu}) . On another hand, let \gamma = (3, 2, 1) ; we have \text{res}(\gamma) = 1 and

    |\{\alpha\in {\boldsymbol\lambda}|\gamma\lhd_\theta\alpha\}| = |\{(1,2,1),(2,1,1)\}| > |\{\beta\in {\boldsymbol\mu}|\gamma\lhd_\theta\beta\}| = |\{(1,2,1)\}|

    hence {\boldsymbol\mu}\ntriangleright_\theta {\boldsymbol\lambda} .

    In this paper, we prove that the weak \theta -dominance order coincides with the dominance order on multipartitions, whenever the loading \theta is strongly separated. As a corollary, we prove that the \theta -dominance order is stronger than the usual dominance order on multipartitions, whenever the loading \theta is strongly separated.

    The author declares he has not used Artificial Intelligence (AI) tools in the creation of this article.

    The author was supported by the Natural Science Foundation of Shandong Province of China (No. ZR2023QA093) and the Doctoral Research Start-up Foundation of Shandong Jianzhu University (No. X22021Z). The author appreciates professor Jun Hu and Zhankui Xiao for their helpful discussions. The author also appreciates the reviewers for their helpful comments.

    The author declares no conflicts of interest in this paper.



    [1] Akerman A, Leuven E, Mogstad M (2022) Information frictions, internet, and the relationship between distance and trade. Am Econ J Appl Econ 14: 133–163. https://doi.org/10.1257/app.20190589 doi: 10.1257/app.20190589
    [2] Alok S, Kumar N, Wermers R (2020) Do fund managers misestimate climatic disaster risk. Rev Financ Stud 33: 1146–1183. https://doi.org/10.1093/rfs/hhz143 doi: 10.1093/rfs/hhz143
    [3] Amihud Y (2002) Illiquidity and stock returns: Cross-section and time-series effects. J Financ Mark 5: 31–56. https://doi.org/10.1016/S1386-4181(01)00024-6 doi: 10.1016/S1386-4181(01)00024-6
    [4] Amihud Y, Levi S (2023) The effect of stock liquidity on the firm's investment and production. Rev Financ Stud 36: 1094–1147. https://doi.org/10.1093/rfs/hhac036 doi: 10.1093/rfs/hhac036
    [5] Baginski SP, Hassell JM, Hillison WA (2000) Voluntary causal disclosures: tendencies and capital market reaction. Rev Quant Finance Account 15: 371–389. https://doi.org/10.1023/A:1012002608615 doi: 10.1023/A:1012002608615
    [6] Banerjee S, Gatchev VA, Spindt PA (2007) Stock market liquidity and firm dividend policy. J Financ Quant Anal 42: 369–397. https://doi.org/10.1017/S0022109000003318 doi: 10.1017/S0022109000003318
    [7] Bárcena-Ruiz JC, Sagasta A (2022) Environmental taxes when firms care about environmental corporate social responsibility. SSRN Electron J Available from: https://papers.ssrn.com/abstract = 4253520.
    [8] Bebchuk L A, Cohen A, Hirst S (2017) The agency problems of institutional investors. J Econ Perspect 31: 89–102. https://doi.org/10.1257/jep.31.3.89 doi: 10.1257/jep.31.3.89
    [9] Bebchuk LA, Fried JM (2003) Executive compensation as an agency problem. J Econ Perspect 17: 71–92. https://doi.org/10.1257/089533003769204362 doi: 10.1257/089533003769204362
    [10] Ben-Nasr H, A Alshwer A (2016) Does stock price informativeness affect labor investment efficiency? J Corp Finance 38: 249–271. https://doi.org/10.1016/j.jcorpfin.2016.01.012 doi: 10.1016/j.jcorpfin.2016.01.012
    [11] Bennett B, Stulz R, Wang Z (2020) Does the stock market make firms more productive? J Financ Econ 136: 281–306. https://doi.org/10.1016/j.jfineco.2019.09.006 doi: 10.1016/j.jfineco.2019.09.006
    [12] Bolton P, Luiz M, Pereira A, et al. (2020) The green swan Central banking and financial stability in the age of climate change. Basel: Bank for International Settlements. Available from: https://www.bis.org/publ/othp31.pdf.
    [13] Brogaard J, Li D, Xia Y (2017) Stock liquidity and default risk. J Financ Econ 124: 486–502. https://doi.org/10.1016/j.jfineco.2017.03.003 doi: 10.1016/j.jfineco.2017.03.003
    [14] Chang X, Chen Y, Zolotoy L (2017) Stock liquidity and stock price crash risk. J Financ Quant Anal 52: 1605–1637. https://doi.org/10.1017/S0022109017000473 doi: 10.1017/S0022109017000473
    [15] Chang X, Tan W, Yang E, et al. (2019) Stock Liquidity and Corporate Social Responsibility. SSRN Electron J https://doi.org/10.2139/ssrn.3130572 doi: 10.2139/ssrn.3130572
    [16] Chen Y, Rhee SG, Veeraraghavan M, et al. (2015) Stock liquidity and managerial short-termism. J Bank Financ 60: 44–59. https://doi.org/10.1016/j.jbankfin.2015.07.007 doi: 10.1016/j.jbankfin.2015.07.007
    [17] Chen M, Yang D, Zhang W, et al. (2023) How does ESG disclosure improve stock liquidity for enterprises—Empirical evidence from China. Environ Impact Assess Rev 98: 106926. https://doi.org/10.1016/j.eiar.2022.106926 doi: 10.1016/j.eiar.2022.106926
    [18] Clarkson PM, Li Y, Richardson GD, et al. (2008) Revisiting the relation between environmental performance and environmental disclosure: An empirical analysis. Account Organ Soc 33: 303–327. https://doi.org/10.1016/j.aos.2007.05.003 doi: 10.1016/j.aos.2007.05.003
    [19] Datar VT, Naik NY, Radcliffe R (1998) Liquidity and stock returns: An alternative test. J Financ Mark 1: 203–219. https://doi.org/10.1016/S1386-4181(97)00004-9 doi: 10.1016/S1386-4181(97)00004-9
    [20] Dawkins CE, Fraas JW (2010) Beyond acclamations and excuses: environmental performance, voluntary environmental disclosure, and the role of visibility. J Bus Ethics 92: 655–655. https://doi.org/10.1007/s10551-009-0149-2 doi: 10.1007/s10551-009-0149-2
    [21] Dou Y, Hope OK, Thomas WB, et al. (2018) Blockholder exit threats and financial reporting quality. Contemp Account Res 35: 1004–1028. https://doi.org/10.1111/1911-3846.12404 doi: 10.1111/1911-3846.12404
    [22] Edmans A (2009) Blockholder trading, market efficiency, and managerial myopia. J Finance 64: 2481–2513. https://doi.org/10.1111/j.1540-6261.2009.01508.x doi: 10.1111/j.1540-6261.2009.01508.x
    [23] Edmans A, Fang VW, Zur E (2013) The effect of liquidity on governance. Rev Financ Stud 26: 1443–1482. https://doi.org/10.1111/j.1540-6261.2009.01508.x doi: 10.1111/j.1540-6261.2009.01508.x
    [24] Edmans A, Goldstein I, Jiang W (2012) The real effects of financial markets: The impact of prices on takeovers. J Finance 67: 933–971. https://doi.org/10.1111/j.1540-6261.2012.01738.x doi: 10.1111/j.1540-6261.2012.01738.x
    [25] Ee MS, Hasan I, Huang H (2022) Stock liquidity and corporate labor investment. J Corp Finance 72: 102142. https://doi.org/10.1016/j.jcorpfin.2021.102142 doi: 10.1016/j.jcorpfin.2021.102142
    [26] Egginton JF, McBrayer GA (2019) Does it pay to be forthcoming? Evidence from CSR disclosure and equity market liquidity. Corp Soc Resp Env Ma 26: 396–407. https://doi.org/10.1002/csr.1691 doi: 10.1002/csr.1691
    [27] Fan L, Yang K, Liu L (2020) New media environment, environmental information disclosure and firm valuation: Evidence from high-polluting enterprises in China. J Clean Prod 277: 123253. https://doi.org/10.1016/j.jclepro.2020.123253 doi: 10.1016/j.jclepro.2020.123253
    [28] Fang VW, Tian X, Tice S (2014) Does stock liquidity enhance or impede firm innovation? J Finance 69: 2085–2125. https://doi.org/10.1111/jofi.12187 doi: 10.1111/jofi.12187
    [29] Firth M, Gao J, Shen J, et al. (2016) Institutional stock ownership and firms' cash dividend policies: Evidence from China. J Bank Finance 65: 91–107. https://doi.org/10.1016/j.jbankfin.2016.01.009 doi: 10.1016/j.jbankfin.2016.01.009
    [30] Gambhir A, George M, McJeon H, et al. (2022) Near-term transition and longer-term physical climate risks of greenhouse gas emissions pathways. Nat Clim Change 12: 88–96. https://doi.org/10.1038/s41558-021-01236-x doi: 10.1038/s41558-021-01236-x
    [31] Giannarakis G, Andronikidis A, Sariannidis N (2020) Determinants of environmental disclosure: investigating new and conventional corporate governance characteristics. Ann Oper Res 294: 87–105. https://doi.org/10.1007/s10479-019-03323-x doi: 10.1007/s10479-019-03323-x
    [32] Harford J (2005) What drives merger waves? J Financ Econ 77: 529–560. https://doi.org/10.1016/j.jfineco.2004.05.004 doi: 10.1016/j.jfineco.2004.05.004
    [33] He F, Feng Y, Hao J (2023) Corporate ESG rating and stock market liquidity: Evidence from China. Econ Model 129: 106511. https://doi.org/10.1016/j.econmod.2023.106511 doi: 10.1016/j.econmod.2023.106511
    [34] Hope OK, Liu J (2023) Does stock liquidity shape voluntary disclosure? Evidence from the SEC tick size pilot program. Rev Account Stud 28: 2233–2270. https://doi.org/10.1007/s11142-022-09686-0 doi: 10.1007/s11142-022-09686-0
    [35] Huynh TD, Xia Y (2021) Climate change news risk and corporate bond returns. J Financ Quant Anal 56: 1985–2009. https://doi.org/10.1017/S0022109020000757 doi: 10.1017/S0022109020000757
    [36] Huynh TD, Xia Y (2023) Panic selling when disaster strikes: Evidence in the bond and stock markets. Manage Sci 69: 7448–7467. https://doi.org/10.1287/mnsc.2021.4018 doi: 10.1287/mnsc.2021.4018
    [37] Jagannathan R, Ravikumar A, Sammon M (2018) Environmental, social, and governance criteria: why investors should care. J Invest Manag 16: 18–31. https://doi.org/10.3386/w24063 doi: 10.3386/w24063
    [38] Jiang F, Ma Y, Shi B (2017) Stock liquidity and dividend payouts. J Corp Finance 42: 295–314. https://doi.org/10.1016/j.jcorpfin.2016.12.005 doi: 10.1016/j.jcorpfin.2016.12.005
    [39] Jiang X, Zhang X, Xia Y (2023) Peer effect on low-carbon practices of firms along the value chain: Evidence from China. Energy Econ 127: 107102. https://doi.org/10.1016/j.eneco.2023.107102 doi: 10.1016/j.eneco.2023.107102
    [40] Khosroshahi H, Azad N, Jabbarzadeh A, et al. (2021) Investigating the level and quality of the information in the environmental disclosure report of a corporation considering government intervention. Int J Prod Econ 235: 108071. https://doi.org/10.1016/j.ijpe.2021.108071 doi: 10.1016/j.ijpe.2021.108071
    [41] Krueger P, Sautner Z, Starks LT (2020) The importance of climate risks for institutional investors. Rev Financ Stud 33: 1067–1111. https://doi.org/10.1093/rfs/hhz137 doi: 10.1093/rfs/hhz137
    [42] Lang M, Lins KV, Maffett M (2012) Transparency, liquidity, and valuation: international evidence on when transparency matters most. J Account Res 50: 729–774. https://doi.org/10.1111/j.1475-679X.2012.00442.x doi: 10.1111/j.1475-679X.2012.00442.x
    [43] Lei Q, Lin B, Wei M (2013) Types of agency cost, corporate governance and liquidity. J Account Public Policy 32: 147–172. https://doi.org/10.1016/j.jaccpubpol.2013.02.008 doi: 10.1016/j.jaccpubpol.2013.02.008
    [44] Lewis BW, Walls JL, Dowell GWS (2014) Difference in degrees: CEO characteristics and firm environmental disclosure. Strateg Manag J 35: 712–722. https://doi.org/10.1002/smj.2127 doi: 10.1002/smj.2127
    [45] Li D, Huang M, Ren S, et al. (2018) Environmental legitimacy, green innovation, and corporate carbon disclosure: Evidence from CDP China 100. J Bus Ethics 150: 1089–1104. https://doi.org/10.1007/s10551-016-3187-6 doi: 10.1007/s10551-016-3187-6
    [46] Li Q, Wang S, He Z, et al. (2023) Does stock market index adjustment affect environmental information disclosure? Evidence from China. Int Rev Financ Anal 87: 102628. https://doi.org/10.1016/j.irfa.2023.102628 doi: 10.1016/j.irfa.2023.102628
    [47] Li R, Ramanathan R (2018) Exploring the relationships between different types of environmental regulations and environmental performance: Evidence from China. J Clean Prod 196: 1329–1340. https://doi.org/10.1016/j.jclepro.2018.06.132 doi: 10.1016/j.jclepro.2018.06.132
    [48] Li S, Pan Z (2022) Climate transition risk and bank performance: Evidence from China. J Environ Manage 323: 116275. https://doi.org/10.1016/j.jenvman.2022.116275 doi: 10.1016/j.jenvman.2022.116275
    [49] Li Y, Zhang X, Yao T, et al. (2021) The developing trends and driving factors of environmental information disclosure in China. J Environ Manage 288: 112386. https://doi.org/10.1016/j.jenvman.2021.112386 doi: 10.1016/j.jenvman.2021.112386
    [50] Li Z, Lin W, Zhou S (2024) The effect of mandatory CSR disclosure on stock liquidity. China Econ Rev 102232. https://doi.org/10.1016/j.chieco.2024.102232 doi: 10.1016/j.chieco.2024.102232
    [51] Lin B, Li M (2023) Emerging industry development and information transmission in financial markets: Evidence from China's renewable energy. Energy Econ 128: 107192. https://doi.org/10.1016/j.eneco.2023.107192 doi: 10.1016/j.eneco.2023.107192
    [52] Liu G, Guo L (2023) How does mandatory environmental regulation affect corporate environmental information disclosure quality. Finance Res Lett, 103702. https://doi.org/10.1016/j.frl.2023.103702 doi: 10.1016/j.frl.2023.103702
    [53] Lyon TP, Montgomery AW (2013) Tweet jacked: The impact of social media on corporate greenwash. J Bus Ethics 118: 747–757. https://doi.org/10.1007/s10551-013-1958-x doi: 10.1007/s10551-013-1958-x
    [54] Matsumura EM, Prakash R, Vera-Muñoz SC (2014) Firm-Value effects of carbon emissions and carbon disclosures. Account Rev 89: 695–724. https://doi.org/10.2308/accr-50629 doi: 10.2308/accr-50629
    [55] Maug E (1998) Large shareholders as monitors: Is there a trade-off between liquidity and control? J Finance 53: 65–98. https://doi.org/10.1111/0022-1082.35053 doi: 10.1111/0022-1082.35053
    [56] Mbanyele W, Muchenje LT (2022) Climate change exposure, risk management and corporate social responsibility: Cross-country evidence. J Multinatl Financ Manag 66: 100771. https://doi.org/10.1016/j.mulfin.2022.100771 doi: 10.1016/j.mulfin.2022.100771
    [57] Meng J, Zhang Z (2022) Corporate environmental information disclosure and investor response: Evidence from China's capital market. Energy Econ 108: 105886. https://doi.org/10.1016/j.eneco.2022.105886 doi: 10.1016/j.eneco.2022.105886
    [58] Meng XH, Zeng SX, Leung AWT, et al. (2015) Relationship between top executives' characteristics and corporate environmental responsibility: Evidence from China. Hum Ecol Risk Assess Int J 21: 466–491. https://doi.org/10.1080/10807039.2014.926201 doi: 10.1080/10807039.2014.926201
    [59] Moroney R, Windsor C, Aw YT (2012) Evidence of assurance enhancing the quality of voluntary environmental disclosures: an empirical analysis. Account Finance 52: 903–939. https://doi.org/10.1111/j.1467-629X.2011.00413.x doi: 10.1111/j.1467-629X.2011.00413.x
    [60] Nian R, Gu N (2022) Stock liquidity and corporate social responsibility. J Manage Sci Eng 25: 89–108 (In Chinese). https://doi.org/10.19920/j.cnki.jmsc.2022.05.007 doi: 10.19920/j.cnki.jmsc.2022.05.007
    [61] Norli Ø, Ostergaard C, Schindele I (2015) Liquidity and shareholder activism. Rev Financ Stud 28: 486–520. https://doi.org/10.1093/rfs/hhu070 doi: 10.1093/rfs/hhu070
    [62] Nyborg KG, Wang Z (2021) The effect of stock liquidity on cash holdings: The repurchase motive. J Financ Econ 142: 905–927. https://doi.org/10.1016/j.jfineco.2021.05.027 doi: 10.1016/j.jfineco.2021.05.027
    [63] Painter M (2020) An inconvenient cost: The effects of climate change on municipal bonds. J Financ Econ 135: 468–482. https://doi.org/10.1016/j.jfineco.2019.06.006 doi: 10.1016/j.jfineco.2019.06.006
    [64] Pan L, Yao S (2021) Does central environmental protection inspection enhance firms' environmental disclosure? Evidence from China. Growth Change 52: 1732–1760. https://doi.org/10.1111/grow.12517 doi: 10.1111/grow.12517
    [65] Platikanova P (2008) Long-term price effect of S & P 500 addition and earnings quality. Financ Anal J 64: 62–76. https://doi.org/10.2469/faj.v64.n5.7 doi: 10.2469/faj.v64.n5.7
    [66] Rupley KH, Brown D, Marshall RS (2012) Governance, media and the quality of environmental disclosure. J Account Public Policy 31: 610–640. https://doi.org/10.1016/j.jaccpubpol.2012.09.002 doi: 10.1016/j.jaccpubpol.2012.09.002
    [67] Seroka-Stolka O, Fijorek K (2020) Enhancing corporate sustainable development: Proactive environmental strategy, stakeholder pressure and the regulatory effect of firm size. Bus Strategy Environ 29: 2338–2354. https://doi.org/10.1002/bse.2506 doi: 10.1002/bse.2506
    [68] Sha Y, Zhang P, Wang Y, et al. (2022) Capital market opening and green innovation——Evidence from Shanghai-Hong Kong stock connect and the Shenzhen-Hong Kong stock connect. Energy Econ 111: 106048. https://doi.org/10.1016/j.eneco.2022.106048 doi: 10.1016/j.eneco.2022.106048
    [69] Shahab Y, Ntim CG, Chen Y, et al. (2020) Chief executive officer attributes, sustainable performance, environmental performance, and environmental reporting: New insights from upper echelons perspective. Bus Strategy Environ 29: 1–16. https://doi.org/10.1002/bse.2345 doi: 10.1002/bse.2345
    [70] Shang C (2020) Trade credit and stock liquidity. J Corp Finance 62: 101586. https://doi.org/10.1016/j.jcorpfin.2020.101586 doi: 10.1016/j.jcorpfin.2020.101586
    [71] Stroebel J, Wurgler J (2021) What do you think about climate finance? J Financ Econ 142: 487–498. https://doi.org/10.1016/j.jfineco.2021.08.004 doi: 10.1016/j.jfineco.2021.08.004
    [72] Wang C, Wu Y, Hsieh H, et al. (2022) Does green bond issuance have an impact on climate risk concerns? Energy Econ 111: 106066. https://doi.org/10.1016/j.eneco.2022.106066 doi: 10.1016/j.eneco.2022.106066
    [73] Wang M, Lee M, Chuang J (2016) Relations among audit committee establishment, information transparency and earnings quality: Evidence from simultaneous equation models. Qual Quant 50: 2417. https://doi.org/10.1007/s11135-015-0269-y doi: 10.1007/s11135-015-0269-y
    [74] Wu C, Xiong X, Gao Y, et al. (2022) Does social media coverage deter firms from withholding bad news? Evidence from stock price crash risk. Int Rev Financ Anal 84: 102397. https://doi.org/10.1016/j.irfa.2022.102397 doi: 10.1016/j.irfa.2022.102397
    [75] Zeng H, Ren L, Chen X, et al. (2024) Punishment or deterrence? Environmental justice construction and corporate equity financing––Evidence from environmental courts. J Corp Finance 86: 102583. https://doi.org/10.1016/j.jcorpfin.2024.102583 doi: 10.1016/j.jcorpfin.2024.102583
    [76] Zhang B, Wang Y, Sun C (2023) Urban environmental legislation and corporate environmental performance: End governance or process control? Energy Econ 118: 106494. https://doi.org/10.1016/j.eneco.2022.106494 doi: 10.1016/j.eneco.2022.106494
    [77] Zhang C (2017) Political connections and corporate environmental responsibility: Adopting or escaping? Energy Econ 68: 539–547. https://doi.org/10.1016/j.eneco.2017.10.036 doi: 10.1016/j.eneco.2017.10.036
    [78] Zhang J, Yang Y (2023) Can environmental disclosure improve price efficiency? The perspective of price delay. Financ Res Lett 52: 103556. https://doi.org/10.1016/j.frl.2022.103556 doi: 10.1016/j.frl.2022.103556
    [79] Zhang SY (2022) Are investors sensitive to climate-related transition and physical risks? Evidence from global stock markets. Res Int Bus Finance 62: 101710. https://doi.org/10.1016/j.ribaf.2022.101710 doi: 10.1016/j.ribaf.2022.101710
    [80] Zhang T, Xu Z (2023) The informational feedback effect of stock prices on corporate investments: A comparison of new energy firms and traditional energy firms in China. Energy Econ 127: 107086. https://doi.org/10.1016/j.eneco.2023.107086 doi: 10.1016/j.eneco.2023.107086
    [81] Zhu S, Jiang X, Ke X, et al. (2017) Stock index adjustments, analyst coverage and institutional holdings: Evidence from China. China J Account Res 10: 281–293. https://doi.org/10.1016/j.cjar.2016.12.005 doi: 10.1016/j.cjar.2016.12.005
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1301) PDF downloads(150) Cited by(0)

Figures and Tables

Figures(1)  /  Tables(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog