In this paper, we consider the long-term behavior of some special solutions to the Wave Kinetic Equation. This equation provides a mesoscopic description of wave systems interacting nonlinearly via the cubic NLS equation. Escobedo and Velázquez showed that, starting with initial data given by countably many Dirac masses, solutions remain a linear combination of countably many Dirac masses at all times. Moreover, there is convergence to a single Dirac mass at long times. The first goal of this paper is to give quantitative rates for the speed of said convergence. In order to study the optimality of the bounds we obtain, we introduce and analyze a toy model accounting only for the leading order quadratic interactions.
Citation: Michele Dolce, Ricardo Grande. On the convergence rates of discrete solutions to the Wave Kinetic Equation[J]. Mathematics in Engineering, 2024, 6(4): 536-558. doi: 10.3934/mine.2024022
[1] | Ardak Kashkynbayev, Yerlan Amanbek, Bibinur Shupeyeva, Yang Kuang . Existence of traveling wave solutions to data-driven glioblastoma multiforme growth models with density-dependent diffusion. Mathematical Biosciences and Engineering, 2020, 17(6): 7234-7247. doi: 10.3934/mbe.2020371 |
[2] | M. B. A. Mansour . Computation of traveling wave fronts for a nonlinear diffusion-advection model. Mathematical Biosciences and Engineering, 2009, 6(1): 83-91. doi: 10.3934/mbe.2009.6.83 |
[3] | Blessing O. Emerenini, Stefanie Sonner, Hermann J. Eberl . Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects. Mathematical Biosciences and Engineering, 2017, 14(3): 625-653. doi: 10.3934/mbe.2017036 |
[4] | Maryam Basiri, Frithjof Lutscher, Abbas Moameni . Traveling waves in a free boundary problem for the spread of ecosystem engineers. Mathematical Biosciences and Engineering, 2025, 22(1): 152-184. doi: 10.3934/mbe.2025008 |
[5] | Tracy L. Stepien, Erica M. Rutter, Yang Kuang . A data-motivated density-dependent diffusion model of in vitro glioblastoma growth. Mathematical Biosciences and Engineering, 2015, 12(6): 1157-1172. doi: 10.3934/mbe.2015.12.1157 |
[6] | Nicolas Ratto, Martine Marion, Vitaly Volpert . Existence of pulses for a reaction-diffusion system of blood coagulation in flow. Mathematical Biosciences and Engineering, 2019, 16(5): 4196-4212. doi: 10.3934/mbe.2019209 |
[7] | Dong Liang, Jianhong Wu, Fan Zhang . Modelling Population Growth with Delayed Nonlocal Reaction in 2-Dimensions. Mathematical Biosciences and Engineering, 2005, 2(1): 111-132. doi: 10.3934/mbe.2005.2.111 |
[8] | Christopher DuBois, Jesse Farnham, Eric Aaron, Ami Radunskaya . A multiple time-scale computational model of a tumor and its micro environment. Mathematical Biosciences and Engineering, 2013, 10(1): 121-150. doi: 10.3934/mbe.2013.10.121 |
[9] | Xixia Ma, Rongsong Liu, Liming Cai . Stability of traveling wave solutions for a nonlocal Lotka-Volterra model. Mathematical Biosciences and Engineering, 2024, 21(1): 444-473. doi: 10.3934/mbe.2024020 |
[10] | Zhilan Feng, Wenzhang Huang, Donald L. DeAngelis . Spatially heterogeneous invasion of toxic plant mediated by herbivory. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1519-1538. doi: 10.3934/mbe.2013.10.1519 |
In this paper, we consider the long-term behavior of some special solutions to the Wave Kinetic Equation. This equation provides a mesoscopic description of wave systems interacting nonlinearly via the cubic NLS equation. Escobedo and Velázquez showed that, starting with initial data given by countably many Dirac masses, solutions remain a linear combination of countably many Dirac masses at all times. Moreover, there is convergence to a single Dirac mass at long times. The first goal of this paper is to give quantitative rates for the speed of said convergence. In order to study the optimality of the bounds we obtain, we introduce and analyze a toy model accounting only for the leading order quadratic interactions.
[1] |
T. Buckmaster, P. Germain, Z. Hani, J. Shatah, Onset of the wave turbulence description of the longtime behavior of the nonlinear Schrödinger equation, Invent. Math., 225 (2021), 787–855. http://dx.doi.org/10.1007/s00222-021-01039-z doi: 10.1007/s00222-021-01039-z
![]() |
[2] | C. Collot, P. Germain, On the derivation of the homogeneous kinetic wave equation, unpublished work. |
[3] |
Y. Deng, Z. Hani, On the derivation of the Wave Kinetic Equation for NLS, Forum Math., Pi, 9 (2021), e6. http://dx.doi.org/10.1017/fmp.2021.6 doi: 10.1017/fmp.2021.6
![]() |
[4] | Y. Deng, Z. Hani, Propagation of chaos and the higher order statistics in the wave kinetic theory, J. Eur. Math. Soc., 2024. http://dx.doi.org/10.4171/jems/1488 |
[5] | Y. Deng, Z. Hani, Derivation of the Wave Kinetic Equation: full range of scaling laws, arXiv, 2023. http://dx.doi.org/10.48550/arXiv.2301.07063 |
[6] |
Y. Deng, Z. Hani, Full derivation of the Wave Kinetic Equation, Invent. math., 233 (2023), 543–724. http://dx.doi.org/10.1007/s00222-023-01189-2 doi: 10.1007/s00222-023-01189-2
![]() |
[7] | Y. Deng, Z. Hani, Long time justification of wave turbulence theory, arXiv, 2023. http://dx.doi.org/10.48550/arXiv.2311.10082 |
[8] |
M. Escobedo, J. J. L. Velázquez, On the theory of weak turbulence for the nonlinear Schrödinger equation, Mem. Amer. Math. Soc., 238 (2015), 1124. http://dx.doi.org/10.1090/memo/1124 doi: 10.1090/memo/1124
![]() |
[9] |
P. Germain, A. Ionescu, M. B. Tran, Optimal local well-posedness theory for the kinetic wave equation, J. Funct. Anal., 279 (2020), 108570. http://dx.doi.org/10.1016/j.jfa.2020.108570 doi: 10.1016/j.jfa.2020.108570
![]() |
[10] | A. Hannani, M. Rosenzweig, G. Staffilani, M. B. Tran, On the wave turbulence theory for a stochastic KdV type equation–Generalization for the inhomogeneous kinetic limit, arXiv, 2022. http://dx.doi.org/10.48550/arXiv.2210.17445 |
[11] |
K. Hasselmann, On the non-linear energy transfer in a gravity-wave spectrum. Ⅰ. General theory, J. Fluid Mech., 12 (1962), 481–500. http://dx.doi.org/10.1017/S0022112062000373 doi: 10.1017/S0022112062000373
![]() |
[12] |
K. Hasselmann, On the non-linear energy transfer in a gravity wave spectrum. Ⅱ. Conservation theorems; wave-particle analogy; irreversibility, J. Fluid Mech., 15 (1963), 273–281. http://dx.doi.org/10.1017/S0022112063000239 doi: 10.1017/S0022112063000239
![]() |
[13] |
A. H. M. Kierkels, J. J. L. Velázquez, On the transfer of energy towards infinity in the theory of weak turbulence for the nonlinear Schrödinger equation, J. Stat. Phys., 159 (2015), 668–712. http://dx.doi.org/10.1007/s10955-015-1194-0 doi: 10.1007/s10955-015-1194-0
![]() |
[14] |
A. H. M. Kierkels, J. J. L. Velázquez, On self-similar solutions to a kinetic equation arising in weak turbulence theory for the nonlinear schrödinger equation, J. Stat. Phys., 163 (2016), 1350–1393. http://dx.doi.org/10.1007/s10955-016-1505-0 doi: 10.1007/s10955-016-1505-0
![]() |
[15] | S. Nazarenko, Wave turbulence, Vol. 825, Springer Science & Business Media, 2011. http://dx.doi.org/10.1007/978-3-642-15942-8 |
[16] | L. Nordheim, On the kinetic method in the new statistics and application in the electron theory of conductivity, Proc. R. Soc. London. Ser. A, Containing Papers of a Mathematical and Physical Character, 119 (1928), 689–698. http://dx.doi.org/10.1098/rspa.1928.0126 |
[17] |
R. Peierls, Zur kinetischen theorie der Wärmeleitung in Kristallen, Ann. Phys., 395 (1929), 1055–1101. http://dx.doi.org/10.1002/andp.19293950803 doi: 10.1002/andp.19293950803
![]() |
[18] | G. Staffilani, M. B. Tran, On the wave turbulence theory for stochastic and random multidimensional KdV type equations, arXiv, 2021. http://dx.doi.org/10.48550/arXiv.2106.09819 |
1. | Yang Kuang, Erica M. Rutter, Tracy L. Stepien, A data-motivated density-dependent diffusion model of in vitro glioblastoma growth, 2015, 12, 1551-0018, 1157, 10.3934/mbe.2015.12.1157 | |
2. | Tiberiu Harko, Shi-Dong Liang, Exact solutions of the Liénard- and generalized Liénard-type ordinary nonlinear differential equations obtained by deforming the phase space coordinates of the linear harmonic oscillator, 2016, 98, 0022-0833, 93, 10.1007/s10665-015-9812-z | |
3. | Ayansola D. Ogundele, Andrew J. Sinclair, Subhash C. Sinha, Closed form parametric solutions of nonlinear Abel-type and Riccati-type spacecraft relative motion, 2021, 178, 00945765, 733, 10.1016/j.actaastro.2020.10.009 | |
4. | Faezeh Iranmanesh, Mohammad Ali Nazari, Finite Element Modeling of Avascular Tumor Growth Using a Stress-Driven Model, 2017, 139, 0148-0731, 10.1115/1.4037038 | |
5. | Waipot Ngamsaad, Suthep Suantai, Mechanically-driven spreading of bacterial populations, 2016, 35, 10075704, 88, 10.1016/j.cnsns.2015.10.026 | |
6. | Rebecca L Klank, Steven S Rosenfeld, David J Odde, A Brownian dynamics tumor progression simulator with application to glioblastoma, 2018, 4, 2057-1739, 015001, 10.1088/2057-1739/aa9e6e | |
7. | Brian Wesley Williams, Exact traveling wave solutions of fast reaction–diffusion–convectionequations based on the Lambert function W, 2020, 2, 26668181, 100013, 10.1016/j.padiff.2020.100013 | |
8. | Man Kwong Mak, Tiberiu Harko, On the Integrability of the Abel and of the Extended Liénard Equations, 2019, 35, 0168-9673, 722, 10.1007/s10255-019-0847-1 | |
9. | Giovanni Borasi, Alan Nahum, Modelling the radiotherapy effect in the reaction-diffusion equation, 2016, 32, 11201797, 1175, 10.1016/j.ejmp.2016.08.020 | |
10. | Prakash Kumar Das, Supriya Mandal, Madan M. Panja, Piecewise smooth localized solutions of Liénard‐type equations with application to NLSE, 2018, 41, 0170-4214, 7869, 10.1002/mma.5249 | |
11. | Georgios S Stamatakos, Stavroula G Giatili, A Numerical Handling of the Boundary Conditions Imposed by the Skull on an Inhomogeneous Diffusion-Reaction Model of Glioblastoma Invasion Into the Brain: Clinical Validation Aspects, 2017, 16, 1176-9351, 117693511668482, 10.1177/1176935116684824 | |
12. | Jianfeng Huang, Joan Torregrosa, Jordi Villadelprat, On the Number of Limit Cycles in Generalized Abel Equations, 2020, 19, 1536-0040, 2343, 10.1137/20M1340083 | |
13. | T. Harko, M. K. Mak, Exact travelling wave solutions of non-linear reaction-convection-diffusion equations—An Abel equation based approach, 2015, 56, 0022-2488, 111501, 10.1063/1.4935299 | |
14. | Jianfeng Huang, Jie Li, On the number of limit cycles in piecewise smooth generalized Abel equations with two asymmetric zones, 2022, 66, 14681218, 103551, 10.1016/j.nonrwa.2022.103551 | |
15. | Valipuram Manoranjan, Lewa’ Alzaleq, Analysis of a population model with advection and an autocatalytic-type growth, 2023, 16, 1793-5245, 10.1142/S1793524522500784 | |
16. | Qianqian Zhao, Jiang Yu, Cheng Wang, Nontrivial Limit Cycles in a Kind of Piecewise Smooth Generalized Abel Equation, 2022, 32, 0218-1274, 10.1142/S0218127422502169 | |
17. | Mohammad F.M. Naser, Mohammad Abdel Aal, Ghaleb Gumah, Stability analysis of Abel's equation of the first kind, 2023, 8, 2473-6988, 30574, 10.3934/math.20231563 | |
18. | Xiangqin Yu, Hebai Chen, Changjian Liu, The number of limit cycles of Josephson equation, 2023, 0, 1531-3492, 0, 10.3934/dcdsb.2023208 | |
19. | Elsa Moggia, Predictive potentialities of the Quasi-Random Lattice model for electrolyte solutions, discussion and improvement strategies, 2025, 588, 03783812, 114243, 10.1016/j.fluid.2024.114243 | |
20. | Xiangqin Yu, Jianfeng Huang, Changjian Liu, Maximum number of limit cycles for Abel equation having coefficients with linear trigonometric functions, 2024, 410, 00220396, 301, 10.1016/j.jde.2024.07.030 |