
Malaysia is currently experiencing the same scenario as other countries, as the majority of consumers have shifted their preferences from locally produced rice to imported rice. This has resulted in a significant influx of imported rice into the domestic markets. Food security in the long term cannot be achieved by depending on imported food. Therefore, countries must make an effort to develop high-quality rice to meet the demand of customers. The study aimed to evaluate the grain physical traits and physicochemical properties of 30 Malaysian rice landraces to optimize the use of rice landraces in breeding programs. The grain physical traits were evaluated according to grain size, grain shape, and kernel elongation. Meanwhile, the physicochemical properties were determined by amylose content, alkali spreading value, and gel consistency. The grain length ranged from 4.14 to 8.16 mm and the grain width varied between 1.76 and 2.81 mm. The grain shapes were categorized into three types: medium, long and slender, and bold. Most of the rice landraces exhibited a low amylose content ranging from 16.07 to 19.83, while intermediate amylose content ranged from 20.00 to 23.80. The alkali spreading value showed that most of the rice landraces require an intermediate cooking time. The gel consistency exhibited a wide range, varying from soft to hard. The gel consistency exhibited the highest phenotypic and genotypic coefficient of variance, with values of 42.44% and 41.88%, respectively. Most of the studied traits except for kernel elongation were identified as having high heritability and high genetic advance as a percentage of the mean. A dendrogram effectively revealed the genetic relationships among Malaysian rice landraces by generating three distinct clusters. Cluster Ⅰ was primarily composed of glutinous rice landraces with a low to very low amylose content and exhibited the highest mean values for gel consistency and kernel elongation. Cluster Ⅱ consisted of 13 rice landraces that had the highest mean value for milled grain length and grain shape. Cluster Ⅲ was composed of rice landraces and control rice cultivars, and they exhibited the highest mean values for alkali spreading value, amylose content, and milled grain width. Bokilong, Kolomintuhon, Silou, Tutumoh, and Bidor in Cluster Ⅲ exhibited comparable physicochemical properties and cooking quality traits as the control rice cultivars. The findings of this study are important for identifying potential donors for breeding programs focused on developing high-quality or specialty rice cultivars.
Citation: Site Noorzuraini Abd Rahman, Rosimah Nulit, Faridah Qamaruz Zaman, Khairun Hisam Nasir, Mohd Hafiz Ibrahim, Mohd Ramdzan Othman, Nur Idayu Abd Rahim, Nor Sufiah Sebaweh. Profile of the grain physical traits and physicochemical properties of selected Malaysian rice landraces for future use in a breeding program[J]. AIMS Agriculture and Food, 2024, 9(4): 934-958. doi: 10.3934/agrfood.2024051
[1] | Lin Shen, Shu Wang, Yongxin Wang . The well-posedness and regularity of a rotating blades equation. Electronic Research Archive, 2020, 28(2): 691-719. doi: 10.3934/era.2020036 |
[2] | Yazhou Wang, Yuzhu Wang . Regularity criterion of three dimensional magneto-micropolar fluid equations with fractional dissipation. Electronic Research Archive, 2024, 32(7): 4416-4432. doi: 10.3934/era.2024199 |
[3] | Xiaolei Dong . Well-posedness of the MHD boundary layer equations with small initial data in Sobolev space. Electronic Research Archive, 2024, 32(12): 6618-6640. doi: 10.3934/era.2024309 |
[4] | Liju Yu, Jingjun Zhang . Global solution to the complex short pulse equation. Electronic Research Archive, 2024, 32(8): 4809-4827. doi: 10.3934/era.2024220 |
[5] | Xiuli Xu, Lian Yang . Global well-posedness of the 3D nonlinearly damped Boussinesq magneto-micropolar system without heat diffusion. Electronic Research Archive, 2025, 33(4): 2285-2294. doi: 10.3934/era.2025100 |
[6] | Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan . On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29(1): 1709-1734. doi: 10.3934/era.2020088 |
[7] | Vo Van Au, Jagdev Singh, Anh Tuan Nguyen . Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electronic Research Archive, 2021, 29(6): 3581-3607. doi: 10.3934/era.2021052 |
[8] | Lianbing She, Nan Liu, Xin Li, Renhai Wang . Three types of weak pullback attractors for lattice pseudo-parabolic equations driven by locally Lipschitz noise. Electronic Research Archive, 2021, 29(5): 3097-3119. doi: 10.3934/era.2021028 |
[9] | Dan-Andrei Geba . Unconditional well-posedness for the periodic Boussinesq and Kawahara equations. Electronic Research Archive, 2024, 32(2): 1067-1081. doi: 10.3934/era.2024052 |
[10] | Hong Yang, Yiliang He . The Ill-posedness and Fourier regularization for the backward heat conduction equation with uncertainty. Electronic Research Archive, 2025, 33(4): 1998-2031. doi: 10.3934/era.2025089 |
Malaysia is currently experiencing the same scenario as other countries, as the majority of consumers have shifted their preferences from locally produced rice to imported rice. This has resulted in a significant influx of imported rice into the domestic markets. Food security in the long term cannot be achieved by depending on imported food. Therefore, countries must make an effort to develop high-quality rice to meet the demand of customers. The study aimed to evaluate the grain physical traits and physicochemical properties of 30 Malaysian rice landraces to optimize the use of rice landraces in breeding programs. The grain physical traits were evaluated according to grain size, grain shape, and kernel elongation. Meanwhile, the physicochemical properties were determined by amylose content, alkali spreading value, and gel consistency. The grain length ranged from 4.14 to 8.16 mm and the grain width varied between 1.76 and 2.81 mm. The grain shapes were categorized into three types: medium, long and slender, and bold. Most of the rice landraces exhibited a low amylose content ranging from 16.07 to 19.83, while intermediate amylose content ranged from 20.00 to 23.80. The alkali spreading value showed that most of the rice landraces require an intermediate cooking time. The gel consistency exhibited a wide range, varying from soft to hard. The gel consistency exhibited the highest phenotypic and genotypic coefficient of variance, with values of 42.44% and 41.88%, respectively. Most of the studied traits except for kernel elongation were identified as having high heritability and high genetic advance as a percentage of the mean. A dendrogram effectively revealed the genetic relationships among Malaysian rice landraces by generating three distinct clusters. Cluster Ⅰ was primarily composed of glutinous rice landraces with a low to very low amylose content and exhibited the highest mean values for gel consistency and kernel elongation. Cluster Ⅱ consisted of 13 rice landraces that had the highest mean value for milled grain length and grain shape. Cluster Ⅲ was composed of rice landraces and control rice cultivars, and they exhibited the highest mean values for alkali spreading value, amylose content, and milled grain width. Bokilong, Kolomintuhon, Silou, Tutumoh, and Bidor in Cluster Ⅲ exhibited comparable physicochemical properties and cooking quality traits as the control rice cultivars. The findings of this study are important for identifying potential donors for breeding programs focused on developing high-quality or specialty rice cultivars.
Rotating blades (thin-walled beam) are important structures widely used in mechanical and aerospace engineering as aviation engine blades, various cooling fans, windmill blades, helicopter rotor blades, airplane propellers etc. The study of the dynamics of rotating blades is important to design purposes, optimization, and control.
If the shear effect is not considered, the Euler-Bernoulli beam equation is used to model vibration of thin-walled beam. Chen et al.[6] studied the boundary feedback stabilization of a linear Euler-Bernoulli beam equation, they proved that the total energy of the equation decays uniformly and exponentially with
A very extensive work devoted to the longitudinal vibration in two directions were done by Librescu and Song[21,32,33] and their co-workers[25,28]. Under assumption of the cross-section to be rigid in its own plane, they modelled the rotating blades by 1-D linear governing equations. The influence of many factors on rotating blades, such as the anisotropy and heterogeneity of constituent materials, functionally graded materials (FGM), temperature, shear effects, primary and secondary warping phenomena (Vlasov effect), centrifugal and Coriolis forces etc have been taken into account in the 1-D linear governing equations.
Following Librescu's approach, various blades models were derived. Georgiades et al.[11] modelled a rotating blades by means of linear strain-displacement relationships, considering arbitrary pitch (presetting) angle and non-constant rotating speed. Choi et al.[8] studied bending vibration control of the pre-twisted rotating composite blades, who emphasized the important of piezoelectric effect in single cell composite blades. Fazelzadeh et al.[9] considered a thin-walled blades made of FGM which is used in turbomachinery under aerothermodynamics loading. In the paper, quasi-steady aerodynamic pressure loadings was determined by the first-order piston theory, and steady beam surface temperature was obtained from gas dynamics theory. Fazelzadeh et al.[10] studied the governing equations which included the effects of the presetting angle and the rotary inertia. The effects of steady wall temperature and quasi-steady aerodynamic pressure loadings due to flow motion were also taken into account.
The models in Refs.[21,32,33,25,28,11,8,9,10] are linear. When the engine blades rotate at a low speed, the linear approximation can completely meet the needs of practical application. However, when the blade rotate at a high speed, the simple linear approximation can not accurately describe the dynamic behavior of the system. So the non-linear analysis of rotating blades has attracted considerable attention.
The nonlinear governing equations of a rotating blades at constant angular velocity was presented by Anderson[1], and the author linearized the equation under the assumption that a small perturbed motion occurred at an initially stressed equilibrium configuration. Chen et al.[7] considered the effects of geometric non-linearity, shear deformation and rotary inertia. Arvin et al.[2] builded a nonlinear governing equation for rotating blades considering centrifugal forces by means of von-Karmans strain-displacement relationships under assumption of the constant rotation speed and zero pitch (presetting) angle. Yao et al.[39] employed the Hamilton's principle to derive the nonlinear governing equations with periodic rotating speed, arbitrary pitch (presetting) angle and linear pre-twist angle. Under the assumption that the location of shear centre is different from the centre of gravity, Avramov et al.[3] obtained results of the investigations on flexural-flexural-torsional nonlinear vibrations of twisted rotating blades described by the model of three nonlinear integro-differential equations. Other nonlinear models can be found in Refs.[34,29,27,37,15,31,36].
To the best of the author's knowledge, all the above literatures about the longitudinal vibration in two directions skipped the existence proof of solutions to the governing equations, and directly used the finite element method to study the influence of various parameters on blades vibration. To address this situation, we first try to model a governing equations of the blades with arbitrary rotating speed, arbitrary pre-setting angle and pre-twist angle. In the process of building the model, we take into account the free vibration at the right end of the blade and the nonlinear relationship between stress and strain. In the paper we aim to investigate the well-posedness and regularity of the governing equations. The well-posedness of other nonlinear blade vibration models can be found in Refs. [5,38,26,35,16].
Let us consider a slender, straight blades mounted on a rigid hub of radius
To derive the model of the rotating blades, the following kinematic and static assumptions are postulated:
(ⅰ) The blades is perfectly elastic bodies, the blades material is isotropic and is not affected by temperature,
(ⅱ) The cross section of the blades is rectangular and all its geometrical dimensions remain invariant in its plane,
(ⅲ) The ratio of wall thickness
(ⅳ) The transverse shear effect of the cross section is neglected,
(ⅴ) The axial displacement
Inertial Cartesian coordinate systems
Rotating coordinate systems
Transformation between
(X,Y,Z)=(x,y,z)+(R0,0,0). | (1) |
Local coordinates systems
(1000cosω−sinω0sinωcosω). |
Local, curvilinear coordinate systems
In order to determine the relationship between the two coordinate systems
r=xi+y(s)j+z(s)k. | (2) |
The position vector
r∗=r+nen, | (3) |
As a result
et=drds=dy(s)dsj+dz(s)dsk, | (4) |
en=et×i=dz(s)dsj−dy(s)dsk. | (5) |
Moreover, in order to avoid confusion, the notation
x∗=x, y∗=r∗⋅j=y+ndzds, z∗=r∗⋅k=z−ndyds. | (6) |
Based on the assumptions (ⅳ) and (ⅴ), the axial displacement
Dx=ϕy(x,t)(z(s)−ndyds)+ϕz(x,t)(y(s)+ndzds),Dy=u,Dz=v. | (7) |
where
ϕy=−vx,ϕz=−ux. | (8) |
where
Based on the assumptions (ⅴ), the displacement-strain relationships is expressed as follows[20]:
εxx=∂Dx∂x+12[(∂Dy∂x)2+(∂Dz∂x)2]. | (9) |
Thanks to (8), we can get
εxx=ˉεxx+ˉˉεxxn, |
where
ˉεxx=12(u2x+v2x)−(uxxy(s)+vxxz(s)), ˉˉεxx=−uxxdzds+vxxdyds. | (10) |
The shear strain
εnx=12(∂Un∂x+∂w∂n), | (11) |
where
Un=(Dx,Dy,Dz)⋅en=udzds−vdyds. | (12) |
Substituting (7) and (12) into (11), we deduce
εsx=12(dydsγxy+dzdsγxz)=0. | (13) |
where
Since these materials are isotropic, the corresponding thermoelastic constitutive law adapted to the case of structures is expressed as
(σssσxxσxnσnsσsx)=(Q11Q12000Q21Q2200000Q4400000Q5500000Q66)(εssεxxεxnεnsεsx), |
Herein, the reduced thermoelastic coefficients are defined as:
Q11=Q22=E1−ν2,Q12=Q21=Eν1−ν2,Q44=Q55=k2E2(1+ν),Q66=E2(1+ν), |
where
According to assumption (ⅱ), the cross section is rigid, then we can derive
(σss,σxx,σxn,σns,σsx)=(0,Eεxx,0,0,0). |
The centrifugal force can be represented as
Fc=∫lxρˉAω2(R0+x)dx=ρˉAω2R(x), |
where
In the paper, we use the first-order piston theory (see Ref.[24]) to evaluate the perturbed gas pressure. The pressure on the principal plane of the blade can be obtained as
Pyp=C∞ρ∞(∂up∂t+Utyp∂up∂x),Pzp=C∞ρ∞(∂vp∂t+Utzp∂vp∂x), | (14) |
where
Utyp=U∞cosθ, Utzp=U∞sinθ, | (15) |
The transformation relationship between
up=ucosθ+vsinθ, vp=−usinθ+vcosθ. | (16) |
Therefore, the external forces per unit axial length in the
py=aPzpsinθ−bPypcosθ, pz=−aPzpcosθ−bPypsinθ. | (17) |
Combining (14), (15), (16),
py=b1ux+b2vx+b3u+b4v+b5ut+b6vt | (18) |
pz=e1ux+e2vx+e3u+e4v+e5ut+e6vt | (19) |
where
b1=−C∞ρ∞U∞(asin3θ+bcos3θ)b2=−C∞ρ∞U∞sinθcosθ(−asinθ+bcosθ)b3=−C∞ρ∞U∞θxsinθcosθ(asinθ−bcosθ)b4=−C∞ρ∞U∞θx(asin3θ+bcos3θ)b5=−C∞ρ∞(asin2θ+bcos2θ)b6=C∞ρ∞sinθcosθ(a−b)e1=−C∞ρ∞U∞sinθcosθ(−asinθ+bcosθ)e2=−C∞ρ∞U∞sinθcosθ(acosθ+bsinθ)e3=C∞ρ∞U∞θxsinθcosθ(asinθ+bcosθ)e4=−C∞ρ∞U∞θxsinθcosθ(−asinθ+bcosθ) |
e5=C∞ρ∞sinθcosθ(a−b)e6=−C∞ρ∞(acos2θ+bsin2θ) |
In order to calculate the kinetic energy, the velocity vector and the acceleration should be given first. Based on the assumption (ⅴ), the position vector
R(X,Y,Z,t)=x∗i+(y∗+u)j+(z∗+v)k+R0i. |
Keep in mind that the rotation takes place solely in the
it=ωj; jt=−ωi; kt=0. |
Then the velocity vector and the acceleration of an arbitrary point
Rt=−ω(y∗+u)i+(ω(R0+x)+ut)j+vtk, | (20) |
Rtt=−[2ωut+ωt(y∗+u)+ω2(R0+x)]i +[utt−ωt(R0+x)−ω2(y∗+u)]j+vttk, | (21) |
where subscript
In order to derive the blades model and the associated boundary conditions, the extended Hamilton's principle is used. This can be formulated as
∫t2t1(δK−δU+δW)dt=0,δu=0,δv=0att=t1,t2. | (22) |
where
Thanks to the cross section of the blades is rectangular, we get
∮y(s)ds=∮z(s)ds=0. | (23) |
Utilizing (23), the kinetic energy is obtained
K=12∫τρR2tdτ=12ρ∫τu2t+v2t+2ω(R0+x)ut +ω2(u2+2(y+ndzds)u+y+ndzds+(R0+x)2)dτ=12ρˉA∫l0u2t+v2t+2ω(R0+x)ut +ω2(u2+2h∮ydsˉAu+h∮ydsˉA+(R0+x)2)dx=12ρˉA∫l0u2t+v2t+2ω(R0+x)ut+ω2(u2+(R0+x)2)dx, |
where
∫t2t1δKdt=−ρˉA∫t2t1∫l0{[utt+ωt(R0+x)−uω2]δu+vttδv}dxdt, | (24) |
Due to the rotating motion of the blades, the total strain energy consists of two parts. The strain energy caused by the centrifugal force can be obtained as
U1=12∫l0∮∫h2−h2∫lxρω2(R0+ς)εxxdςdndsdx | (25) |
where
δU1=12∫l0∮∫h2−h2∫lxρω2(R0+ς)δεxxdςdndsdx=12∫l0∮∫h2−h2∫lxρω2(R0+ς)δˉεxxdςdndsdx=ρˉAω2∫l0R(x)(uxδux+vxδvx)dx−ρω2h2∫l0∫lx(R0+ς)(∮y(s)dsδuxx+∮z(s)dsδvxx)dςdx, | (26) |
where
Thanks to (23), the variation of the strain energy caused by the centrifugal force can be rewritten as
δU1=ρˉAω2[R(x)(uxδu+vxδv)]|l0−∫l0(R(x)ux)xδu+(R(x)vx)xδvdx | (27) |
The strain energy induced by the deformation of the rotating blades can be expressed as
U2=12∫l0∮∫h2−h2σxxεxxdndsdx. | (28) |
Substituting the expressions of the stress and strain resultants into (28) yields
δU2=E∫l0∮∫h2−h2εxxδεxxdndsdx=Eh4∫l0∮(u2x+v2x)δ(u2x+v2x)dsdx−Eh2∫l0∮(u2x+v2x)δ(uxxy(s)+vxxz(s))dsdx−Eh2∫l0∮(uxxy(s)+vxxz(s))δ(u2x+v2x)dsdx+Eh∫l0∮(uxxy(s)+vxxz(s))δ(uxxy(s)+vxxz(s))dsdx+Eh312∫l0∮(−uxxdzds+vxxdyds)δ(−uxxdzds+vxxdyds)dsdx | (29) |
δU2=E∫l0∮∫h2−h2εxxδεxxdndsdx=ρˉA{∫l0[−a52((u2x+v2x)ux)x+(a6uxx−a3vxx)xx −a12(u2x+v2x)xx+(a1uxx+a2vxx)ux)x]dx}δu+ρˉA{∫l0[−a52((u2x+v2x)vx)x+(a4vxx−a3uxx)xx −a22(u2x+v2x)xx+(a1uxx+a2vxx)vx)x]dx}δv+ρˉA{[(a6uxx−a3vxx)−a12(u2x+v2x)]δux}|l0+ρˉA{[(a4vxx−a3uxx)−a22(u2x+v2x)]δvx}|l0+ρˉA{[a52(u2x+v2x)ux−(a6uxx−a3vxx)x +a12(u2x+v2x)x+a1uxx+a2vxxux]δu}|l0+ρˉA{[a52(u2x+v2x)vx−(a4vxx−a3uxx)x +a22(u2x+v2x)x+a1uxx+a2vxxvx]δv}|l0 | (30) |
where
a1=EhˉAρ∮yds=0;a2=EhˉAρ∮zds=0;a3(x)=EhˉAρ∮h212dydsdzds−yzds;a4(x)=EhˉAρ∮h212(dzds)2+y2ds;a5=Eρa6(x)=EhˉAρ∮h212(dyds)2+z2ds. |
The work of the non-conservative external forces can be obtained as
W=∫l0pyu+pzvdx. | (31) |
Then
∫t2t1δWdt=∫t2t1∫l0˜pyδu+˜pzδvdxdt+∫t2t1{(b1u+e1v)δu+(b2u+e2v)δv}|l0dt. | (32) |
where
˜py=2b3u+(e3+b4)v | (33) |
˜pz=(e3+b4)u+2e4v | (34) |
Inserting variation of potential energy (27) and (30), variation of kinetic energy (24) and variation of external work equation (32) into the extended Hamilton's principle (22), collecting the terms associated with the same variations, invoking the stationarity of the functional within the time interval
utt+(a6uxx−a3vxx)xx−a52((u2x+v2x)ux)x −ω2(R(x)ux)x−ω2u−¯p1+ωt(R0+x)=0, | (35) |
vtt+(a4vxx−a3uxx)xx−a52((u2x+v2x)vx)x−ω2(R(x)vx)x−¯p2=0, | (36) |
where
¯p1=˜pyρˉA, ¯p2=˜pzρˉA. | (37) |
The following two types of boundary conditions are generated due to the different design of engine blades.
u,ux=0,v,vx=0,x=0, | (38) |
u,ux=0,v,vx=0,x=l. | (39) |
and
u,ux=0,v,vx=0,x=0, | (40) |
a6uxx−a3vxx=0,x=l, | (41) |
a4vxx−a3uxx=0,x=l, | (42) |
a52(u2x+v2x)ux−(a6uxx−a3vxx)x−b1u−e1v=0,x=l, | (43) |
a52(u2x+v2x)vx−(a4vxx−a3uxx)x−b2u−e2v=0,x=l. | (44) |
The conditions (38)-(39) represent C-C boundary condition. The conditions (40)-(44) represent C-F boundary condition. Now we study the well-posedness and regularity of the solution for C-C and C-F blades.
We write
H20={ψ∈H2(Ω)|ψ(x)=0,ψx(x)=0,x∈∂Ω},H2f={ψ∈H2(Ω)|ψ(0)=0,ψx(0)=0,x=0}. |
We list Gagliardo-Nirenberg inequality for bounded domains (see [23]) to be used in the subsequent sections
Lemma 3.1. Let
1p−jn=α(1r−mn)+(1−α)1q,jm≤α≤1 |
Then
‖Djf‖Lp(Ω)≤C1‖Dmf‖αLr(Ω)‖f‖1−αLq(Ω)+C2‖f‖Ls(Ω) |
where
Now, we give the Aubin-Lions Lemma (see [22]).
Lemma 3.2. Suppose
(i)
(ii)
(iii)
then
Without loss of generality, we assume
{utt+(a6uxx)xx−(a3vxx)xx−12((u2x+v2x)ux)x −ω2(Rux)x−p1=0inQ,vtt−(a3uxx)xx+(a4vxx)xx−12((u2x+v2x)vx)x −ω2(Rvx)x−p2=0inQ,u,ux=0,v,vx=0on∂Ω×[0,T],u=u0(x),ut=u1(x),v=v0(x),vt=v1(x)onΩ×{t=0}. | (45) |
where
p1=¯p1+ω2u−ωt(R0+x), p2=¯p2. | (46) |
Definition 4.1. We say function
ut,vt∈L∞(0,T;L2(Ω)),utt,vtt∈L∞(0,T;H−2(Ω)), |
is a weak solution of the initial boundary value problem (45) provided
(ⅰ)
(utt,φ)+(a6uxx,φxx)−(a3vxx,φxx)+12((u2x+v2x)ux,φx)+ω2(Rux,φx)−(p1,φ)=0. | (47) |
(vtt,φ)−(a3uxx,φxx)+(a4vxx,φxx)+12((u2x+v2x)vx,φx)+ω2(Rvx,φx)−(p2,φ)=0. | (48) |
for each
(ⅱ)
u(0)=u0,ut(0)=u1;v(0)=v0,vt(0)=v1. | (49) |
Remark 1. From the definition, we know
Remark 2. By the product Minkowshi inequality, we can obtain:
a4a6−a23>0,x∈Ω. | (50) |
Theorem 4.2. (Existence for weak solution of (45)) Assume
ω∈C1(0,T),a3,a4,a6∈L∞(Ω),u0,v0∈H20(Ω),u1,v1∈L2(Ω). | (51) |
there exists a weak solution of (45).
We now briefly outline the proof of Theorem 4.2 in the following:
Step 1. employing Galerkin's method to construct solutions of certain finite-dimensional approximations to (45) (correspond to Lemma 6.1 in chapter 6);
Step 2. using the energy method to find the uniform estimates of the finite-dimensional approximations solutions (correspond to Lemma 6.2 in chapter 6);
Step 3. using compactness method to obtain the weak solutions of (45).
Now we give the smoothness of weak solutions of (45).
Theorem 4.3. (Improved regularity) Assume
{a3,a4,a6∈L∞(Ω),ω∈C1(0,T),ωtt∈L∞(0,T),u0∈H20(Ω)∩H4(Ω),v0∈H20(Ω)∩H4(Ω),u1∈H20(Ω),v1∈H20(Ω), | (52) |
the weak solution of (45) satisfies
ut,vt∈L∞(0,T;H20(Ω)),utt,vtt∈L∞(0,T;L2(Ω)). | (53) |
Theorem 4.4. (Interior regularity) Under the condition (52), for any
φuxxx,φvxxx∈L∞(0,T;L2(Ω)). |
Remark 3. Multiplying the first and second equation of (45) by
uxxxx,vxxxx∈L∞(0,T;L2(Ω′)). |
where
If the pre-twist angle
Theorem 4.5. (Improved regularity when
u,v∈L∞(0,T;H4(Ω)∪H20(Ω)). |
Now, we study the uniqueness and stability of (45), denote operator
π:{a3,a4,a6,ω,θ,u0,v0,u1,v1}→{u,v}, |
and
W(Q)={ψ|ψ∈L∞(0,T;H20(Ω)),ψt∈L∞(0,T;L2(Ω))} |
with the norm
||ψ||W(Q)=||ψ||L∞(0,T;H20(Ω))+||ψt||L∞(0,T;L2(Ω)). |
Then
Theorem 4.6. Undering the condition (52),
π:{(L∞(Ω))3×W1,1(0,T)∩C1(0,T)×L1(Ω)×(H20(Ω))2×(L2(Ω))2}→(W(Q))2 |
is continuous.
The initial boundary-value problems of C-F blades are rewritten as :
{utt+(a6uxx)xx−(a3vxx)xx−12((u2x+v2x)ux)x −ω2(Rux)x−p1=0inQ,vtt−(a3uxx)xx+(a4vxx)xx−12((u2x+v2x)vx)x −ω2(Rvx)x−p2=0inQ,u,ux=0,v,vx=0,x=0,a6uxx−a3vxx=0,x=l,a4vxx−a3uxx=0,x=l,12(u2x+v2x)ux−(a6uxx−a3vxx)x−b1u−e1v=0,x=l,12(u2x+v2x)vx−(a4vxx−a3uxx)x−b2u−e2v=0,x=l,u=u0(x),ut=u1(x),v=v0(x),vt=v1(x)onΩ×{t=0}. | (54) |
Definition 5.1. We say function
ut,vt∈L∞(0,T;L2(Ω)),utt,vtt∈L∞(0,T;H−2(Ω)), |
is a weak solution of the initial boundary value problem (54) provided
(ⅰ)
(utt,φ)+(a6uxx,φxx)−(a3vxx,φxx)+12((u2x+v2x)ux,φx)+ω2(Rux,φx)−(p1,φ)−(b1u(l)+e1v(l))φ(l)=0. | (55) |
(vtt,φ)−(a3uxx,φxx)+(a4vxx,φxx)+12((u2x+v2x)vx,φx)+ω2(Rvx,φx)−(p2,φ)−(b2u(l)+e2v(l))φ(l)=0. | (56) |
for each
(ⅱ)
u(0)=u0,ut(0)=u1;v(0)=v0,vt(0)=v1. |
Similar as above, we derive the following conclusion of the initial boundary value problem (54).
Theorem 5.2. (Existence for the weak solutions of (54)) Assume
ω∈C1(0,T),a3,a4,a6∈L∞(Ω),u0,v0∈H2f(Ω),u1,v1∈L2(Ω), | (57) |
there exists a weak solution of (54).
Theorem 5.3. (Regularity weak solution of (54)) Assume
{a3,a4,a6∈L∞(Ω),ω∈C1(0,T),ωtt∈L∞(0,T),u0,v0∈H2f(Ω)∩H4(Ω),u1,v1∈H2f(Ω). | (58) |
Then there exists
ut,vt∈L∞(0,T∗;H2f(Ω)),utt,vtt∈L∞(0,T∗;L2(Ω)). | (59) |
Remark 4. If pre-twist angle
u,v∈L∞(0,T∗;H4(Ω)∪H2f(Ω)). | (60) |
where
We construct weak solution of the initial boundary-value problem (45) by first solving a finite dimensional approximation. We thus employ Galerkin's method by selecting smooth functions
{φk}∞k=1is an orthogonal basis ofH20(Ω), | (61) |
and
{φk}∞k=1is an orthonormal basis ofL2(Ω). | (62) |
Fix a positive integer
um=m∑k=1dk0m(t)φk, vm=m∑k=1dk1m(t)φk, | (63) |
where we intend to select the coefficients
dk0m(0)=(u0,φk),dk1m(0)=(v0,φk),k=1,⋯,m, | (64) |
dk0m,t(0)=(u1,φk),dk1m,t(0)=(v1,φk),k=1,⋯,m, | (65) |
and
(um,tt,φk)+(a6um,xx,φk,xx)−(a3vm,xx,φk,xx)+12((u2m,x+v2m,x)um,x,φk,x)+ω2(Rum,x,φk,x)−(p1m,φk)=0, | (66) |
(vm,tt,φk)−(a3um,xx,φk,xx)+(a4vm,xx,φk,xx)+12((u2m,x+v2m,x)vm,x,φk,x)+ω2(Rvm,x,φk,x)−(p2m,φk)=0. | (67) |
where
p1m=1ρˉA(2b3um+(e3+b4)vm)+ω2um−ωt(R0+x),p2m=1ρˉA((e3+b4)um+2e4vm). |
In order to proof Theorem 4.2, we need the following Lemma.
Lemma 6.1. Under the condition (51), for each integer
Proof. Assuming
dk0m,tt+m∑j=1dj0m(a6φj,xx,φk,xx)−m∑j=1dj1m(a3φj,xx,φk,xx)+12m∑j=1dj0m(((m∑i=1di0mφi,x)2+(m∑i=1di1mφi,x)2)φj,x,φk,x)+ω2m∑j=1dj0m(Rφj,x,φk,x)−1ρˉA(2b3dk0m+(e3+e4)dk1m)=ω2dk0m−ωt((R0+x),φk), | (68) |
dk1m,tt+m∑j=1dj1m(a4φj,xx,φk,xx)−m∑j=1dj0m(a3φj,xx,φk,xx)+12m∑j=1dj1m(((m∑i=1di0mφi,x)2+(m∑i=1di1mφi,x)2)φj,x,φk,x)+ω2m∑j=1dj1m(Rφj,x,φk,x)−1ρˉA((e3+e4)dk0m+2e4dk1m)=0. | (69) |
subject to the initial conditions (64), (65). According to standard theory for ODE, there exists unique
We propose now to send
Lemma 6.2. Undering the condition (51), there exists positive constant
||um,t||2L2(Ω)+||vm,t||2L2(Ω)+||um||2H20(Ω)+||vm||2H20(Ω)≤C(||u1||2L2(Ω)+||v1||2L2(Ω)+||u0||2H20(Ω)+||v0||2H20(Ω))+C | (70) |
for
Proof. Multiplying equality (66) by
(um,tt,um,t)+(a6um,xx,um,txx)−(a3vm,xx,um,txx)+12((u2m,x+v2m,x)um,x,um,tx)+ω2(Rum,x,um,tx)−(p1m,um,t)=0 | (71) |
for a.e.
Multiplying equality (67) by
(vm,tt,vm,t)−(a3um,xx,vm,txx)+(a4vm,xx,vm,txx)+12((u2m,x+v2m,x)vm,x,vm,tx)+ω2(Rvm,x,vm,tx)−(p2m,vm,t)=0 | (72) |
for a.e.
To simplify the equation (71) and (72), we can get
12ddt‖um,t‖2L2(Ω)+12ddt‖√a6um,xx‖2L2(Ω)−(a3vm,xx,um,txx)+12((u2m,x+v2m,x)um,x,um,tx)+ω22ddt‖√Rum,x‖2L2(Ω)−(p1m,um,t)=0. | (73) |
12ddt‖vm,t‖2L2(Ω)+12ddt‖√a4vm,xx‖2L2(Ω)−(a3um,xx,vm,txx)+12((u2m,x+v2m,x)vm,x,vm,tx)+ω22ddt‖√Rvm,x‖2L2(Ω)−(p2m,vm,t)=0. | (74) |
Summing the equations (73) and (74), we discover
12ddt{||um,t||2L2(Ω)+||vm,t||2L2(Ω)+||√a6um,xx||2L2(Ω)+||√a4vm,xx||2L2(Ω)+ω22(||√Rum,x||2L2(Ω)+||√Rvm,x||2L2(Ω))}−ddt||a3um,xxvm,xx||L1(Ω)+18ddt||u2m,x+v2m,x||2L2(Ω)=ωωt(||√Rum,x||2L2(Ω)+||√Rvm,x||2L2(Ω))+(p1m,um,t)+(p2m,vm,t). | (75) |
Since
12ddt{||um,t||2L2(Ω)+||vm,t||2L2(Ω)+||√a6um,xx||2L2(Ω)+||√a4vm,xx||2L2(Ω)+ω22(||√Rum,x||2L2(Ω)+||√Rvm,x||2L2(Ω))}−ddt||a3um,xxvm,xx||L1(Ω)+18ddt||u2m,x+v2m,x||2L2(Ω)≤C(||um,t||2L2(Ω)+||vm,t||2L2(Ω)+||um||2H10(Ω)+||vm||2H10(Ω))+C. | (76) |
where we used Young inequality.
Integrating (76) with respect to
||um,t||2L2(Ω)+||vm,t||2L2(Ω)+||√a6um,xx||2L2(Ω)+||√a4vm,xx||2L2(Ω)−2||a3um,xxvm,xx||L1(Ω)+ω22(||√Rum,x||2L2(Ω)+||√Rvm,x||2L2(Ω))+14||u2m,x+v2m,x||2L2(Ω)≤C(Ω,T){||u1m||2L2(Ω)+||v1m||2L2(Ω)+||u0m||2H2(Ω)+||v0m||2H2(Ω)}+C∫t0||um,t||2L2(Ω)+||vm,t||2L2(Ω)dt+||um||2H10(Ω)+||vm||2H10(Ω)+C. | (77) |
Thanks to (50), there exists a constant
||√a6um,xx||2L2(Ω)+||√a4vm,xx||2L2(Ω)−2||a3um,xxvm,xx||L(Ω)≥C(||um||2H20(Ω)+||vm||2H20(Ω)). | (78) |
Substituting (78) into the inequality (77), By using Poincaré inequality, we find
||um,t||2L2(Ω)+||vm,t||2L2(Ω)+||um||2H20(Ω)+||vm||2H20(Ω) ≤C(||u1m||2L2(Ω)+||v1m||2L2(Ω)+||u0m||2H20(Ω)+||v0m||2H20(Ω))+C∫t0||um,t||2L2(Ω)+||vm,t||2L2(Ω)dt+||um||2H20(Ω)+||vm||2H20(Ω)+C. | (79) |
Then, by using Gronwall inequality, we obtain
||um,t||2L2(Ω)+||vm,t||2L2(Ω)+||um||2H20(Ω)+||vm||2H20(Ω)≤C(||um,t(0)||2L2(Ω)+||vm,t(0)||2L2(Ω)+||um(0)||2H20(Ω)+||vm(0)||2H20(Ω))+C≤C(||u1||2L2(Ω)+||v1||2L2(Ω)+||u0||2H20(Ω)+||v0||2H20(Ω))+C |
for
Remark 5. From the Energy estimates, we can obtain:
Thanks to Lemma 6.1 and Lemma 6.2, we can obtain the existence for the weak solutions of the initial boundary value problem (45).
Proof. (ⅰ) According to the energy estimates (70), we see that
{um}∞m=1,{vm}∞m=1isboundedinL∞(0,T;H20(Ω)); | (80) |
{um,t}∞m=1,{vm,t}∞m=1isboundedinL∞(0,T;L2(Ω)); | (81) |
{um,tt}∞m=1,{vm,tt}∞m=1isboundedinL∞(0,T;H−2(Ω)). | (82) |
As a consequence there exists subsequence
{uμ→u,vμ→vweakly∗in L∞(0,T;H20(Ω))uμ,t→ut,vμ,t→vtweakly∗in L∞(0,T;L2(Ω))uμ,tt→utt,vμ,tt→vttweakly∗in L∞(0,T;H−2(Ω)). | (83) |
(ⅱ) By Gagliardo-Nirenberg inequality, we can see
||uμ,x||L∞(Q)≤C||uμ,xx||L∞(0,T;L2(Ω))≤C. | (84) |
Otherwise,
||u2μ,x+v2μ,x||L∞(0,T;L2(Ω))≤||uμ,x||2L∞(0,T;L4(Ω))+||vμ,x||2L∞(0,T;L4(Ω))≤C||uμ||2L∞(0,T;H20(Ω))+c||vμ||2L∞(0,T;H20(Ω))≤C. | (85) |
Combining (84) and (85), we discover
||(u2μ,x+v2μ,x)uμ,x||L∞(0,T;L2(Ω))≤C||u2μ,x+v2μ,x||L∞(0,T;L2(Ω))≤C. | (86) |
Moreover, there exists a function
(u2μ,x+v2μ,x)uμ,x→χ weakly * in L∞(0,T;L2(Ω)). | (87) |
By Lemma 3.2, we can find
uμ→u,vμ→v strongly in L2(0,T;H10(Ω)). | (88) |
And so
uμ,x→ux,vμ,x→vx strongly in L2(Q), | (89) |
Thus
(u2μ,x+v2μ,x)uμ,x→(u2x+v2x)ux. | (90) |
Combining (87) and (90), we can obtain
(u2μ,x+v2μ,x)uμ,x→(u2x+v2x)ux weakly in L2(Q), | (91) |
where we used the Lemma 1.3 of Chapter 1 in [22]. Furthermore, we have
Meanwhile,
((u2μ,x+v2μ,x)uμ,x,φk,x)→((u2x+v2x)ux,φk,x) weakly * in L∞(0,T). | (92) |
In the same way,
((u2μ,x+v2μ,x)vμ,x,φk,x)→((u2x+v2x)vx,φk,x) weakly * in L∞(0,T). | (93) |
Next fix an integer
(uμ,tt,φk)+(a6uμ,xx,φk,xx)−(a3vμ,xx,φk,xx)+12((u2μ,x+v2μ,x)uμ,x,φk,x)−ω2(Ruμ,x,φk,x)−(p1μ,φk)=0. | (94) |
Thanks to (83), we can get
{(uμ,tt,φk)→(utt,φk)weakly∗inL∞(0,T),(a6uμ,xx,φk,xx)→(a6uxx,φk,xx)weakly∗inL∞(0,T),(a3vμ,xx,φk,xx)→(a3vxx,φk,xx)weakly∗inL∞(0,T),(p1μ,φk)→(p1,φk)weakly∗inL∞(0,T). | (95) |
From (92) and (95), we can discover
+v2x)ux,φk,x)+ω2(Rux,φk,x)−(p1,φk)=0 | (96) |
for all fixed
Note
{φk}∞k=1 isanorthogonalbasisofH20(Ω), |
then,
(utt,φ)+(a6uxx,φxx)−(a3vxx,φxx)+12((u2x+v2x)ux,φx)+ω2(Rux,φx)−(p1,φ)=0 | (97) |
for arbitrary
In the same way,
(vtt,φ)+(a4vxx,φxx)−(a3uxx,φxx)+12((u2x+v2x)vx,φx)+ω2(Rvx,φx)−(p2,φ)=0 | (98) |
for arbitrary
Synthesizes the above analysis, there exists
u,v∈L∞(0,T;H20(Ω)),ut,vt∈L∞(0,T;L2(Ω)),utt,vtt∈L∞(0,T;H−2(Ω)). |
(ⅲ) Now let's prove the initial conditions.
Since,
uμ(x,0)→u(x,0) weakly inL2(Ω). | (99) |
Otherwise,
um(x,0)→u0(x) in H20(Ω). | (100) |
Combining identities (99) and (100), we can get
u(x,0)=u0(x). |
Next, according to (83), we can obtain
(uμ,t,φk)→(ut,φk) weakly * in L∞(0,T), |
(uμ,tt,φk)→(utt,φk) weakly * in L∞(0,T). |
Then, we can discover
(uμ,t(x,0),φk)→(ut,φk)|t=0=(ut(x,0),φk). | (101) |
Otherwise,
(um,t(x,0),φk)→(u1(x),φk), | (102) |
Comparing identities (101) and (102), we can get
(ut(x,0),φk)=(u1(x),φk), for arbitrary k. |
So
ut(x,0)=u1(x). |
In the same way, we can obtain
v(x,0)=v0(x),vt(x,0)=v1(x). |
Proof. Differentiating the first equation of (45) with respect to
(uttt,utt)+((a6utxx)xx,utt)−((a3vtxx)xx,utt)−12(((u2x+v2x)utx)x,utt)−((u2xutx)x,utt)−((uxvxvtx)x,utt)−2ωωt((Rux)x,utt)−ω2((Rutx)x,utt)−(p1,t,utt)=0. | (103) |
Differentiating the second equation of (45) with respect to
(vttt,vtt)+((a4vtxx)xx,vtt)−((a3utxx)xx,vtt)−12(((u2x+v2x)vtx)x,vtt)−((v2xvtx)x,vtt)−((uxvxutx)x,vtt)−2ωωt((Rvx)x,vtt)−ω2((Rvtx)x,vtt)−(p2,t,vtt)=0. | (104) |
Summing the equation (103) and (104), we discover after integrating by parts:
12ddt(||utt||2L2(Ω)+||vtt||2L2(Ω))+12ddt(||√a6utxx||2L2(Ω)+||√a4vtxx||2L2(Ω))−ddt||a3utxxvtxx||L1(Ω)+ω22ddt||√R(x)utx||2L2(Ω)+ω22ddt||√R(x)vtx||2L2(Ω)=12((u2x+v2x)utxx,utt)+(u2xutxx,utt)+(uxvxvtxx,utt)+12((u2x+v2x)vtxx,vtt)+(v2xvtxx,vtt)+(uxvxutxx,vtt)+3(uxuxxutx,utt)+(vxvxxutx,utt)+(uxxvxvtx,utt)+(uxvxxvtx,utt)+(uxuxxvtx,vtt)+3(vxvxxvtx,vtt)+(uxxvxutx,vtt)+(uxvxxutx,vtt)+2ωωt((Rxux,utt)+(Ruxx,utt)+(Rxvx,vtt)+(Rvxx,vtt))+(p1,t,utt)+(p2,t,vtt). | (105) |
Obviously, by Young inequality and Hölder inequality, we have
12ddt(||utt||2L2(Ω)+||vtt||2L2(Ω))+12ddt(||√a6utxx||2L2(Ω)+||√a4vtxx||2L2(Ω))−ddt||a3utxxvtxx||L(Ω)+ddt[ω22(||√Rutx||2L2(Ω)+||√Rvtx||2L2(Ω))]≤C(||ut||2H20(Ω)+||vt||2H20(Ω)+||utt||2L2(Ω)+||vtt||2L2(Ω)+||u||2H20(Ω)+||v||2H20(Ω)+1). | (106) |
Next integrate (106) with respect to
||utt||2L2(Ω)+||vtt||2L2(Ω)+||√a6utxx||2L2(Ω)+||√a4vtxx||2L2(Ω)−2||a3utxxvtxx||L(Ω)+ω2(||√Rutx||2L2(Ω)+||√Rvtx||2L2(Ω))≤C∫t0||ut||2H20(Ω)+||vt||2H20(Ω)+||utt||2L2(Ω)+||vtt||2L2(Ω)+||u||2H20(Ω)+||v||2H20(Ω)dt+||utt(x,0)||2L2(Ω)+||utx(x,0)||2L2(Ω)+||utxx(x,0)||2L2(Ω)+||vtt(x,0)||2L2(Ω)+||vtx(x,0)||2L2(Ω)+||vtxx(x,0)||2L2(Ω)+C. | (107) |
Since
||utxx(x,0)||L2(Ω),||vtxx(x,0)||L2(Ω),||utx(x,0)||L2(Ω),||vtx(x,0)||L2(Ω), | (108) |
are bounded. On the other hand, multiplying the first equation and second equation of (45) by
||utt(x,0)||L2(Ω)≤C(||u0||H4(Ω)+||v0||H4(Ω))+C≤C, |
||vtt(x,0)||L2(Ω)≤C(||u0||H4(Ω)+||v0||H4(Ω))+C≤C. |
where the condition (52), Young inequality and Poincaré inequality are used.
As before, we have
||utt||2L2(Ω)+||vtt||2L2(Ω)+||ut||2H20(Ω)+||vt||2H20(Ω)≤C∫t0(||utt||2L2(Ω)+||vtt||2L2(Ω)+||ut||2H20(Ω)+||vt||2H20(Ω))dt+C. | (109) |
Applying the Gronwall inequality to (109) gives
ut,vt is bounded in L∞(0,T;H20(Ω)),utt,vtt is bounded in L∞(0,T;L2(Ω)). | (110) |
Moreover, the weak solutions of (45) satisfies
ut∈L∞(0,T;H20(Ω)), |
vt∈L∞(0,T;H20(Ω)), |
utt∈L∞(0,T;L2(Ω)), |
vtt∈L∞(0,T;L2(Ω)). |
Proof. Multiplying the first equation and the second equation of (45) by
(utt,−φ2utxx)+(vtt,−φ2vtxx)+((a6uxx)xx,−φ2utxx)+((a4vxx)xx,−φ2vtxx)−((a3vxx)xx,−φ2utxx)−((a3uxx)xx,−φ2vtxx)−12(((u2x+v2x)ux)x,−φ2utxx)−12(((u2x+v2x)vx)x,−φ2vtxx)−ω2((Rux)x,−φ2utxx)−ω2((Rvx)x,−φ2vtxx)−(p1,−φ2utxx)−(p2,−φ2vtxx)=0. | (111) |
Thanks to integration by parts and the properties of
I1+I2+I3+I4+I5=0. | (112) |
where
I1=(utt,−φ2utxx)+(vtt,−φ2vtxx)I2=((a6uxx)xx,−φ2utxx)+((a4vxx)xx,−φ2vtxx)I3=−((a3vxx)xx,−φ2utxx)−((a3uxx)xx,−φ2vtxx)I4=−12(((u2x+v2x)ux)x,−φ2utxx)−12(((u2x+v2x)vx)x,−φ2vtxx)I5=−(p1,−φ2utxx)−(p2,−φ2vtxx). |
To conclude, we need to estimate each of
I1=12ddt(||φutx||2L2(Ω)+||φvtx||2L2(Ω))+2(φφxutt,utx)+2(φφxvtt,vtx)≥12ddt(||φutx||2L2(Ω)+||φvtx||2L2(Ω))−C | (113) |
For
I2=12ddt(||√a6φuxxx||2L2(Ω)+||√a4φvxxx||2L2(Ω))+(a6,xuxx,φ2utxxx)+(a4,xvxx,φ2vtxxx)+2(a6uxxx,φφxutxx)+2(a4vxxx,φφxvtxx)+2(a6,xuxx,φφxutxx)+2(a4,xvxx,φφxvtxx)≥12ddt(||√a6φuxxx||2L2(Ω)+||√a4φvxxx||2L2(Ω))−(a6,xuxxx,φ2utxx)−(a4,xvxxx,φ2vtxx)+2(a6uxxx,φφxutxx)+2(a4vxxx,φφxvtxx)−C≥12ddt(||√a6φuxxx||2L2(Ω)+||√a4φvxxx||2L2(Ω))−C||φuxxx||2L2(Ω)−C||φvxxx||2L2(Ω)−C | (114) |
where Lemma 3.1 and (52) are used. Similarly from (114), we deduce
I3=−(a3vxxx,φ2utxxx)−(a3uxxx,φ2vtxxx)−(a3,xvxx,φ2utxxx)−(a3,xuxx,φ2vtxxx)−2(a3vxxx,φφxutxx)−2(a3uxxx,φφxvtxx)−2(a3,xvxx,φφxutxx)−2(a3,xuxx,φφxvtxx)=−ddt||a3φ2uxxxvxxx||L1(Ω)−(a3,xvxx,φ2utxxx)−(a3,xuxx,φ2vtxxx)−2(a3vxxx,φφxutxx)−2(a3uxxx,φφxvtxx)−2(a3,xvxx,φφxutxx)−2(a3,xuxx,φφxvtxx)=−ddt||a3φ2uxxxvxxx||L1(Ω)+(a3,xxvxx,φ2utxx)+(a3,xxuxx,φ2vtxx)+(a3,xvxxx,φφxutxx)+(a3,xuxxx,φφxvtxx)+2(a3,xvxx,φφxutxx)+2(a3,xuxx,φφxvtxx)−2(a3vxxx,φφxutxx)−2(a3uxxx,φφxvtxx)−2(a3,xvxx,φφxutxx)−2(a3,xuxx,φφxvtxx)≥−ddt||a3φ2uxxxvxxx||L1(Ω)−C||φuxxx||2L2(Ω)−C||φvxxx||2L2(Ω)−C | (115) |
By using Lemma 3.1 and (52), we find
I4=−C||utxx||2L2(Ω)−C||vtxx||2L2(Ω)−C||uxx||2L2(Ω)−c||vxx||2L2(Ω)≥−C | (116) |
I5=−C(||ut||2H20(Ω)+||vt|2H20(Ω)+||u||2H20(Ω)+||v||2H20(Ω))−C≥−C | (117) |
Putting (113)-(117) into (112), this yields
12ddt(||φutx||2L2(Ω)+||φvtx||2L2(Ω)+||√a6φuxxx||2L2(Ω)+||√a4φvxxx||2L2(Ω) −2||a3φ2uxxxvxxx||L1(Ω))≤C(||φuxxx||2L2(Ω)+||φvxxx||2L2(Ω))+C | (118) |
Integrating with respect to
||φutx||2L2(Ω)+||φvtx||2L2(Ω)+||φuxxx||2L2(Ω)+||φvxxx||2L2(Ω) |
≤C∫t0||φuxxx||2L2(Ω)+||φvxxx||2L2(Ω)dt+C(||u1||2H1(Ω)+||v1||2H1(Ω)+||u0||2H3(Ω)+||v0||2H3(Ω))+C | (119) |
Thanks to the Gronwall inequality, we deduce
||φuxxx||2L2(Ω)+||φvxxx||2L2(Ω)≤C | (120) |
Proof. Utilizing to the first and second equations of (45), we can deduce
((a6a4−a23)uxxxx,uxxxx)=(−a4utt−a3vtt+ω2(R(a4ux+a3vx))x,uxxxx)+12(((u2x+v2x)(a4ux+a3vx))x,uxxxx)+((a4p1+a3p2),uxxxx). | (121) |
Thanks to (50) and Hölder inequality, we see that
||uxxxx||L2(Ω)≤C(||utt+vtt+ut+vt||L2(Ω)+||u+v||H20(Ω))≤C. | (122) |
Furthermore,
||uxxx||L2(Ω)≤C||uxxxx||47L2(Ω)||u||37L2(Ω)+C||u||L2(Ω)≤C, | (123) |
where Gagliardo-Nirenberg inequality for bounded domains is used. Similarly, we deduce
||vxxx||L2(Ω)≤C,||vxxxx||L2(Ω)≤C. | (124) |
Combining with the conclusions in Theorem (4.2) and Theorem (4.3), we can find that
u,v∈L∞(0,T;H4(Ω)∪H20(Ω)). |
Proof. Denote
{˜u,˜v}=π({˜a3,˜a4,˜a6,˜ω,˜θ,˜u0,˜v0,˜u1,˜v1}), |
η=u−˜u, ζ=v−˜v. |
Then
12ddt(||ηt||2L2(Ω)+||ζt||2L2(Ω)+||√a6ηxx||2L2(Ω) +||√a4ζxx||2L2(Ω)−2||a3ηxxζxx||L(Ω))=12(((u2x+v2x)ux−(˜u2x+˜v2x)˜ux)x,ηt)+12(((u2x+v2x)vx−(˜u2x+˜v2x)˜vx)x,ζt)+ω2(((R(x)ηx)x,ηt)+((R(x)ζx)x,ζt))+ω2(η,ηt)+(¯p1,ηt)+(¯p2,ζt) |
−((a6−˜a6)˜uxx,ηtxx)−((a4−˜a4)˜vxx,ζtxx)+((a3−˜a3)˜vxx,ηtxx)+((a3−˜a3)˜uxx,ζtxx)−(ω2−˜ω2)(R˜ux,ηtx)−(ω2−˜ω2)(R˜vx,ζtx)+(ω2−˜ω2)(˜u,ηt)+(ωt−˜ωt)(R0+x,ηt). | (125) |
In equation (125), the nonlinear term satisfies
((u2x+v2x)ux−(˜u2x+˜v2x)˜ux)x=((u2x+v2x)ηx)x+((u2x+v2x−˜u2x−˜v2x)˜ux)x=((u2x+v2x)ηx)x+(((ux+˜ux)ηx+(vx+˜vx)ζx)˜ux)x=2(uxuxx+vxvxx)ηx+(u2x+v2x)ηxx+((ux+˜ux)ηxx+(vx+˜vx)ζxx)˜ux+((uxx+˜uxx)ηx+(vxx+˜vxx)ζx)˜ux+((ux+˜ux)ηx+(vx+˜vx)ζx)˜uxx. | (126) |
By Hölder inequality and Sobolev inequality, we can obtain
(((u2x+v2x)ux−(˜u2x+˜v2x)˜ux)x,ηt)≤C||uxx+vxx||L2(Ω)||ηx||L∞(Ω)||ηt||L2(Ω)+C||ηxx||L2(Ω)||ηt||L2(Ω)+||ηxx+(||uxx+˜uxx||L2(Ω)||ηx||L∞(Ω)+||vxx+˜vxx||L2(Ω)||ζx||L∞(Ω))||ηt||L2(Ω)+(|ηx||L∞(Ω)+||ζx||L∞(Ω))||˜uxx||L2(Ω)||ηt||L2(Ω)+ζxx||L2(Ω)||ηt||L2(Ω)≤C||η||H20(Ω)||ηt||L2(Ω)+C||η||H20(Ω)||ηt||L2(Ω)+C||η||H20(Ω)||ηt||L2(Ω)+C||ζ||H20(Ω)||ηt||L2(Ω)≤C(||ηt||2L2(Ω)+||η||2H20(Ω)+||ζ||2H20(Ω)). | (127) |
In the same way, we have
(((u2x+v2x)vx−(˜u2x+˜v2x)˜vx)x,ζt)≤C(||ζt||2L2(Ω)+||η||2H20(Ω)+||ζ||2H20(Ω)). | (128) |
On the other hand, we easily have
(¯p1,ηt)+(¯p2,ζt)≤C(||θ−˜θ||L1(Ω)+||ηt||2L2(Ω)+||ζt||2L2(Ω)+||η||2H10(Ω)+||ζ||2H10(Ω)). | (129) |
Substituting (127)-(129) into (125), we deduce
||ηt||2L2(Ω)+||ζt||2L2(Ω)+||η||2H20(Ω)+||ζ||2H20(Ω)≤C∫t0||ηt||2L2(Ω)+||ζt||2L2(Ω)+||η||2H20(Ω)+||ζ||2H20(Ω)dt+||u1−˜u1||2L2(Ω)+||v1−˜v1||2L2(Ω)+||u0−˜u0||2H20(Ω)+||v0−˜v0||2H20(Ω)+C(5∑i=3||ai−˜ai||L∞(Ω)+||θ−˜θ||L1(Ω)+||ω−˜ω||W1,1(0,T)). | (130) |
where we used the inequalities
||˜u||L∞(Q)≤C,||˜ux||L∞(Q)≤C,||˜v||L∞(Q)≤C,||˜vx||L∞(Q)≤C,||˜uxx||L∞(0,T,L2(Ω))≤C,||˜vxx||L∞(0,T,L2(Ω))≤C,||ηtx||L∞(Q)≤C,||ζtx||L∞(Q)≤C, |
which are deduced from Theorem 4.2 and Theorem 4.3.
Proof. Assume
{˜φk}∞k=1is an orthogonal basis ofH2f(Ω), | (131) |
and
{˜φk}∞k=1is an orthonormal basis ofL2(Ω). | (132) |
Fix a positive integer
um=m∑k=1˜dk0m(t)˜φk, vm=m∑k=1˜dk1m(t)˜φk, | (133) |
where we intend to select the coefficients
˜dk0m(0)=(u0,˜φk),˜dk1m(0)=(v0,˜φk),k=1,⋯,m, | (134) |
˜dk0m,t(0)=(u1,˜φk),˜dk1m,t(0)=(v1,˜φk),k=1,⋯,m, | (135) |
and
(um,tt,˜φk)+(a6um,xx,˜φk,xx)−(a3vm,xx,˜φk,xx)+12((u2m,x+v2m,x)um,x,˜φk,x)+ω2(Rum,x,˜φk,x)−(p1m,˜φk)−(b1um(l)+e1vm(l))˜φ(l)=0, | (136) |
(vm,tt,˜φk)−(a3um,xx,˜φk,xx)+(a4vm,xx,˜φk,xx)+12((u2m,x+v2m,x)vm,x,˜φk,x)+ω2(Rvm,x,˜φk,x)−(p2m,˜φk)−(b2um(l)+e2vm(l))˜φ(l)=0. | (137) |
As in earlier treatments of C-C boundary condition, we can conclude the following two conclude without difficulty.
(ⅰ) For each integer
(ⅱ)
Then, we proof the following estimate
‖um,t‖2L2(Ω)+‖vm,t‖2L2(Ω)+‖um‖2H2f(Ω)+‖vm‖2H2f(Ω)≤C(‖u1‖2L2(Ω)+‖v1‖2L2(Ω)+‖u0‖2H2f(Ω)+‖v0‖2H2f(Ω))+C | (138) |
Similarly from (75), we can deduce
12ddt{||um,t||2L2(Ω)+||vm,t||2L2(Ω)+||√a6um,xx||2L2(Ω)+||√a4vm,xx||2L2(Ω)+ω22(||√Rum,x||2L2(Ω)+||√Rvm,x||2L2(Ω))}−ddt||a3um,xxvm,xx||L1(Ω)+18ddt||u2m,x+v2m,x||2L2(Ω)−12ddt{b1u2m(l)+e2v2m(l)+2e1um(l)vm(l)}=ωωt(||√Rum,x||2L2(Ω)+||√Rvm,x||2L2(Ω))+(p1m,um,t)+(p2m,vm,t), | (139) |
where
Then we integrate (139) with respect to
||um,t||2L2(Ω)+||vm,t||2L2(Ω)+||um||2H2f(Ω)+||vm||2H2f(Ω)−b1u2m(l)−e2v2m(l)−2e1um(l)vm(l)≤C(||um,t(0)||2L2(Ω)+||vm,t(0)||2L2(Ω)+||um(t)||2H2f(Ω)+||vm(t)||2H2f(Ω))−b1u20m(l)−e2v20m(l)−2e1u0m(l)v0m(l)+C∫t0||um,t||2L2(Ω)+||vm,t||2L2(Ω)dt+||um||2H2f(Ω)+||vm||2H2f(Ω)+C. | (140) |
By simple calculation, we deduce
−b1u2m(l)−e2v2m(l)−2e1um(l)vm(l)≥0. | (141) |
where
On the other hand, according to
u0m(x),v0m(x)∈C(¯Ω). |
Thus,
u0m(l),v0m(l)≤C. | (142) |
Substituting (141) and (142) into (140), applying Gronwall inequality, we can deduce (138).
Now we pass to limits in our Galerkin approximations, applying estimate (138), we can discover (92), (93), (95). In order to complete the proof of the theorem, we just have to proof
uμ(l)→u(l),vμ(l)→v(l), strongly in L∞(0,T). | (143) |
where
To verify this, recalling (138), we observe that
uμ→u,vμ→v strongly in C(0,T;H1f(Ω)) | (144) |
where the Corollary 4 of Chapter 8 in [30] is used.
Furthermore, thanks to the conditions
||uμ(l)−u(l)||L∞(0,T)=||(uμ(l)−u(l))−(uμ(0)−u(0))||L∞(0,T)=||∫l0(uμ(x)−u(x))xdx||L∞(0,T)≤√l||(uμ(x)−u(x))x||L∞(0,T;L2(Ω))≤√l||uμ(x)−u(x)||L∞(0,T;H1f(Ω)) | (145) |
Thanks to (144), we can deduce
uμ(l)→u(l) strongly in L∞(0,T), |
Similarly, we have
vμ(l)→v(l) strongly in L∞(0,T). |
Proof. Similarly as (105), we can get
12ddtE+12P1+P2=P3. | (146) |
where
E=||utt||2L2(Ω)+||vtt||2L2(Ω)+||√a6utxx||2L2(Ω)+||√a4vtxx||2L2(Ω)−2||a3utxxvtxx||L(Ω)+ω2||√R(x)utx||2L2(Ω)+ω2||√R(x)vtx||2L2(Ω) |
P1=(((u2x+v2x)ux)t,uttx)+(((u2x+v2x)vx)t,vttx)P2=−(b1u(l)+e1v(l))tutt(l)−(b2u(l)+e2v(l))tvtt(l)P3=2ωωt(((Rux)x,utt)+((Rvx)x,vtt))+||√Rutx||2L2(Ω)+||√Rvtx||2L2(Ω))+(p1,t,utt)+(p2,t,vtt) |
By calculation, we can deduce
P1=12ddt{||√u2x+v2xutx||2L2(Ω)+||√u2x+v2xvtx||2L2(Ω)+2||uxutx||2L2(Ω) +2||vxvtx||2L2(Ω)+4||uxvxutxvtx||L1(Ω)} −3∫l0uxu3tx+vxv3tx+uxutxv2tx+vxvtxu2txdx | (147) |
P2=−12ddt{b1u2t(l)+e2v2t(l)+2e1ut(l)vt(l)} | (148) |
\begin{eqnarray} &&P_3\leq ||u_{tt}||^2_{L^2(\Omega)}+||v_{tt}||^2_{L^2(\Omega)}+||u||^2_{H_f^2(\Omega)}+||v||^2_{H_f^2(\Omega)} \\ &&\ \ \ \ \ \ \ +||u_{tx}||^2_{L^2(\Omega)}+||v_{tx}||^2_{L^2(\Omega)} \end{eqnarray} | (149) |
Substituting (147), (148) and (149) into (146), we get
\begin{equation} \begin{split} &\frac{1}{2}\frac{\mathrm d}{\mathrm dt}\Big\{E+ ||\sqrt{u_x^2+v_x^2}u_{tx}||^2_{L^2(\Omega)}+||\sqrt{u_x^2+v_x^2}v_{tx}||^2_{L^2(\Omega)} +2||u_x u_{tx}||^2_{L^2(\Omega)}\\ &\ \ \ \ \ \ \ \ +2||v_x v_{tx}||^2_{L^2(\Omega)}+4||u_x v_x u_{tx}v_{tx}||_{L^1(\Omega)}\\ &\ \ \ \ \ \ \ \ -\big(b_1u_t^2(l)+e_2v_t^2(l)+2e_1u_t(l)v_t(l)\big)\Big\}\\ \leq&||u_{tt}||^2_{L^2(\Omega)}+||v_{tt}||^2_{L^2(\Omega)}+||u||^2_{H_f^2(\Omega)}+||v||^2_{H_f^2(\Omega)} +||u_{tx}||^2_{L^2(\Omega)}+||v_{tx}||^2_{L^2(\Omega)}\\ &\ \ \ \ \ \ \ \ +3\int_0^l u_x u^3_{tx}+v_x v^3_{tx}+u_x u_{tx}v^2_{tx}+v_x v_{tx}u^2_{tx} \mathrm dx \end{split} \end{equation} | (150) |
Then integrate (150) with respect to
\begin{eqnarray*} \begin{aligned} E\leq&\int_0^t||u_{tt}||^2_{L^2(\Omega)}+||v_{tt}||^2_{L^2(\Omega)}+||u||^2_{H_f^2(\Omega)}+||v||^2_{H_f^2(\Omega)} \\ &\ \ \ \ +||u_{tx}||^2_{L^2(\Omega)}+||v_{tx}||^2_{L^2(\Omega)}\mathrm dt\\ &\ \ \ \ +3\int_0^t\int_0^l u_x u^3_{tx}+v_x v^3_{tx}+u_x u_{tx}v^2_{tx}+v_x v_{tx}u^2_{tx} \mathrm dx\mathrm dt\\ &\ \ \ \ +||u_{tt}(x, 0)||_{L^2(\Omega)}^2 +||u_1||_{H_f^2(\Omega)}^2 +||v_{tt}(x, 0)||_{L^2(\Omega)}^2 +||v_1||_{H_f^2(\Omega)}^2. \end{aligned} \end{eqnarray*} |
where
-b_1u_t^2(l)-e_2v_t^2(l)-2e_1u_t(l)v_t(l)\geq 0 |
and
||u_x u_{tx}||^2_{L^2(\Omega)}+||v_x v_{tx}||^2_{L^2(\Omega)} +2||u_x v_x u_{tx}v_{tx}||_{L^1(\Omega)}\geq 0. |
are used.
Similarly as (108), we discover
\begin{eqnarray} ||u_{tt}(x, 0)||_{L^2(\Omega)}, ||v_{tt}(x, 0)||_{L^2(\Omega)}\leq c. \end{eqnarray} | (151) |
According to (151), we get
\begin{eqnarray*} \begin{aligned} E\leq&c\int_0^t||u_{tt}||^2_{L^2(\Omega)}+||v_{tt}||^2_{L^2(\Omega)} +||u_{txx}||^2_{L^2(\Omega)}+||v_{txx}||^2_{L^2(\Omega)}\mathrm dt \\ &\; \; \; \; +3\int_0^t\int_0^l u_x u^3_{tx}+v_x v^3_{tx}+u_x u_{tx}v^2_{tx}+v_x v_{tx}u^2_{tx} \mathrm dx\mathrm dt+c. \end{aligned} \end{eqnarray*} |
By Hölder inequality and Sobolev inequality, we have
\begin{eqnarray} \begin{aligned} E\leq& c\int_0^t\Big\{||u_{tt}||^2_{L^2(\Omega)} +||u_{txx}||^2_{L^2(\Omega)}+||u_{txx}||^3_{L^2(\Omega)}+||u_{txx}||^4_{L^2(\Omega)}\\ &\; \; \; \; \; \; \; \; ||v_{tt}||^2_{L^2(\Omega)} +||v_{txx}||^2_{L^2(\Omega)}+||v_{txx}||^3_{L^2(\Omega)}+||v_{txx}||^4_{L^2(\Omega)}\Big\}\mathrm dt+c. \end{aligned} \end{eqnarray} | (152) |
Then, we obtain Theorem 5.3 by Gronwall inequality.
[1] |
van Dam RM (2020) A global perspective on white rice consumption and risk of type 2 diabetes. Diabetes Care 43: 2625–2627. https://doi.org/10.2337/dci20-0042 doi: 10.2337/dci20-0042
![]() |
[2] | Mustafa S (2022) Rice: Market Summaries. FAO. Available from: https://openknowledge.fao.org/server/api/core/bitstreams/7116b9f0-896c-4dac-b4ca-8f3a51212efa/content. |
[3] | Socheata V (2024) Kingdom remains tenth-largest rice producing nation. The Phnom Penh Post. Available from: https://www.phnompenhpost.com/national/kingdom-remains-tenth-largest-rice-producing-nation#: ~: text = Indonesia leads Southeast Asia and, year and ranking 10th globally. |
[4] |
Ab Samat NH, Saili AR, Yusop Z, et al. (2022) Factors affecting selection of rice among the consumer in Shah Alam, Selangor. IOP Conf Ser Earth Environ Sci 1059: 1–8. https://doi.org/10.1088/1755-1315/1059/1/012005 doi: 10.1088/1755-1315/1059/1/012005
![]() |
[5] |
Piao SY, Li ZR, Sun YC, et al. (2020) Analysis of the factors influencing consumers' preferences for rice: locally produced versus the imported in the Ga East Municipality of the Greater Accra Region of Ghana. J Agric Life Environ Sci 32: 177–192. https://doi.org/10.22698/jales.20200016 doi: 10.22698/jales.20200016
![]() |
[6] | Abubakar Y, Rezai G, Shamsudin MN et al. (2015) Malaysian consumers' demand for quality attributes of imported rice. Aust J Basic Appl Sci 9: 317–322. |
[7] |
Peterson-Wilhelm B, Nalley LL, Durand-Morat A, et al. (2022) Does rice quality matter? Understanding consumer preferences for rice in Nigeria. J Agric Appl Econ 54: 769–791. https://doi.org/10.1017/aae.2022.38 doi: 10.1017/aae.2022.38
![]() |
[8] |
Qiu X, Yang J, Zhang F, et al. (2021) Genetic dissection of rice appearance quality and cooked rice elongation by genome-wide association study. Crop J 9: 1470–1480. https://doi.org/10.1016/j.cj.2020.12.010 doi: 10.1016/j.cj.2020.12.010
![]() |
[9] |
Mottaleb KA, Mishra AK (2016) Rice consumption and grain-type preference by household: A Bangladesh case. J Agric Appl Econ 48: 298–319. https://doi.org/10.1017/aae.2016.18 doi: 10.1017/aae.2016.18
![]() |
[10] | Zainol Abidin AZ and Abu Dardak R (2023) Sociological issues and challenges of rice production in Malaysia. Food and Fertilizer Technology Centre for the Asian and Pacific Region (FFTC), Agricultural Policy Platform (FFTC-AP). Available from: https://ap.fftc.org.tw/article/3473 |
[11] |
Antriyandarti E, Agustono, Ani SW, et al. (2023) Consumers' willingness to pay for local rice: Empirical evidence from Central Java, Indonesia. J Agric Food Res 14: 1–7. https://doi.org/10.1016/j.jafr.2023.100851 doi: 10.1016/j.jafr.2023.100851
![]() |
[12] |
Laroche DC, Postolle A (2013) Food sovereignty and agricultural trade policy commitments: How much leeway do West African nations have? Food Policy 38: 115–125. https://doi.org/10.1016/j.foodpol.2012.11.005 doi: 10.1016/j.foodpol.2012.11.005
![]() |
[13] |
Fiamohe R, Nakelse T, Diagne A, et al. (2015) Assessing the effect of consumer purchasing criteria for types of rice in Togo: A choice modeling approach. Agribusiness 31: 433–452. https://doi.org/10.1002/agr.21406 doi: 10.1002/agr.21406
![]() |
[14] | Stryker JD (2013) Developing competitive rice value chains. In: Wopereis MCS, Johnson D, Horie T, Tollens E, et al. (Eds.), Realizing Africa's rice promise, Wallingford, UK: CABI Publishing, 1–6. https://doi.org/10.1079/9781845938123.0324 |
[15] |
Demont M (2013) Reversing urban bias in African rice markets: A review of 19 national rice development strategies. Glob Food Sec 2: 172–181. https://doi.org/10.1016/j.gfs.2013.07.001 doi: 10.1016/j.gfs.2013.07.001
![]() |
[16] |
Jamora N, Ramaiah V (2022) Global demand for rice genetic resources. CABI Agric Biosci 3: 1–15. https://org.doi/10.1186/s43170-022-00095-6 doi: 10.1186/s43170-022-00095-6
![]() |
[17] |
Yan AO, Yong XU, Xiao-fen CUI, et al. (2016). A genetic diversity assessment of starch quality traits in rice landraces from the Taihu basin, China. J Integr Agric 15: 493–501. https://doi.org/10.1016/S2095-3119(15)61050-4 doi: 10.1016/S2095-3119(15)61050-4
![]() |
[18] | Rajendran PA, Devi JN, Prabhakaran SV (2021) Breeding for grain quality improvement in rice, In: Ibrokhim Y, Abdurakhmonov (Eds.), Plant Breeding—Current and Future Views, IntechOpen, 1–11. https://doi.org/10.5772/intechopen.95001 |
[19] |
Kim MS, Yang JY, Yu JK, et al. (2021) Breeding of high cooking and eating quality in rice by marker-assisted backcrossing (MABc) using KASP markers. Plants 10: 804. https://doi.org/10.3390/plants10040804 doi: 10.3390/plants10040804
![]() |
[20] |
Zafar S and Jianlong X (2023). Recent advances to enhance nutritional quality of rice. Rice Sci 30: 523–536. https://doi.org/10.1016/j.rsci.2023.05.004 doi: 10.1016/j.rsci.2023.05.004
![]() |
[21] |
Ab Razak S, Nor Azman NHE, Kamaruzaman R, et al. (2020) Genetic diversity of released Malaysian rice varieties based on single nucleotide polymorphism markers. Czech J Genet Plant Breed 56: 62–70. https://doi.org/10.17221/58/2019-CJGPB doi: 10.17221/58/2019-CJGPB
![]() |
[22] |
Sidhu JS, Gill MS, and Bains GS (1975) Milling of paddy in relation to yield and quality of rice of different Indian varieties. J Agric Food Chem 23: 1183–1185. https://doi.org/10.1021/jf60202a035 doi: 10.1021/jf60202a035
![]() |
[23] |
Longvah T, Bhargavi I, Sharma P, et al. (2022) Nutrient variability and food potential of indigenous rice landraces (Oryza sativa L.) from Northeast India. J Food Compos Anal 114: 104838. https://doi.org/10.1016/j.jfca.2022.104838 doi: 10.1016/j.jfca.2022.104838
![]() |
[24] | Lum MS (2017) Physicochemical characteristics of different rice varieties found in Sabah, Malaysia. Trans Sci Technol 4: 68–75. |
[25] |
Mohd Sarif H, Rafii MY, Ramli A, et al. (2020) Genetic diversity and variability among pigmented rice germplasm using molecular marker and morphological traits. Biotechnol Biotechnol Equip 34: 747–762. https://doi.org/10.1080/13102818.2020.1804451 doi: 10.1080/13102818.2020.1804451
![]() |
[26] |
Ronie ME, Abdul Aziz AH, Mohd Noor NQI, et al. (2022) Characterisation of Bario rice flour varieties: Nutritional compositions and physicochemical properties. Appl Sci 12: 9064. https://doi.org.10.3390/app12189064 doi: 10.3390/app12189064
![]() |
[27] | Kew Board of Trustees of the Royal Botanic Gardens (2022) Seed bank design: Seed drying rooms (Technical Information Sheet 11). Available from: https://brahmsonline.kew.org/Content/Projects/msbp/resources/Training/11-Seed-drying-room-design.pdf. |
[28] | IRRI (2013) Standard Evaluation System for Rice, 5th ed. International Rice Research Institute (IRRI), Manila, Philippines. 1–55. |
[29] | Juliano BO (1971) A simplified assay for milled-rice amylose. Cereal Sci Today 16: 334–360. |
[30] |
Ekanayake SB, Navaratne EWMDS, Wickramasinghe I, et al. (2018) Determination of changes in amylose and amylopectin percentages of cowpea and green gram during storage. Nutr Food Sci Int J 6: 1–5. https://doi.org/10.19080/nfsij.2018.06.555690 doi: 10.19080/nfsij.2018.06.555690
![]() |
[31] |
Bhattacharya KR, Sowbhagya CM (1972) An improved alkali reaction test for rice quality. Int J Food Sci Technol 7: 323–331. https://doi.org/10.1111/J.1365-2621.1972.TB01667.X doi: 10.1111/J.1365-2621.1972.TB01667.X
![]() |
[32] | Bioversity International, IRRI, and WARDA (2007) Descriptor for wild and cultivated rice (Oryza spp.). Bioversity International, Rome, Italy, 1–72. |
[33] |
Cagampang GB, Perez CM, Juliano BO (1973) A gel consistency test for eating quality of rice. J Sci Food Agric 24: 1589–1594. https://doi.org/10.1002/jsfa.2740241214 doi: 10.1002/jsfa.2740241214
![]() |
[34] | Sivasubramanian S, Menon M (1973) Heterosis and inbreeding depression in rice. Madras Agric J 60: 1139–1144. |
[35] | Falconer DS, Mackay TFC (1996) Introduction to Quantitative Genetics, 4th ed, London: Longman Group Ltd. |
[36] |
Robinson HF, Comstock RE, Harvey PH (1949) Estimates of heritability and the degree of dominance in corn. Agron J 41: 353–359. https://doi.org/10.2134/agronj1949.00021962004100080005x doi: 10.2134/agronj1949.00021962004100080005x
![]() |
[37] |
Mazid MS, Rafii MY, Hanafi MM, et al. (2013) Agro-morphological characterization and assessment of variability, heritability, genetic advance and divergence in bacterial blight resistant rice genotypes. South African J Bot 86: 15–22. https://doi.org/10.1016/j.sajb.2013.01.004 doi: 10.1016/j.sajb.2013.01.004
![]() |
[38] |
Johnson HW, Robinson HF, Comstock RE (1955). Estimates of genetic and environmental variability in soybeans. Agron J 47: 314–318. https://doi.org/10.2134/agronj1955.00021962004700070009x doi: 10.2134/agronj1955.00021962004700070009x
![]() |
[39] | Sokal RR, Michener CD (1958) A atatistical methods for evaluating relationships. Univ Kansas Sci Bull 38: 1409–1448. |
[40] |
Botta-Dukát Z (2023) Quartile coefficient of variation is more robust than CV for traits calculated as a ratio. Sci Rep 13: 4671. https://doi.org/10.1038/s41598-023-31711-8 doi: 10.1038/s41598-023-31711-8
![]() |
[41] |
Prasad T, Banumathy S, Sassikumar D, et al. (2021) Study on physicochemical properties of rice landraces for amylose, gel consistency and gelatinization temperature. Electron J Plant Breed 12: 723–731. https://doi.org/10.37992/2021.1203.101 doi: 10.37992/2021.1203.101
![]() |
[42] |
Debsharma SK, Syed MA, Ali MH, et al. (2023) Harnessing on genetic variability and diversity of rice (Oryza sativa L.) genotypes based on quantitative and qualitative traits for desirable crossing materials. Genes 14: 1–21. https://doi.org/10.3390/genes14010010 doi: 10.3390/genes14010010
![]() |
[43] |
Bollinedi H, Vinod KK, Bisht K, et al. (2020) Characterising the diversity of grain nutritional and physico-chemical quality in Indian rice landraces by multivariate genetic analyses. Indian J Genet Plant Breed 80: 26–38. https://doi.org/10.31742/IJGPB.80.1.4 doi: 10.31742/IJGPB.80.1.4
![]() |
[44] |
Tuhina-Khatun M, Hanafi MM, Yusop MR, et al. (2015) Genetic variation, heritability, and diversity analysis of upland rice (Oryza sativa L.) genotypes based on quantitative traits. Biomed Res Int 2015: 290861. https://doi.org/10.1155/2015/290861 doi: 10.1155/2015/290861
![]() |
[45] |
Terfa GN, Gurmu GN (2020) Genetic variability, heritability and genetic advance in linseed (Linum usitatissimum L) genotypes for seed yield and other agronomic traits. Oil Crop Sci 5: 156–160. https://doi.org/10.1016/j.ocsci.2020.08.002 doi: 10.1016/j.ocsci.2020.08.002
![]() |
[46] | Patel RRS, Sharma D, Das BK, et al. (2021) Study of coefficient of variation (GCV & PCV), heritability and genetic advance in advanced generation mutant line of rice (Oryza sativa L.). Pharma Innov J 10: 784–787. |
[47] |
Zhao D, Zhang C, Li Q, et al. (2022) Genetic control of grain appearance quality in rice. Biotechnol Adv 60: 108014. https://doi.org/10.1016/j.biotechadv.2022.108014 doi: 10.1016/j.biotechadv.2022.108014
![]() |
[48] | Ajimilah AH (1984) Quality parameters for Malaysian rice varieties. MARDI Res Bull 12: 320–332. |
[49] |
Lahkar L, Tanti B (2017) Study of morphological diversity of traditional aromatic rice landraces (Oryza sativa L.) collected from Assam, India. Ann Plant Sci 6: 1855–1861. https://doi.org/10.21746/aps.2017.6.12.9 doi: 10.21746/aps.2017.6.12.9
![]() |
[50] |
Azuka CE, Nkama I, Asoiro FU (2021) Physical properties of parboiled milled local rice varieties marketed in South-East Nigeria. J Food Sci Technol 58: 1788–1796. https://doi.org/10.1007/s13197-020-04690-1 doi: 10.1007/s13197-020-04690-1
![]() |
[51] |
Custodio MC, Demont M, Laborte A et al. (2016) Improving food security in Asia through consumer-focused rice breeding. Glob Food Sec 9: 19–28. https://doi.org/10.1016/j.gfs.2016.05.005 doi: 10.1016/j.gfs.2016.05.005
![]() |
[52] |
Arikit S, Wanchana S, Khanthong S, et al. (2019) QTL-seq identifies cooked grain elongation QTLs near soluble starch synthase and starch branching enzymes in rice (Oryza sativa L.). Sci Rep 9: 1–10. https://doi.org/10.1038/s41598-019-44856-2 doi: 10.1038/s41598-019-44856-2
![]() |
[53] | Mahadik SM, Sawant AA, Kalse SB (2022) Evaluation of cooking characteristics of different brown rice varieties grown in the Konkan region. Pharma Innov J 11: 546–549. |
[54] | Mahmood A, Mei LY, Md Noh MF, et al. (2018) Rice-based traditional Malaysian kuih. Malaysian Appl Biol J 47: 71–77. |
[55] |
Srinang P, Khotasena S, Sanitchon J, et al. (2023) New source of rice with a low amylose content and slow in vitro digestion for improved health benefits. Agronomy 13: 2622. https://doi.org/10.3390/agronomy13102622 doi: 10.3390/agronomy13102622
![]() |
[56] |
Sultana S, Faruque M, Islam MR (2022) Rice grain quality parameters and determination tools: A review on the current developments and future prospects. Int J Food Prop 25: 1063–1078. https://doi.org/10.1080/10942912.2022.2071295 doi: 10.1080/10942912.2022.2071295
![]() |
[57] |
Calingacion M, Laborte A, Nelson A, et al. (2014) Diversity of global rice markets and the science required for consumer-targeted rice breeding. PLoS One 9(1):1–12. https://doi.org/10.1371/journal.pone.0085106 doi: 10.1371/journal.pone.0085106
![]() |
[58] |
Rebeira SP, Wickramasinghe HAM, Samarasinghe WLG, et al. (2014) Diversity of grain quality characteristics of traditional rice (Oryza sativa L.) varieties in Sri Lanka. Trop Agric Res 25: 470–478. https://doi.org/10.4038/tar.v25i4.8062 doi: 10.4038/tar.v25i4.8062
![]() |
[59] | Juliano BO, Bechtel DB (1985) The grain and its gross composition. In: Rice: Chemistry and Technology. Cereals and Grains Association. Northwood Circle, USA, 17–57. https://doi.org/10.1094/1891127349.004 |
[60] |
Zhang X, Suzuki H (1991) Comparative study on amylose content, alkali spreading and gel consistency of rice. J Japanese Soc Starch Sci 38: 257–262. https://doi.org/10.5458/jag1972.38.257 doi: 10.5458/jag1972.38.257
![]() |
[61] | Pushpa R, Suresh R, Iyyanar K, et al. (2018) Study on the gelatinization properties and amylose content in rice germplasm. J Pharmacogn Phytochem SP1: 2934–2942. Available from: https://www.phytojournal.com/special-issue/2018.v7.i1S.3918/study-on-the-gelatinization-properties-and-amylose-content-in-rice-germplasm. |
[62] | Kamalaja T, Maheswari KU, Devi KU, et al. (2018) Assessment of grain quality characteristics in the selected newly released rice varieties of central Telenagana zone. Int J Chem Stud 6: 2615–2619. |
[63] |
Bocevska M, Aldabas I, Andreevska D, et al. (2009) Gelatinization behavior of grains and flour in relation to physico-chemical properties of milled rice (Oryza sativa L.). J Food Qual 32: 108–124. https://doi.org/10.1111/j.1745-4557.2008.00239.x doi: 10.1111/j.1745-4557.2008.00239.x
![]() |
[64] | Cruz ND, Khush GS (2000) Rice grain quality evaluation procedures. In: Singh RK, Singh US, Khush GS (Eds.), Aromatic rices, New Delhi, India: Oxford & IBH Publishing Co. Pvt. Ltd., 15–28. |
[65] | Köten M, Ünsal AS, Kahraman S (2020) Physicochemical, nutritional, and cooking properties of local Karacadag rice (Oryza sativa L.)-Turkey. Int Food Res J 27: 435–444. |
[66] |
Indrasari SD, Purwaningsih, Jumali, et al. (2019) The volatile components and rice quality of three Indonesian aromatics local paddy. IOP Conf Ser Earth Environ Sci 309: 1–9. https://doi.org/10.1088/1755-1315/309/1/012016 doi: 10.1088/1755-1315/309/1/012016
![]() |
[67] |
Nguyen HTH, Chen ZQ, Fries A, et al. (2022) Effect of additive, dominant and epistatic variances on breeding and deployment strategy in Norway spruce. Forestry 95: 416–427. https://doi.org/10.1093/forestry/cpab052 doi: 10.1093/forestry/cpab052
![]() |
[68] |
Nihad SAI, Manidas AC, Hasan K, et al. (2021) Genetic variability, heritability, genetic advance and phylogenetic relationship between rice tungro virus resistant and susceptible genotypes revealed by morphological traits and SSR markers. Curr Plant Biol 25: 1–9. https://doi.org/10.1016/j.cpb.2020.100194 doi: 10.1016/j.cpb.2020.100194
![]() |
[69] |
Myint MM, Soe ANY, Thandar S (2023) Evaluation of physicochemical characteristics and genetic diversity of widely consumed rice varieties in Kyaukse area, Myanmar. Plant Sci Today 1–12. https://doi.org/10.14719/pst.2264 doi: 10.14719/pst.2264
![]() |
[70] |
Wickramasinghe HAM, Noda T (2008) Physicochemical properties of starches from Sri Lankan rice varieties. Food Sci Technol Res 14: 49–54. https://doi.org/10.3136/fstr.14.49 doi: 10.3136/fstr.14.49
![]() |
[71] |
Chen F, Lu Y, Pan L, et al. (2022). The underlying physicochemical properties and starch structures of Indica rice grains with translucent endosperms under low-moisture conditions. Foods 11: 1378. https://doi.org/10.3390/foods11101378 doi: 10.3390/foods11101378
![]() |
[72] | Anugrahati NA, Pranoto Y, Marsono Y, et al. (2017) Physicochemical properties of rice (Oryza sativa L.) flour and starch of two Indonesian rice varieties differing in amylose content. Int Food Res J 24: 108–113. |
1. | Vo Van Au, Jagdev Singh, Anh Tuan Nguyen, Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients, 2021, 29, 2688-1594, 3581, 10.3934/era.2021052 | |
2. | Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan, On a final value problem for a nonlinear fractional pseudo-parabolic equation, 2021, 29, 2688-1594, 1709, 10.3934/era.2020088 | |
3. | Guillaume Castera, Juliette Chabassier, Linearly implicit time integration scheme of Lagrangian systems via quadratization of a nonlinear kinetic energy. Application to a rotating flexible piano hammer shank, 2024, 58, 2822-7840, 1881, 10.1051/m2an/2024049 |