Research article

Green innovation mediates between financial innovation and business sustainability? Proof in the mexican manufacturing industry

  • Recent studies have shown that the lack of environmental regulations in public administrations, the inability of employees to innovate knowledge and skills, the high price of green technologies, and the lack of environmental awareness in organizations are the biggest threats to the environmental and sustainable development. In this context, manufacturing companies in emerging markets should not only focus on achieving a higher level of business sustainability in economic and financial terms, but also pay attention to financial and green innovation, because they are important ways to achieve a green transformation of businesses, to improve sustainability, and to reduce carbon dioxide emissions. This study provides data on the adoption and repercussions of these activities on the sustainability of manufacturing companies in Mexico. The proposed research model was validated by applying partial least squares structural equation modeling (PLS-SEM) on a sample of 338 companies. The results of the study showed that the business sustainability of manufacturing companies significantly improved through the application of financial and green innovation. In addition, the results of the study showed that green innovation plays the role of a mediating variable in the relationship between financial innovation and corporate sustainable development.

    Citation: Gonzalo Maldonado-Guzmán. Green innovation mediates between financial innovation and business sustainability? Proof in the mexican manufacturing industry[J]. Green Finance, 2024, 6(3): 563-584. doi: 10.3934/GF.2024021

    Related Papers:

    [1] Yicang Zhou, Zhien Ma . Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences and Engineering, 2009, 6(2): 409-425. doi: 10.3934/mbe.2009.6.409
    [2] Rundong Zhao, Qiming Liu, Huazong Zhang . Dynamical behaviors of a vector-borne diseases model with two time delays on bipartite networks. Mathematical Biosciences and Engineering, 2021, 18(4): 3073-3091. doi: 10.3934/mbe.2021154
    [3] Kazuo Yamazaki, Xueying Wang . Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model. Mathematical Biosciences and Engineering, 2017, 14(2): 559-579. doi: 10.3934/mbe.2017033
    [4] Yong Zhou, Minrui Guo . Isolation in the control of epidemic. Mathematical Biosciences and Engineering, 2022, 19(11): 10846-10863. doi: 10.3934/mbe.2022507
    [5] Martin Luther Mann Manyombe, Joseph Mbang, Jean Lubuma, Berge Tsanou . Global dynamics of a vaccination model for infectious diseases with asymptomatic carriers. Mathematical Biosciences and Engineering, 2016, 13(4): 813-840. doi: 10.3934/mbe.2016019
    [6] Arti Mishra, Benjamin Ambrosio, Sunita Gakkhar, M. A. Aziz-Alaoui . A network model for control of dengue epidemic using sterile insect technique. Mathematical Biosciences and Engineering, 2018, 15(2): 441-460. doi: 10.3934/mbe.2018020
    [7] Haijun Hu, Xupu Yuan, Lihong Huang, Chuangxia Huang . Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks. Mathematical Biosciences and Engineering, 2019, 16(5): 5729-5749. doi: 10.3934/mbe.2019286
    [8] Churni Gupta, Necibe Tuncer, Maia Martcheva . A network immuno-epidemiological model of HIV and opioid epidemics. Mathematical Biosciences and Engineering, 2023, 20(2): 4040-4068. doi: 10.3934/mbe.2023189
    [9] Hai-Feng Huo, Qian Yang, Hong Xiang . Dynamics of an edge-based SEIR model for sexually transmitted diseases. Mathematical Biosciences and Engineering, 2020, 17(1): 669-699. doi: 10.3934/mbe.2020035
    [10] Fang Wang, Juping Zhang, Maoxing Liu . Dynamical analysis of a network-based SIR model with saturated incidence rate and nonlinear recovery rate: an edge-compartmental approach. Mathematical Biosciences and Engineering, 2024, 21(4): 5430-5445. doi: 10.3934/mbe.2024239
  • Recent studies have shown that the lack of environmental regulations in public administrations, the inability of employees to innovate knowledge and skills, the high price of green technologies, and the lack of environmental awareness in organizations are the biggest threats to the environmental and sustainable development. In this context, manufacturing companies in emerging markets should not only focus on achieving a higher level of business sustainability in economic and financial terms, but also pay attention to financial and green innovation, because they are important ways to achieve a green transformation of businesses, to improve sustainability, and to reduce carbon dioxide emissions. This study provides data on the adoption and repercussions of these activities on the sustainability of manufacturing companies in Mexico. The proposed research model was validated by applying partial least squares structural equation modeling (PLS-SEM) on a sample of 338 companies. The results of the study showed that the business sustainability of manufacturing companies significantly improved through the application of financial and green innovation. In addition, the results of the study showed that green innovation plays the role of a mediating variable in the relationship between financial innovation and corporate sustainable development.



    With the global population continuously increasing and people's social networks expanding, the study of disease transmission has gained increasing importance. Taking COVID-19 as an example, it is evident that formulating appropriate control strategies based on the epidemic's characteristics can optimize the utilization of social resources, minimize economic losses, and reduce human casualties. In recent years, there have been significant advancements in the field of infectious disease dynamics, which have provided valuable guidance for disease transmission control and treatment. Mathematical models play a crucial role in infectious disease dynamics research by elucidating the key characteristics of diseases through assumptions, parameters, variables, and their interrelationships. Through the application of dynamic methods, mathematical models can be developed to investigate whether a specific infectious disease will continue to spread and become endemic in a particular region, or if it will eventually be eradicated.

    In the realm of infectious disease modeling, compartmental models are prevalently utilized for analyzing disease spread. These models postulate that populations are divisible into homogeneous subgroups or compartments, within which individuals are indistinguishable. Parameters may vary among compartments but are constant within each one. Foundational compartmental models, such as the susceptible-infected-susceptible (SIS) and susceptible-infected-recovered (SIR) models proposed by Kermack and McKendrick [1], along with the concept of epidemic thresholds, have established a rigorous mathematical framework for the study of disease spread and the evaluation of control strategies. Progress in research has led to the introduction of additional compartments and the development of more realistic models [2,3,4,5].

    The interaction between different types of networks and the dynamics of disease transmission primarily concerns how various social network structures influence the spread of diseases. For instance, scale-free networks, characterized by a few highly connected nodes, may facilitate rapid disease propagation across a large population [6,7,8,9], while small-world networks, known for short average path lengths and strong social connections, might accelerate disease spread within closely-knit groups [10,11,12,13]. These network characteristics are crucial for understanding and predicting how infectious diseases spread through populations and for formulating effective control strategies. Beyond the previously discussed models, there are also epidemic models specifically designed for overlapping community networks, as described in [14,15]. Hence, disease models need to consider these network properties to more accurately predict and address disease transmission.

    Several studies indicate that asymptomatic carriers may exhibit higher transmissibility compared to symptomatic individuals. This is attributed to asymptomatic individuals often not experiencing noticeable illness, thus possibly not undertaking necessary isolation and prevention measures. To enhance our understanding of the impact of asymptomatic carriers on disease transmission, researchers have proposed refined models, including the extensively studied SEIR model, which encompasses four states: susceptible, exposed, infectious, and recovered [16,17]. These studies highlight the significant role of asymptomatic individuals in the dynamics of disease transmission, suggesting a need for cost-effective detection methods, such as nucleic acid testing, to inform disease control strategies. The role of asymptomatic spreaders may correlate with their social contact patterns, with skewed degree distributions indicating that some individuals, like asymptomatic carriers, have higher connectivity in social networks, potentially playing a more significant role in disease spread [18,19].

    Individual migration refers to the movement of individuals from one node to another within a network, thereby facilitating the spread of diseases across regions or communities. Such migration can be motivated by various factors, including employment, travel, or other socio-economic considerations. Incorporating individual migration in infectious disease models is crucial, as it allows diseases to traverse broader geographical or social boundaries, impacting the epidemiological dynamics across the entire network [20]. Studies, such as [21], have shown that high mobility between areas with differing infection rates significantly impacts the spread of diseases like COVID-19. Current research suggests the implementation of appropriate travel restrictions to help control the spread of diseases from high to low prevalence areas [22,23]. Additionally, the influence of migration on disease replication and diffusion, as well as the unequal migration rates among different populations, which can substantially affect the effectiveness of control strategies, are important considerations [24].

    In numerous diseases like COVID-19, asymptomatic carriers exist. While symptomatic individuals can be isolated during epidemic management, asymptomatic carriers might spread the virus when moving to other communities. To understand their impact on disease transmission, a numerical analysis of a complex network infectious disease model across six regions was conducted, based on [25]. The study examines if a topological structure exists that minimizes active infections over time. We extend this model to a more general complex network model, incorporating asymptomatic transmission and migration features. By integrating graph theory and stability analysis, the equilibrium and stability of the nonlinear system are theoretically proven, laying a solid foundation for effective epidemic management strategies. For example, this research can inform decisions on whether it is necessary to invest a significant amount of time or resources in nucleic acid testing, by considering other studies or real-world conditions.

    The key contributions of this research are threefold. First, we extend the existing model of [25] to complex networks, specifically scale-free networks, enabling a more realistic representation of disease dynamics in interconnected populations with varying degrees of connectivity. Second, we explore the stability of the nonlinear system model with asymptomatic infections on a scale-free network, substantiating the findings through rigorous theoretical proofs and simulations. Last, we investigate the dynamic behaviors of diseases in the presence of migration and assess the specific impact of unequal migration rates between different populations on disease spread.

    We specifically examine the SAIR infectious disease model within a scale-free network characterized by degree correlations. We aim to explore effective strategies for controlling disease outbreaks within communities that experience migration between them. The threshold R0, which represents the level of disease transmissibility, is determined by employing the next-generation matrix. Moreover, the global asymptotic stability of both the disease-free equilibrium and the endemic equilibrium is demonstrated through the application of the decomposition theorem [26] and the development of Lyapunov functions.

    This paper is organized as follows. In Section 2, we propose an SAIR infectious disease dynamic model based on an uncorrelated network. In Section 3, we prove the existence of two equilibria of the model and calculate the basic reproduction number R0 using the next-generation matrix method. In Section 4, we use the decomposition theorem and construct Lyapunov functions to prove the global asymptotic stability of both the disease-free equilibrium and the endemic equilibrium of the system. In Section 5, we conduct numerical simulations in MATLAB to validate the theoretical results. The paper concludes in Section 6, providing some conclusions and suggestions for future work.

    Individual migration refers to the movement of individuals from one node of the network to another, thereby facilitating the spread of diseases from one region or community to another. This type of migration can be driven by various reasons, such as employment, travel, or other socio-economic factors. In models of infectious diseases, considering individual migration is crucial as it enables diseases to transcend broader geographical or social boundaries, thereby influencing the epidemic dynamics across the entire network [20]. We employ network topology to represent the migration between individuals, assuming that within the same community, i.e., each node on the network, the total influx of different population groups, such as susceptible individuals, equals the total outflux. Infected individuals are either consciously or forcibly restricting their movements, so there is no community migration of groups with symptomatic infections.

    In the real world, social networks often exhibit the characteristics of scale-free networks, with a power-law degree distribution as their primary feature. As demonstrated in the literature [27], this common structure of social networks not only possesses the characteristic of a power-law distribution but also exhibits a dual nature of robustness and vulnerability. Furthermore, in the literature [28], an analysis of the distribution of user activities on different social media platforms reveals a similar adherence to a power-law distribution. Building upon this, We focus on the issue of epidemic spread on scale-free networks. Specifically, we extend the model proposed in the literature [25] to form model (2.1). In this model, individuals within the same node are considered to have identical characteristics, i.e., the same parameter values. Individuals within each node undergo different forms of infection processes and spread between nodes through migration at a constant rate.

    Thus, this article constructs a SAIR model to describe the spread of disease within a network.

    {˙Sk(t)=Λβk(θkAk(t)+Ik(t))Sk(t)μSk(t)σSSk(t)+σSkni=1p(ik)iSi(t),˙Ak(t)=βk(θkAk(t)+Ik(t))Sk(t)vkAk(t)μAk(t)σAAk(t)+σAkni=1p(ik)iAi(t),˙Ik(t)=vkAk(t)δkIk(t)μIk(t),˙Rk(t)=δkIk(t)μRk(t)σRRk(t)+σRkni=1p(ik)iRi(t). (2.1)

    In the epidemic network we consider, each node can be in one of four different states at any time: susceptible (S), asymptomatic infected (A), symptomatic infected (I), or recovered (R). Susceptible individuals (S) can become infected by contacting symptomatic infected individuals (I) and asymptomatic infected individuals (A), with an infection rate of β(θA+I), where θ represents the transmission modifying parameter for asymptomatic infected individuals (A). Only a small fraction of asymptomatic infected individuals (A) with symptoms transition to symptomatic infected individuals (I) at a rate of ν, and symptomatic infected individuals (I) recover/are removed at a rate of δ. σS, σA, and σR represent the migration rates of susceptible individuals (S), asymptomatic infected individuals (A), and recovered individuals (R) among different communities, respectively. The constant parameters Λ and μ represent the birth rate and natural death rate of individuals, respectively.

    Due to the complexity of network structures, this article divides the nodes in the network into n classes according to their degrees, where n is the maximum degree of the network. In other words, if the degrees of nodes i and j are both k, then they belong to the kth class, where k1,2,,n. The state variables Sk(t), Ak(t), Ik(t), and Rk(t) represent the relative density of susceptible, asymptomatic, symptomatic, and recovered nodes with degree k. The expression p(i|k) is the probability that a node with degree k is connected to a node with degree i. In an uncorrelated network, it is expressed as p(i|k)=ik which is considered independent of the connectivity of the node that sends out the link, where k represents the average degree of the network.

    Remark 1. Symptomatic individuals, whether voluntarily or due to enforced restrictions, tend to restrict their activities. Consequently, there is no migration of symptomatic infection groups between communities, and migration is virtually non-existent. The social contact matrix is represented as 0. In contrast, asymptomatic individuals are those who have been infected with pathogens, such as viruses or bacteria, without exhibiting typical disease symptoms like fever, cough, or headache. Their clinical characteristics closely resemble those of susceptible and recovered individuals. Drawing inspiration from references [29,30], we can express the social contact matrix between asymptomatic individuals, susceptible individuals, and recovered individuals as Aji=kjkiNk(i,j=1,2,,n), where each element represents the probability of contact between individuals at node i and node j. Here, ki and kj represent the degrees of node i and node j, respectively. From a mean-field perspective, in the context of scale-free networks, the term for inter-community migration can be observed as the final component of model (2.1). However, as asymptomatic individuals also carry the pathogen, they possess the potential to transmit the disease, akin to symptomatic individuals, through contact. The transmission probability can be represented as βkθkAkSk, where θk is a corrective parameter distinguishing it from the infection rate of symptomatic individuals. Additionally, we intend to consider adjusting parameters such as v in the future using control measures like nucleic acid testing to enhance epidemic management. Consequently, research on asymptomatic individuals carries significant importance. It is important to note that, for the sake of research convenience, this paper has not yet factored in the difference in recovery rates between asymptomatic and symptomatic individuals. Nonetheless, a more precise clinical characterization will become a crucial avenue for future research.

    Remark 2. The model presented in this article (model (2.1)) has several limitations. First, although in theory, social networks can be considered scale-free networks, exhibiting power-law characteristics, many field experiments suggest that real contact networks do not follow a power-law distribution [31]. Nevertheless, scale-free networks, as a theoretical model, can effectively capture and reflect key features of real networks, such as the high concentration of connections in certain nodes. This simplification makes mathematical and computational analyses feasible, providing valuable insights for a deeper understanding of network dynamics. Second, to maintain the simplicity and ease of analysis, and since the focus of the study is on understanding long-term immune dynamics, this article omits the exposure stage by choosing to exclude the exposed category (E). It is undeniable that the exposed category (E) is crucial for the spread of the disease, and this omission represents a limitation of the model presented in this article.

    Based on Theorem 6 in the literature [26], it can be observed that the solution to model (2.1) exhibits existential uniqueness for a given initial value. Below, we present two distinct solutions to the model.

    The disease-free equilibrium and endemic equilibrium are determined by solving Eq (2.1) with the right-hand side set to 0:

    Λβk(θkAk(t)+Ik(t))Sk(t)μSk(t)σSSk(t)+σSkkni=1p(i)Si(t)=0,βk(θkAk(t)+Ik(t))Sk(t)vkAk(t)μAk(t)σAAk(t)+σAkkni=1p(i)Ai(t)=0,vkAk(t)δkIk(t)μIk(t)=0,δkIk(t)μRk(t)σRRk+σR(t)kkni=1p(i)Ri(t)=0. (3.1)

    Clearly, model (2.1) possesses a disease-free equilibrium:

    E0k=(S0k,A0k,I0k,R0k)=(Λμ+σS+σSμ+σSk<k>Λμ,0,0,0).

    To determine the endemic equilibrium, we initially manipulate Eq (3.1) to acquire:

    A+k=δk+μνkI+k,S+k=1μ+σs[Λ+σsk<k>S++σAk<k>A+(νk+μ+σA)A+k],R+k=1μ+σR(δkI+k+σRk<k>R+).

    In this context, S+, A+, and R+ represent the total number (density) of susceptible individuals, asymptomatic infected individuals, and recovered individuals in each community, respectively. In other words, S+=ni=1p(i)S+i(t), A+=ni=1p(i)A+i(t), and R+=ni=1p(i)R+i(t). By substituting the above equation into the first equation of Eq (3.1), we obtain (A+k)2+bA+k+c=0, where b=(Λ+σsk<k>S++σAk<k>A+)μ+σsνk+μ+σA+(μ+σs)(δk+μ)βkθk(δk+μ)+βkνk, c=μ+σsνk+μ+σAδk+μβkθk(δk+μ)+βkνkσAk<k>A+.

    Therefore, we find that A+k=b+b24c2>0. Next, we will demonstrate the positive definiteness of the local disease equilibrium.

    Theorem 1. Let D={(S1,A1,I1,R1,,Sn,An,In,Rn)R4n+,Nk(t)=Sk+Ak+Ik+RkΛμ}. The set D is positively invariant for model (2.1).

    Proof. First, we illustrate the solution is positive. According to A+k>0, and A+k=(δk+μ)νkI+k, we know that I+k>0. By weighting and summing the fourth equation of (3.1), we have nk=1p(k)δkI+k(t)μnk=1p(k)R+k(t)=0, thus R+>0 and consequently, R+k>0. By weighting and summing the second equation of (3.1), we have nk=1p(k)βk(θkA+k(t)+I+k(t))S+k(t)nk=1p(k)vkA+k(t)μnk=1p(k)A+k(t)=0. It is obvious that nk=1βk(θkA+k(t)+I+k(t))nk=1p(k)S+k(t)nk=1p(k)βk(θkA+k(t)+I+k(t))S+k(t)>0, which indicates that S+>0. Assuming that S+k<0, then t,˙Sk>0, which is a contradiction. Therefore, S+k>0. Next, we illustrate the boundedness of the solution. The total population of each node is defined by Nk(t)=Sk(t)+Ak(t)+Ik(t)+Rk(t), which satisfies ˙Nk(t)=μNk(t)+Λ. Obviously, we can get Nk(t)=[Nk(0)Λμ]eμt+Λμ. So, we can get that t0,Nk(t)=Sk+Ak+Ik+RkΛμ.

    The basic reproduction number, denoted as R0, plays a pivotal role in epidemiology. It represents the average number of people an infected individual can transmit the disease to in the absence of any intervention measures. The computation of R0 varies depending on the mode of disease transmission and the epidemiological model employed. Common methodologies include the next-generation matrix, epidemiological parameter estimation, branching process models, and dynamical systems analysis. The most frequently used method, particularly applicable to the compartmental models discussed in this article, is the next-generation matrix [32,33,34,35]. This approach primarily involves calculating the average number of secondary infections generated by an infective individual over the course of their infectious period. It typically requires the computation of the average expected matrix of disease transmission, followed by determining its largest eigenvalue.

    According to the method of the second moment matrix, we can initially classify the districts into diseased districts F(x) and non-diseased districts V(x), as given by:

    F(x)=(βk(θkAk(t)+Ik(t))Sk(t)+σAk<k>ni=1p(i)Ai(t)0);V(x)=(νkAk(t)+μAk(t)+σAAk(t)νkAk(t)+δkIk(t)+μIk(t)).

    Hence, the basic reproduction number R0 corresponds to the largest spectral radius of the matrix FV1. In this context, F and V represent the Jacobian matrices of F(x) and V(x) evaluated at E0, respectively. The matrix FV1 is defined as:

    FV1=diag(βkθkS0kνk+μ+σA+βkS0kνk(δk+μ)(νk+μ+σA))+Kdiag(σAνk+μ+σA), (3.2)

    where,

    K=[p(1)kp(2)kp(n)k2p(1)k2p(2)k2p(n)knp(1)knp(2)knp(n)k].

    From the above formulas, we can obtain:

    1) When all parameters are the same for each community,

    R0σSkmaxkβθΛ(δ+μ)+βΛν(ν+μ+σA)(μ+σS)(δ+μ)μ+βθΛ(δ+μ)+βΛν(ν+μ+σA)(μ+σS)(δ+μ)+σAν+μ+σA,

    in a finite-scale-free network with N nodes, initial node degree m0, and adding m links at each time, the degree distribution follows p(k)=(γ11)mγ11kγ1. Then, k2m, kmaxmN1/2, R0<1, and N<2(ν+μ)(μ+σS)(δ+μ)μ2[βθΛ(δ+μ)+βΛν]μ[βθΛ(δ+μ)+βΛν]σS are equivalent;

    2) When the parameters in different communities are not exactly the same,

    R0=ρ(FV1)max(βkθkS0kνk+μ+σA+βkS0kνk(δk+μ)(νk+μ+σA))+max(σAνk+μ+σA).

    The basic reproduction number R0 is a critical metric in epidemiology, commonly used to assess the potential for the spread of infectious diseases. In epidemiology, R0 is often compared to 1 to determine the trend of disease transmission: When R0>1, it signifies that, on average, each infected individual can transmit the disease to more than one person. In such cases, it is expected that the disease will spread in the population and may lead to an epidemic. When R0=1, each infected individual, on average, transmits the disease to only one other person, and the spread of the disease remains stable without expansion or reduction. When R0<1, each infected individual, on average, transmits the disease to fewer than one person, indicating that the disease spread will gradually decline and may eventually disappear. Therefore, control measures and preventive strategies are typically designed to reduce R0 to below 1, slowing down the spread of the disease and gaining control over the outbreak.

    In situations where the network topology is uncertain, meaning the corresponding adjacency matrix is uncertain, the precise computation of the value of R0 becomes challenging. In such cases, establishing an upper bound for R0 is both important and meaningful. Determining an upper bound for R0 helps us assess the potential risk of disease spread in the worst-case scenario and provides a safe threshold for epidemic control strategies. Even when the precise calculation of R0 is not feasible, analyzing factors that may influence the upper bound of R0 still offers valuable insights into effective epidemic control strategies.

    In the context of metapopulation network models for infectious diseases, this study distinguishes between two distinct scenarios: the homogeneous case, where all communities share identical parameters, and the heterogeneous case, where parameters vary among different communities. The formulation of the upper bound for the basic reproduction number, R0, differs under these two circumstances. It's worth noting that the homogeneous scenario essentially serves as a specific instance of the more general heterogeneous case.The analysis within this article primarily focuses on the latter, more complex scenario of heterogeneous community parameters. This approach inherently encompasses the homogeneous case, providing a comprehensive framework applicable to both specific and varied settings. Furthermore, the core of this manuscript revolves around the stability analysis of the model. It posits that if the conclusions derived for the general case (heterogeneous parameters) hold true, they will invariably apply to the special case (homogeneous parameters) as well. This methodology ensures the analysis's robustness and wide applicability, catering to a diverse range of epidemiological scenarios encountered in real-world situations.

    In the following section, we will address the local stability and global stability of equilibrium points for the model under general conditions (heterogeneous parameters). The stability conclusions derived are equally applicable to the special case (homogeneous parameters). First, let's analyze the local asymptotic stability of the disease-free equilibrium point in the system.

    Theorem 2. If R0<1, then the disease free equilibrium E0 is locally asymptotically stable. If R0>1, the disease free equilibrium E0 is unstable.

    Proof. The Jacobian matrix of system (2.1) at the disease-free equilibrium E0 is:

    M=[B+σS(KE)CD00CFB+σA(KE)D00FBG000GB+σR(KE)],

    where, B=diag(μ),C=diag(βkθkS0k),D=diag(βkS0k),F=diag(νk),G=diag(δk), because,

    ρ(σS(KE)B)<ρ(σSEB)+ρ(σSK)=max(μ)<0,ρ(σR(KE)B)<ρ(σREB)+ρ(σRK)=max(μ)<0,

    and

    [CFB+σA(KE)DFBG],

    make a line change, we can get

    [CFB+σA(KE)+DF(B+G)0FBG].

    Obviously,

    ρ(BG)=max(μδk)<0;ρ(CFB+σA(KE)+DF(B+G))=ρ(diag(νk+μ+σA)diag(βkS0kνk(δk+μ)(νk+μ+σA)+βkθkS0kνkμσAνk+μ+σA+σAKνk+μ+σA1))ρ(diag(νk+μ+σA))ρ(diag(βkS0kνk(δk+μ)(νk+μ+σA)+βkθkS0kνkμσAνk+μ+σA+σAKνk+μ+σA1))=ρ(diag(νk+μ+σA))(R01)<0.

    The eigenvalues of M are in the left half open plane of the complex plane, so the disease free equilibrium E0 is locally asymptotically stable.

    Theorem 3. If R0<1, then the disease free equilibrium E0 is globally asymptotically stable. If R0>1, the disease free equilibrium E0 is unstable.

    Proof. We utilize an approach from page 4 of Castillo-Chavez et al. (2002) [27] to establish the global stability of the disease-free equilibrium within the system. Within the framework of this theorem, we rewrite system (2.1) as:

    dXdt=F(X,Y),
    dYdt=G(X,Y),withG(X,0)=0,

    here, X=(S1,S2,,Sn,R1,R2,,Rn)R2n+ and Y=(A1,A2,,An,I1,I2,,In)R2n+ denote the dependent variables of uninfected and infected individuals, respectively. The right-hand sides, i.e., F(X,Y) and G(X,Y) are, respectively,

    (Λβ1(θ1A1+I1)S1μS1σsS1+σs1<k>ni=1p(i)SiΛβ2(θ2A2+I2)S2μS2σsS2+σs2<k>ni=1p(i)SiΛβn(θnAn+In)SnμSnσsSn+σsn<k>ni=1p(i)Siδ1I1μR1σRR1+σR1<k>ni=1p(i)Riδ2I2μR2σRR2+σR2<k>ni=1p(i)RiδnInμRnσRRn+σRn<k>ni=1p(i)Ri);(β1(θ1A1+I1)S1ν1A1μA1σAA1+σA1<k>ni=1p(i)Aiβ2(θ2A2+I2)S2ν2A2μA2σAA2+σA2<k>ni=1p(i)Aiβn(θnAn+In)SnνnAnμAnσAAn+σAn<k>ni=1p(i)Aiν1A1δ1I1μI1ν2A2δ2I2μI2νnAnδnInμIn).

    According to the approach in [27], the disease-free equilibrium in this context can be expressed as:

    E0k=(X,0)=(Λμ+σS+σSμ+σS1<k>Λμ,,Λμ+σS+σSμ+σSn<k>Λμ,0,,0,0,,0,0,,0),

    is globally asymptotically stable for R0<1 as long as the following conditions are met for (X, Y). In the first step, we understand that for the sub-system:

    dXdt=F(X,0)=(ΛμS1σsS1+σs1<k>ni=1p(i)SiΛμS2σsS2+σs2<k>ni=1p(i)SiΛμSnσsSn+σsn<k>ni=1p(i)SiμR1σRR1+σR1<k>ni=1p(i)RiμR2σRR2+σR2<k>ni=1p(i)RiμRnσRRn+σRn<k>ni=1p(i)Ri),

    the equilibrium, X=(Λμ+σS+σSμ+σS1<k>Λμ,,Λμ+σS+σSμ+σSn<k>Λμ,0,,0), is globally asymptotically stable, which is a decoupled linear system.

    Second, we observe that the Jacobian matrix given by

    A|E0=[A11A12A21A22],

    is clearly an Metzler-matrix. Here,

    A11=[β1θ1ν1μσA+σA1p(1)<k>σA1p(2)<k>σA1p(n)<k>,σA2p(1)<k>β2θ2νμ2σA+σA2p(2)<k>σA2p(n)<k>σAnp(1)<k>σAnp(2)<k>βnθnνnμσA+σAnp(n)<k>],
    A12=[β1000β2000βn],A21=[ν1000ν2000νn],A22=[δ1μ1000δ2μ2000δnμn].

    Then, we can get

    ˜G(X,Y)=AYG(X,Y)=A[A1A2AnI1I2In][β1(θ1A1+I1)S1ν1A1μA1σAA1+σA1<k>ni=1Aiβ2(θ2A2+I2)S2ν2A2μA2σAA2+σA2<k>ni=1Aiβn(θnAn+In)SnνnAnμAnσAAn+σAn<k>ni=1Aiν1A1δ1I1μI1ν2A2δ2I2μI2νnAnδnInμIn]=[β1(1S1)(θ1A1+I1)β2(1S2)(θ2A2+I2)βn(1Sn)(θnAn+In)000]0.

    Utilizing the approach found on page 4 of [27], we can establish that the disease-free equilibrium E0 is globally asymptotically stable.

    Theorem 4. In positive invariant D, the endemic equilibrium E+ of system is globally asymptotically stable, if R01.

    Proof. Consider the Lyapunov function:

    Vk=c1(SkS+kS+klnSkS+k)+c2(AkA+kA+klnAkA+k)+c3(IkI+kI+klnIkI+k),

    with the positive coefficients c1, c2, c3 satisfy c1=c2=1, c3νkA+k=c1βkS+kI+k.

    As constructed, Vk is a non-negative functional and we have

    Vk=0(Sk,Ak,Ik,Rk)=Ek+.

    Whose derivative along the solution Ek+ gives

    ˙Vk=c1(1S+kSk)[Λβk(θAk+Ik)SkμSkσSSk+σSkkni=1p(i)Si]+c2(1A+kAk)[βk(θAk+Ik)SkνkAkμAkσAAk+σAkkni=1p(i)Ai]+c3(1I+kIk)[νkAkδkIkμIk].

    Since ˙S+k=˙A+k=˙I+k=0 is satisfied at Ek+, we can get:

    ˙Vk=c1(1S+kSk)[βk(θkA+k+I+k)S+kβk(θkAk+Ik)Sk+μ(S+kSk)+σS(S+kSk)+σSkkni=1p(i)(SiS+i)]+c2(1A+kAk)[βk(θkA+k+I+k)S+k+βk(θkAk+Ik)Sk+(νk+μ)(A+kAk)+σA(A+kAk)+σAkkni=1p(i)(AiA+i)]+c3(1I+kIk)[νk(AkA+k)+(δk+μ)(I+kIk)]=ϕ1k+ϕ2k+ϕ3k,

    where,

    ϕ1k=c1(1S+kSk)[βk(θkA+k+I+k)S+kβk(θkAk+Ik)Sk+μ(S+kSk)]+c2(1A+kAk)[βk(θkA+k+I+k)S+k+βk(θkAk+Ik)Sk+(νk+μ)(A+kAk)]+c3(1I+kIk)[νk(AkA+k)+(δk+μ)(I+kIk)];ϕ2k=c1(1S+kSk)[σS(S+kSk)+σSkkni=1p(i)(SiS+i)];ϕ3k=c2(1A+kAk)[σA(A+kAk)+σAkkni=1p(i)(AiA+i)].

    First, simplifying ϕ1k, we can get:

    ϕ1k=(c1βkθkA+kS+kc1βkθkAkSk+c1βkI+kS+kc1βkIkSkc1βkθkA+kS+kS+kSk+c1βkAkS+kc1βkI+kS+kS+kSk+c1βkIkS+kc2βkθkA+kS+kc2βkI+kS+k+c2βkθkAkSk+c2βkIkSk+c2βkθkA+kA+kS+kAk+c2βkI+kA+kS+kAkc2βkθkA+kSkc2βkIkA+kSkAk+c1βkθkA+kS+kc1βkθkA+kS+k)+c1(1S+kSk)(μ)(S+kSk)+c2(1A+kAk)(νk+μ)(A+kAk)+c3(1I+kIk)[νk(AkA+k)+(δk+μ)(I+kIk)]=c1βkθkA+kS+k(SkS+k+S+kSk2)c1(μ)S+k(SkS+k+S+kSk2)+c1βkθkA+kS+k(AkA+k+A+kAk2)c2(νk+μ)A+k(AkA+k+A+kAk2)c3νkA+k(AkA+k+A+kAk2)+c3νkA+k(AkA+k+A+kAk2)+c1βk(1S+kSk)(I+kS+kIkSk)+c1(1A+kAk)(IkSkI+kS+k)+c3(1I+kIk)(νkAkνkA+k)c3(δk+μ)I+k(IkI+k+I+kIk2)=ψ1k+ψ2k+ψ3k,

    with,

    ψ1k=c1βkθkA+kS+k(SkS+k+S+kSk2)c1μS+k(SkS+k+S+kSk2)=c1(Λ+βkI+kS+k)(SkS+k+S+kSk2)+σS(SkS+k+S+kSk2)σSkkni=1p(i)S+i(SkS+k+S+kSk2);ψ2k=c1βkθkA+kS+k(AkA+k+A+kAk2)c2(νk+μ)A+k(AkA+k+A+kAk2)+c3νkA+k(AkA+k+A+kAk2)=σS(AkA+k+A+kAk2)σSkkni=1p(i)A+i(AkA+k+A+kAk2);ψ3k=c3νkA+k(AkA+k+A+kAk2)+c1βk(1S+kSk)(I+kS+kIkSk)+c1βk(1A+kAk)(IkSkI+kS+k)+c3(1I+kIk)(νkAkνkA+k)c3(δk+μ)I+k(IkI+k+I+kIk2)=c1βkS+kI+k(3S+kSkAkI+kA+kIkA+kIkSkAkI+kS+k)0.

    It is seen that ψ3k0, by virtue of the elementary inequality (xyz)1/3x+y+z3.

    Next, we discuss those with migration items:

    ψ1k+ϕ2kc1σSni=1p(i)S+ikk(SiS+iSiS+kS+iSkSkS+k+1),ψ2k+ϕ3k=c2σAni=1p(i)A+ikk(AiA+iAiA+kA+iAkAkA+k+1).

    Then, by virtue of the elementary inequality 1x+lnx0,x>0. we can get that

    ˙Vk=ϕ1k+ϕ2k+ϕ3k=ψ1k+ψ2k+ψ3k+ϕ2k+ϕ3kσSni=1p(i)S+ikk(SiS+iSiS+kS+iSkSkS+k+1)+σAni=1p(i)A+ikk(AiA+iAiA+kA+iAkAkA+k+1)σSni=1p(i)S+ikk(SiS+i+lnSiS+iSkS+klnSkS+k)+σAni=1p(i)A+ikk(AiA+i+lnAiA+iAkA+klnAkA+k).

    Obviously, there exists a positive constant c such that

    σAkkni=1p(i)A+i=cσSkkni=1p(i)S+i.

    Therefore,

    ˙VkσSkkni=1p(i)S+i(SiS+i+lnSiS+iSkS+klnS+kSk+cAiA+i+clnAiA+icAkA+kclnAkA+k)=σSkkni=1p(i)S+i(cAiA+i+clnAiA+i+SiS+i+lnSiS+i)σSkkni=1p(i)S+i(cAkA+k+clnAkA+k+SkS+k+lnSkS+k)=σSkkni=1p(i)S+i[Gi(Si,Ii)Gk(Sk,Ik)],

    where Gi(Si,Ii)=(cAiA+i+clnAiA+i+SiS+i+lnSiS+i). Consider a randomly generated scale-free network graph with adjacency matrix A=(Aij)nn. The corresponding weighted directed graph is denoted as (G,A). Let li=TTiw(T), in which Ti is the set of all spanning trees T of (G,A) that are rooted at vertex i, and w(T) is the weight of T. In particular, if (G,A) is strongly connected, then li>0 for 1in. and consider the corresponding weight matrix W=(wij) of A, where wij=σSAjikjS+j, and kj is the degree of node j. Then the following equation can be obtained from reference [25]:

    ni=1li˙Vi=ni=1linj=1σSAjikjS+j[Gj(Sj,Ij)Gi(Si,Ii)]=0.

    In the context of mean-field, Aji represents the probability of connection between nodes i and j. Then, by the virtue Aji=kjkiNk, it is seen that

    nk=1lk˙Vknk=1lkσSkkni=1p(i)S+i[Gi(Si,Ii)Gk(Sk,Ik)]=ni=1linj=1σSAjikjS+j[Gj(Sj,Ij)Gi(Si,Ii)]=0.

    From another perspective, since we discuss scale-free networks in a mean-field sense, there is no specific form of the adjacency matrix. However, we can be certain that its result corresponds to the expectation of many specific matrices of scale-free networks. If li can be found for each term such that ni=1li˙Vi equals 0, then its expected form, k=1nlk˙Vk, must also equal 0.

    From the previous context, we already know that the local disease equilibrium E+ has a unique positive solution. By virtue of LaSalle's invariance principle, we can conclude that the disease-free equilibrium E+ is globally asymptotically stable.

    Remark 3. In this paper, we approach the representation of scale-free networks statistically. Consequently, there is no specific matrix diagram for a scale-free network. In such cases, finding specific parameters like li becomes challenging. Therefore, we employ statistical concepts to demonstrate the global stability of the model's endemic equilibrium. In particular, assuming that the spanning tree weights of nodes with the same degree in a scale-free network are equal, we can select the weight of the spanning tree of nodes with the parameter lk representing degree k to show that ˙V0.

    The results from the previous section indicate that when R0<1, the disease-free equilibrium E0 of model (2.1) is globally asymptotically stable, implying that the number of infected individuals will tend towards zero, and the disease will eventually be eradicated. Conversely, when R0>1, the endemic equilibrium E+ of model (2.1) is globally asymptotically stable, indicating that the number of infected individuals will tend towards a positive value I+, and the disease will persist indefinitely. To verify the stability of the equilibria I0 and I+ discussed in the previous section, numerical simulations using MATLAB have been conducted in this section.

    Our focus of this study is to offer a theoretical framework for analyzing and interpreting epidemic dynamics and transmission patterns under various conditions. Therefore, the parameters employed in this study, while thoughtfully constructed within the confines of a mathematical model, may not directly mirror specific biological properties. The objective of the model is to explore and comprehend the theoretical dynamics of infectious diseases and potential epidemiological patterns. This approach enables us to analyze and predict the spread of diseases on a broader and more abstract level, thus contributing to a deeper understanding of the nature of infectious disease dynamics.

    To begin our exploration of the dynamics of various populations in the infectious disease model within a scale-free network, we considered the topological characteristics of such a network. Utilizing the preferential attachment algorithm, where nodes tend to connect to existing nodes with higher degrees, we devised an algorithm for the random generation of a scale-free network. This resulted in a network with a node count of N=1000 and an initial network node count of m0=3. Following the principles of the scale-free network model, m=2 links were added for each new node, as illustrated in Figure 1(a). As depicted in Figure 1(b), the node distribution of this scale-free network follows a power-law form.

    Figure 1.  Scale-free graph with N = 1000 nodes, m0=3, and m=2.

    Second, this study places emphasis on investigating the specific impact of varying migration rates among different populations on the disease transmission capability. Accordingly, under the assumption that parameters across different compartments are equal, the dynamics of various populations within the model have been taken into account. This approach facilitates the exploration of how differential migration rates among susceptible, infected, and recovered individuals within a community network influence the overall disease dynamics.

    Select a set of parameter values: β=0.1, θ=0.02, ν=0.1, δ=0.1, σS=0.01, σA=0.01, σR=0.01, Λ=0.1, μ=0.1, and initial variable values S(0)=0.0033, A(0)=0.0033, I(0)=0.0033, R(0)=0, corresponding to a basic reproduction number of R0=0.8124<1.

    From Figure 2, it can be observed that the equilibrium I is stable and tends towards I0. Additionally, when all other parameters are held constant, the disease takes longer to disappear as k increases.

    Figure 2.  Disease-free.

    Select a set of parameter values: β=0.1, θ=0.02, ν=0.1, δ=0.1, σS=0.01, σA=0.01, σR=0.01, Λ=0.1, μ=0.1, and initial variable values S(0)=0.0033, A(0)=0.0033, I(0)=0.0033, R(0)=0, corresponding to a basic reproduction number of R0=2.5235>1.

    From Figure 3, it is evident that the equilibrium I is stable and tends towards I+. Additionally, when all other parameters remain constant, an increase in k leads to an increase in I+, signifying a higher concentration of the disease.

    Figure 3.  Endemic.

    Observations of the expressions for R0 itself and its upper bound in Section 3 indicate that the basic reproduction number R0 is influenced by factors such as the susceptibility migration rate and the asymptomatic migration rate. To further illustrate and discuss potential epidemic scenarios, we provide an example below.

    Building upon the previous discussion, particularly from Eq (3.1), we have already established the following expressions:

    In the presence of migration, we have,

    R0=ρ(FV1)=ρ(βdiag(θ(δ+μ)+v(v+μ+σA)(δ+μ)S0k)+σAv+μ+σAK).

    Clearly, in the absence of migration, we have,

    R0=βθ(δ+μ)+v(v+μ)(δ+μ)Λμ.

    It is evident from both expressions that they are related to the infection rate. To illustrate the specific impact of migration on the numerical values of R0, taking the scale-free network illustrated in Figure 1 as an example, and we select the following parameters: θ=0.02, ν=0.1, δ=0.1, Λ=0.1, μ=0.1, σS=0.1, and σA=0.1. Figure 4(a) is presented to provide an intuitive visualization of the effects of migration.

    Figure 4.  The analysis of R0.

    Next, to further investigate and demonstrate the influence of different population migration rates on R0, we choose the parameters β=0.1, θ=0.02, ν=0.1, δ=0.1, Λ=0.1, and μ=0.1. This allows us to assess the impact of susceptibility migration rate σS and asymptomatic infection migration rate σA on R0, as shown in Figure 4(b).

    From Figure 4(a), it can be observed that, consistent with the expressions for R0, when migration is present, R0 exhibits a nonlinear relationship with β, whereas in the absence of migration, R0 has a linear relationship with β. Furthermore, under the same parameter conditions, when migration is present, the value of R0 is higher than the basic reproduction number R0 in the absence of migration. This indicates that inter-community migration makes it more challenging to eliminate infectious diseases. This result is highly reasonable because, in the presence of migration, disease transmission is not only directly related to the infection rate within the community but also influenced by the importation of cases from other communities, leading to a nonlinear relationship. In contrast, in the absence of migration, R0 is directly related to the infection rate β. Figure 4(b) illustrates that both the susceptibility migration rate and the asymptomatic infection migration rate have an impact on the basic reproduction number R0. Clearly, as the migration rates increase, the basic reproduction number also increases, indicating that inter-community population migration increases the likelihood of disease outbreaks. Therefore, we can conclude that the existence of migration between communities increases the probability of disease outbreaks and widens the scope of disease transmission. If not properly controlled, it may lead to widespread epidemic outbreaks.

    Remark 4. Our results illustrate that community network structure and population migration have a significant impact on the spread of infectious diseases. Notably, scale-free network structures increase the probability of disease outbreaks, and population migration expands the scope of infection. It is important to note that while the model is based on a scale-free network, the parameter values may not directly reflect biological characteristics. However, the theoretical insights provided by this study are crucial for developing effective infectious disease control strategies. Future work will explore the integration of the model with specific biological data to enhance its practical application value and biological accuracy.

    Considering the exacerbation of the epidemic due to the presence of asymptomatic individuals, especially individual migration between communities leading to widespread outbreaks, we establish a network-based SAIR infectious disease model to investigate the impact of individual migration on the spread of the disease in the presence of asymptomatic individuals. Based on this model, we calculate the epidemic threshold R0 and find that disease transmission is not only related to intra-community parameters such as infection rate and recovery rate but is also influenced by network structure and different population migration rates between communities. Furthermore, we observe and prove, using the method of decomposition theorem and constructing a Lyapunov function, the stability of the disease-free equilibrium when R0<1 and the stability of the endemic equilibrium when R0>1.

    Looking ahead, our objective is to enhance our model by incorporating individual connectivity differences and delving into the impact of asymptomatic carriers on disease transmission. While our current model does not differentiate individual connectivity, we acknowledge the significance of this extension. Our research agenda encompasses addressing this aspect in future studies, planning to explore more intricate network structures, and introducing additional data to better capture subtle variations in individual connectivity. This improvement will not only contribute to a more realistic depiction of disease spread dynamics but will also extensively investigate the role of asymptomatic carriers in various connectivity scenarios. In the future, we will consider models with heterogeneous connectivity, conduct numerical tests, and comprehensively assess the influence of individual connectivity on disease dynamics. Through these efforts, we aim to deepen our understanding of disease transmission and provide valuable insights for the field of infectious disease modeling.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by the Master’s Innovation Foundation of Wenzhou University (Grant 3162023004049).

    The authors declare there is no conflict of interest.



    [1] Abbasi K, Hussain K, Haddad A, et al. (2021) The role of financial development and technological innovation towards sustainable development in Pakistan: Fresh insights from consumption and territory-based emissions. Technol Forecast Soc Chang 176: 1–13. https://doi.org/10.1016/j.techfore.2021.121444 doi: 10.1016/j.techfore.2021.121444
    [2] Acheampong A, Amponsah M, Boateng E (2020) Does financial development mitigate carbon emissions? Evidence from heterogeneous financial economies. Energ Econ 88: 1–11. https://doi.org/10.1016/j.eneco.2020.104768 doi: 10.1016/j.eneco.2020.104768
    [3] Ahmed W, Ashraf M, Khan S, et al. (2020) Analyzing the impact of environmental collaboration among supply chain stakeholders on a firm's sustainable performance. Opera Manage Res 13: 4–21. https://doi.org/10.1007/s12063-020-00152-1 doi: 10.1007/s12063-020-00152-1
    [4] Akram R, Majeed T, Fareed Z, et al. (2020) Asymmetric effects of energy efficiency and renewable energy on carbon emission of BRICS economies: Evidence from nonlinear panel autoregressive distributed lag model. Environ Sci Pollut R 27: 18254–18268. https://doi.org/10.1007/s11356-020-08353-8 doi: 10.1007/s11356-020-08353-8
    [5] Al-Batayneh A, Khaddam A, Irtaimeh H, et al. (2021) Drivers of performance indicators for success of green SCM strategy and sustainable performance: The mediator role innovation strategy. Int J Serv Sci Manage Eng Technol 12: 14–28. https://doi.org/10.4018/IJSSMET.2021090102 doi: 10.4018/IJSSMET.2021090102
    [6] Albort-Morant G, Leal-Millán A, Cepeda-Carrión G (2016) The antecedents of green innovation performance: A model learning and capabilities. J Bus Res 69: 4912–4917. https://doi.org/10.1016/j.jbusres.2016.04.052 doi: 10.1016/j.jbusres.2016.04.052
    [7] Ali W, Jun W, Hussain H, et al. (2021) Does green intellectual capital matter for green innovation adoption? Evidence from the manufacturing SMEs of Pakistan. J Intellect Cap 22: 868–888. https://doi.org/10.1108/JIC-06-2020-0204 doi: 10.1108/JIC-06-2020-0204
    [8] Andersen J (2021) A relational natural-resource-based view on product innovation: The influence of green product innovation and green suppliers on differentiation advantages in small manufacturing firms. Technovation 104: 1–11. https://doi.org/10.1016/j.technovation.2021.102254 doi: 10.1016/j.technovation.2021.102254
    [9] Andersson LM, Bateman TS (1997) Cynicism in the workplace: Some causes and effects. J Organ Behav 18: 449–469. https://doi.org/10.1002/(SICI)1099-1379(199709)18:5<449::AID-JOB808>3.0.CO;2-O doi: 10.1002/(SICI)1099-1379(199709)18:5<449::AID-JOB808>3.0.CO;2-O
    [10] Anees S, Zaidi H, Hussain M, et al. (2021) Resources, environment and sustainability dynamic linkages between financial inclusion and carbon emission: Evidence from selected OECD countries. Resour Environ Sustain 4: 1–12. https://doi.org/10.1016/j.resenv.2021.100022 doi: 10.1016/j.resenv.2021.100022
    [11] Anwar A, Siddique M, Dogan E, et al. (2021) The moderating role of renewable and non-renewable energy in environment-income nexus for ASEAN countries: Evidence from method of moments quantile regression. Renew Energ 164: 956–967. https://doi.org/10.1016/j.renene.2020.09.128 doi: 10.1016/j.renene.2020.09.128
    [12] Arnold M, Schuette D, Wagner A (2021) Neglected risk in financial innovation: Evidence from structured product counterparty exposure. Eur Financ Manag 27: 287–325. https://doi.org/10.1111/eufm.12281 doi: 10.1111/eufm.12281
    [13] Astuti D, Datrini L (2021) Green competitive advantage: Examining the role of environmental consciousness and green intellectual capital. Manage Sci Lett 11: 1141–1152. https://doi.org/10.5267/j.msl.2020.11.025 doi: 10.5267/j.msl.2020.11.025
    [14] Aulakh PS, Gencturk EF (2000) International principal-agent relationships-control, governance and performance. Ind Market Manag 29: 521–538. https://doi.org/10.1016/S0019-8501(00)00126-7 doi: 10.1016/S0019-8501(00)00126-7
    [15] Barney J (1991) Firm resources and sustained competitive advantage. J Manage 17: 99–120. https://doi.org/10.1177/014920639101700108 doi: 10.1177/014920639101700108
    [16] Biswas S (2020) Al-Bank of the Future: Can Banks Meet the AI Challenge? New York: McKinsey and Co.
    [17] Bond C (2020) 6 predictions for banking in 2021. US News, 23 December. Available from: https://money.usnews.com/banking/articles/predictions-for-banking.
    [18] Cai W, Li G (2018) The drivers of eco-innovation and its impact on performance: Evidence from China. J Clean Prod 176: 110–118. https://doi.org/10.1016/j.jclepro.2017.12.109 doi: 10.1016/j.jclepro.2017.12.109
    [19] Castelli B (2019) Machine Learning: What Every Risk and Compliance Professional Needs to Know. PWC. Available from: https://www.pwc.com/us/en/services/consulting/cybersecurity-privacy-forensics/library/machine-learning-risk-compliance.html.
    [20] Cepeda-Carrion G, Cegarra J, Cillo V (2019) Tips to use partial least squares structural equation modelling (PLS-SEM) in knowledge management. J Knowl Manag 23: 67–89. https://doi.org/10.1108/JKM-05-2018-0322 doi: 10.1108/JKM-05-2018-0322
    [21] Chang X, Chen Y, Wang S, et al. (2019) Credit default swaps and corporate innovation. J Financ Econ 134: 474–500. https://doi.org/10.1016/j.jfineco.2017.12.012 doi: 10.1016/j.jfineco.2017.12.012
    [22] Chen M, Wang H, Wang M (2018a) Knowledge sharing, social capital, and financial performance: The perspective of innovation strategy in technological clusters. Knowl Man Res Pract 16: 89–104. https://doi.org/10.1080/14778238.2017.1415119 doi: 10.1080/14778238.2017.1415119
    [23] Chen Z, Huang S, Liu C, et al. (2018b) Fit between organizational culture and innovation strategy: Implications for innovation performance. Sustainability 10: 1–18. https://doi.org/10.3390/su10103378 doi: 10.3390/su10103378
    [24] Deluca H, Wagner M, Block J (2018) Sustainability and environmental behavior in family firms: A longitudinal analysis of environment related activities, innovation, and performance. Bus Strat Environ 27: 152–172. https://doi.org/10.1002/bse.1998 doi: 10.1002/bse.1998
    [25] Farkavcova V, Rieckhof R, Guenther E (2018) Expanding knowledge environmental impacts of transport processes for more sustainable supply chain decisions: A case study using life cycle assessment. Transport Res D-TR E 61: 68–83. https://doi.org/10.1016/j.trd.2017.04.025 doi: 10.1016/j.trd.2017.04.025
    [26] Fatoki O (2021) Environmental orientation and green competitive advantage of hospitality firms in South Africa: mediating effect of green innovation. J Open Innov Technol Market Complex 7: 1–14. https://doi.org/10.3390/joitmc7040223 doi: 10.3390/joitmc7040223
    [27] Fernando Y, Chiappetta-Jabbour C, Wah W (2019) Pursuing green growth in technology firms through the connections between environmental innovation and sustainable business performance: Does service capability matter? Resour Conserv Recy 141: 8–20. https://doi.org/10.1016/j.resconrec.2018.09.031 doi: 10.1016/j.resconrec.2018.09.031
    [28] Gathergood J, Weber J (2017) Financial literacy, present bias, and alternative mortgage products. J Bank Financ 78: 58–83. https://doi.org/10.1016/j.jbankfin.2017.01.022 doi: 10.1016/j.jbankfin.2017.01.022
    [29] Gennaioli N, Shleifer A, Vishny R (2012) Neglected risks, financial innovation, and financial fragility. J Financ Econ 104: 452–468. https://doi.org/10.1016/j.jfineco.2011.05.005 doi: 10.1016/j.jfineco.2011.05.005
    [30] González L, Gil L, Cunill O, et al. (2016) The effect of financial innovation on European banks risk. J Bank Res 69: 4781–4786. https://doi.org/10.1016/j.jbusres.2016.04.030 doi: 10.1016/j.jbusres.2016.04.030
    [31] Gürlek M, Tuna M (2018) Reinforcing competitive advantage through green organizational culture and green innovation. Serv Ind J 38: 467–491. https://doi.org/10.1080/02642069.2017.1402889 doi: 10.1080/02642069.2017.1402889
    [32] Hair J, Hult T, Ringle C, et al. (2019) Manual de Partial Least Squares PLS-SEM. Madrid: OmniaScience. Available from: http://hdl.handle.net/11420/5279.
    [33] Hair J, Sarstedt M (2021) Data, measurement, and causal inferences in machine learning: Opportunities and challenges for marketing. J Market Theory Prac 29: 65–77. https://doi.org/10.1080/10696679.2020.1860683 doi: 10.1080/10696679.2020.1860683
    [34] Hair J, Howard M, Nitzl C (2020) Assessing measurement model quality in PLS-SEM using confirmatory composite analysis. J Bus Res 109: 101–110. https://doi.org/10.1016/j.jbusres.2019.11.069 doi: 10.1016/j.jbusres.2019.11.069
    [35] Hair J, Hult G, Ringle C, et al. (2017) Mirror, mirror on the wall: A comparative evaluation of composite-based structural equation modeling methods. J Acad Market Sci 45: 616–632. https://doi.org/10.1007/s11747-017-0517-x doi: 10.1007/s11747-017-0517-x
    [36] Hair JF, Celsi M, Money A, et al. (2016) Essentials of Business Research Methods. 3rd Ed. New York, NY: Routledge. https://doi.org/10.4324/9781315704562
    [37] Hart S (1995) A natural-resource-based view of the firm. Acad Manage Rev 20: 986–1014. https://doi.org/10.5465/amr.1995.9512280033 doi: 10.5465/amr.1995.9512280033
    [38] Henseler J (2018) Partial least squares path modeling: Quo vadis? Qual Quant 52: 1–8. https://doi.org/10.1007/s11135-018-0689-6 doi: 10.1007/s11135-018-0689-6
    [39] Hu J, Li J, Li X, et al. (2021) Will green finance contribute to a green recovery? Evidence from green financial pilot zone in China. Frontiers Public Health 9: 1–15. https://doi.org/10.3389/fpubh.2021.794195 doi: 10.3389/fpubh.2021.794195
    [40] Huang J, Li Y (2017) Green innovation and performance: The view of organizational capability and social reciprocity. J Bus Ethics 145: 309–324. https://doi.org/10.1007/s10551-015-2903-y doi: 10.1007/s10551-015-2903-y
    [41] Huang P, Yao C, Chen S (2019a) Development of the organizational resources towards innovation strategy and innovation value: Empirical study. Revista de Cercetare si Interventie Sociala 64: 108–119. https://doi.org/10.33788/rcis.64.9 doi: 10.33788/rcis.64.9
    [42] Huang Z, Liao G, Li Z (2019b) Loaning scale and government subsidy for promoting green innovation. Technol Forecast Soc Chang 144: 148–156. https://doi.org/10.1016/j.techfore.2019.04.023 doi: 10.1016/j.techfore.2019.04.023
    [43] Huber N (2020) AI only scratching the surface of potential in finance services. Financ Times. Available from: https://www.ft.com/content/11aab1cc-907b-11ea-bc44-dbf6756c871a.
    [44] INEGI (2021) Directorio Estadístico Nacional de Unidades Económicas. Available from: https://www.inegi.org.mx/app/mapa/denue/default.aspx.
    [45] Instituto Nacional de Estadística y Geografía[INEGI]. (2023) Banco de Indicadores. Producción Bruta Total. Industrias Manufactureras. Available from: https://www.inegi.org.mx/app/indicadores/?t = 261 & ag = 01#D261.
    [46] Iverson RD, Maguire C (2000) The relationship between job and life satisfaction: Evidence from a remote mining community. Hum Relat 53: 807–839. https://doi.org/10.1177/0018726700536003 doi: 10.1177/0018726700536003
    [47] Jahanger A, Usman M, Murshed M, et al. (2022) The linkage between natural resources, human capital, globalization, economic growth, financial development, and ecological footprint: The moderating role of technological innovation. Resour Policy 76: 1–12. https://doi.org/10.1016/j.resourpol.2022.102569 doi: 10.1016/j.resourpol.2022.102569
    [48] Jiang W, Chai H, Shao J, et al. (2018) Green entrepreneurial orientation for enhancing firm performance: A dynamic capability perspective. J Clean Prod 198: 1311–1323. https://doi.org/10.1016/j.jclepro.2018.07.104 doi: 10.1016/j.jclepro.2018.07.104
    [49] Jin C, Shahzad M, Zafar A, et al. (2022) Socio-economic and environmental drivers of green innovation: Evidence from nonlinear ARDL. Econ Res-Ekonomska Istrazivanja 35: 5336–5356. https://doi.org/10.1080/1331677X.2022.2026241 doi: 10.1080/1331677X.2022.2026241
    [50] Karami M, Madlener R (2021) Business model innovation for the energy market: Joint value creation for electricity retailers and their customers. Energy Res Soc Sci 73: 1–12. https://doi.org/10.1016/j.erss.2020.101878 doi: 10.1016/j.erss.2020.101878
    [51] Kemp R, Pearson P (2008) MEI project about measuring eco-innovation. J Sci Technology Inf 2: 85–95.
    [52] Kim J, Park K (2016) Financial development and deployment of renewable energy technologies. Energ Econ 59: 238–250. https://doi.org/10.1016/j.eneco.2016.08.012 doi: 10.1016/j.eneco.2016.08.012
    [53] Laeven L, Levine R, Michalopoulos S (2015) Financial innovation and endogenous growth. J Financ Intermed 24: 1–24. https://doi.org/10.1016/j.jfi.2014.04.001 doi: 10.1016/j.jfi.2014.04.001
    [54] Le TT (2022) How do corporate social responsibility and green innovation transform corporate green strategy into sustainable firm performance? J Clean Prod 362. https://doi.org/10.1016/j.jclepro.2022.132228 doi: 10.1016/j.jclepro.2022.132228
    [55] Le T, Le H, Taghizadeh-Hesary F (2020) Does financial inclusion impact CO2 emissions? Evidence from Asia. Financ Res Lett 34: 1–13. https://doi.org/10.1016/j.frl.2020.101451 doi: 10.1016/j.frl.2020.101451
    [56] Lepistö K, Saunila M, Ukko J (2023) The effects of soft total quality management on the sustainable developments of SMEs. Sustain Dev 31: 2797–2813. https://doi.org/10.1002/sd.2548 doi: 10.1002/sd.2548
    [57] Li D, Zheng M, Cao C, et al. (2017) The impact of the legitimacy pressure and corporate profitability on green innovation: Evidence from China top 100. J Clean Prod 141: 41–49. https://doi.org/10.1016/j.jclepro.2016.08.123 doi: 10.1016/j.jclepro.2016.08.123
    [58] Li W, Bhutto M, Waris I, et al. (2023) The nexus between environmental corporate social responsibility, green intellectual capital, and green innovation towards business sustainability: An empirical analysis of Chinese automobile manufacturing firms. Int J Env Res Pub He 20: 1–20. https://doi.org/10.3390/ijerph20031851 doi: 10.3390/ijerph20031851
    [59] Lin H, Chen L, Yu M, et al. (2021) Too little or too much of good things? The horizontal S-curve hypothesis of green business strategy on firm performance. Technol Forecast Soc 172. https://doi.org/10.1016/j.techfore.2021.121051 doi: 10.1016/j.techfore.2021.121051
    [60] Liu S, Wang Y (2023) Green innovation effect of pilot zone for green finance reform: Evidence of quasi natural experiment. Technol Forecast Soc 186: 1–10. https://doi.org/10.1016/j.techfore.2022.122079 doi: 10.1016/j.techfore.2022.122079
    [61] Liu Y, Lei J, Zhang Y (2021) A study on the sustainable relationship among the green finance, environmental regulation, and green-total-factor productivity in China. Sustainability 13: 1–27. https://doi.org/10.3390/su132111926 doi: 10.3390/su132111926
    [62] Lopez-Torres GC (2023) The impact of SMEs' sustainability on competitiveness. Meas Bus Excell 27: 107–120. https://doi.org/10.1108/MBE-12-2021-0144 doi: 10.1108/MBE-12-2021-0144
    [63] Maingi M, Wanjiru G, Samuel K, et al. (2013) Financial innovation as a competitive strategy: The Kenyan financial sector. J Modern Accounting Auditing 9: 997–1004. http://repository.rongovarsity.ac.ke/handle/123456789/747
    [64] Maldonado-Guzmán G, Pinzón SY, Alvarado A (2020) Responsabilidad Social Empresarial, Ecoinnovación y Rendimiento Sustentable en la Industria Automotriz de México. Revista Venezolana de Gerencia, 25: 188–205. Available from: https://www.redalyc.org/articulo.oa?id=29062641014%0APDF.
    [65] Mbogoh G (2013) The effect of financial innovation on financial performance of insurance companies in Kenya. Doctoral dissertation, University of Nairobi.
    [66] McKinsey (2020) How Covid-19 has Pushed Companies over the Technology Tipping Point: An Transformed Business Forever. McKinsey and Co. Available from: https://www.mckinsey.com/business-functions/strategy-an-corporate-finance/our-insights/how-covid-19-has-pushed-companies-over-the-technology-tipping-point-and-transformed-business-forever.
    [67] Mohd S, Mohd S, Sharif A, et al. (2022) Importance of green innovation for business sustainability: Identifying the key role of green intellectual capital and green SCM. Bus Strateg Environ 32: 1542–1558. https://doi.org/10.1002/bse.3204 doi: 10.1002/bse.3204
    [68] Mossholder KW, Bennett N, Kemery ER, et al. (1998) Relationships between bases of power and work reactions: The mediational role of procedural justice. J Manage 24: 533–552. https://doi.org/10.1016/S0149-2063(99)80072-5 doi: 10.1016/S0149-2063(99)80072-5
    [69] Naeem M, Conlon T, Cotter J (2022) Green bonds and other assets. Evidence from extreme risk transmission. J Environ Manage 305: 1–12. https://doi.org/10.1016/j.jenvman.2021.114358 doi: 10.1016/j.jenvman.2021.114358
    [70] Najmi A, Kanapathy K, Aziz A (2019) Prioritizing factor influencing consumers' reversing intention of e-waste using analytic hierarchy process. Int J Electron Customer Relationship Manage 12: 58–74. https://doi.org/10.1504/IJECRM.2019.098981 doi: 10.1504/IJECRM.2019.098981
    [71] Nejad G (2022) Research on financial innovations: An interdisciplinary review. Int J Bank Mark 40: 578–612. https://doi.org/10.1108/IJBM-07-2021-0305 doi: 10.1108/IJBM-07-2021-0305
    [72] Nejad G (2016) Research on financial services innovations: A quantitative review and future research directions. Int J Bank Mark 34: 1042–1067. https://doi.org/10.1108/IJBM-08-2015-0129 doi: 10.1108/IJBM-08-2015-0129
    [73] Noailly J, Smeets R (2016) Financing energy innovation: The role of financing constraints for direct technical change from fossil-fuel to renewable innovation. EIB Working Papers No. 216/06. Luxembourg: European Investment Bank (EIB) Available from: http://hdl.handle.net/10419/148571.
    [74] Ortiz-Palafox KH (2019) Sustentabilidad como estrategia competitiva en la gerencia de pequeñas y medianas empresas en México. Revista Venezolana de Gerencia 24: https://www.redalyc.org/jatsRepo/290/29062051001/
    [75] Pham L (2019) Does financial development matter for innovation in renewable energy? Appl Econ Lett 26: 1756–1761. https://doi.org/10.1080/13504851.2019.1593934 doi: 10.1080/13504851.2019.1593934
    [76] Podsakoff PM, MacKenzie SB, Podsakoff NP (2012) Sources of method bias in social science research and recommendations on how to control it. Annu Rev Psychol 63: 539–569. https://doi.org/10.1146/annurev-psych-120710-100452 doi: 10.1146/annurev-psych-120710-100452
    [77] Podsakoff PM, MacKenzie SB, Jeong-Yeong L, et al. (2003) Common method biases in behavioral research: A critical review of the literature and recommended remedies. J Appl Psychol 88: 879–903. https://doi.org/10.1037/0021-9010.88.5.879 doi: 10.1037/0021-9010.88.5.879
    [78] Qiu L, Jie X, Wang Y, et al. (2020) Green product innovation, green dynamic capability, and competitive advantage: Evidence from Chinese manufacturing enterprises. Corp Soc Resp Env Ma 27: 146–165. https://doi.org/10.1002/csr.1780 doi: 10.1002/csr.1780
    [79] Qu C, Shao J, Shi Z (2020) Does financial agglomeration promote the increase of energy efficiency in China? Energ Policy 146: 1–12. https://doi.org/10.1016/j.enpol.2020.111810 doi: 10.1016/j.enpol.2020.111810
    [80] Rehman S, Kraus S, Shah S, et al. (2021) Analyzing the relationship between green innovation and environmental performance in large manufacturing firms. Technol Forecast Soc 163: 1–13. https://doi.org/10.1016/j.techfore.2020.120481 doi: 10.1016/j.techfore.2020.120481
    [81] Ringle C, Sarstedt M, Mitchell R, et al. (2020) Partial least squares structural equation modeling in HRM research. Int J Human Resour Manage 31: 1617–1643. https://doi.org/10.1080/09585192.2017.1416655 doi: 10.1080/09585192.2017.1416655
    [82] Ringle C, Wende S, Becker J (2022) SmartPLS 4 (computer software). Available from: http://www.smartpls.com.
    [83] Rodríguez-Espíndola O, Cuevas-Romo A, Chowdhury S, et al. (2022) The role of circular economy principles and sustainable-oriented innovation to enhance social, economic and environmental performance: Evidence from Mexican SMEs. Int J Prod Econ 248. https://doi.org/10.1016/j.ijpe.2022.108495 doi: 10.1016/j.ijpe.2022.108495
    [84] Rodríguez-González RM, Maldonado-Guzman G, Madrid-Guijarro A (2022) The effect of green strategies and eco-innovation on Mexican automotive industry sustainable and financial performance: Sustainable supply chains as a mediating variable. Corp Soc Resp Env Ma 29: 779–794. https://doi.org/10.1002/csr.2233 doi: 10.1002/csr.2233
    [85] Ronaldo R, Suryanto T (2022) Green finance and sustainability development goals in Indonesian Fund Village. Resour Policy 78: 1–12. https://doi.org/10.1016/j.resourpol.2022.102839 doi: 10.1016/j.resourpol.2022.102839
    [86] Sachs J, Woo W, Yoshino N, et al. (2019) Importance of green finance for achieving sustainable development goals and energy security, In: Sachs J. (Ed.), Handbook of Green Finance: Energy Security and Sustainable Development, Japan: CiNii, 3–12. https://doi.org/10.1007/978-981-13-0227-5_13
    [87] Sardon M (2020) Millennials prefer apps to humans for financial advice. Wall Street J, 16 March. Available from: https://www.wsj.com/articles/millennials-prefer-apps-to-humans-for-financial-advice-11584377127.
    [88] Sarstedt M, Hair JF, Ringle CM, et al. (2016) Estimation issues with PLS and CBSEM: Where the bies lies. J Bus Res 69: 3998–4010. https://doi.org/10.1016/j.jbusres.2016.06.007 doi: 10.1016/j.jbusres.2016.06.007
    [89] Sarstedt M, Hair J, Cheah J, et al. (2019) How to specify, estimate, and validate higher-order constructs in PLS-SEM. Australas Mark J (AMJ) 27: 197–211. https://doi.org/10.1016/j.ausmj.2019.05.003. doi: 10.1016/j.ausmj.2019.05.003
    [90] Saunila M, Ukko J, Rantala T (2018) Sustainability as a driver of green innovation investment and exploitation. J Clean Prod 179: 631–641. https://doi.org/10.1016/j.jclepro.2017.11.211 doi: 10.1016/j.jclepro.2017.11.211
    [91] Scott S, Van Reenen J, Zachariadis M (2017) The long-term effect of digital innovation on bank performance: An empirical study of swift adoption in financial services. Res Policy 46: 984–1004. https://doi.org/10.1016/j.respol.2017.03.010 doi: 10.1016/j.respol.2017.03.010
    [92] Scur G, de Mello A, Schreiner L, et al. (2019) Eco-design requirements in heavyweight vehicle development – a case study of the impact of the Euro 5 emissions standard on the Brazilian industry. Innov Manage Rev 16: 404–442. https://doi.org/10.1108/INMR-08-2018-0063 doi: 10.1108/INMR-08-2018-0063
    [93] Shahzad M, Qu Y, Rehman S, et al. (2022) Impact of stakeholder's pressure on green management practices of manufacturing organizations under the mediation of organizational motives. J Environ Plann Manage 66: 2171–2194. https://doi.org/10.1080/09640568.2022.2062567 doi: 10.1080/09640568.2022.2062567
    [94] Shahzad M, Qu Y, Zafar A, et al. (2021) Does the interaction between the knowledge management process and sustainable development practices boost corporate green innovation? Bus Strateg Environ 30: 1–17. https://doi.org/10.1002/bse.2865 doi: 10.1002/bse.2865
    [95] Sonmez C, Adiguzel Z (2022) An examination of the effects of financial and process innovation on the sustainability of businesses under the influence of entrepreneurial leadership: A research in energy companies. Am J Bus 37: 196–213. https://doi.org/10.1108/AJB-03-2022-0046 doi: 10.1108/AJB-03-2022-0046
    [96] Sonmez C, Adiguzel Z (2023) Effects of innovation finance, strategy, organization, and performance: A case study of company. Int J Innov Sci 15: 42–58. https://doi.org/10.1108/IJIS-08-2021-0146 doi: 10.1108/IJIS-08-2021-0146
    [97] Statista (2023) La Industria Manufacturera En México. Datos Estadísticos. Statista Research Department. Available from: https://es.statista.com/temas/7853/la-industria-manufacturera-en-mexico/#topicOvervi.
    [98] Streeter B (2020) Four ways banks must change before millennials and Gen Z will love you. The Financial Brand. Available from: https://thefinancialbrand.com/103616/banks-millennials-gen-z-personalization-loyalty-fintech-gamification/.
    [99] Stucki T (2019) Which firms benefit from investments in green energy technologies? The effect of energy costs. Res Policy 48: 546–555. https://doi.org/10.1016/j.respol.2018.09.010 doi: 10.1016/j.respol.2018.09.010
    [100] Sun Y, Guan W, Razzaq A, et al. (2022b) Transition towards ecological sustainability through fiscal decentralization, renewable energy, and green investment in OECD countries. Renew Energ 190: 385–395. https://doi.org/10.1016/j.renene.2022.03.099 doi: 10.1016/j.renene.2022.03.099
    [101] Sun Y, Razzaq A, Sun H, et al. (2022a) The asymmetric influence of renewable energy and green innovation on carbon neutrality in China: Analysis from non-linear ARDL model. Renew Energ 193: 334–343. https://doi.org/10.1016/j.renene.2022.04.159 doi: 10.1016/j.renene.2022.04.159
    [102] Tariq M, Khan I, Rizwan M, et al. (2019) Nexus between financial development, tourism, renewable energy, and greenhouse gas emission in high-income countries: A continent-wise analysis. Energ Econ 83: 293–310. https://doi.org/10.1016/j.eneco.2019.07.018 doi: 10.1016/j.eneco.2019.07.018
    [103] Tufano P (2003) Financial innovation. Handbook Econ Financ 1: 307–335. https://doi.org/10.1016/S1574-0102(03)01010-0 doi: 10.1016/S1574-0102(03)01010-0
    [104] Ullah H, Wang Z, Abbas M, et al. (2021b) Association of financial distress and predicted bankruptcy: The case of Pakistani Banking Sector. J Asian Financ Econ Bus 8: 573–585. https://doi.org/10.13106/jafeb.2021.vol8.no1.573 doi: 10.13106/jafeb.2021.vol8.no1.573
    [105] Ullah H, Wang Z, Bashir S, et al. (2021a) Nexus between IT capability and green intellectual capital on sustainable businesses: Evidence from emerging economies. Environ Sci Pollut Res 28: 27825–27843. https://doi.org/10.1007/s11356-020-12245-2 doi: 10.1007/s11356-020-12245-2
    [106] Ullah H, Wang Z, Mohsin M, et al. (2022) Multidimensional perspective of green financial innovation between green intellectual capital on sustainable business: The case of Pakistan. Environ Sci Pollut Res 29: 5552–5568. https://doi.org/10.1007/s11356-021-15919-7 doi: 10.1007/s11356-021-15919-7
    [107] Wang K, Umar M, Akram R, et al. (2021) Is technological innovation making world greener? Evidence from changing growth story of China. Technol Forecast Soc 165: 1–13. https://doi.org/10.1016/j.techfore.2020.120516 doi: 10.1016/j.techfore.2020.120516
    [108] Wang R, Mirza N, Vasbieva D, et al. (2020a) The nexus of carbon emissions, financial development, renewable energy consumption, and technological innovation: What should be the priorities considering COP21 agreements? J Environ Manage 271: 1–13. https://doi.org/10.1016/j.jenvman.2020.111027 doi: 10.1016/j.jenvman.2020.111027
    [109] Wang X, Zhao Y, Hou L (2020b) How does green innovation affect supplier-customer relationships? A study on customer and relationship contingencies. Ind Mark Manage 90: 170–180. https://doi.org/10.1016/j.indmarman.2020.07.008 doi: 10.1016/j.indmarman.2020.07.008
    [110] Wang Y, Yang Y (2021) Analyzing the green innovation practices based on sustainability performance indicators: a Chinese manufacturing industry case. Environ Sci Pollut Res 28: 1181–1203. https://doi.org/10.1007/s11356-020-10531-7 doi: 10.1007/s11356-020-10531-7
    [111] Xie X, Huo J, Zou H (2019) Green process innovation, green product innovation, and corporate financial performance: A content analysis method. J Bus Res 101: 697–707. https://doi.org/10.1016/j.jbusres.2019.01.010 doi: 10.1016/j.jbusres.2019.01.010
    [112] Yousaf Z (2021) Go for green: Green innovation through green dynamic capabilities: Accessing the mediate role of green practices and green value. Environ Sci Pollut Res 28: 54863–54875. https://doi.org/10.1007/s11356-021-14343-1 doi: 10.1007/s11356-021-14343-1
    [113] Yu C, Wu X, Zhang D, et al. (2021) Demand for green finance: Resolving financing constraints on green innovation in China. Energ Policy 153: 1–11. https://doi.org/10.1016/j.enpol.2021.112255 doi: 10.1016/j.enpol.2021.112255
    [114] Yuan G, Ye Q, Sun Y (2021) Financial innovation, information screening and industries green innovation: Industry-level evidence from the OECD. Technol Forecast Soc 171: 1–12. https://doi.org/10.1016/j.techfore.2021.120998 doi: 10.1016/j.techfore.2021.120998
    [115] Yue S, Lu R, Shen Y, et al. (2019) How does financial development affect energy consumption? Evidence from 21 transitional countries. Energ Policy 130: 253–262. https://doi.org/10.1016/j.enpol.2019.03.029 doi: 10.1016/j.enpol.2019.03.029
    [116] Yusliza M, Yong J, Tanveer M, et al. (2020) A structural model of the impact of green intellectual capital on sustainable performance. J Clean Prod 249: 1–14. https://doi.org/10.1016/j.jclepro.2019.119334 doi: 10.1016/j.jclepro.2019.119334
    [117] Zhang D, Rong Z, Ji Q (2019) Green innovation and firm performance: Evidence from listed companies in China. Resour Conserv Recy 144: 48–55. https://doi.org/10.1016/j.resconrec.2019.01.023 doi: 10.1016/j.resconrec.2019.01.023
    [118] Zhang X, Yang H, Kumar N, et al. (2023) Assessing Chinese textile and apparel industry business sustainability: The role of organizational green culture, green dynamic capabilities, and green innovation in relation to environmental orientation and business sustainability. Sustainability 15: 1–21. https://doi.org/10.3390/su15118588 doi: 10.3390/su15118588
    [119] Zhao J, Shahzad M, Dong X, et al. (2021) How does financial risk affect global CO2 emissions? The role of technological innovation. Technol Forecast Soc 168: 14–22. https://doi.org/10.1016/j.techfore.2021.120751 doi: 10.1016/j.techfore.2021.120751
    [120] Zhou M, Li X (2022) Influence of green finance and renewable energy resources over the sustainable development goals of clean energy. Resourc Policy 78: 13–22. https://doi.org/10.1016/j.resourpol.2022.102816 doi: 10.1016/j.resourpol.2022.102816
  • This article has been cited by:

    1. Jianshun Lu, The Construction of a Network Alliance of Foreign Language Teacher Development Communities in the Age of Artificial Intelligence, 2024, 9, 2444-8656, 10.2478/amns-2024-3200
    2. Madhab Barman, Nachiketa Mishra, Network-driven stability analysis and optimal control for a weighted networked SAIR model in epidemiology, 2025, 13, 2195-268X, 10.1007/s40435-024-01556-8
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1966) PDF downloads(191) Cited by(3)

Figures and Tables

Figures(1)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog