Research article Special Issues

Dynamic strain gradient brittle fracture propagation: comparison with experimental evidence

  • This paper presented a physico-mathematical model for dynamic fracture propagation in brittle materials with a purely continuum mechanics hemi-variational-based strain gradient theory. As for the quasi-static case, the simulation results, obtained by means of finite elements, revealed that strain gradient effects significantly affected the fracture propagation, leading to finite fracture thickness that was independent of the mesh size. It was also observed that nonsymmetric loading rate lead to a deviation from standard mode-Ⅰ crack propagation that cannot be revealed in the quasi-static case. The model results were compared against experimental data from fracture tests on notched specimens taken from the literature. The comparison showed good agreement between the model predictions and the experimental measurements. The presented model and simulation results can be useful in the design and optimization of structural components subjected to dynamic loading conditions.

    Citation: Valerii Maksimov, Luca Placidi, Francisco James León Trujillo, Chiara De Santis, Anil Misra, Dmitry Timofeev, Francesco Fabbrocino, Emilio Barchiesi. Dynamic strain gradient brittle fracture propagation: comparison with experimental evidence[J]. Networks and Heterogeneous Media, 2024, 19(3): 1058-1084. doi: 10.3934/nhm.2024047

    Related Papers:

    [1] Yujun Cui, Chunyu Liang, Yumei Zou . Existence and uniqueness of solutions for a class of fractional differential equation with lower-order derivative dependence. AIMS Mathematics, 2025, 10(2): 3797-3818. doi: 10.3934/math.2025176
    [2] Subramanian Muthaiah, Manigandan Murugesan, Muath Awadalla, Bundit Unyong, Ria H. Egami . Ulam-Hyers stability and existence results for a coupled sequential Hilfer-Hadamard-type integrodifferential system. AIMS Mathematics, 2024, 9(6): 16203-16233. doi: 10.3934/math.2024784
    [3] Asghar Ahmadkhanlu, Hojjat Afshari, Jehad Alzabut . A new fixed point approach for solutions of a p-Laplacian fractional q-difference boundary value problem with an integral boundary condition. AIMS Mathematics, 2024, 9(9): 23770-23785. doi: 10.3934/math.20241155
    [4] Saima Rashid, Abdulaziz Garba Ahmad, Fahd Jarad, Ateq Alsaadi . Nonlinear fractional differential equations and their existence via fixed point theory concerning to Hilfer generalized proportional fractional derivative. AIMS Mathematics, 2023, 8(1): 382-403. doi: 10.3934/math.2023018
    [5] Bashir Ahmad, Ahmed Alsaedi, Ymnah Alruwaily, Sotiris K. Ntouyas . Nonlinear multi-term fractional differential equations with Riemann-Stieltjes integro-multipoint boundary conditions. AIMS Mathematics, 2020, 5(2): 1446-1461. doi: 10.3934/math.2020099
    [6] Abdelatif Boutiara, Kaddour Guerbati, Maamar Benbachir . Caputo-Hadamard fractional differential equation with three-point boundary conditions in Banach spaces. AIMS Mathematics, 2020, 5(1): 259-272. doi: 10.3934/math.2020017
    [7] Zohreh Heydarpour, Maryam Naderi Parizi, Rahimeh Ghorbnian, Mehran Ghaderi, Shahram Rezapour, Amir Mosavi . A study on a special case of the Sturm-Liouville equation using the Mittag-Leffler function and a new type of contraction. AIMS Mathematics, 2022, 7(10): 18253-18279. doi: 10.3934/math.20221004
    [8] Bashir Ahmad, Manal Alnahdi, Sotiris K. Ntouyas, Ahmed Alsaedi . On a mixed nonlinear boundary value problem with the right Caputo fractional derivative and multipoint closed boundary conditions. AIMS Mathematics, 2023, 8(5): 11709-11726. doi: 10.3934/math.2023593
    [9] Sumaiya Tasneem Zubair, Kalpana Gopalan, Thabet Abdeljawad, Nabil Mlaiki . Novel fixed point technique to coupled system of nonlinear implicit fractional differential equations in complex valued fuzzy rectangular b-metric spaces. AIMS Mathematics, 2022, 7(6): 10867-10891. doi: 10.3934/math.2022608
    [10] Xiaoping Li, Dexin Chen . On solvability of some p-Laplacian boundary value problems with Caputo fractional derivative. AIMS Mathematics, 2021, 6(12): 13622-13633. doi: 10.3934/math.2021792
  • This paper presented a physico-mathematical model for dynamic fracture propagation in brittle materials with a purely continuum mechanics hemi-variational-based strain gradient theory. As for the quasi-static case, the simulation results, obtained by means of finite elements, revealed that strain gradient effects significantly affected the fracture propagation, leading to finite fracture thickness that was independent of the mesh size. It was also observed that nonsymmetric loading rate lead to a deviation from standard mode-Ⅰ crack propagation that cannot be revealed in the quasi-static case. The model results were compared against experimental data from fracture tests on notched specimens taken from the literature. The comparison showed good agreement between the model predictions and the experimental measurements. The presented model and simulation results can be useful in the design and optimization of structural components subjected to dynamic loading conditions.



    FDE, fractional differential equation

    LC, Liouville-Caputo

    RL, Riemann-Liouville

    BS, Banach space

    FFIDE, fractional functional integrodifferential equation

    BVP, boundary value problems

    The theory of fractional differential equations (FDEs) generalizes classical differential equations by introducing fractional derivatives, enabling the modeling of complex phenomena exhibiting non-locality, memory, and power-law behavior [1,2]. FDEs have been extensively developed using various fractional derivatives, such as Riemann-Liouville (RL), Caputo, and Grü nwald-Letnikov [3]. These equations describe anomalous diffusion, relaxation, and oscillation processes, making them suitable for modeling real-world problems in physics, engineering, and biology. FDEs have diverse applications across disciplines, including viscoelasticity [4], chaotic dynamics [5], image processing [6], model financial systems [7], population dynamics [8], and electrical circuits [9]. Recent studies have explored fractional-order controllers in robotics [10] and biomedical signal processing[11]. These applications demonstrate the versatility and potential of FDEs in describing complex systems.

    Fractional calculus and fixed point theory have emerged as powerful tools in addressing optimization and inverse problems across various scientific and engineering disciplines. Fractional derivatives and integrals, with their inherent nonlocal properties, are particularly well-suited for modeling systems exhibiting memory effects and long-range dependencies, which are often encountered in optimization problems involving complex systems. Furthermore, fixed point (FP) methods, especially those tailored for non-smooth or set-valued mappings, provide robust frameworks for solving inverse problems, including those arising in image processing and signal reconstruction. The combination of fractional calculus and FP theory offers a synergistic approach, enabling the analysis and solution of challenging optimization and inverse problems that are often intractable using classical techniques. See [12,13,14,15,16] for more information.

    Recent years have witnessed significant interest in boundary value problems (BVPs) of FDEs, encompassing various boundary conditions such as the existence and uniqueness of solutions to fractional boundary value problems [17,18,19,20], the existence and uniqueness of solutions to hybrid fractional systems under multi-point, periodic, and anti-periodic boundary conditions [21,22], and the stability of mixed integral fractional delay dynamic system equations and pantograph differential equations under impulsive effects and nonlocal conditions [23,24]. Integral boundary conditions, in particular, have far-reaching implications in applied fields like heat conduction, electric power networks, elastic stability, telecommunications and electric railway systems. Multi-point BVPs, arising from practical applications, also warrant attention. For example, the existence results for FDEs are established in [25,26,27,28,29]. Alos, the existence of solutions to fractional functional differential equations [30], semilinear fractional differential inclusions [31], Hadamard fractional integro-differential equations [32], systems of multi-point boundary value problems [33], fractional hybrid delay differential equations [34], and nonlinear Atangana-Baleanu-type fractional differential equations [35,36,37,38] have been established. The theory of fractional functional BVPs remains underdeveloped, necessitating further research in mathematical modeling, numerical methods, and computational simulations to address the unresolved aspects.

    Benchohra et al. [26] proved the existence of a solution via Leray-Schauder nonlinear alternative and uniqueness via Banach's FP theorem for fractional functional differential equations with infinite delay. Chauhan et al. [20] explored existence solutions for fractional integro-differential equations with impulses, infinite delay, and integral boundary conditions. Dabas and Gautam [39] examined existence results for impulsive neutral fractional integrodifferential equations featuring state-dependent delays and integral boundary conditions.

    Inspired by the contributions of [20,26,39], first, our study focuses on establishing existence and uniqueness results for a fractional functional integrodifferential equation (FFIDE) featuring infinite delay. It takes the form

    {LCDpϖ(ς)=g(ς,ϖς,ς0Ω(ς,ϑ,ϖϑ)dϑ,σ0Υ(ς,ϑ,ϖϑ)dϑ), p(2,3], ςU=[0,σ]ϖ(ς)=ψ(ς), ς(,0]ϖ(σ)=uj=1bj(Iqj0+ϖ)(λj), 0<λ1<λ2<<λu<σ, (1.1)

    where LCDp is the Liouville-Caputo (LC) fractional derivative with order p. Assume that ={(ς,ϑ):0ϑςσ}, Ξ is a BS, and Θ is a phase space. Then g:U×Θ×ΞΞ, Ω,Υ:×ΘΞ are continuous functions and ψΘ. Furthermore, Iqj0+ refers to the RL fractional integral of order qj>0, and bj represents suitable real constants for j=1,2,,u.

    Supposing that ϖ:(,σ]Θ and ςU, we denote ϖςΘ as an element defined by

    ϖς(ξ)=ϖ(ς+ξ), ξ(,0].

    Throughout this manuscript, we suppose that ϖς(.) is the historical state trajectory from time to ς, and ϖςΘ, where Θ is an abstract phase space.

    The second main result here is to investigate the existence and uniqueness of solutions to the neutral FFIDE with BVPs. It takes the form

    {LCDpς[ϖ(ς)ς0(ςϑ)p1Γ(p)h(ϑ,ϖϑ,ϑ0Ω1(ϑ,μ,ϖμ)dμ,σ0Υ1(ϑ,μ,ϖμ)dμ)]=g(ς,ϖς,ς0Ω2(ς,ϑ,ϖϑ)dϑ,σ0Υ2(ς,ϑ,ϖϑ)dϑ) p(2,3], ς,ϑU=[0,σ]ϖ(ς)=ψ(ς), ς(,0]ϖ(σ)=uj=1bj(Iqj0+ϖ)(λj), 0<λ1<λ2<<λu<σ, (1.2)

    where h,g:U×Θ×ΞΞ, Ω1,Υ1,Ω2, and Υ2:×ΘΞ are continuous functions.

    ● This paper provides a systematic exploration of fractional functional integrodifferential equations.

    ● Section 2 lays the groundwork by establishing the foundational definitions, notation, and preliminary results.

    ● Existence and uniqueness criteria for FFIDEs are developed in Section 3, employing both Krasnoselskii's FP and Banach's FP theorem.

    ● Building upon these findings, Section 4 extends the existence and uniqueness results to neutral FFIDEs with BVPs.

    ● The applicability and practicality of the theoretical framework are demonstrated through illustrative examples provided in Section 5.

    This section presents fundamental definitions, notation, and lemmas essential for the subsequent analysis. Let Ξ denote a BS equipped with the norm .. Furthermore, C(U,Ξ) represents the BS of continuous functions from the interval U to Ξ, endowed with a uniform convergence topology and the norm .C.

    Definition 2.1. [2] For the function gL1(R+)

    (ⅰ) The RL fractional integral of order p>0 is given by

    Ip0+g(ς)=1Γ(p)ς0(ςϑ)p1g(ϑ)dϑ,

    whenever the integral exists.

    (ⅱ) The LC fractional derivative of order p(v1,v] is described as

    LCDpςg(ς)=1Γ(vp)ς0(ςϑ)vp1g(v)(ϑ)dϑ,

    where g has absolutely continuous derivatives up to order (v1).

    Remark 2.2. It should be noted that, if we take v=1 in Definition 2.1 (ⅱ), we have 0<p1 and

    LCDpςg(ς)=1Γ(1p)ς0(ςϑ)pg(ϑ)dϑ,

    where g(ϑ)=dg(ϑ)dϑ.

    Now, for simplicity, we denote LCDpς and Ip0+ by LCDp and Ip, respectively.

    Lemma 2.3. [2] Assume that p,q0, and gL1[b,c]. Then, for all ς[b,c], we have

    (i) IqIpg(ς)=Iq+pg(ς)=IpIqg(ς);

    (ii) LCDpςIqg(ς)=g(ς).

    Theorem 2.4. [40] (Krasnoselskii's theorem) Assume that Λ is a closed and convex subset of a BS Ξ and that , are two operators satisfying

    (i) for ϖ,ϱΛ, ϖ+ϱΛ,

    (ii) is continuous and compact,

    (iii) is a contraction.

    Then, wΛ exists such that w=w+w.

    This paper considers a seminormed linear state space (Θ,.Θ) of functions from (,0] to Ξ satisfying the following hypotheses of Hale and Kato [41]:

    (H1) On the interval (,σ], if ϖ:(,σ]Ξ is continuous and ϖ0Θ, then for ςU, we have the following stipulations:

    (1) ϖςΘ,

    (2) ϖ(ς)ΘκϖςΘ, where κ is a non-negative constant and is independent of ϖ(.),

    (3) There is a continuous function N1:[0,)[0,) and a locally bounded function N2:[0,)[0,) in order that

    ϖςΘN1(ς)sup{ϖ(ϑ):0ϑς}+N2(ς)ϖ(.)Θ,

    where N1 and N2 are independent of ϖ(.).

    (H2) The space Θ is complete.

    (H3) On the interval U, ϖς is a B-valued continuous function, where ϖ(.) is described in (H1).

    Here, we consider N1=supςUN1(ς) and N2=supςUN2(ς).

    This section is devoted to investigating the existence and uniqueness of solution to the considered problem (1.1) by applying Krasnoselskii's and Banach's FP theorems.

    Assume the space

    ˜={ϖ:(,σ]Ξ:ϖ(,0]Θ and ϖU is continuous},

    and select Pϖ(ς)=ς0Ω(ς,ϑ,ϖϑ)dϑ, and Qϖ(ς)=σ0Υ(ς,ϑ,ϖϑ)dϑ.

    Definition 3.1. We say that the function ϖ˜ is a solution to the FFIDE (1.1) if it fulfills the problem

    {LCDpϖ(ς)=g(ς,ϖς,Pϖ(ς),Qϖ(ς)),ϖ(ς)=ψ(ς), ς(,0],ϖ(σ)=uj=1bj(Iqjϖ)(λj), 0<λ1<λ2<<λu<σ.

    We initiate our analysis of the nonlinear problem (1.1) by examining its linear counterpart, thereby obtaining a foundational solution.

    Lemma 3.2. Assume that ϖ(ς)C(U,Ξ)  satisfies the following problem:

    {LCDpϖ(ς)=g(ς),p(2,3],ςU,ϖ(ς)=ψ(ς),ς(,0],ϖ(σ)=uj=1bj(Iqjϖ)(λj),0<λ1<λ2<<λu<σ. (3.1)

    Then the unique solution of the fractional BVP (3.1) can be written as

    ϖ(ς)={ψ(ς),ς(,0],Ipg(ς)+ςB(uj=1bjIqj+pg(λj)Ipg(σ))+ψ(0)(1+ςB(uj=1bjλqijΓ(qi+1)1)),ςU,

    where B=σuj=1bjλqi+1jΓ(qi+2)0, provided that uj=1bjλqijΓ(qi+1)>1.

    Proof. Suppose that ρ0,ρ1Ξ are vector constants. Based on [2], the solution of (3.1) takes the form

    ϖ(ς)=Ipg(ς)+ρ0+ρ1ς. (3.2)

    Applying the condition ϖ(ς)=ψ(ς), we get

    ρ0=ψ(0). (3.3)

    Using the condition ϖ(σ)=uj=1bj(Iqjϖ)(λj), we have

    ρ1=1(σuj=1bj λqi+1jΓ(qi+2)){uj=1bjIqj+pg(λj)+ψ(0)(uj=1bj λqijΓ(qi+1)1)Ipg(σ)}. (3.4)

    From (3.3) and (3.4) in (3.2), we can write

    ϖ(ς)=Ipg(ς)+ςB(uj=1bjIqj+pg(λj)Ipg(σ))+ψ(0)(1+ςB(uj=1bj λqijΓ(qi+1)1)).

    After that, we need the following assertions:

    (A1) For all ς,ϑU, ψ1,ψ2Θ and ϖ1,ϖ2,˜ϖ1,˜ϖ2Ξ, g,P,Q exist in order that

    {g(ς,ψ1,ϖ1,˜ϖ1)g(ς,ψ2,ϖ2,˜ϖ2)Ξg(ψ1ψ2Θ+ϖ1ϖ2Ξ+˜ϖ1˜ϖ2Ξ),P(ς,ϑ,ψ1)P(ς,ϑ,ψ2)ΞPψ1ψ2Θ,Q(ς,ϑ,ψ1)Q(ς,ϑ,ψ2)ΞQψ1ψ2Θ.

    (A2) For all (ς,ψ,ϖ1,ϖ2)U×Θ×Ξ×Ξ and (ς,ϑ,ψ)×Θ, VjL1(U,R+) (j=1,2,3,4,5) exists such that

    {g(ς,ψ,ϖ1,ϖ2)ΞV1(ς)ψΘ+V2(ς)ϖ1Ξ+V3(ς)ϖ2Ξ,P(ς,ϑ,ψ)ΞV4(ς)ψΘ,Q(ς,ϑ,ψ)ΞV5(ς)ψΘ.

    (A3) We consider S=gN1{ξ1+ξ2(P+Q)}<1, where

    {ξ1=(1+σ|B|)ν1+σ|B|ν3,ξ2=(1+σ|B|)ν2+σ|B|ν4,ν1=σpΓ(1+p), ν2=σp+1Γ(2+p),ν3=uj=1|bj|λqi+pjΓ(qi+p+1), ν4=uj=1|bj| λqi+p+1jΓ(qi+p+2).

    Now, the first main result in this part is as follows:

    Theorem 3.3. Under Assertions (A1) and (A2), the BVP (1.1) has at least one solution on (,σ], provided that

    =σ|B|gN1{(ν1+ν3)+(ν2+ν4)(P+Q)}<1.

    Proof. The FP technique involves equating a given operator to the problem at hand and seeking a unique FP, which corresponds to the problem's unique solution. Therefore, we convert the BVP (1.1) to an FP problem. Define the operator M:˜˜ as

    (Mϖ)(ς)={ψ(ς), ς(,0],ς0(ςϑ)p1Γ(p)g(ϑ,ϖϑ,Pϖ(ϑ),Qϖ(ϑ))dϑ+ςB(uj=1bjλj0(λjϑ)qj+p1Γ(qj+p)g(ϑ,ϖϑ,Pϖ(ϑ),Qϖ(ϑ))dϑσ0(σϑ)p1Γ(p)g(ϑ,ϖϑ,Pϖ(ϑ),Qϖ(ϑ))dϑ)+ψ(0)(1+ςB(uj=1bj λqijΓ(qi+1)1)), ςU. (3.5)

    Assume that ϱ(.):(,σ]Ξ is a function described as

    ϱ(ς)={ψ(ς), ς(,0],0, ςU.

    It is clear that ϱ0=0. For every ωC(U,Ξ) with ω(0)=0, we select

    ˜ω(ς)={0, ς(,0],ω(ς), ςU.

    If ϖ(.) fulfills (3.5), then we decompose ϖ(.) as ϖ(ς)=ϱ(ς)+˜ω(ς), which leads to ϖς=ϱς+˜ως for all ςU, and ω(.) satisfies

    ω(ς)=ς0(ςϑ)p1Γ(p)g(ϑ,ϱϑ+˜ωϑ,P[ϱ(ϑ)+˜ω(ϑ)],Q[ϱ(ϑ)+˜ω(ϑ)])dϑ+ςB(uj=1bjλj0(λjϑ)qj+p1Γ(qj+p)g(ϑ,ϱϑ+˜ωϑ,P[ϱ(ϑ)+˜ω(ϑ)],Q[ϱ(ϑ)+˜ω(ϑ)])dϑσ0(σϑ)p1Γ(p)g(ϑ,ϱϑ+˜ωϑ,P[ϱ(ϑ)+˜ω(ϑ)],Q[ϱ(ϑ)+˜ω(ϑ)])dϑ)+ψ(0)(1+ςB(uj=1bj λqijΓ(qi+1)1)).

    Put G0={ωC(U,Ξ):ω0=0} and consider .G0 to be the seminorm in G0 given by

    ωG0=supςUω(ς)Ξ+ω0Θ=supςUω(ς)Ξ, ωG0.

    Hence, (G0,.G0) is a BS. Describe the operator Φ:G0G0 as

    (Φω)(ς)=ς0(ςϑ)p1Γ(p)g(ϑ,ϱϑ+˜ωϑ,P[ϱ(ϑ)+˜ω(ϑ)],Q[ϱ(ϑ)+˜ω(ϑ)])dϑ+ςB(uj=1bjλj0(λjϑ)qj+p1Γ(qj+p)g(ϑ,ϱϑ+˜ωϑ,P[ϱ(ϑ)+˜ω(ϑ)],Q[ϱ(ϑ)+˜ω(ϑ)])dϑσ0(σϑ)p1Γ(p)g(ϑ,ϱϑ+˜ωϑ,P[ϱ(ϑ)+˜ω(ϑ)],Q[ϱ(ϑ)+˜ω(ϑ)])dϑ)+ψ(0)(1+ςB(uj=1bj λqijΓ(qi+1)1)).

    The existence of an FP for an operator M is equivalent to the operator Φ having an FP. Hence, we focus on establishing the existence of an FP for Φ.

    Consider the set Hs={ωG0:ωG0s}. Hence, Hs is a bounded, closed, and convex subset of G0. Assume that there is a positive constant ε such that ε<s, where

    ε=qL1s[(1+σ|B|)(ν1+ν2)+σ|B|(ν3+ν4)]+ψ(0)(1+ς|B|(uj=1bj λqijΓ(qi+1)1)).

    Now, we decompose Φ as Φ1+Φ2 on Hs, where

    (Φ1ω)(ς)=ς0(ςϑ)p1Γ(p)g(ϑ,ϱϑ+˜ωϑ,P[ϱ(ϑ)+˜ω(ϑ)],Q[ϱ(ϑ)+˜ω(ϑ)])dϑ,

    and

    (Φ2ω)(ς)=ςB(uj=1bjλj0(λjϑ)qj+p1Γ(qj+p)g(ϑ,ϱϑ+˜ωϑ,P[ϱ(ϑ)+˜ω(ϑ)],Q[ϱ(ϑ)+˜ω(ϑ)])dϑσ0(σϑ)p1Γ(p)g(ϑ,ϱϑ+˜ωϑ,P[ϱ(ϑ)+˜ω(ϑ)],Q[ϱ(ϑ)+˜ω(ϑ)])dϑ)+ψ(0)(1+ςB(uj=1bj λqijΓ(qi+1)1)).

    Now, if we let ω,ωHs and ςU, we get

    (Φ1ω)(ς)+(Φ2ω)(ς)Ξς0(ςϑ)p1Γ(p)g(ϑ,ϱϑ+˜ωϑ,P[ϱ(ϑ)+˜ω(ϑ)],Q[ϱ(ϑ)+˜ω(ϑ)])Ξdϑ+ς|B|(uj=1|bj|λj0(λjϑ)qj+p1Γ(qj+p)g(ϑ,ϱϑ+˜ωϑ,P[ϱ(ϑ)+˜ω(ϑ)],Q[ϱ(ϑ)+˜ω(ϑ)])Ξdϑ+σ0(σϑ)p1Γ(p)g(ϑ,ϱϑ+˜ωϑ,P[ϱ(ϑ)+˜ω(ϑ)],Q[ϱ(ϑ)+˜ω(ϑ)])Ξdϑ)+ψ(0)(1+ς|B|(uj=1|bj| λqijΓ(qi+1)1))ς0(ςϑ)p1Γ(p)[V1(ϑ)ϱϑ+˜ωϑΘ+V2(ϑ)P[ϱ(ϑ)+˜ω(ϑ)]Ξ+V3(ϑ)Q[ϱ(ϑ)+˜ω(ϑ)]Ξ]+ς|B|(uj=1|bj|λj0(λjϑ)qj+p1Γ(qj+p)(V1(ϑ)ϱϑ+˜ωϑΘ+V2(ϑ)P[ϱ(ϑ)+˜ω(ϑ)]Ξ+V3(ϑ)Q[ϱ(ϑ)+˜ω(ϑ)]Ξ)dϑ+σ0(σϑ)p1Γ(p)(V1(ϑ)ϱϑ+˜ωϑΘ+V2(ϑ)P[ϱ(ϑ)+˜ω(ϑ)]Ξ+V3(ϑ)Q[ϱ(ϑ)+˜ω(ϑ)]Ξ)dϑ)+ψ(0)(1+ς|B|(uj=1|bj| λqijΓ(qi+1)1))VL1s[(1+σ|B|)(ν1+ν2)+σ|B|(ν3+ν4)]+ψ(0)(1+ς|B|(uj=1bj λqijΓ(qi+1)1))=ε.

    Hence,

    Φ1ω+Φ2ωΞε, (3.6)

    where V(ς)=max{V1(ς),V2(ς),V3(ς),V4(ς)} and

    ϱϑ+˜ωϑΘϱϑΘ+˜ωϑΘN1(ϑ)sup0μϑϱ(μ)+N2(ϑ)ϱ(0)+N1(ϑ)sup0μϑ˜ω(μ)+N2(ϑ)˜ω(0)N1s+N2ψΘs.

    It follows from (3.6) that Φ1ω+Φ2ωHs. Now, we show that Φ2 is a contraction. For this, assume that ω,ωHs, and ςU. We then

    (Φ2ω)(ς)(Φ2ω)(ς)Ξς|B|(uj=1|bj|λj0(λjϑ)qj+p1Γ(qj+p)g(ϑ,ϱϑ+˜ωϑ,P[ϱ(ϑ)+˜ω(ϑ)],Q[ϱ(ϑ)+˜ω(ϑ)])g(ϑ,ϱϑ+˜ωϑ,P[ϱ(ϑ)+˜ω(ϑ)],Q[ϱ(ϑ)+˜ω(ϑ)])dϑ+σ0(σϑ)p1Γ(p)×g(ϑ,ϱϑ+˜ωϑ,P[ϱ(ϑ)+˜ω(ϑ)],Q[ϱ(ϑ)+˜ω(ϑ)])g(ϑ,ϱϑ+˜ωϑ,P[ϱ(ϑ)+˜ω(ϑ)],Q[ϱ(ϑ)+˜ω(ϑ)])dϑ)ς|B|(uj=1|bj|λj0(λjϑ)qj+p1Γ(qj+p)g((ϱϑ+˜ωϑ)(ϱϑ+˜ωϑ)Θ+P[ϱ(ϑ)+˜ω(ϑ)]P[ϱ(ϑ)+˜ω(ϑ)]Ξ+Q[ϱ(ϑ)+˜ω(ϑ)]Q[ϱ(ϑ)+˜ω(ϑ)]Ξ)dϑ+σ0(σϑ)p1Γ(p)g((ϱϑ+˜ωϑ)(ϱϑ+˜ωϑ)Θ+P[ϱ(ϑ)+˜ω(ϑ)]P[ϱ(ϑ)+˜ω(ϑ)]Ξ+Q[ϱ(ϑ)+˜ω(ϑ)]Q[ϱ(ϑ)+˜ω(ϑ)]Ξ)dϑ)ς|B|(uj=1|bj|λj0(λjϑ)qj+p1Γ(qj+p)g(˜ωϑ˜ωϑΘ+P˜ωμ˜ωμΘϑ+Q˜ωμ˜ωμΘϑ)dϑ+σ0(σϑ)p1Γ(p)g(˜ωϑ˜ωϑΘ+P˜ωμ˜ωμΘϑ+Q˜ωμ˜ωμΘϑ)dϑ)ς|B|(uj=1|bj|λj0(λjϑ)qj+p1Γ(qj+p)g(N1supϑ[0,ς]ω(ϑ)ω(ϑ)+PN1supμ[0,ϑ]ω(μ)ω(μ)ϑ+QN1supμ[0,ϑ]ω(μ)ω(μ)ϑ)dϑ+σ0(σϑ)p1Γ(p)g(N1supϑ[0,ς]ω(ϑ)ω(ϑ)+PN1supμ[0,ϑ]ω(μ)ω(μ)ϑ+QN1supμ[0,ϑ]ω(μ)ω(μ)ϑ)dϑ)ς|B|N1g(uj=1|bj|(λj)qj+pΓ(qj+p+1)+(P+Q)uj=1|bj|(λj)qj+p+1Γ(qj+p+2)+σpΓ(p+1)+(P+Q)σp+1Γ(p+2))ωωG0σ|B|gN1{(ν1+ν3)+(ν2+ν4)(P+Q)}ωωG0=ωωG0.

    It follows that

    Φ2ωΦ2ωG0ωωG0.

    Since <1, then, Φ2 is contraction. Because g, P and Q are continuous, and thus Φ1 is continuous. Consider

    (Φ1ω)(ς)Ξς0(ςϑ)p1Γ(p)g(ϑ,ϱϑ+˜ωϑ,P[ϱ(ϑ)+˜ω(ϑ)],Q[ϱ(ϑ)+˜ω(ϑ)])Ξdϑς0(ςϑ)p1Γ(p)[V1(ϑ)ϱϑ+˜ωϑΘ+V2(ϑ)P[ϱ(ϑ)+˜ω(ϑ)]Ξ+V3(ϑ)Q[ϱ(ϑ)+˜ω(ϑ)]Ξ]dϑVL1s(ν1+ν2).

    This proves that Φ1 is uniformly bounded on Hs. Finally, we prove that Φ1 is compact. Indeed, we claim that Φ1 is equicontinuous. For ς1,ς2U, with ς1<ς2 and ωHs, one can write

    (Φ1ω)(ς2)(Φ1ω)(ς1)Ξς10(ς2ϑ)p1(ς1ϑ)p1Γ(p)g(ϑ,ϱϑ+˜ωϑ,P[ϱ(ϑ)+˜ω(ϑ)],Q[ϱ(ϑ)+˜ω(ϑ)])Ξdϑ+ς2ς1(ς2ϑ)p1Γ(p)g(ϑ,ϱϑ+˜ωϑ,P[ϱ(ϑ)+˜ω(ϑ)],Q[ϱ(ϑ)+˜ω(ϑ)])Ξdϑς10(ς2ϑ)p1(ς1ϑ)p1Γ(p)[V1(ϑ)ϱϑ+˜ωϑΘ+V2(ϑ)P[ϱ(ϑ)+˜ω(ϑ)]Ξ+V3(ϑ)Q[ϱ(ϑ)+˜ω(ϑ)]Ξ]dϑ+ς2ς1(ς2ϑ)p1Γ(p)[V1(ϑ)ϱϑ+˜ωϑΘ+V2(ϑ)P[ϱ(ϑ)+˜ω(ϑ)]Ξ+V3(ϑ)Q[ϱ(ϑ)+˜ω(ϑ)]Ξ]dϑVL1s(ς10(ς2ϑ)p1(ς1ϑ)p1Γ(p)(1+ϑ)dϑ+ς2ς1(ς2ϑ)p1Γ(p)(1+ϑ)dϑ).

    Clearly, (Φ1ω)(ς2)(Φ1ω)(ς2)Ξ0 as ς1ς2. Consequently, Φ1 is equicontinuous. Applying the Arzelà -Ascoli theorem, we establish that Φ1 is compact on Hs. Consequently, invoking Krasnoselskii's FP theorem, we prove the existence of an FP ωG0, satisfying Φω=ω, thereby yielding a solution to the fractional BVP (1.1).

    Now, for the uniqueness, we apply Banach's FP theorem as follows:

    Theorem 3.4. Via Assertions (A1) and (A3), the BVP (1.1) owns a unique solution on (,σ].

    Proof. Recall the set Hs={ωG0:ωG0s} and assume that ω,ωG0. For ςU, one has

    (Φω)(ς)(Φω)(ς)Ξς0(ςϑ)p1Γ(p)g(ϑ,ϱϑ+˜ωϑ,P[ϱ(ϑ)+˜ω(ϑ)],Q[ϱ(ϑ)+˜ω(ϑ)])g(ϑ,ϱϑ+˜ωϑ,P[ϱ(ϑ)+˜ω(ϑ)],Q[ϱ(ϑ)+˜ω(ϑ)])Ξdϑ+ς|B|(uj=1|bj|λj0(λjϑ)qj+p1Γ(qj+p)g(ϑ,ϱϑ+˜ωϑ,P[ϱ(ϑ)+˜ω(ϑ)],Q[ϱ(ϑ)+˜ω(ϑ)])g(ϑ,ϱϑ+˜ωϑ,P[ϱ(ϑ)+˜ω(ϑ)],Q[ϱ(ϑ)+˜ω(ϑ)])Ξdϑ+σ0(σϑ)p1Γ(p)g(ϑ,ϱϑ+˜ωϑ,P[ϱ(ϑ)+˜ω(ϑ)],Q[ϱ(ϑ)+˜ω(ϑ)])g(ϑ,ϱϑ+˜ωϑ,P[ϱ(ϑ)+˜ω(ϑ)],Q[ϱ(ϑ)+˜ω(ϑ)])Ξdϑ)ς0(ςϑ)p1Γ(p)g(˜ωϑ˜ωϑΘ+P˜ωμ˜ωμΘϑ+Q˜ωμ˜ωμΘϑ)dϑ+ς|B|(uj=1|bj|λj0(λjϑ)qj+p1Γ(qj+p)g(˜ωϑ˜ωϑΘ+P˜ωμ˜ωμΘϑ+Q˜ωμ˜ωμΘϑ)dϑ+σ0(σϑ)p1Γ(p)g(˜ωϑ˜ωϑΘ+P˜ωμ˜ωμΘϑ+Q˜ωμ˜ωμΘϑ)dϑ)ς0(ςϑ)p1Γ(p)g(N1ωωG0+PωωG0ϑ+QωωG0ϑ)+ς|B|(uj=1|bj|λj0(λjϑ)qj+p1Γ(qj+p)g(N1ωωG0+PωωG0ϑ+QωωG0ϑ)dϑ+σ0(σϑ)p1Γ(p)g(N1ωωG0+PωωG0ϑ+QωωG0ϑ)dϑ)gN1{[σpΓ(p+1)+σ|B|uj=1|bj|(λj)qj+pΓ(qj+p+1)+σp+1|B|Γ(p+1)]+(P+Q)[σp+1Γ(p+2)+σ|B|uj=1|bj|(λj)qj+p+1Γ(qj+p+2)+σp+2|B|Γ(p+2)]}ωωG0gN1{ξ1+ξ2(P+Q)}ωωG0=SωωG0.

    Hence,

    Φ(ω)Φ(ω)G0SωωG0.

    By (A3), S<1, Φ is a contraction. By Banach's FP theorem, Φ possesses a unique FP, which is a unique solution to the problem (1.1) on the interval (,σ].

    In this section, we discuss the existence and uniqueness of solution to the considered problem (1.2) by applying Krasnoselskii's and Banach's FP theorems.

    Assume that the space ˜ is defined as in the section above and choose

    {P1ϖ(ς)=ς0Ω1(ς,ϑ,ϖϑ)dϑ,P2ϖ(ς)=ς0Ω2(ς,ϑ,ϖϑ)dϑ,Q1ϖ(ς)=σ0Υ1(ς,ϑ,ϖϑ)dϑ,Q2ϖ(ς)=σ0Υ2(ς,ϑ,ϖϑ)dϑ.

    Definition 4.1. We say that the function ϖ˜ is a solution to the FFIDE (1.1) if it fulfills the problem

    {LCDp[ϖ(ς)ς0(ςϑ)p1Γ(p)h(ϑ,ϖϑ,P1ϖ(ϑ),Q1ϖ(ϑ))]=g(ς,ϖς,P2ϖ(ς),Q2ϖ(ς)), ςU,ϖ(ς)=ψ(ς), ς(,0],ϖ(σ)=uj=1bj(Iqjϖ)(λj), 0<λ1<λ2<<λu<σ.

    With the aid of Lemma 3.2, the solution of the neutral FFIDE (1.2) takes the form

    ϖ(ς)={ψ(ς), ς(,0],ς0(ςϑ)p1Γ(p)g(ϑ,ϖϑ,P2ϖ(ϑ),Q2ϖ(ϑ))+ς0(ςϑ)p1Γ(p)h(ϑ,ϖϑ,P1ϖ(ϑ),Q1ϖ(ϑ))+ςB(uj=1bjλj0(λjϑ)qj+p1Γ(qj+p)g(ϑ,ϖϑ,P2ϖ(ϑ),Q2ϖ(ϑ))+uj=1bjλj0(λjϑ)qj+p1Γ(qj+p)h(ϑ,ϖϑ,P2ϖ(ϑ),Q2ϖ(ϑ))σ0(σϑ)p1Γ(p)g(ϑ,ϖϑ,P2ϖ(ϑ),Q2ϖ(ϑ))σ0(σϑ)p1Γ(p)h(ϑ,ϖϑ,P1ϖ(ϑ),Q1ϖ(ϑ)))+ψ(0)(1+ςB(uj=1bj λqijΓ(qi+1)1)), ςU,

    where B=σuj=1bj λqi+1jΓ(qi+2)0.

    To accomplish our main task here, we needs the following assertions:

    (A4) For all ς,ϑU, ψ1,ψ2Θ and ϖ1,ϖ2,˜ϖ1,˜ϖ2Ξ, g,h,P1,Q1,P2,Q2 exist such that

    {g(ς,ψ1,ϖ1,˜ϖ1)g(ς,ψ2,ϖ2,˜ϖ2)Ξg(ψ1ψ2Θ+ϖ1ϖ2Ξ+˜ϖ1˜ϖ2Ξ),h(ς,ψ1,ϖ1,˜ϖ1)h(ς,ψ2,ϖ2,˜ϖ2)Ξh(ψ1ψ2Θ+ϖ1ϖ2Ξ+˜ϖ1˜ϖ2Ξ),P1(ς,ϑ,ψ1)P1(ς,ϑ,ψ2)ΞP1ψ1ψ2Θ,P2(ς,ϑ,ψ1)P2(ς,ϑ,ψ2)ΞP2ψ1ψ2Θ,Q1(ς,ϑ,ψ1)Q1(ς,ϑ,ψ2)ΞQ1ψ1ψ2Θ,Q2(ς,ϑ,ψ1)Q2(ς,ϑ,ψ2)ΞQ2ψ1ψ2Θ.

    (A5) For all (ς,ψ,ϖ1,ϖ2)U×Θ×Ξ×Ξ and (ς,ϑ,ψ)×Θ, VjL1(U,R+) (j=1,2,3,4,5) exists in order that

    {g(ς,ψ,ϖ1,ϖ2)ΞV1(ς)ψΘ+V2(ς)ϖ1Ξ+V3(ς)ϖ2Ξ,h(ς,ψ,ϖ1,ϖ2)ΞV4(ς)ψΘ+V5(ς)ϖ1Ξ+V6(ς)ϖ2Ξ,P1(ς,ϑ,ψ)ΞV7(ς)ψΘ,P2(ς,ϑ,ψ)ΞV8(ς)ψΘ,Q1(ς,ϑ,ψ)ΞV9(ς)ψΘ,Q2(ς,ϑ,ψ)ΞV10(ς)ψΘ.

    (A6) Assume that S=gN1{ξ1+ξ2(P2+Q2)}+hN1{ξ1+ξ2(P1+Q1)}<1, where

    {ξ1=(1+σ|B|)ν1+σ|B|ν3,ξ2=(1+σ|B|)ν2+σ|B|ν4,ν1=σpΓ(1+p), ν2=σp+1Γ(2+p),ν3=uj=1|bj|λqi+pjΓ(qi+p+1), ν4=uj=1|bj| λqi+p+1jΓ(qi+p+2).

    Theorem 4.2. Under Assertions (A4) and (A5), the neutral BVP (1.2) has at least one solution on (,σ], provided that

    =σN1|B|(g[(ν1+ν3)+(P2+Q2)(ν2+ν4)]+h[(ν1+ν3)+(P1+Q1)(ν2+ν4)])<1.

    Proof. Define the operator :˜˜ as

    (ϖ)(ς)={ψ(ς), ς(,0],ς0(ςϑ)p1Γ(p)g(ς,ϖς,P2ϖ(ς),Q2ϖ(ς))dς+ς0(ςϑ)p1Γ(p)h(ϑ,ϖϑ,P1ϖ(ϑ),Q1ϖ(ϑ))dς+ςB(uj=1bjλj0(λjϑ)qj+p1Γ(qj+p)g(ς,ϖς,P2ϖ(ς),Q2ϖ(ς))dς+uj=1bjλj0(λjϑ)qj+p1Γ(qj+p)h(ϑ,ϖϑ,P1ϖ(ϑ),Q1ϖ(ϑ))dςσ0(σϑ)p1Γ(p)g(ς,ϖς,P2ϖ(ς),Q2ϖ(ς))dςσ0(σϑ)p1Γ(p)h(ϑ,ϖϑ,P1ϖ(ϑ),Q1ϖ(ϑ))dς)+ψ(0)(1+ςB(uj=1bj λqijΓ(qi+1)1)), ςU. (4.1)

    Analogous to Theorem 3.3, define the operator :G0G0 as

    (ϖ)(ς)={ς0(ςϑ)p1Γ(p)g(ϑ,ϱϑ+˜ωϑ,P2[ϱ(ϑ)+˜ω(ϑ)],Q2[ϱ(ϑ)+˜ω(ϑ)])+ς0(ςϑ)p1Γ(p)h(ϑ,ϱϑ+˜ωϑ,P1[ϱ(ϑ)+˜ω(ϑ)],Q1[ϱ(ϑ)+˜ω(ϑ)])+ςB(uj=1bjλj0(λjϑ)qj+p1Γ(qj+p)g(ϑ,ϱϑ+˜ωϑ,P2[ϱ(ϑ)+˜ω(ϑ)],Q2[ϱ(ϑ)+˜ω(ϑ)])+uj=1bjλj0(λjϑ)qj+p1Γ(qj+p)h(ϑ,ϱϑ+˜ωϑ,P1[ϱ(ϑ)+˜ω(ϑ)],Q1[ϱ(ϑ)+˜ω(ϑ)])σ0(σϑ)p1Γ(p)g(ϑ,ϱϑ+˜ωϑ,P2[ϱ(ϑ)+˜ω(ϑ)],Q2[ϱ(ϑ)+˜ω(ϑ)])σ0(σϑ)p1Γ(p)h(ϑ,ϱϑ+˜ωϑ,P1[ϱ(ϑ)+˜ω(ϑ)],Q1[ϱ(ϑ)+˜ω(ϑ)]))+ψ(0)(1+ςB(uj=1bj λqijΓ(qi+1)1)), ςU.

    Describe the set Hˆs as Hˆs={ωG0:ωG0ˆs}. Let there be a positive constant ε such that ε<ˆs, where

    ε=2VL1ˆs[ξ1+ξ2]+ψ(0)(1+ς|B|(uj=1bj λqijΓ(qi+1)1)),

    where

    V(ς)=max{V1(ς),V2(ς),V3(ς),V4(ς),V5(ς),V6(ς),V7(ς),V8(ς),V9(ς),V10(ς)}.

    Now, we decompose as 1+2 on Hˆs, where

    (1ϖ)(ς)={ς0(ςϑ)p1Γ(p)g(ϑ,ϱϑ+˜ωϑ,P2[ϱ(ϑ)+˜ω(ϑ)],Q2[ϱ(ϑ)+˜ω(ϑ)])+ς0(ςϑ)p1Γ(p)h(ϑ,ϱϑ+˜ωϑ,P1[ϱ(ϑ)+˜ω(ϑ)],Q1[ϱ(ϑ)+˜ω(ϑ)]),

    and

    (2ϖ)(ς)={ςB(uj=1bjλj0(λjϑ)qj+p1Γ(qj+p)g(ϑ,ϱϑ+˜ωϑ,P2[ϱ(ϑ)+˜ω(ϑ)],Q2[ϱ(ϑ)+˜ω(ϑ)])+uj=1bjλj0(λjϑ)qj+p1Γ(qj+p)h(ϑ,ϱϑ+˜ωϑ,P1[ϱ(ϑ)+˜ω(ϑ)],Q1[ϱ(ϑ)+˜ω(ϑ)])σ0(σϑ)p1Γ(p)g(ϑ,ϱϑ+˜ωϑ,P2[ϱ(ϑ)+˜ω(ϑ)],Q2[ϱ(ϑ)+˜ω(ϑ)])σ0(σϑ)p1Γ(p)h(ϑ,ϱϑ+˜ωϑ,P1[ϱ(ϑ)+˜ω(ϑ)],Q1[ϱ(ϑ)+˜ω(ϑ)]))+ψ(0)(1+ςB(uj=1bj λqijΓ(qi+1)1)), ςU.

    Now, for ω,ωHˆs and ςU, we have

    (1ω)(ς)+(2ω)(ς)Ξς0(ςϑ)p1Γ(p)g(ϑ,ϱϑ+˜ωϑ,P2[ϱ(ϑ)+˜ω(ϑ)],Q2[ϱ(ϑ)+˜ω(ϑ)])Ξdϑ+ς0(ςϑ)p1Γ(p)h(ϑ,ϱϑ+˜ωϑ,P1[ϱ(ϑ)+˜ω(ϑ)],Q1[ϱ(ϑ)+˜ω(ϑ)])Ξdϑ+ς|B|(uj=1|bj|λj0(λjϑ)qj+p1Γ(qj+p)g(ϑ,ϱϑ+˜ωϑ,P2[ϱ(ϑ)+˜ω(ϑ)],Q2[ϱ(ϑ)+˜ω(ϑ)])Ξdϑ+uj=1|bj|λj0(λjϑ)qj+p1Γ(qj+p)h(ϑ,ϱϑ+˜ωϑ,P1[ϱ(ϑ)+˜ω(ϑ)],Q1[ϱ(ϑ)+˜ω(ϑ)])Ξdϑ+σ0(σϑ)p1Γ(p)g(ϑ,ϱϑ+˜ωϑ,P2[ϱ(ϑ)+˜ω(ϑ)],Q2[ϱ(ϑ)+˜ω(ϑ)])Ξdϑ+σ0(σϑ)p1Γ(p)h(ϑ,ϱϑ+˜ωϑ,P1[ϱ(ϑ)+˜ω(ϑ)],Q1[ϱ(ϑ)+˜ω(ϑ)])Ξdϑ)+ψ(0)(1+ς|B|(uj=1|bj| λqijΓ(qi+1)1))ς0(ςϑ)p1Γ(p)[V1(ϑ)ϱϑ+˜ωϑΘ+V2(ϑ)P2[ϱ(ϑ)+˜ω(ϑ)]Ξ+V3(ϑ)Q2[ϱ(ϑ)+˜ω(ϑ)]Ξ+V4(ϑ)ϱϑ+˜ωϑΘ+V5(ϑ)P1[ϱ(ϑ)+˜ω(ϑ)]Ξ+V6(ϑ)Q1[ϱ(ϑ)+˜ω(ϑ)]Ξ]dϑ+ς|B|(uj=1|bj|λj0(λjϑ)qj+p1Γ(qj+p)[V1(ϑ)ϱϑ+˜ωϑΘ+V2(ϑ)P2[ϱ(ϑ)+˜ω(ϑ)]Ξ+V3(ϑ)Q2[ϱ(ϑ)+˜ω(ϑ)]Ξ+V4(ϑ)ϱϑ+˜ωϑΘ+V5(ϑ)P1[ϱ(ϑ)+˜ω(ϑ)]Ξ+V6(ϑ)Q1[ϱ(ϑ)+˜ω(ϑ)]Ξ]dθ+σ0(σϑ)p1Γ(p)[V1(ϑ)ϱϑ+˜ωϑΘ+q2(ϑ)P2[ϱ(ϑ)+˜ω(ϑ)]Ξ+q3(ϑ)Q2[ϱ(ϑ)+˜ω(ϑ)]Ξ+V4(ϑ)ϱϑ+˜ωϑΘ+V5(ϑ)P1[ϱ(ϑ)+˜ω(ϑ)]Ξ+V6(ϑ)Q1[ϱ(ϑ)+˜ω(ϑ)]Ξ]dθ+ψ(0)(1+ς|B|(uj=1|bj| λqijΓ(qi+1)1))2VL1ˆs[ξ1+ξ2]+ψ(0)(1+ς|B|(uj=1bj λqijΓ(qi+1)1))=ε,

    where V(ς)=max{V1(ς),V2(ς),V3(ς),V4(ς),V5(ς),V6(ς)} and

    ϱϑ+˜ωϑΘN1ˆs+N2ˆsψ(0)Θˆs.

    Hence,

    1ω+2ωG0ε.

    Thus, 1ω+2ωHˆs. Now, we prove that 2 is a contraction. Let ω,ωHˆs and ςU. We then

    (2ω)(ς)(2ω)(ς)Ξς|B|(uj=1|bj|λj0(λjϑ)qj+p1Γ(qj+p)[g(ϑ,ϱϑ+˜ωϑ,P2[ϱ(ϑ)+˜ω(ϑ)],Q2[ϱ(ϑ)+˜ω(ϑ)])g(ϑ,ϱϑ+˜ωϑ,P2[ϱ(ϑ)+˜ω(ϑ)],Q2[ϱ(ϑ)+˜ω(ϑ)])Ξ+h(ϑ,ϱϑ+˜ωϑ,P1[ϱ(ϑ)+˜ω(ϑ)],Q1[ϱ(ϑ)+˜ω(ϑ)])h(ϑ,ϱϑ+˜ωϑ,P1[ϱ(ϑ)+˜ω(ϑ)],Q1[ϱ(ϑ)+˜ω(ϑ)])Ξ]dϑ+σ0(σϑ)p1Γ(p)[g(ϑ,ϱϑ+˜ωϑ,P2[ϱ(ϑ)+˜ω(ϑ)],Q2[ϱ(ϑ)+˜ω(ϑ)])g(ϑ,ϱϑ+˜ωϑ,P2[ϱ(ϑ)+˜ω(ϑ)],Q2[ϱ(ϑ)+˜ω(ϑ)])Ξ+h(ϑ,ϱϑ+˜ωϑ,P1[ϱ(ϑ)+˜ω(ϑ)],Q1[ϱ(ϑ)+˜ω(ϑ)])g(ϑ,ϱϑ+˜ωϑ,P1[ϱ(ϑ)+˜ω(ϑ)],Q1[ϱ(ϑ)+˜ω(ϑ)])Ξ]dϑς|B|(uj=1|bj|λj0(λjϑ)qj+p1Γ(qj+p)[g(˜ωϑ˜ωϑΘ+P2˜ωμ˜ωμΘϑ+Q2˜ωμ˜ωμΘϑ)+h(˜ωϑ˜ωϑΘ+P1˜ωμ˜ωμΘϑ+Q1˜ωμ˜ωμΘϑ)]dϑ+σ0(σϑ)p1Γ(p)[g(˜ωϑ˜ωϑΘ+P2˜ωμ˜ωμΘϑ+Q2˜ωμ˜ωμΘϑ)+h(˜ωϑ˜ωϑΘ+P1˜ωμ˜ωμΘϑ+Q1˜ωμ˜ωμΘϑ)]dϑ)σN1|B|[g{(ν1+ν3)+(ν2+ν4)(P2+Q2)}+h{(ν1+ν3)+(ν2+ν4)(P1+Q1)}]ωωG0=ωωG0.

    It follows that

    2ω2ωG0ωωG0.

    Since <1, then, 2 is contraction. Since g, P1,P2,Q1 and Q2 are continuous, then 1 is continuous. Furthermore,

    (1ω)(ς)Ξς0(ςϑ)p1Γ(p)g(ϑ,ϱϑ+˜ωϑ,P2[ϱ(ϑ)+˜ω(ϑ)],Q2[ϱ(ϑ)+˜ω(ϑ)])Ξdϑ+ς0(ςϑ)p1Γ(p)h(ϑ,ϱϑ+˜ωϑ,P1[ϱ(ϑ)+˜ω(ϑ)],Q1[ϱ(ϑ)+˜ω(ϑ)])Ξdϑς0(ςϑ)p1Γ(p)[V1(ϑ)ϱϑ+˜ωϑΘ+V2(ϑ)P2[ϱ(ϑ)+˜ω(ϑ)]Ξ+V3(ϑ)Q2[ϱ(ϑ)+˜ω(ϑ)]Ξ]dϑ+ς0(ςϑ)p1Γ(p)[V4(ϑ)ϱϑ+˜ωϑΘ+V5(ϑ)P1[ϱ(ϑ)+˜ω(ϑ)]Ξ+V6(ϑ)Q1[ϱ(ϑ)+˜ω(ϑ)]Ξ]dϑ2qL1ˆs(ν1+ν2).

    Hence, 1 is uniformly bounded on Hs. Ultimately, we claim that 1 is compact. Indeed, we prove that 1 is equicontinuous. For ς1,ς2U, with ς1<ς2 and ωHˆs, one has

    (1ω)(ς2)(1ω)(ς1)Ξς10(ς2ϑ)p1(ς1ϑ)p1Γ(p)[g(ϑ,ϱϑ+˜ωϑ,P2[ϱ(ϑ)+˜ω(ϑ)],Q2[ϱ(ϑ)+˜ω(ϑ)])Ξ+h(ϑ,ϱϑ+˜ωϑ,P1[ϱ(ϑ)+˜ω(ϑ)],Q1[ϱ(ϑ)+˜ω(ϑ)])Ξ]dϑ+ς2ς1(ς2ϑ)p1Γ(p)[g(ϑ,ϱϑ+˜ωϑ,P2[ϱ(ϑ)+˜ω(ϑ)],Q2[ϱ(ϑ)+˜ω(ϑ)])Ξ+h(ϑ,ϱϑ+˜ωϑ,P1[ϱ(ϑ)+˜ω(ϑ)],Q1[ϱ(ϑ)+˜ω(ϑ)])Ξ]dϑς10(ς2ϑ)p1(ς1ϑ)p1Γ(p)[V1(ϑ)ˆs+V2(ϑ)V8(ϑ)ˆsϑ+V3(ϑ)V10(ϑ)ˆsϑ+V4(ϑ)ˆs+V5(ϑ)V7(ϑ)ˆsϑ+V6(ϑ)V9(ϑ)ˆsϑ]dϑ+ς2ς1(ς2ϑ)p1Γ(p)[V1(ϑ)ˆs+V2(ϑ)V8(ϑ)ˆsϑ+V3(ϑ)V10(ϑ)ˆsϑ+V4(ϑ)ˆs+V5(ϑ)q7(ϑ)ˆsϑ+V6(ϑ)V9(ϑ)ˆsϑ]dϑ2VL1ˆs(ς10(ς2ϑ)p1(ς1ϑ)p1Γ(p)(1+ϑ)dϑ+ς2ς1(ς2ϑ)p1Γ(p)(1+ϑ)dϑ).

    Therefore, (1ω)(ς2)(1ω)(ς2)Ξ0 as ς1ς2. Hence, Φ1 is equicontinuous. By the Arzelà-Ascoli theorem, we establish that 1 is compact on Hˆs. Consequently, invoking Krasnoselskii's FP theorem, ωG0 exists such that ω=ω, which is a solution the neutral BVP (1.2).

    For the uniqueness, we have the following theorem:

    Theorem 4.3. Via Assertions (A4) and (A6), the neutral BVP (1.2) has a unique solution on (,σ].

    Proof. Define the set Hˆs={ωG0:ωG0s} and assume that ω,ωG0. For ςU, we get

    (ω)(ς)(ω)(ς)Ξς0(ςϑ)p1Γ(p)g(ϑ,ϱϑ+˜ωϑ,P2[ϱ(ϑ)+˜ω(ϑ)],Q2[ϱ(ϑ)+˜ω(ϑ)])g(ϑ,ϱϑ+˜ωϑ,P2[ϱ(ϑ)+˜ω(ϑ)],Q2[ϱ(ϑ)+˜ω(ϑ)])Ξdϑ+ς0(ςϑ)p1Γ(p)h(ϑ,ϱϑ+˜ωϑ,P1[ϱ(ϑ)+˜ω(ϑ)],Q1[ϱ(ϑ)+˜ω(ϑ)])h(ϑ,ϱϑ+˜ωϑ,P1[ϱ(ϑ)+˜ω(ϑ)],Q1[ϱ(ϑ)+˜ω(ϑ)])Ξdϑ+ς|B|(uj=1|bj|λj0(λjϑ)qj+p1Γ(qj+p)g(ϑ,ϱϑ+˜ωϑ,P2[ϱ(ϑ)+˜ω(ϑ)],Q2[ϱ(ϑ)+˜ω(ϑ)])g(ϑ,ϱϑ+˜ωϑ,P2[ϱ(ϑ)+˜ω(ϑ)],Q2[ϱ(ϑ)+˜ω(ϑ)])Ξdϑ+uj=1|bj|λj0(λjϑ)qj+p1Γ(qj+p)h(ϑ,ϱϑ+˜ωϑ,P1[ϱ(ϑ)+˜ω(ϑ)],Q1[ϱ(ϑ)+˜ω(ϑ)])h(ϑ,ϱϑ+˜ωϑ,P1[ϱ(ϑ)+˜ω(ϑ)],Q1[ϱ(ϑ)+˜ω(ϑ)])Ξdϑ+σ0(σϑ)p1Γ(p)g(ϑ,ϱϑ+˜ωϑ,P2[ϱ(ϑ)+˜ω(ϑ)],Q2[ϱ(ϑ)+˜ω(ϑ)])g(ϑ,ϱϑ+˜ωϑ,P2[ϱ(ϑ)+˜ω(ϑ)],Q2[ϱ(ϑ)+˜ω(ϑ)])Ξdϑ+σ0(σϑ)p1Γ(p)h(ϑ,ϱϑ+˜ωϑ,P1[ϱ(ϑ)+˜ω(ϑ)],Q1[ϱ(ϑ)+˜ω(ϑ)])h(ϑ,ϱϑ+˜ωϑ,P1[ϱ(ϑ)+˜ω(ϑ)],Q1[ϱ(ϑ)+˜ω(ϑ)])Ξdϑ)ς0(ςϑ)p1Γ(p)[g(˜ωϑ˜ωϑΘ+(P2+Q2)˜ωμ˜ωμΘϑ)+h(˜ωϑ˜ωϑΘ+(P1+Q1)˜ωμ˜ωμΘϑ)]dϑ+ς|B|(uj=1|bj|λj0(λjϑ)qj+p1Γ(qj+p)[g(˜ωϑ˜ωϑΘ+(P2+Q2)˜ωμ˜ωμΘϑ)+h(˜ωϑ˜ωϑΘ+(P1+Q1)˜ωμ˜ωμΘϑ)]dϑ+σ0(σϑ)p1Γ(p)[g(˜ωϑ˜ωϑΘ+(P2+Q2)˜ωμ˜ωμΘϑ)+h(˜ωϑ˜ωϑΘ+(P1+Q1)˜ωμ˜ωμΘϑ)]dϑ){gN1[σpΓ(p+1)+σ|B|uj=1|bj|(λj)qj+pΓ(qj+p+1)+σp+1|B|Γ(p+1)+(P2+Q2)(σp+1Γ(p+2)+σ|B|uj=1|bj|(λj)qj+p+1Γ(qj+p+2)+σp+2|B|Γ(p+2))]+hN1[σpΓ(p+1)+σ|B|uj=1|bj|(λj)qj+pΓ(qj+p+1)+σp+1|B|Γ(p+1)+(P1+Q1)(σp+1Γ(p+2)+σ|B|uj=1|bj|(λj)qj+p+1Γ(qj+p+2)+σp+2|B|Γ(p+2))]}ωωG0gN1{ξ1+ξ2(P2+Q2)}+hN1{ξ1+ξ2(P1+Q1)}ωωG0=SωωG0.

    Hence,

    (ω)(ω)G0SωωG0.

    By (A6), S<1. Thus, is a contraction. By Banach's FP theorem, has a unique FP, which is a unique solution to the problem (1.2) on (,σ].

    This section is devoted to testing the conditions of the proposed systems and their effectiveness, which leads to supporting and enhancing the theoretical results we obtained.

    Example 5.1. Assume the following FFIDE:

    {LCD52ϖ(ς)=1(ς+7)2eνς|ϖς|1+|ϖς|+132ς0ςϑeνς16(1+ϑ)cos(ϖϑ)1+cos(ϖϑ)dϑ+164σ0ςϑeνς20(1+ϑ)sin(ϖϑ)1+sin(ϖϑ)dϑ, ς[0,1],ϖ(ς)=ψ(ς), ς(,0],ϖ(1)=3j=1bj(Iqj0+ϖ)(λj), 0<λ1<λ2<λ3<1, (5.1)

    where ν>0 is a real constant and define the set Hν as

    Hν={ωC((,0],R):limϕeνϕω(ϕ) exists in R},

    under the norm

    ων=supϕ(,0]eνϕ|ω(ϕ)|.

    Assume that ϖ:(,σ]Ξ in order that ϖ0=ψHν. Then

    limϕeνϕως(ϕ)=limϕeνϕω(ς+ϕ)=limϕeν(ϕς)ω(ϕ)=eνςlimϕeνϕω0(ϕ)<.

    Therefore, ωςHν. Select N1=N2=κ=1. Hence, we show the condition

    ωςνN1(ς)sup{|ϖ(ϑ)|:0ϑς}+N2(ς)ϖ0ν.

    Clearly, |ως(ϕ)|=|ω(ς+ϕ)|. If ς+ϕ0, we get

    |ως(ϕ)|sup{|ϖ(ϑ)|:<ϑ0}.

    In the case of ς+ϕ0, we have

    |ως(ϕ)|sup{|ϖ(ϑ)|:0<ϑς}.

    Hence, if ς+ϕ[0,1], we can write

    |ως(ϕ)|sup{|ϖ(ϑ)|:<ϑ0}+sup{|ϖ(ϑ)|:0ϑς},

    which implies that

    ωςνsup{|ϖ(ϑ)|:0ϑς}+ϖ0ν.

    Furthermore, the pair (Hν,ω) is a BS and Hν is a phase space. Here, p=52, u=3, and we choose

    b1=16,b2=18,b3=4,λ1=19,λ2=14,λ3=711,q1=13,q2=12,q3=65.

    By simple calculation, we have

    {B=σuj=1bj λqi+1jΓ(qi+2)=13j=1bj λqi+1jΓ(qi+2)0.37290,ν1=σpΓ(1+p)0.3009, ν2=σp+1Γ(2+p)0.0859,ν3=uj=1|bj|λqi+pjΓ(qi+p+1)0.0088, ν4=uj=1|bj|λqi+p+1jΓ(qi+p+2)0.0008,ξ1=(1+σ|B|)ν1+σ|B|ν31.1314,ξ2=(1+σ|B|)ν2+σ|B|ν40.3184.

    From (5.1), we have

    g(ς,ϖς,P(ς),Q(ς))=1(ς+7)2eνς|ϖς|1+|ϖς|+132Pϖ(ς)+164Qϖ(ς),

    where

    Pϖ(ς)=ς0ςϑeνς16(1+ϑ)cos(ϖϑ)1+cos(ϖϑ)dϑ,Qϖ(ς)=σ0ςϑeνς20(1+ϑ)sin(ϖϑ)1+sin(ϖϑ)dϑ.

    Now, for ϖς,ϱςHν, we have

    |P(ς,ϑ,ϖϑ)P(ς,ϑ,ϱϑ)|=|ςϑeνς16(1+ϑ)cos(ϖϑ)1+cos(ϖϑ)ςϑeνς16(1+ϑ)cos(ϱϑ)1+cos(ϱϑ)|116ϖϱν, (5.2)
    |Q(ς,ϑ,ϖϑ)Q(ς,ϑ,ϱϑ)|=|ςϑeνς20(1+ϑ)sin(ϖϑ)1+sin(ϖϑ)ςϑeνς20(1+ϑ)sin(ϱϑ)1+sin(ϱϑ)|120ϖϱν, (5.3)
    |g(ς,ϖς,Pϖ(ς),Qϖ(ς))g(ς,ϱς,Pϱ(ς),Qϱ(ς))|1(ς+7)2eνς|ϖςϱς|(1+|ϖς|)(1+|ϱς|)+132|Pϖ(ς)Pϱ(ς)|+164|Qϖ(ς)Pϱ(ς)|164(ϖϱν+18ϖϱν+120ϖϱν), (5.4)
    |g(ς,ψ,ϖ,ϱ)|=|1(ς+7)2eνς|ψς|1+|ψς|+132ς0ςϑeνς16(1+ϑ)cos(ϖϑ)1+cos(ϖϑ)dϑ+164σ0ςϑeνς20(1+ϑ)sin(ϱϑ)1+sin(ϱϑ)dϑ|164|ψ|+132|ϖ|+164|ϱ|, (5.5)
    |P(ς,ϑ,ϖ)|=|ςϑeνς16(1+ϑ)cos(ϖϑ)1+cos(ϖϑ)|132|ϖ|, (5.6)

    and

    |Q(ς,ϑ,ϖ)|=|ςϑeνς20(1+ϑ)sin(ϖϑ)1+sin(ϖϑ)|140|ϖ|. (5.7)

    It follows from (5.2)–(5.7) that g=164, P=116, Q=120, V1(ς)=164, V2(ς)=132, V3(ς)=164, V4(ς)=132, V5(ς)=140, and N1=1. Hence

    =σ|B|gN1{(ν1+ν3)+(ν2+ν4)(P+Q)}0.0138<1,

    and

    S=gN1{ξ1+ξ2(P+Q)}0.0182<1.

    Therefore, all the requirements of Theorems 3.3 and 3.4 are satisfied. Then, the considered problem (5.1) has a unique solution on (,σ].

    Example 5.2. Assume the following neutral FFIDE:

    {LCD52ς[ϖ(ς)ς0(ςϑ)p1π(eνς20ϖ2ς1+ϖ2ς+120ς0eνς6ln(1+ϖς)dϑ+125σ0eνς4tan1(ϖς)1+tan1(ϖς)dϑ)]=(1+eς)eνς(34+eς)|ϖς|1+|ϖς|+115ς0eνςcos(ϖϑ5)dϑ+135σ0eνςsin(ϖϑ6)dϑ, ς[0,1],ϖ(ς)=ψ(ς), ς(,0],ϖ(1)=3j=1bj(Iqj0+ϖ)(λj), 0<λ1<λ2<λ3<1. (5.8)

    Assume that Hν is the phase space, which is defined in Example 5.1, where p=52, u=3, and

    b1=15,b2=14,b3=5,λ1=17,λ2=12,λ3=712,q1=12,q2=13,q3=72.

    By simple calculation, we have

    {B0.52310,ν1=σpΓ(1+p)0.4187, ν2=σp+1Γ(2+p)0.3979,ν3=uj=1|bj|λqi+pjΓ(qi+p+1)0.0132, ν4=uj=1|bj|λqi+p+1jΓ(qi+p+2)0.0037,ξ1=(1+σ|B|)ν1+σ|B|ν31.5841,ξ2=(1+σ|B|)ν2+σ|B|ν40.7239.

    From (5.8), one can write

    g(ς,ϖς,P2(ς),Q2(ς))=(1+eς)eνς(34+eς)|ϖς|1+|ϖς|+115P2ϖ(ς)+135Q2ϖ(ς),h(ς,ϖς,P1(ς),Q1(ς))=eνς20ϖ2ς1+ϖ2ς+120P1ϖ(ς)+125Q1ϖ(ς),

    where

    P2ϖ(ς)=ς0eνς6ln(1+ϖς)dϑ,Q2ϖ(ς)=σ0eνς4tan1(ϖς)1+tan1(ϖς)dϑ,P1ϖ(ς)=ς0eνςcos(ϖϑ5)dϑ,Q1ϖ(ς)=σ0eνςsin(ϖϑ6)dϑ.

    Now, for ϖς,ϱςHν, we have

    |P2(ς,ϑ,ϖϑ)P2(ς,ϑ,ϱϑ)|=|eνς6ln(1+ϖς)eνς6ln(1+ϱς)|16ϖϱν, (5.9)
    |Q2(ς,ϑ,ϖϑ)Q2(ς,ϑ,ϱϑ)|=|eνς4tan1(ϖς)1+tan1(ϖς)dϑeνς4tan1(ϖς)1+tan1(ϖς)dϑ|14ϖϱν, (5.10)
    |P1(ς,ϑ,ϖϑ)P1(ς,ϑ,ϱϑ)|=|eνςcos(ϖϑ5)eνςcos(ϱϑ5)|15ϖϱν, (5.11)
    |Q1(ς,ϑ,ϖϑ)Q1(ς,ϑ,ϱϑ)|=|eνςsin(ϖϑ6)eνςsin(ϱϑ6)|16ϖϱν, (5.12)
    (5.13)
    (5.14)
    (5.15)
    (5.16)
    (5.17)
    (5.18)
    (5.19)

    and

    (5.20)

    From (5.9)–(5.20), we have Thus, we can write

    and

    Hence, all the assertions of Theorems 3.4 and 4.2 are fulfilled. Therefore, the supposed problem (5.8) has a unique solution on

    The study of FFIDEs presents a formidable challenge due to the inherent complexities arising from the interplay of fractional-order derivatives, functional arguments, and integral operators. Traditional methods often fall short in addressing these equations due to the non-local nature of fractional derivatives and the intricate dependence on past states introduced by functional arguments. Overcoming these difficulties requires the development and application of sophisticated mathematical tools, including specialized FP theorems tailored for fractional settings, careful treatment of infinite delay, and the construction of appropriate function spaces that accommodate the combined effects of these operators. Furthermore, the presence of multi-term fractional integral boundary conditions adds another layer of complexity, demanding innovative techniques for handling the non-local and distributed nature of the boundary constraints. Successfully navigating these hurdles necessitates a deep understanding of fractional calculus, functional analysis, and operator theory, ultimately paving the way for a more comprehensive understanding of the dynamics governed by FFIDEs. This paper investigates the existence and uniqueness of solutions for a class of hybrid fractional-order functional and neutral functional integrodifferential equations, featuring infinite delay and multi-term fractional integral boundary conditions. A rigorous mathematical framework is developed, leveraging FP theorems, to analyze these complex equations. The LC definition of fractional derivatives is employed, facilitating a comprehensive study of nonlocal dynamics. Illustrative examples are provided to demonstrate the applicability and practical relevance of the theoretical results. Future work includes exploring more complex equations (e.g., variable-order, generalized functional arguments), investigating stability, controllability, and numerical methods, and applying these equations to real-world problems. Developing new fixed point theorems tailored for fractional functional integrodifferential equations and studying associated inverse problems are also promising research avenues. Finally, we also look forward to extending the study period outside the proposed period [2,3].

    Manal Elzain Mohamed Abdalla: Writing–review-editing, formal analysis, funding acquisition; Hasanen A. Hammad: Writing–original draft, conceptualization, investigation, methodology. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used artificial intelligence (AI) tools in the creation of this article.

    Data sharing is not applicable to the article as no data sets were generated or analyzed during the current study.

    The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through the Large Research Project under grant number R.G.P. 2/217/45.

    All authors confirm that they have no conflict of interest.



    [1] B. E. Abali, W. H. Müller, F. dell'Isola, Theory and computation of higher gradient elasticity theories based on action principles, Arch. Appl. Mech., 87 (2017), 1495–1510. https://doi.org/10.1007/s00419-017-1266-5 doi: 10.1007/s00419-017-1266-5
    [2] J. J. Alibert, P. Seppecher, F. Dell'Isola, Truss modular beams with deformation energy depending on higher displacement gradients, Math Mech Solids, 8 (2003), 51–73. https://doi.org/10.1177/1081286503008001658 doi: 10.1177/1081286503008001658
    [3] G. Aydin, B. C. Sarar, M. E. Yildizdag, B. E. Abali, Investigating infill density and pattern effects in additive manufacturing by characterizing metamaterials along the strain-gradient theory, Math Mech Solids, 27 (2022), 2002–2016. https://doi.org/10.1177/10812865221100978 doi: 10.1177/10812865221100978
    [4] E. Barchiesi, A. Misra, L. Placidi, E. Turco, Granular micromechanics-based identification of isotropic strain gradient parameters for elastic geometrically nonlinear deformations, Z Angew Math Mech, 101 (2021), e202100059.
    [5] T. Q. Bui, H. Tran, X. Hu, C. T. Wu, Simulation of dynamic brittle and quasi-brittle fracture: a revisited local damage approach, Int J Fracture, 236 (2022), 59–85.
    [6] E. Cadoni, A. Caverzani, M. di Priscoi, Dynamic behaviour of hpfrcc in tension, EPJ Web of Conferences, 26 (2012), 01014. https://doi.org/10.1051/epjconf/20122601014 doi: 10.1051/epjconf/20122601014
    [7] C. H. Chen, E. Bouchbinder, A. Karma, Instability in dynamic fracture and the failure of the classical theory of cracks, Nat. Phys., 13 (2017), 1186–1190. https://doi.org/10.1038/nphys4237 doi: 10.1038/nphys4237
    [8] Y. Cui, X. Zeng, V. B. C. Tan, Z. Zhang, Experimental and numerical studies of niti dynamic fracture behaviors under the impact loading, Int. J. Mech. Sci., 235 (2022), 107724. https://doi.org/10.1016/j.ijmecsci.2022.107724 doi: 10.1016/j.ijmecsci.2022.107724
    [9] H. Darban, R. Luciano, A. Caporale, F. Fabbrocino, Higher modes of buckling in shear deformable nanobeams, Int J Eng Sci, 154 (2020), 103338. https://doi.org/10.1016/j.ijengsci.2020.103338 doi: 10.1016/j.ijengsci.2020.103338
    [10] F. dell'Isola, L. Placidi, Variational principles are a powerful tool also for formulating field theories, In: F. dell'Isola, S. Gavrilyuk, (eds) Variational Models and Methods in Solid and Fluid Mechanics. Vienna: Springer, 535 (2001), 1–15. https://doi.org/10.1007/978-3-7091-0983-0_1
    [11] F. dell'Isola, U. Andreaus, L. Placidi, At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: An underestimated and still topical contribution of gabrio piola, Math Mech Solids, 20 (2015), 887–928. https://doi.org/10.1177/1081286513509811 doi: 10.1177/1081286513509811
    [12] F. dell'Isola, R. Fedele, Irreducible representation of surface distributions and Piola transformation of external loads sustainable by third gradient continua, Comptes Rendus. Mécanique, 351 (2023), 1–30.
    [13] F. dell'Isola, P. Seppecher, A. Madeo, How contact interactions may depend on the shape of cauchy cuts in nth gradient continua: approach "à la d'alembert", Z. Angew. Math. Phys., 63 (2012), 1119–1141. https://doi.org/10.1007/s00033-012-0197-9 doi: 10.1007/s00033-012-0197-9
    [14] V. A. Eremeyev, F. dell'Isola, On weak solutions of the boundary value problem within linear dilatational strain gradient elasticity for polyhedral lipschitz domains, Math Mech Solids, 27 (2022), 433–445. https://doi.org/10.1177/10812865211025576 doi: 10.1177/10812865211025576
    [15] V. A. Eremeyev, S. A. Lurie, Y. O. Solyaev, F. dell'Isola, On the well posedness of static boundary value problem within the linear dilatational strain gradient elasticity, Z. Angew. Math. Phys., 71 (2020), 182. https://doi.org/10.1007/s00033-020-01395-5 doi: 10.1007/s00033-020-01395-5
    [16] A. C. Eringen, Microcontinuum Field Theories I: Foundations and Solids, New York: Springer-Verlang, 1999.
    [17] O. Essersi, M. Tarfaoui, S. Boyd, R. Shenoi, F. Meraghni, Experimental study of dynamic behaviour of aluminum/aluminum and composite/composite double lap joints, Appl Mech Mater, 62 (2011), 155–163. https://doi.org/10.4028/www.scientific.net/AMM.62.155 doi: 10.4028/www.scientific.net/AMM.62.155
    [18] F. Fabbrocino, M. F. Funari, F. Greco, P. Lonetti, R. Luciano, R. Penna, Dynamic crack growth based on moving mesh method, Compos. B. Eng., 174 (2019), 107053. https://doi.org/10.1016/j.compositesb.2019.107053 doi: 10.1016/j.compositesb.2019.107053
    [19] M. F. Funari, S. Spadea, F. Fabbrocino, R. Luciano, A moving interface finite element formulation to predict dynamic edge debonding in frp-strengthened concrete beams in service conditions, Fibers, 8 (2020), 42. https://doi.org/10.3390/fib8060042 doi: 10.3390/fib8060042
    [20] F. Galvez, D. Cendon, N. Garcia, A. Enfedaque, V. Sanchez-Galvez, Dynamic fracture toughness of a high strength armor steel, Eng Fail Anal, 16 (2009), 2567–2575. https://doi.org/10.1016/j.engfailanal.2009.04.020 doi: 10.1016/j.engfailanal.2009.04.020
    [21] P. Germain, The method of virtual power in continuum mechanics. Part 2: Microstructure, SIAM J Appl Math, 25 (1973), 556–575. https://doi.org/10.1137/0125053 doi: 10.1137/0125053
    [22] L. Hai, J. Li, A rate-dependent phase-field framework for the dynamic failure of quasi-brittle materials, Eng. Fract. Mech., 252 (2021), 107847. https://doi.org/10.1016/j.engfracmech.2021.107847 doi: 10.1016/j.engfracmech.2021.107847
    [23] R. H. Cao, R. Yao, T. Hu, C. Wang, K. Li, J. Meng, Failure and mechanical behavior of transversely isotropic rock under compression-shear tests: Laboratory testing and numerical simulation, Eng. Fract. Mech., 241 (2021), 107389. https://doi.org/10.1016/j.engfracmech.2020.107389 doi: 10.1016/j.engfracmech.2020.107389
    [24] X. Huang, A. R. Tabkhi, V. Sadeghian, O. S. Kwon, Impact of loading rate during hybrid simulation on seismic response of steel structures, Earthq Eng Struct Dyn, 51 (2022), 2813–2836. https://doi.org/10.1002/eqe.3703 doi: 10.1002/eqe.3703
    [25] H. H. Jama, G. N. Nurick, M. R. Bambach, R. H. Grzebieta, X. L. Zhao, Steel square hollow sections subjected to transverse blast loads, Thin Wall Struct, 53 (2012), 109–122. https://doi.org/10.1016/j.tws.2012.01.007 doi: 10.1016/j.tws.2012.01.007
    [26] K. Khaled, G. Mohamed, Modelling of the influence of tensile test speed on the fracture load, ASM Sci. J., 12 (2019), 1–12.
    [27] Q. Li, X. Jiang, T. Zeng, S. Xu, Experimental investigation on strain rate effect of high-performance fiber reinforced cementitious composites subject to dynamic direct tensile loading, Cement Concrete Res, 157 (2022), 106825. https://doi.org/10.1016/j.cemconres.2022.106825 doi: 10.1016/j.cemconres.2022.106825
    [28] X. Liu, P. Yu, B. Zheng, E. Oterkus, X. He, C. Lu, Prediction of graphene's mechanical and fracture properties via peridynamics, Int. J. Mech. Sci., 266 (2024), 108914. https://doi.org/10.1016/j.ijmecsci.2023.108914 doi: 10.1016/j.ijmecsci.2023.108914
    [29] R. Luciano, H. Darban, C. Bartolomeo, F. Fabbrocino, D. Scorza, Free flexural vibrations of nanobeams with non-classical boundary conditions using stress-driven nonlocal model, Mech Res Commun, 107 (2020), 103536. https://doi.org/10.1016/j.mechrescom.2020.103536 doi: 10.1016/j.mechrescom.2020.103536
    [30] K. K. Mahato, M. Biswal, D. K. Rathore, R. K. Prusty, K. Dutta, B. C. Ray, Effect of loading rate on tensile properties and failure behavior of glass fibre/epoxy composite, IOP Conference Series: Materials Science and Engineering, 115 (2016), 012017. https://dx.doi.org/10.1088/1757-899X/115/1/012017 doi: 10.1088/1757-899X/115/1/012017
    [31] G. Mancusi, F. Fabbrocino, L. Feo, F. Fraternali, Size effect and dynamic properties of 2d lattice materials, Compos. B. Eng., 112 (2017), 235–242. https://doi.org/10.1016/j.compositesb.2016.12.026 doi: 10.1016/j.compositesb.2016.12.026
    [32] J. Marigo, Modelling of brittle and fatigue damage for elastic material by growth of microvoids, Eng. Fract. Mech., 21 (1985), 861–874. https://doi.org/10.1016/0013-7944(85)90093-1 doi: 10.1016/0013-7944(85)90093-1
    [33] V. Mentl, J. Dzugan, Impact compression and tensile testing by means of a charpy pendulum, in WIT Transactions on The Built Environment, Ashurst: WIT Press, 2008, 55–61.
    [34] R. D. Mindlin, Micro-structure in linear elasticity, Arch Ration Mech Anal, 16 (1964), 51–78. https://doi.org/10.1007/BF00248490 doi: 10.1007/BF00248490
    [35] A. Misra, P. Luca, E. Turco, Variational Methods for Discrete Models of Granular Materials, In: H. Altenbach, A. Öchsner, (eds) Encyclopedia of Continuum Mechanics, Berlin: Springer-Verlag, 2020. https://doi.org/10.1007/978-3-662-55771-6_172
    [36] A. Misra, L. Placidi, F. dell'Isola, E. Barchiesi, Identification of a geometrically nonlinear micromorphic continuum via granular micromechanics, Z. Angew. Math. Phys., 72 (2021), 157. https://doi.org/10.1007/s00033-021-01587-7 doi: 10.1007/s00033-021-01587-7
    [37] N. Nejadsadeghi, A. Misra, Extended granular micromechanics approach: a micromorphic theory of degree n, Math Mech Solids, 25 (2020), 407–429. https://doi.org/10.1177/1081286519879479 doi: 10.1177/1081286519879479
    [38] H. Nguyen, W. Li, Z. P. Bažant, Y. Bazilevs, Isogeometric smooth crack-band model (isCBM) using spress-sprain relations adapted to microplane theory, J Mech Phys Solids, 181 (2023), 105470. https://doi.org/10.1016/j.jmps.2023.105470 doi: 10.1016/j.jmps.2023.105470
    [39] Z. Nowak, Z. L. Kowalewski, T. Szymczak, Low velocity perforation of thick magnesium alloy AM60 plates impacted by rigid conical-nose impactor, Arch. Civ. Mech. Eng., 23 (2022), 5. https://doi.org/10.1007/s43452-022-00525-2 doi: 10.1007/s43452-022-00525-2
    [40] J. Ožbolt, K. K. Rah, D. Meštrović, Influence of loading rate on concrete cone failure, Int J Fract, 139 (2006), 239–252. https://doi.org/10.1007/s10704-006-0041-3 doi: 10.1007/s10704-006-0041-3
    [41] J. Ožbolt, J. Bošnjak, E. Sola, Dynamic fracture of concrete compact tension specimen: Experimental and numerical study, Int J Solids Struct, 50 (2013), 4270–4278. https://doi.org/10.1016/j.ijsolstr.2013.08.030 doi: 10.1016/j.ijsolstr.2013.08.030
    [42] J. Ožbolt, A. Sharma, H. W. Reinhardt, Dynamic fracture of concrete–compact tension specimen, Int J Solids Struct, 48 (2011), 1534–1543. https://doi.org/10.1016/j.ijsolstr.2011.01.033 doi: 10.1016/j.ijsolstr.2011.01.033
    [43] B. Paermentier, S. Cooreman, P. Verleysen, S. Chandran, S. Coppieters, R. Talemi, A dynamic tensile tear test methodology to characterise dynamic fracture behaviour of modern high-grade pipeline steels, Eng. Fract. Mech., 272 (2022), 108687. https://doi.org/10.1016/j.engfracmech.2022.108687 doi: 10.1016/j.engfracmech.2022.108687
    [44] A. K. Pandouria, S. Kumar and V. Tiwari, Experimental study of dynamic fracture behavior of Al7075-T651 under different loading rates, Mater. Today Commun., 33 (2022), 104529. https://doi.org/10.1016/j.mtcomm.2022.104529 doi: 10.1016/j.mtcomm.2022.104529
    [45] S. Patnaik, F. Semperlotti, Variable-order fracture mechanics and its application to dynamic fracture, NPJ Comput. Mater., 7 (2021), 27. https://doi.org/10.1038/s41524-021-00492-x doi: 10.1038/s41524-021-00492-x
    [46] L. Placidi, U. Andreaus, A. Della Corte, T. Lekszycki, Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients, Z. Angew. Math. Phys., 66 (2015), 3699–3725. https://doi.org/10.1007/s00033-015-0588-9 doi: 10.1007/s00033-015-0588-9
    [47] L. Placidi, F. dell'Isola, N. Ianiro, G. Sciarra, Variational formulation of pre-stressed solid–fluid mixture theory, with an application to wave phenomena, Eur J Mech-A/Solid, 27 (2008), 582–606. https://doi.org/10.1016/j.euromechsol.2007.10.003 doi: 10.1016/j.euromechsol.2007.10.003
    [48] L. Placidi, A variational approach for a nonlinear 1-dimensional second gradient continuum damage model, Contin. Mech. Thermodyn., 27 (2015), 623–638. https://doi.org/10.1007/s00161-014-0338-9 doi: 10.1007/s00161-014-0338-9
    [49] L. Placidi, A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model, Contin. Mech. Thermodyn., 28 (2016), 119–137. https://doi.org/10.1007/s00161-014-0405-2 doi: 10.1007/s00161-014-0405-2
    [50] L. Placidi, E. Barchiesi, Energy approach to brittle fracture in strain-gradient modelling, Proc. Math. Phys. Eng. Sci., 474 (2018), 20170878. https://doi.org/10.1098/rspa.2017.0878 doi: 10.1098/rspa.2017.0878
    [51] L. Placidi, E. Barchiesi, A. Misra, A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results, Math. Mech. Complex Syst., 6 (2018), 77–100. https://doi.org/10.2140/memocs.2018.6.77 doi: 10.2140/memocs.2018.6.77
    [52] L. Placidi, E. Barchiesi, A. Misra, U. Andreaus, Variational methods in continuum damage and fracture mechanics, In: H. Altenbach, A. Öchsner, (eds) Encyclopedia of Continuum Mechanics, Berlin: Springer-Verlag, 2020. https://doi.org/10.1007/978-3-662-55771-6_172
    [53] L. Placidi, A. Misra, E. Barchiesi, Two-dimensional strain gradient damage modeling: a variational approach, Z. Angew. Math. Phys., 69 (2018), 56. https://doi.org/10.1007/s00033-018-0947-4 doi: 10.1007/s00033-018-0947-4
    [54] A. Premchander, I. Amin, S. Oterkus, E. Oterkus, N. A. Shawky Elminshawy, Peridynamic modelling of propagation of cracks in photovoltaic panels, Procedia Structural Integrity, 41 (2022), 305–316. https://doi.org/10.1016/j.prostr.2022.05.036 doi: 10.1016/j.prostr.2022.05.036
    [55] A. Qinami, A. Pandolfi, M. Kaliske, Variational eigenerosion for rate-dependent plasticity in concrete modeling at small strain, Int. J. Numer. Meth. Eng., 121 (2020), 1388–1409. https://doi.org/10.1002/nme.6271 doi: 10.1002/nme.6271
    [56] Y. Rao, M. Xiang, J. Cui, A strain gradient brittle fracture model based on two-scale asymptotic analysis, J Mech Phys Solids, 159 (2022), 104752. https://doi.org/10.1016/j.jmps.2021.104752 doi: 10.1016/j.jmps.2021.104752
    [57] Y. Rao, M. Xiang, Q. Li, J. Cui, A unified two-scale theory for modeling microstructural length scale, strain gradient and strain rate effects on brittle fracture, Int J Solids Struct, 268 (2023), 112176. https://doi.org/10.1016/j.ijsolstr.2023.112176 doi: 10.1016/j.ijsolstr.2023.112176
    [58] K. Ravi-Chandar, W. G. Knauss, An experimental investigation into dynamic fracture: Ⅰ. Crack initiation and arrest, Int J Fract, 25 (1984), 247–262. https://doi.org/10.1007/BF00963460 doi: 10.1007/BF00963460
    [59] K. Ravi-Chandar, W. G. Knauss, An experimental investigation into dynamic fracture: Ⅱ. Microstructural aspects, Int J Fract, 26 (1984), 65–80. https://doi.org/10.1007/BF01152313 doi: 10.1007/BF01152313
    [60] K. Ravi-Chandar, W. G. Knauss, An experimental investigation into dynamic fracture: Ⅲ. On steady-state crack propagation and crack branching, Int J Fract, 26 (1984), 141–154. https://doi.org/10.1007/BF01157550 doi: 10.1007/BF01157550
    [61] K. Ravi-Chandar, W. G. Knauss, An experimental investigation into dynamic fracture: Ⅳ. On the interaction of stress waves with propagating cracks, Int J Fract, 26 (1984), 189–200. https://doi.org/10.1007/BF01140627 doi: 10.1007/BF01140627
    [62] N. Rezaei, E. Barchiesi, D. Timofeev, C. A. Tran, A. Misra, L. Placidi, Solution of a paradox related to the rigid bar pull-out problem in standard elasticity, Mech Res Commun, 126 (2022), 104015. https://doi.org/10.1016/j.mechrescom.2022.104015 doi: 10.1016/j.mechrescom.2022.104015
    [63] N. Rezaei, M. E. Yildizdag, E. Turco, A. Misra, L. Placidi, Strain-gradient finite elasticity solutions to rigid bar pull-out test, Contin. Mech. Thermodyn., 36 (2024), 607–617. https://doi.org/10.1007/s00161-024-01285-5 doi: 10.1007/s00161-024-01285-5
    [64] K. Shibanuma, S. Tu, S. Suzuki, Z. Yu, R. Kato, A. Hatamoto, Ductile crack propagation path depending on material properties: Experimental results and discussions based on numerical simulations, Mater Design, 223 (2022), 111158. https://doi.org/10.1016/j.matdes.2022.111158 doi: 10.1016/j.matdes.2022.111158
    [65] Y. Solyaev, Steady-state crack growth in nanostructured quasi-brittle materials governed by second gradient elastodynamics, Appl. Sci., 13 (2023), 6333. https://doi.org/10.3390/app13106333 doi: 10.3390/app13106333
    [66] Y. Solyaev, S. Lurie, H. Altenbach, F. dell'Isola, On the elastic wedge problem within simplified and incomplete strain gradient elasticity theories, Int J Solids Struct, 239–240 (2022), 111433. https://doi.org/10.1016/j.ijsolstr.2022.111433 doi: 10.1016/j.ijsolstr.2022.111433
    [67] D. Timofeev, E. Barchiesi, A. Misra, L. Placidi, Hemivariational continuum approach for granular solids with damage-induced anisotropy evolution, Math Mech Solids, 25 (2020), 738–770. https://doi.org/10.1177/1081286520968149 doi: 10.1177/1081286520968149
    [68] A. R. Torabi, K. Hamidi, A. S. Rahimi, S. Cicero, Notch fracture in polymeric specimens under compressive stresses: The role of the equivalent material concept in estimating the critical stress of polymers, Appl. Sci., 11 (2021), 2104. https://doi.org/10.3390/app11052104 doi: 10.3390/app11052104
    [69] I. Vindokurov, Y. Pirogova, M. Tashkinov, V. V. Silberschmidt, Effect of heat treatment on elastic properties and fracture toughness of fused filament fabricated peek for biomedical applications, Polymers, 14 (2022), 2551. https://doi.org/10.3390/polym14245521 doi: 10.3390/polym14245521
    [70] O. Wall, Dynamic crack propagation in large steel specimens, Eng. Fract. Mech., 69 (2002), 835–849. https://doi.org/10.1016/S0013-7944(01)00111-4 doi: 10.1016/S0013-7944(01)00111-4
    [71] P. Wu, F. Yang, Z. Chen, F. Bobaru, Stochastically homogenized peridynamic model for dynamic fracture analysis of concrete, Eng. Fract. Mech., 253 (2021), 107863. https://doi.org/10.1016/j.engfracmech.2021.107863 doi: 10.1016/j.engfracmech.2021.107863
    [72] J. Xu, D. Cao, J. Cui, X. Zhang, G. Li, Experimental research on tensile behavior of advanced high-strength steel dp600 at high strain rate, J Mater Eng Perform, 28 (2019), 2411–2420. https://doi.org/10.1007/s11665-019-04008-z doi: 10.1007/s11665-019-04008-z
    [73] S. Yan, H. Yang, H. Li, G. Ren, Experimental study of macro-micro dynamic behaviors of 5A0X aluminum alloys in high velocity deformation, Mat Sci Eng A-struct, 598 (2014), 197–206. https://doi.org/10.1016/j.msea.2013.12.001 doi: 10.1016/j.msea.2013.12.001
    [74] W. Yang, V. R. Sherman, B. Gludovatz, E. Schaible, P. Stewart, R. O. Ritchie, et al., On the tear resistance of skin, Nat Commun, 6 (2015), 6649. https://doi.org/10.1038/ncomms7649 doi: 10.1038/ncomms7649
    [75] M. E. Yildizdag, L. Placidi, E. Turco, Modeling and numerical investigation of damage behavior in pantographic layers using a hemivariational formulation adapted for a hencky-type discrete model, Contin. Mech. Thermodyn., 35 (2023), 1481–1494. https://doi.org/10.1007/s00161-022-01154-z doi: 10.1007/s00161-022-01154-z
    [76] M. E. Yildizdag, A. Ciallella, G. D'Ovidio, Investigating wave transmission and reflection phenomena in pantographic lattices using a second-gradient continuum model, Math Mech Solids, 28 (2023), 1776–1789. https://doi.org/10.1177/10812865221136250 doi: 10.1177/10812865221136250
    [77] B. Yin, M. Kaliske, Fracture simulation of viscoelastic polymers by the phase-field method, Comput Mech, 65 (2020), 293–309. https://doi.org/10.1007/s00466-019-01769-1 doi: 10.1007/s00466-019-01769-1
    [78] B. Zhang, J. Wang, Y. Wang, Y. Wang, Z. Li, Strain-rate-dependent tensile response of Ti-5Al-2.5Sn alloy, Materials, 12 (2019), 659. https://doi.org/10.3390/ma12040659 doi: 10.3390/ma12040659
    [79] M. zhi Xing, Y. gang Wang, Z. xiu Jiang, Dynamic fracture behaviors of selected aluminum alloys under three-point bending, Def Technol, 9 (2013), 193–200. https://doi.org/10.1016/j.dt.2013.11.002 doi: 10.1016/j.dt.2013.11.002
    [80] W. Zhong, I. Mbarek, A. Rusinek, R. Bernier, T. Jankowiak, G. Sutter, Development of an experimental set-up for dynamic force measurements during impact and perforation, coupling to numerical simulations, Int. J. Impact Eng., 91 (2016), 102–115. https://doi.org/10.1016/j.ijimpeng.2016.01.006 doi: 10.1016/j.ijimpeng.2016.01.006
    [81] G. Zou, C. Zhao, Z. Chang, W. Zhao, Y. Fan, S. Liu, et al., Experimental study on dynamic fracture toughness of compact tension specimens, Exp Techniques, 43 (2019), 57–64. https://doi.org/10.1007/s40799-018-0265-y doi: 10.1007/s40799-018-0265-y
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1289) PDF downloads(80) Cited by(1)

Figures and Tables

Figures(26)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog