
This research intended to identify the techniques and objectives and motivations of creative accounting in the Czech Republic and confirm the responses similarity between two groups of respondents. The views of 318 financial professionals were analyzed through a questionnaire. The statistical Friedman test was used for testing two hypotheses: (H1) There is no difference in the presented results in the techniques of creative accounting between groups of financial professionals (ACPA, CFO, Lender, CPA, and MBA); (H2) There is no difference in the presented results in the objectives and motivations behind creative accounting between groups of financial professionals. This paper shows that the most used techniques are holding open books to record additional sales, delaying shipments, recognizing revenue on partial shipments, and changing inventory values. Common objectives and motivations included reducing earnings volatility, supporting stock prices, increasing income or cash flow, and creating a consensus earnings forecast of analytics. Both hypotheses H1 and H2 were confirmed. The presented article is based on our own research. Using the information obtained, it will be possible for auditors and other authorities to focus on specific areas of creative accounting and its motivations.
Citation: Irena Honková, Renáta Myšková. Techniques, objectives and motivations of creative accounting: evidence from the Czech Republic[J]. National Accounting Review, 2024, 6(3): 333-351. doi: 10.3934/NAR.2024015
[1] | Yixin Zhuo, Ling Li, Jian Tang, Wenchuan Meng, Zhanhong Huang, Kui Huang, Jiaqiu Hu, Yiming Qin, Houjian Zhan, Zhencheng Liang . Optimal real-time power dispatch of power grid with wind energy forecasting under extreme weather. Mathematical Biosciences and Engineering, 2023, 20(8): 14353-14376. doi: 10.3934/mbe.2023642 |
[2] | Ning Zhou, Chen Zhang, Songlin Zhang . A multi-strategy firefly algorithm based on rough data reasoning for power economic dispatch. Mathematical Biosciences and Engineering, 2022, 19(9): 8866-8891. doi: 10.3934/mbe.2022411 |
[3] | Guohao Sun, Sen Yang, Shouming Zhang, Yixing Liu . A hybrid butterfly algorithm in the optimal economic operation of microgrids. Mathematical Biosciences and Engineering, 2024, 21(1): 1738-1764. doi: 10.3934/mbe.2024075 |
[4] | Lihe Liang, Jinying Cui, Juanjuan Zhao, Yan Qiang, Qianqian Yang . Ultra-short-term forecasting model of power load based on fusion of power spectral density and Morlet wavelet. Mathematical Biosciences and Engineering, 2024, 21(2): 3391-3421. doi: 10.3934/mbe.2024150 |
[5] | Lingling Li, Congbo Li, Li Li, Ying Tang, Qingshan Yang . An integrated approach for remanufacturing job shop scheduling with routing alternatives. Mathematical Biosciences and Engineering, 2019, 16(4): 2063-2085. doi: 10.3934/mbe.2019101 |
[6] | Shanshan Pan, Jinbao Jian, Linfeng Yang . Solution to dynamic economic dispatch with prohibited operating zones via MILP. Mathematical Biosciences and Engineering, 2022, 19(7): 6455-6468. doi: 10.3934/mbe.2022303 |
[7] | Bowen Ding, Zhaobin Ma, Shuoyan Ren, Yi Gu, Pengjiang Qian, Xin Zhang . A genetic algorithm with two-step rank-based encoding for closed-loop supply chain network design. Mathematical Biosciences and Engineering, 2022, 19(6): 5925-5956. doi: 10.3934/mbe.2022277 |
[8] | Yanmei Jiang, Mingsheng Liu, Jianhua Li, Jingyi Zhang . Reinforced MCTS for non-intrusive online load identification based on cognitive green computing in smart grid. Mathematical Biosciences and Engineering, 2022, 19(11): 11595-11627. doi: 10.3934/mbe.2022540 |
[9] | Yejun Hu, Liangcai Dong, Lei Xu . Multi-AGV dispatching and routing problem based on a three-stage decomposition method. Mathematical Biosciences and Engineering, 2020, 17(5): 5150-5172. doi: 10.3934/mbe.2020279 |
[10] | Mehrdad Ahmadi Kamarposhti, Ilhami Colak, Kei Eguchi . Optimal energy management of distributed generation in micro-grids using artificial bee colony algorithm. Mathematical Biosciences and Engineering, 2021, 18(6): 7402-7418. doi: 10.3934/mbe.2021366 |
This research intended to identify the techniques and objectives and motivations of creative accounting in the Czech Republic and confirm the responses similarity between two groups of respondents. The views of 318 financial professionals were analyzed through a questionnaire. The statistical Friedman test was used for testing two hypotheses: (H1) There is no difference in the presented results in the techniques of creative accounting between groups of financial professionals (ACPA, CFO, Lender, CPA, and MBA); (H2) There is no difference in the presented results in the objectives and motivations behind creative accounting between groups of financial professionals. This paper shows that the most used techniques are holding open books to record additional sales, delaying shipments, recognizing revenue on partial shipments, and changing inventory values. Common objectives and motivations included reducing earnings volatility, supporting stock prices, increasing income or cash flow, and creating a consensus earnings forecast of analytics. Both hypotheses H1 and H2 were confirmed. The presented article is based on our own research. Using the information obtained, it will be possible for auditors and other authorities to focus on specific areas of creative accounting and its motivations.
Economic dispatch (ED) [1] in power systems is an important issue for obtaining the steady-state and economic operations of systems that is a typical constrained optimization problem with multiple variables. The optimization goal of the ED problem is to determine the most economic power outputs of generators while satisfying multiple constraints, such as the generation capacity limits, power demand balance, network transmission losses, ramp rate limits and prohibited operating zones. Considering the valve-point effects (VPE) of multivalve steam turbines for the ED problem, the objective cost function is a nonlinear and nonconvex function, which is hard to solve [2]. Especially in large-scale power systems with multiple generators, the ED problem is a complex optimization problem with several local optimal solutions, and thus the global optimal solution is hard to find.
In recent years, several optimization algorithms, including conventional algorithms and meta-heuristic algorithms, have been proposed to solve the ED problems. Some conventional algorithms, such as linear programming (LP) [3], self-adaptive dynamic programming (SADP) [4], iterative dynamic programming (IDP) [1] and evolutionary programming (EP) [5], have been applied to solve the ED problems. These methods solve the ED problems using the simplified optimization model in which the valve-point effects, ramp rate limits, prohibited operating zones and transmission losses are not considered. Moreover, the optimal results obtained by these methods may be the local optima and have lower computational accuracy. The drawbacks of conventional algorithms prompt researchers to study meta-heuristic algorithms for solving ED problems.
Recently, many meta-heuristic algorithms have been proposed to solve the various optimization problems, such as flow shop scheduling [6,7,8], steelmaking scheduling [9], job shop scheduling [10,11,12,13], flexible task scheduling [14] and chiller loading optimization [15,16,17]. Due to the better optimization performance, many meta-heuristic algorithms have also been applied to solve the complex ED problems, and these algorithms include the genetic algorithm (GA) [18,19,20,21], particle swarm optimization (PSO) and its variants [22,23,24,25,26], firefly algorithm (FA) [27], oppositional real coded chemical reaction optimization (ORCCRO) [28], differential evolution (DE) [29,30], chaotic bat algorithm (CBA) [31], oppositional invasive weed optimization (OIWO) [32], teaching learning based optimization (TLBO) [33], tournament-based harmony search (THS) [34], grey wolf optimization (GWO) [35,36], hybrid artificial algae algorithm (HAAA) [37], orthogonal learning competitive swarm optimizer (OLCSO) [2], backtracking search algorithm (BSA) [38], social spider algorithm (SSA) [39], civilized swarm optimization (CSO) [40], kinetic gas molecule optimization (KGMO) [41] and hybrid methods [42,43,44,45]. Although the above meta-heuristic algorithms have been shown to be efficient in solving ED problems, the optimal results obtained by these algorithms are not the most economical.
By mimicking the colonization behavior of weeds in nature, the invasive weed optimization (IWO) algorithm was proposed by Mehrabian and Lucas [46] to optimize multidimensional functions. The experimental results demonstrated that IWO can obtain superior optimization results compared to other evolutionary-based algorithms. Due to its robustness, convergence, high accuracy and searching ability, the IWO algorithm has been applied to solve many engineering optimization problems. However, when IWO is used to solve the ED problem in large-scale power systems, the optimization power outputs of generators obtained by IWO consumes more generation costs compared to the reported methods in literature. To further improve the optimization performance of IWO in solving ED problems, especially ED problems in the large-scale power systems, inspired by the effective application of hybrid methods in solving ED problems [37,42,43,44,45], a hybrid invasive weed optimization (HIWO) algorithm that hybridizes IWO with GA is developed in this study. The motivation behind choosing GA integrated with IWO is to get a better dispatch solution using the crossover operation between offspring weed and its parent weed to improve the local search ability of IWO, and executing the mutation operation on offspring weeds to increase the diversity of the population. The main contributions of this study are as follows: (1) the economic dispatch problem with various practical constraints is investigated by minimizing the total power generation cost; (2) the crossover and mutation operations of GA are proposed to improve the optimization performance of IWO; and (3) an effective repair method of handing constraints is investigated to repair the infeasible dispatch solutions.
The rest of this paper is organized as follows. Section 2 gives the mathematical formulation of the ED problem. Section 3 introduces a hybrid invasive weed optimization (HIWO) algorithm. Section 4 presents the application method of HIWO on ED problems. Section 5 shows the experimental results and analysis on six power systems with different scales. The conclusion is finally given in Section 6.
The ED problem in power systems is to find the optimal dispatch solution of the power outputs of generators, while the total power generation cost of the system is minimized and all the constraints are satisfied.
The optimization objective of the ED problem is to minimize the power generation cost (SC) consumed by N number of generators in the power system, as shown in Eq 1.
Min.SC=N∑i=1Ci(Pi) | (1) |
where Pi and Ci are the power output and generation cost of the ith generator, respectively.
For the ED problem neglecting valve-point effects, Ci is calculated by Eq 2. For the ED problem considering valve-point effects, Eq 3 is used to calculate Ci [2,32].
Ci(Pi)=ai⋅Pi2+bi⋅Pi+ci | (2) |
Ci(Pi)=ai⋅Pi2+bi⋅Pi+ci+|ei⋅sin(fi⋅(Pmini−Pi))| | (3) |
where ai, bi and ci are the cost coefficients of the ith generator; ei and fi are valve-point coefficients of the ith generator;
The feasible dispatch solutions of the ED problem should satisfy the following constraints.
The power output of each generator must be in the range specified by the minimum (
Pmini≤Pi≤Pmaxi | (4) |
The power outputs of generators should satisfy the system power demand (PD). For the ED problem neglecting network transmission losses (PL), the power demand balance is expressed as Eq 5 [30]. For the ED problem considering PL, the power demand balance is expressed as Eq 6.
N∑i=1Pi=PD | (5) |
N∑i=1Pi=PD+PL | (6) |
PL can be calculated using the power flow analysis method [47] or the B-coefficients method [48]. This study adopts the following B-coefficients method to calculate PL.
L=N∑i=1N∑j=1PiBijPj+N∑i=1B0iPi+B00 | (7) |
where Bij, B0i and B00 represent the loss coefficients.
In the actual operation of the power system, to avoid the excessive stress on the boiler and combustion equipment, the change rate of the power output of each generating unit should be within the ramp rate limit, as shown in Eq 8.
{Pi−P0i≤URiP0i−Pi≤DRi | (8) |
where
When taking into account both the generation capacity limits and ramp rate limits, the value range of Pi can be rewritten as Eq 9.
max{Pmini,P0i−DRi}≤Pi≤min{Pmaxi,P0i+URi} | (9) |
Considering the operation limitations of machine components, the power outputs of some generators cannot lie in the prohibited zones, as shown in Eq 10.
Pi∈{Pmini≤Pi≤Pli,1Pui,k−1≤Pi≤Pli,kPui,npi≤Pi≤Pmaxik=2,3,⋯,npi | (10) |
where
IWO is a novel evolutionary computation algorithm based on weed swarm intelligence. By simulating the propagation and growth behaviors of weeds in nature, IWO searches for the optimal solution of the problem in the solution space. The calculation steps of IWO include initialization, reproduction, spatial dispersal and selection. The initial population with Nwo weed individuals is randomly generated in the feasible solution space, in which each weed consisting of variables represents a feasible solution. Then, each weed Wj in the population reproduces seeds, and the seeds grow into offspring weeds through spatial dispersal. The amount (Nsj) of seeds reproduced by Wj is calculated by using Eq 11.
Nsj=Fitj−FitminFitmax−Fitmin⋅(Nsmax−Nsmin)+Nsmin | (11) |
where Fitj is the fitness value of Wj; Fitmin and Fitmax are the minimum and maximum fitness values in the weed population, respectively; Nsmin and Nsmax are the minimum and maximum of the number of seeds, respectively.
The parent weeds with higher fitness values can reproduce more seeds, and they have more offspring weeds in the population. This reproduction strategy means that IWO can converge rapidly and reliably to the approximate optimal solution. Offspring weeds are randomly distributed around their parent weed according to a normal distribution with a standard deviation (σit). The calculation formula of σit is shown in Eq 12. Along with the increase of the iteration times, σit is gradually reduced from an initial value (σiv) to a final value (σfv), which makes the search range of IWO be gradually reduced. This strategy makes IWO have the whole space search capability in early iterations and high local convergence in later iterations. After all the seeds grow into weeds, the Nwmax weeds with higher fitness values are selected from all the weeds as the parent weeds of the next iteration. Through Itermax times iterations, the weed with the highest fitness value is the optimal solution of the problem.
σit=(Itermax−Iter)mItermaxm⋅(σiv−σfv)+σfv | (12) |
where m is the nonlinear modulation index, and Iter and Itermax are the current number and maximum of iterations, respectively.
In the proposed HIWO algorithm, IWO is used to explore the solution space around parent weeds. After the seeds reproduced by parent weeds have grown into offspring weeds, the crossover and mutation operations of GA are performed on offspring weeds for improving the quality and diversity of solutions, which can improve the convergence speed and avoid the premature convergence of the algorithm.
The execution flow of HIWO is represented by the pseudo code shown in Figure 1.
Each offspring weed (OW(j, q)) (q = 1, 2, …, Nsj ) crosses with its parent weed (Wj) to generate a new weed (
(a) If
(b) If
After the new offspring weed (
For each offspring weed (OW(j, q)) (q = 1, 2, …, Nsj ), randomly select X mutation points from N variables
σm=(Pmaxi−Pmini)⋅rand(0,1) | (13) |
where rand (0, 1) is a random number between 0 and 1.
In the proposed HIWO algorithm, the first task is the encoding to represent each solution considering all of the constraints. Each weed (Wj) is represented as a row vector consisting of power outputs of generators, as shown in Eq 14. The weed population is initialized by randomly generating the power outputs of generators by using Eq 15. Then, infeasible weeds are repaired into feasible solutions by using the repair method in Section 4.2. Weeds in the initial population are used as the parent weeds to reproduce seeds, which grows into offspring weeds through spatial dispersal. The weeds with higher fitness value can reproduce more seeds. The fitness function used in this study is shown in Eq 16. Each offspring weed will perform the crossover and mutation procedures, like in the canonical GA, and thus can increase the diversity of the population. Then, the repair procedure is applied on the infeasible offspring weeds to make them satisfy with all of the constraints. If the total quantity of parent weeds and offspring weeds is larger than the specified population size, select the weeds with higher fitness values as the parent weeds of the next iteration. Otherwise, all the weeds are used as parent weeds. After multiple times iterations, the best weed with the highest fitness value is selected as the optimal dispatch solution of the ED problem.
Wj=(P1,P2,⋯,PN) | (14) |
Pi=(Pmaxi−Pmini)⋅rand(0,1)+Pminii=1,2,⋯,N | (15) |
Fitj=1SCj | (16) |
where SCj and Fitj represent the power generation cost and fitness value of the jth weed, respectively.
An effective repair method of handing constraints is proposed in this study to repair infeasible weeds into feasible solutions. The detail repair steps are stated in the following.
Step 1: Modify the
Pi={max{Pmini,P0i−DRi}if Pi<max{Pmini,P0i−DRi}min{Pmaxi,P0i+URi}if Pi>min{Pmaxi,P0i+URi} | (17) |
Step 2: Calculate the constraint violation (V) of the power demand balance. For the ED problem considering transmission losses, V is calculated by using Eq 18. For the ED problem neglecting transmission losses, V is calculated by using Eq 19. If
V=|N∑i=1Pi−PD−N∑i=1N∑j=1PiBijPj−N∑i=1B0iPi−B00| | (18) |
V=|N∑i=1Pi−PD| | (19) |
Step 3: Determine the modification sequence of N generators. For each generator i (i = 1, 2, …, N), calculate the modification value
P′i=PD−∑r∈RPr | (20) |
Bii(P′i)2+(2∑r∈RPrBir+B0i−1)P′i+(PD+∑r∈R∑t∈RPrBrtPt+∑r∈RB0rPr−∑r∈RPr+B00)=0 | (21) |
P′i=−(2∑r∈RPrBir+B0i−1)−√(2∑r∈RPrBir+B0i−1)2−4Bii(PD+∑r∈R∑t∈RPrBrtPt+∑r∈RB0rPr−∑r∈RPr+B00)2Bii | (22) |
For each generator i (i = 1, 2, …, N), assume that the ith generator is selected as the revised generator, and Pi is replaced by
CXi=Ci(P′i)−Ci(Pi) | (23) |
PCVi=CXi−min(CX)max(CX)−min(CX)+PVi−min(PV)max(PV)−min(PV) | (24) |
Step 4: Modify the power output of each generator in turn according to the modification sequence stored in S until the power demand balance constraint is satisfied. When the ith (
Step 5: Output the modified weed (Wj).
To validate the optimization ability of HIWO on ED problems with various practical constraints, six classical ED problems in the small, medium, large and very large-scale power systems were selected as the studied test cases. For each test case, the optimal dispatch results obtained by HIWO in 50 independent runs, including the minimum cost (SCmin), average cost (SCavg), maximum cost (SCmax) and standard deviation of the costs (SCstd), are compared to those of algorithms reported in the literature. The best optimization performance among these algorithms is shown in boldface. The parameters of HIWO on six test systems are set as follows: the initial population size Nwo = 30, maximum population size Nwmax = 50, minimum number of seeds Nsmin = 1, maximum number of seeds Nsmax = 5, nonlinear modulation index m = 5, initial standard deviation
The 15-generator power system [2,24] considering transmission losses, ramp rate limits and prohibited operating zones is selected as the small-scale test system. The power load demand of the system is 2630 MW. In this test system study, the optimal power outputs of generators obtained by HIWO are shown in Table 1.The optimal dispatch results of HIWO are compared to those of OLCSO [2], WCA [49], ICS [50], FA [27], RTO [51], EMA [52] and IWO, as shown in Tables 2. Compared to other algorithms in terms of minimum, average, maximum and standard deviation of costs in 50 runs, the dispatch solution obtained by HIWO consumes the least cost.
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 455.0000 | 4 | 130.0000 | 7 | 430.0000 | 10 | 159.7871 | 13 | 25.0000 |
2 | 380.0000 | 5 | 170.0000 | 8 | 71.2594 | 11 | 80.0000 | 14 | 15.0000 |
3 | 130.0000 | 6 | 460.0000 | 9 | 58.4944 | 12 | 80.0000 | 15 | 15.0000 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
EMA [52] | 32704.4503 | 32704.4504 | 32704.4506 | NA |
FA [27] | 32704.5000 | 32856.1000 | 33175.0000 | 147.17022 |
ICS [50] | 32706.7358 | 32714.4669 | 32752.5183 | NA |
WCA [49] | 32704.4492 | 32704.5096 | 32704.5196 | 4.513e-05 |
RTO [51] | 32701.8145 | 32704.5300 | 32715.1800 | 5.07 |
OLCSO [2] | 32692.3961 | 32692.3981 | 32692.4033 | 0.0022 |
IWO | 32691.8615 | 32691.9392 | 32692.1421 | 0.0927 |
HIWO | 32691.5614 | 32691.8615 | 32691.8616 | 0.0001 |
The 40-generator power system [32] considering valve-point effects and transmission losses is selected as the medium-scale test system. The power load demand of the system is 10500 MW. The optimal power outputs obtained by HIWO are shown in Table 3. The optimal dispatch results of HIWO are compared to those of ORCCRO [28], BBO [28], DE/BBO [28], SDE [29], OIWO [32], HAAA [37] and IWO, as shown in Tables 4. Compared to other algorithms in the literature, the proposed HIWO algorithm can obtain the cheapest dispatch solution in terms of minimum, average and maximum of costs in 50 runs.
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 113.9993 | 9 | 289.4281 | 17 | 489.2798 | 25 | 523.2794 | 33 | 190.0000 |
2 | 113.9993 | 10 | 279.5996 | 18 | 489.2793 | 26 | 523.2794 | 34 | 200.0000 |
3 | 120.0000 | 11 | 243.5995 | 19 | 511.2795 | 27 | 10.0000 | 35 | 199.9999 |
4 | 179.7330 | 12 | 94.0000 | 20 | 511.2793 | 28 | 10.0000 | 36 | 164.7999 |
5 | 87.7999 | 13 | 484.0391 | 21 | 523.2794 | 29 | 10.0000 | 37 | 109.9998 |
6 | 139.9998 | 14 | 484.0390 | 22 | 523.2794 | 30 | 87.7999 | 38 | 110.0000 |
7 | 300.0000 | 15 | 484.0393 | 23 | 523.2794 | 31 | 190.0000 | 39 | 109.9999 |
8 | 299.9997 | 16 | 484.0391 | 24 | 523.2794 | 32 | 190.0000 | 40 | 549.9999 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
ORCCRO [28] | 136855.19 | 136855.19 | 136855.19 | NA |
BBO [28] | 137026.82 | 137116.58 | 137587.82 | NA |
DE/BBO [28] | 136950.77 | 136966.77 | 137150.77 | NA |
SDE [29] | 138157.46 | NA | NA | NA |
OIWO [32] | 136452.68 | 136452.68 | 136452.68 | NA |
HAAA [37] | 136433.5 | 136436.6 | NA | 3.341896 |
IWO | 136543.8580 | 137009.5641 | 137679.1073 | 292.9686 |
HIWO | 136430.9504 | 136435.2127 | 136441.1059 | 4.3238 |
To verify the dispatch performance of HIWO on large-scale power systems with multiple local optimal solutions, two cases studies are performed to compare the optimization results of HIWO and other algorithms. The detail information of these two cases is shown as follows.
Case Ⅰ: The 80-generator power system [37] considering valve-point effects. The power load demand is 21000 MW.
Case Ⅱ: The 110-generator power system [20,32] neglecting valve-point effects and transmission losses. The power load demand is 15000 MW.
In the case Ⅰ study, the optimal dispatch solution obtained by HIWO is shown in Table 5. The comparison results of generation costs generated by HIWO, THS [34], CSO [40], HAAA [37], GWO [35] and IWO are summarized in Table 6. It can be found from Table 6 that HIWO can obtain the cheapest dispatch solution compared to other algorithms.
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 110.8335 | 17 | 489.3362 | 33 | 189.9994 | 49 | 284.6071 | 65 | 523.2794 |
2 | 111.5439 | 18 | 489.2794 | 34 | 165.1983 | 50 | 130.0000 | 66 | 523.2835 |
3 | 97.3834 | 19 | 511.2731 | 35 | 199.9997 | 51 | 94.0040 | 67 | 10.0000 |
4 | 179.7603 | 20 | 511.2666 | 36 | 199.9998 | 52 | 94.0000 | 68 | 10.0000 |
5 | 87.9806 | 21 | 523.2525 | 37 | 109.9999 | 53 | 214.7298 | 69 | 10.0000 |
6 | 139.9997 | 22 | 523.2805 | 38 | 110.0000 | 54 | 394.2675 | 70 | 87.8052 |
7 | 259.5584 | 23 | 523.2794 | 39 | 109.9987 | 55 | 394.2967 | 71 | 190.0000 |
8 | 284.7677 | 24 | 523.2794 | 40 | 511.2603 | 56 | 304.4839 | 72 | 189.9997 |
9 | 284.6331 | 25 | 523.2794 | 41 | 110.9296 | 57 | 489.3082 | 73 | 189.9991 |
10 | 130.0000 | 26 | 523.2958 | 42 | 110.8195 | 58 | 489.2773 | 74 | 164.7786 |
11 | 169.0220 | 27 | 10.0000 | 43 | 97.3706 | 59 | 511.2121 | 75 | 199.9994 |
12 | 94.0000 | 28 | 10.0000 | 44 | 179.7187 | 60 | 511.2992 | 76 | 200.0000 |
13 | 214.7422 | 29 | 10.0000 | 45 | 87.8560 | 61 | 523.2830 | 77 | 109.9990 |
14 | 394.1929 | 30 | 89.6856 | 46 | 139.9995 | 62 | 523.3201 | 78 | 110.0000 |
15 | 394.2794 | 31 | 189.9993 | 47 | 259.6320 | 63 | 523.2794 | 79 | 109.9996 |
16 | 394.3050 | 32 | 189.9992 | 48 | 284.6702 | 64 | 523.2794 | 80 | 511.2482 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
THS [34] | 243192.6899 | 243457.36 | NA | 120.9889 |
CSO [40] | 243195.3781 | 243546.6283 | 244038.7352 | NA |
HAAA [37] | 242815.9 | 242883 | 242944.5 | 29.2849 |
GWO [35] | 242825.4799 | 242829.8192 | 242837.1303 | 0.093 |
IWO | 246386.4038 | 248088.2077 | 249888.0623 | 844.0919 |
HIWO | 242815.2096 | 242836.1110 | 242872.4662 | 10.3458 |
In the case Ⅱ study, the optimal dispatch solution obtained by HIWO is shown in Table 7. The generation cost generated by HIWO are compared to those of ORCCRO [28], BBO [28], DE/BBO [28], OIWO [32], OLCSO [2] and IWO, which are summarized in Table 8. Compared to other algorithms in terms of minimum, average, maximum and standard deviation of costs in 50 runs, the optimal dispatch solution obtained by HIWO generates the least generation cost.
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 2.4000 | 23 | 68.9000 | 45 | 659.9999 | 67 | 70.0000 | 89 | 82.4977 |
2 | 2.4000 | 24 | 350.0000 | 46 | 616.2499 | 68 | 70.0000 | 90 | 89.2333 |
3 | 2.4000 | 25 | 400.0000 | 47 | 5.4000 | 69 | 70.0000 | 91 | 57.5687 |
4 | 2.4000 | 26 | 400.0000 | 48 | 5.4000 | 70 | 359.9999 | 92 | 99.9986 |
5 | 2.4000 | 27 | 499.9992 | 49 | 8.4000 | 71 | 399.9999 | 93 | 439.9998 |
6 | 4.0000 | 28 | 500.0000 | 50 | 8.4000 | 72 | 399.9998 | 94 | 499.9999 |
7 | 4.0000 | 29 | 199.9997 | 51 | 8.4000 | 73 | 105.2864 | 95 | 600.0000 |
8 | 4.0000 | 30 | 99.9998 | 52 | 12.0000 | 74 | 191.4091 | 96 | 471.5717 |
9 | 4.0000 | 31 | 10.0000 | 53 | 12.0000 | 75 | 89.9996 | 97 | 3.6000 |
10 | 64.5432 | 32 | 19.9993 | 54 | 12.0000 | 76 | 49.9999 | 98 | 3.6000 |
11 | 62.2465 | 33 | 79.9950 | 55 | 12.0000 | 77 | 160.0000 | 99 | 4.4000 |
12 | 36.2739 | 34 | 249.9998 | 56 | 25.2000 | 78 | 295.4962 | 100 | 4.4000 |
13 | 56.6406 | 35 | 359.9999 | 57 | 25.2000 | 79 | 175.0102 | 101 | 10.0000 |
14 | 25.0000 | 36 | 399.9997 | 58 | 35.0000 | 80 | 98.2829 | 102 | 10.0000 |
15 | 25.0000 | 37 | 39.9998 | 59 | 35.0000 | 81 | 10.0000 | 103 | 20.0000 |
16 | 25.0000 | 38 | 69.9996 | 60 | 45.0000 | 82 | 12.0000 | 104 | 20.0000 |
17 | 154.9999 | 39 | 99.9998 | 61 | 45.0000 | 83 | 20.0000 | 105 | 40.0000 |
18 | 154.9993 | 40 | 119.9984 | 62 | 45.0000 | 84 | 199.9999 | 106 | 40.0000 |
19 | 155.0000 | 41 | 157.4299 | 63 | 184.9996 | 85 | 324.9972 | 107 | 50.0000 |
20 | 155.0000 | 42 | 219.9999 | 64 | 184.9996 | 86 | 440.0000 | 108 | 30.0000 |
21 | 68.9000 | 43 | 439.9999 | 65 | 184.9984 | 87 | 14.0886 | 109 | 40.0000 |
22 | 68.9000 | 44 | 559.9998 | 66 | 184.9997 | 88 | 24.0910 | 110 | 20.0000 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
ORCCRO [28] | 198016.29 | 198016.32 | 198016.89 | NA |
BBO [28] | 198241.166 | 198413.45 | 199102.59 | NA |
DE/BBO [28] | 198231.06 | 198326.66 | 198828.57 | NA |
OIWO [32] | 197989.14 | 197989.41 | 197989.93 | NA |
OLCSO [2] | 197988.8576 | 197989.5832 | 197990.4551 | 0.3699 |
IWO | 198252.3594 | 198621.3233 | 198902.7697 | 138.4714 |
HIWO | 197988.1927 | 197988.1969 | 197988.2045 | 0.0025 |
To investigate the dispatch performance of HIWO on very large-scale power systems, the following two cases studies are performed for comparing the optimization results of HIWO and other algorithms.
Case Ⅰ: The 140-generator Korea power system [23,32] neglecting transmission losses. The 12 generators consider the valve point effects. The power load demand is 49342 MW.
Case Ⅱ: The 160-generator power system [32] considering valve-point effects. The power load demand is 43200 MW.
In the case Ⅰ study, the optimal dispatch solution obtained by HIWO is shown in Table 9. The optimal results of HIWO are compared to those of SDE [29], OIWO [32], HAAA [37], GWO [35], KGMO [41] and IWO, as shown in Table 10. The corrected optimal result of OIWO is shown in italics. Compared to other algorithms in terms of minimum, average, maximum and standard deviation of costs in 50 runs, HIWO can obtain the cheapest dispatch solution.
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 115.2442 | 29 | 500.9998 | 57 | 103.0000 | 85 | 115.0000 | 113 | 94.0000 |
2 | 189.0000 | 30 | 500.9994 | 58 | 198.0000 | 86 | 207.0000 | 114 | 94.0000 |
3 | 190.0000 | 31 | 505.9993 | 59 | 311.9941 | 87 | 207.0000 | 115 | 244.0000 |
4 | 190.0000 | 32 | 505.9997 | 60 | 281.1604 | 88 | 175.0000 | 116 | 244.0000 |
5 | 168.5393 | 33 | 506.0000 | 61 | 163.0000 | 89 | 175.0000 | 117 | 244.0000 |
6 | 189.9932 | 34 | 505.9998 | 62 | 95.0000 | 90 | 175.0000 | 118 | 95.0000 |
7 | 489.9992 | 35 | 499.9996 | 63 | 160.0000 | 91 | 175.0000 | 119 | 95.0000 |
8 | 489.9996 | 36 | 500.0000 | 64 | 160.0000 | 92 | 579.9998 | 120 | 116.0000 |
9 | 495.9997 | 37 | 240.9993 | 65 | 489.9465 | 93 | 645.0000 | 121 | 175.0000 |
10 | 495.9994 | 38 | 240.9999 | 66 | 196.0000 | 94 | 983.9998 | 122 | 2.0000 |
11 | 495.9997 | 39 | 773.9996 | 67 | 489.9717 | 95 | 977.9993 | 123 | 4.0000 |
12 | 496.0000 | 40 | 769.0000 | 68 | 489.9908 | 96 | 681.9997 | 124 | 15.0000 |
13 | 506.0000 | 41 | 3.0000 | 69 | 130.0000 | 97 | 719.9998 | 125 | 9.0000 |
14 | 509.0000 | 42 | 3.0000 | 70 | 234.7202 | 98 | 717.9993 | 126 | 12.0000 |
15 | 506.0000 | 43 | 249.2474 | 71 | 137.0000 | 99 | 719.9997 | 127 | 10.0000 |
16 | 504.9997 | 44 | 246.0287 | 72 | 325.4950 | 100 | 963.9998 | 128 | 112.0000 |
17 | 505.9997 | 45 | 249.9973 | 73 | 195.0000 | 101 | 958.0000 | 129 | 4.0000 |
18 | 505.9997 | 46 | 249.9863 | 74 | 175.0000 | 102 | 1006.9992 | 130 | 5.0000 |
19 | 504.9994 | 47 | 241.0622 | 75 | 175.0000 | 103 | 1006.0000 | 131 | 5.0000 |
20 | 505.0000 | 48 | 249.9950 | 76 | 175.0000 | 104 | 1012.9999 | 132 | 50.0000 |
21 | 504.9998 | 49 | 249.9916 | 77 | 175.0000 | 105 | 1019.9996 | 133 | 5.0000 |
22 | 505.0000 | 50 | 249.9995 | 78 | 330.0000 | 106 | 953.9999 | 134 | 42.0000 |
23 | 504.9998 | 51 | 165.0000 | 79 | 531.0000 | 107 | 951.9998 | 135 | 42.0000 |
24 | 504.9996 | 52 | 165.0000 | 80 | 530.9995 | 108 | 1005.9996 | 136 | 41.0000 |
25 | 536.9997 | 53 | 165.0000 | 81 | 398.6524 | 109 | 1013.0000 | 137 | 17.0000 |
26 | 536.9995 | 54 | 165.0000 | 82 | 56.0000 | 110 | 1020.9998 | 138 | 7.0000 |
27 | 548.9998 | 55 | 180.0000 | 83 | 115.0000 | 111 | 1014.9996 | 139 | 7.0000 |
28 | 548.9993 | 56 | 180.0000 | 84 | 115.0000 | 112 | 94.0000 | 140 | 26.0000 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
SDE [29] | 1560236.85 | NA | NA | NA |
OIWO [32] | 1559712.2604 | NA | NA | NA |
HAAA [37] | 1559710.00 | 1559712.87 | 1559731.00 | 4.1371 |
GWO [35] | 1559953.18 | 1560132.93 | 1560228.40 | 1.024 |
KGMO [41] | 1583944.60 | 1583952.14 | 1583963.52 | NA |
IWO | 1564050.0027 | 1567185.2227 | 1571056.6280 | 1678.8488 |
HIWO | 1559709.5266 | 1559709.6956 | 1559709.8959 | 0.0856 |
In the case Ⅱ study, the optimal dispatch solution obtained by HIWO is shown in Table 11. The optimal results of HIWO are compared to those of ORCCRO [28], BBO [28], DE/BBO [28], CBA [31], OIWO [32] and IWO, as shown in Table 12. Compared to other algorithms, HIWO can also obtain the cheapest dispatch solution in terms of minimum, average, maximum and standard deviation of costs.
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 218.6095 | 33 | 280.6560 | 65 | 279.6118 | 97 | 287.7203 | 129 | 431.0758 |
2 | 209.2361 | 34 | 238.9676 | 66 | 238.5645 | 98 | 238.6988 | 130 | 275.8790 |
3 | 279.6486 | 35 | 279.9554 | 67 | 287.7296 | 99 | 426.2750 | 131 | 219.6189 |
4 | 240.3113 | 36 | 240.9831 | 68 | 241.2519 | 100 | 272.6741 | 132 | 210.4739 |
5 | 280.0206 | 37 | 290.1069 | 69 | 427.7708 | 101 | 217.5647 | 133 | 281.6640 |
6 | 238.4301 | 38 | 240.0425 | 70 | 272.9907 | 102 | 211.9593 | 134 | 238.9676 |
7 | 288.2326 | 39 | 426.3102 | 71 | 218.5918 | 103 | 280.6578 | 135 | 276.5752 |
8 | 239.5051 | 40 | 275.6392 | 72 | 212.7020 | 104 | 239.2363 | 136 | 239.3707 |
9 | 425.6549 | 41 | 219.6195 | 73 | 281.6629 | 105 | 276.3263 | 137 | 287.7806 |
10 | 275.6903 | 42 | 210.9690 | 74 | 238.9676 | 106 | 240.7144 | 138 | 238.5645 |
11 | 217.5646 | 43 | 282.6711 | 75 | 279.3688 | 107 | 290.0715 | 139 | 430.7874 |
12 | 212.4544 | 44 | 240.3113 | 76 | 237.6239 | 108 | 238.8332 | 140 | 275.8606 |
13 | 280.6558 | 45 | 279.7868 | 77 | 289.9995 | 109 | 425.7918 | 141 | 218.6539 |
14 | 238.6988 | 46 | 237.4895 | 78 | 239.9082 | 110 | 275.2705 | 142 | 210.7215 |
15 | 279.9370 | 47 | 287.7274 | 79 | 425.2406 | 111 | 217.5671 | 143 | 281.6640 |
16 | 240.7144 | 48 | 240.0425 | 80 | 276.0112 | 112 | 212.2069 | 144 | 239.3707 |
17 | 287.6968 | 49 | 427.4497 | 81 | 218.5923 | 113 | 281.6664 | 145 | 276.3578 |
18 | 239.7738 | 50 | 275.6817 | 82 | 212.2069 | 114 | 239.6394 | 146 | 239.6394 |
19 | 427.4049 | 51 | 219.6197 | 83 | 282.7049 | 115 | 276.0940 | 147 | 287.7565 |
20 | 275.6990 | 52 | 213.4447 | 84 | 237.7582 | 116 | 240.3113 | 148 | 239.3707 |
21 | 217.5665 | 53 | 282.6717 | 85 | 279.7940 | 117 | 290.0972 | 149 | 426.3023 |
22 | 212.2069 | 54 | 237.8926 | 86 | 239.3707 | 118 | 239.5051 | 150 | 275.6371 |
23 | 283.6805 | 55 | 276.2856 | 87 | 290.0916 | 119 | 429.4367 | 151 | 217.5647 |
24 | 239.7738 | 56 | 239.5051 | 88 | 239.2363 | 120 | 275.6690 | 152 | 212.2069 |
25 | 279.9011 | 57 | 287.6883 | 89 | 427.0504 | 121 | 217.5656 | 153 | 279.6493 |
26 | 240.9831 | 58 | 238.5645 | 90 | 275.7937 | 122 | 210.2264 | 154 | 238.4301 |
27 | 290.0737 | 59 | 429.9489 | 91 | 217.5643 | 123 | 280.6617 | 155 | 279.9078 |
28 | 240.8488 | 60 | 275.5096 | 92 | 212.9496 | 124 | 239.7738 | 156 | 240.4457 |
29 | 427.1007 | 61 | 218.5915 | 93 | 282.6732 | 125 | 275.9409 | 157 | 287.7385 |
30 | 276.2995 | 62 | 212.9496 | 94 | 240.4457 | 126 | 240.1769 | 158 | 238.5645 |
31 | 219.6189 | 63 | 282.6705 | 95 | 279.4854 | 127 | 287.6965 | 159 | 426.9110 |
32 | 211.7117 | 64 | 239.9082 | 96 | 240.1769 | 128 | 238.4301 | 160 | 272.7775 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
ORCCRO [28] | 10004.20 | 10004.21 | 10004.45 | NA |
OIWO [32] | 9981.9834 | 9982.991 | 9983.998 | NA |
BBO [28] | 10008.71 | 10009.16 | 10010.59 | NA |
DE/BBO [28] | 10007.05 | 10007.56 | 10010.26 | NA |
CBA [31] | 10002.8596 | 10006.3251 | 10045.2265 | 9.5811 |
IWO | 9984.8409 | 9985.5127 | 9986.1947 | 0.3252 |
HIWO | 9981.7867 | 9982.0010 | 9982.1922 | 0.0934 |
To illustrate the convergence ability of HIWO for solving different-scale ED problems with various constraints, the convergence curves of HIWO and IWO on six test systems are drawn, as shown in Figure 2. It can be found from Figure 2 that HIWO can converge to the optimal areas in the six test systems, and the convergence speed of HIWO on the 15, 40, 80, 110 and 140-generator power systems, is faster than that of IWO. Although the convergence speed of HIWO on the 160-generator power system is slower than that of IWO in the early evolutionary stage, it is faster than that of IWO in the later evolutionary stage. The reason is that the crossover and mutation decrease the fitness value of offspring weeds in 160-generator power system having lots of constraints, and then reduce the convergence speed in the early evolutionary stage, but increase the diversity of the population to jump out local optimization in the later stage.
In this paper, a hybrid HIWO algorithm combining IWO with GA is proposed to solve ED problems in power systems. The HIWO adopts IWO to explore the various regions in the solution space, while the crossover and mutation operations of GA are applied to improve the quality and diversity of solutions, thereby preventing the optimization from prematurity and enhancing the search capability. Moreover, an effective repair method is proposed to repair infeasible solutions to feasible solutions. The experimental results of the six test systems studies show that HIWO can obtain the cheapest dispatch solutions compared to other algorithms in the literature, and have a better optimization ability and faster convergence speed compared to the classical IWO. In summary, the proposed HIWO algorithm is an effective and promising approach for solving ED problems in different-scale power systems.
This research is partially supported by the National Science Foundation of China under grant numbers 61773192 and 61773246, the Key Laboratory of Computer Network and Information Integration (Southeast University), the Ministry of Education (K93-9-2017-02), and the State Key Laboratory of Synthetical Automation for Process Industries (PAL-N201602).
The authors declare no conflict of interest.
[1] |
Ababneh TEA, Aga M (2019) The impact of sustainable financial data governance, political connections, and creative accounting practices on organizational outcomes. Sustainability 11: 5676. https://doi.org/10.3390/su11205676 doi: 10.3390/su11205676
![]() |
[2] | Abed IA, Hussin N, Ali MA (2020) Piloting the Role of Corporate Governance and Creative Accounting in Financial Reporting Quality. Technology Reports of Kansai University 62: 5509–5514. |
[3] |
Abed IA, Hussin N, Ali MA, et al. (2022) Creative accounting determinants and financial reporting quality: Systematic literature review. Risks 10: 76. https://doi.org/10.3390/risks10040076 doi: 10.3390/risks10040076
![]() |
[4] |
Agostini M, Favero G (2017) Accounting fraud, business failure and creative auditing: A microanalysis of the strange case of the Sunbeam Corporation. Account Hist 22: 472–487. https://doi.org/10.1177/1032373217718871 doi: 10.1177/1032373217718871
![]() |
[5] |
Aharony J, Wang J, Yuan H (2010) Tunneling as an incentive for earnings management during the IPO process in China. J Account Public Policy 29: 1–26. https://doi.org/10.1016/j.jaccpubpol.2009.10.003 doi: 10.1016/j.jaccpubpol.2009.10.003
![]() |
[6] |
Akpanuko EE, Umoren NJ (2018) The influence of creative accounting on the credibility of accounting reports. J Financ Report Accoount 16: 292–310. https://doi.org/10.1108/JFRA-08-2016-0064 doi: 10.1108/JFRA-08-2016-0064
![]() |
[7] | AL-Hashimy HNH (2019) The Role of Auditing Practices that Affect Accounting Standards and Taxable Income: A Study in Iraq. J University Babylon Pure Appl Sci 27: 244–258. |
[8] | Al-Hashimy HNH (2022) A review of Accounting Manipulation and Detection: Technique and Prevention Methods. Int J Bus Manage Invent 11: 82–89. |
[9] | Al-hashimy HNH (2019) Strategic Accounting in the Profitability of Construction Engineering Projects Management Companies in Iraq. J Eng Appl Sci 14: 941–944. |
[10] |
Ali A, Zhang W (2015) CEO tenure and earnings management. J Account Econ 59: 60–79. https://doi.org/10.1016/j.jacceco.2014.11.004 doi: 10.1016/j.jacceco.2014.11.004
![]() |
[11] |
Anderson N, Potočnik K, Zhou J (2014) Innovation and creativity in organizations: A state-of-the-science review, prospective commentary, and guiding framework. J Manag 40: 1297–1333. https://doi.org/10.1177/014920631452712 doi: 10.1177/014920631452712
![]() |
[12] |
Aureli S, Giampaoli D, Ciambotti M, et al. (2019) Key factors that improve knowledge-intensive business processes which lead to competitive advantage. Bus Process Manag J 25: 126–143. https://doi.org/10.1108/BPMJ-06-2017-0168 doi: 10.1108/BPMJ-06-2017-0168
![]() |
[13] |
Badertscher BA (2011) Overvaluation and the choice of alternative earnings management mechanisms. Account Rev 86: 1491–1518. https://doi.org/10.2308/accr-10092 doi: 10.2308/accr-10092
![]() |
[14] |
Badolato PG, Donelson DC, Ege M (2014) Audit committee financial expertise and earnings management: The role of status. J Account Econ 58: 208–230. https://doi.org/10.1016/j.jacceco.2014.08.006 doi: 10.1016/j.jacceco.2014.08.006
![]() |
[15] |
Baik BO, Farber DB, Lee SAM (2011) CEO ability and management earnings forecasts. Contemp Account Res 28: 1645–1668. https://doi.org/10.1111/j.1911-3846.2011.01091.x doi: 10.1111/j.1911-3846.2011.01091.x
![]() |
[16] | Balaciu D, Bogdan V, Vladu AB (2009) A brief review of creative accounting literature and its consequences in practice. Annales Universitatis Apulensis: Series Oeconomica 11: 170. |
[17] | Balaciu D, Bogdan V, Mester I, et al. (2012) Empirical Evidence of Romanian Auditors' Behavior Regarding Creative Accounting Practices. Account Manage Inform Syst 11: 213–238. |
[18] |
Bao SR, Lewellyn KB (2017) Ownership structure and earnings management in emerging markets—An institutionalized agency perspective. Int Bus Rev 26: 828–838. https://doi.org/10.1016/j.ibusrev.2017.02.002 doi: 10.1016/j.ibusrev.2017.02.002
![]() |
[19] |
Bernoth K, Wolff GB (2008) Fool the markets? Creative accounting, fiscal transparency and sovereign risk premia. Scott J Polit Econ 55: 465–487. https://doi.org/10.1111/j.1467-9485.2008.00462.x doi: 10.1111/j.1467-9485.2008.00462.x
![]() |
[20] |
Boerman SC (2020) The effects of the standardized Instagram disclosure for micro-and meso-influencers. Comput Hum Behav 103: 199–207. https://doi.org/10.1016/j.chb.2019.09.015 doi: 10.1016/j.chb.2019.09.015
![]() |
[21] |
Brander M, Gillenwater M, Ascui F (2018) Creative accounting: A critical perspective on the market-based method for reporting purchased electricity (scope 2) emissions. Energy Policy 112: 29–33. https://doi.org/10.1016/j.enpol.2017.09.051 doi: 10.1016/j.enpol.2017.09.051
![]() |
[22] |
Brandt L, Van Biesebroeck J, Zhang Y (2012) Creative accounting or creative destruction? Firm-level productivity growth in Chinese manufacturing. J Dev Econ 97: 339–351. https://doi.org/10.1016/j.jdeveco.2011.02.002 doi: 10.1016/j.jdeveco.2011.02.002
![]() |
[23] | Carlin TM, Finch N (2011) Goodwill impairment testing under IFRS: a false impossible shore? Pac Account Rev 23: 368–392. |
[24] |
Cavero Rubio JA, Amoros Martinez A, Collazo Mazon A (2021) Economic effects of goodwill accounting practices: systematic amortisation versus impairment test. Span J Financ Account 50: 224–245. https://doi.org/10.1080/02102412.2020.1778376 doi: 10.1080/02102412.2020.1778376
![]() |
[25] |
Cernusca L, David D, Nicolaescu C, et al. (2016) Empirical study on the creative accounting phenomenon. Stud Univ Vasile Goldis Arad Seria Stiinte Economice 26: 63–87. https://doi.org/10.1515/sues-2016-0010 doi: 10.1515/sues-2016-0010
![]() |
[26] |
Chiu PC, Teoh SH, Tian F (2013) Board interlocks and earnings management contagion. Account Rev 88: 915–944. https://doi.org/10.2308/accr-50369 doi: 10.2308/accr-50369
![]() |
[27] |
Cohen D A, Zarowin P (2010) Accrual-based and real earnings management activities around seasoned equity offerings. J Account Econ 50: 2–19. https://doi.org/10.1016/j.jacceco.2010.01.002 doi: 10.1016/j.jacceco.2010.01.002
![]() |
[28] |
Collins DW, Pungaliya RS, Vijh AM (2017) The effects of firm growth and model specification choices on tests of earnings management in quarterly settings. Account Rev 92: 69–100. https://doi.org/10.2308/accr-51551 doi: 10.2308/accr-51551
![]() |
[29] |
Converse BA, Juarez L, Hennecke M (2019) Self-control and the reasons behind our goals. J Pers Soc Psychol 116: 860. https://doi.org/10.1037/pspp0000188 doi: 10.1037/pspp0000188
![]() |
[30] |
Cormier D, Lapointe-Antunes P (2006) The auditor's assessment and detection of corporate fraud: Some Canadian evidence. Int J Account Audit Perform Eval 3: 133–165. https://doi.org/10.1504/IJAAPE.2006.010299 doi: 10.1504/IJAAPE.2006.010299
![]() |
[31] |
De Aquino ACB, Lino AF, Cardoso RL, et al. (2020) Legitimating the standard-setter of public sector accounting reforms. Public Money Manage 40: 499–508. https://doi.org/10.1080/09540962.2020.1769381 doi: 10.1080/09540962.2020.1769381
![]() |
[32] |
De Villiers C, Sharma U (2020) A critical reflection on the future of financial, intellectual capital, sustainability and integrated reporting. Crit Perspect Account 70: 101999. https://doi.org/10.1016/j.cpa.2017.05.003 doi: 10.1016/j.cpa.2017.05.003
![]() |
[33] |
Dechow PM, Hutton AP, Kim, JH, et al. (2012) Detecting earnings management: A new approach. J Account Res 50: 275–334. https://doi.org/10.1111/j.1475-679X.2012.00449.x doi: 10.1111/j.1475-679X.2012.00449.x
![]() |
[34] |
Dechow PM, Myers LA, Shakespeare C (2010) Fair value accounting and gains from asset securitizations: A convenient earnings management tool with compensation side-benefits. J Account Econ 49: 2–25. https://doi.org/10.1016/j.jacceco.2009.09.006 doi: 10.1016/j.jacceco.2009.09.006
![]() |
[35] | Falcón VV, Sánchez FDJC, Vizcaino MEG (2019) An axiological look at Creative Accounting. https://doi.org/10.2139/ssrn.3554841 |
[36] |
Feldman R, Govindaraj S, Livnat J, et al. (2010) Management's tone change, post earnings announcement drift and accruals. Rev Account Stud 15: 915–953. https://doi.org/10.1007/s11142-009-9111-x doi: 10.1007/s11142-009-9111-x
![]() |
[37] | Friedman M (1937) The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance. J Am Stat Assoc 32: 675–701. |
[38] | Gadelha Dias AG, da Cruz Cunha JH, Henriques Sales IC, et al. (2016) Creative Accounting, Ethics and Earnings Management: Auditors versus Academics. Rev Adm Dialogo 18: 133–151. |
[39] |
Gowthorpe C, Amat O (2005) Creative accounting: some ethical issues of macro-and micro-manipulation. J Bus Ethics 57: 55–64. https://doi.org/10.1007/s10551-004-3822-5 doi: 10.1007/s10551-004-3822-5
![]() |
[40] | Griffiths I (1986) Creative Accounting. London: Sedgwick & Jackson Publisher. |
[41] |
Gunny KA (2010) The relation between earnings management using real activities manipulation and future performance: Evidence from meeting earnings benchmarks. Contemp Account Res 27: 855–888. https://doi.org/10.1111/j.1911-3846.2010.01029.x doi: 10.1111/j.1911-3846.2010.01029.x
![]() |
[42] | Habib A, Uddin Bhuiyan B, Islam A (2013) Financial distress, earnings management and market pricing of accruals during the global financial crisis. Manag Financ 39: 155–180. |
[43] |
Hadani M, Goranova M, Khan R (2011) Institutional investors, shareholder activism, and earnings management. J Bus Res 64: 1352–1360. https://doi.org/10.1016/j.jbusres.2010.12.004 doi: 10.1016/j.jbusres.2010.12.004
![]() |
[44] |
Han S, Kang T, Salter S, et al. (2010) A cross-country study on the effects of national culture on earnings management. J Int Bus Stud 41: 123–141. https://doi.org/10.1057/jibs.2008.78 doi: 10.1057/jibs.2008.78
![]() |
[45] |
Hazarika S, Karpoff JM, Nahata R (2012) Internal corporate governance, CEO turnover, and earnings management. J Financ Econ 104: 44–69. https://doi.org/10.1016/j.jfineco.2011.10.011 doi: 10.1016/j.jfineco.2011.10.011
![]() |
[46] | Hollander Sanhueza R, Morales Parada F (2017) A Perspective on the Creative Accounting Phenomenon form IFRS and IPSAS. Rev Perspect Empresarial 4: 85–94. |
[47] |
Hong Y, Andersen ML (2011) The relationship between corporate social responsibility and earnings management: An exploratory study. J Bus Ethics 104: 461–471. https://doi.org/10.1007/s10551-011-0921-y doi: 10.1007/s10551-011-0921-y
![]() |
[48] | Hussein H, Kasim N, Arumugam V (2015) A review of creative accounting practices and its area, technique and ways of prevention. Int J Sci Res 4: 1377–1381. |
[49] |
Ibanichuka EA, Ihendinihu JU (2012) Creative accounting and implication for dividend payout of companies in the financial sub-sector of Nigerian economy. Mediterr J Soc Sci 3: 132–134. https://doi.org/10.5901/mjss.2012.v3n15p125 doi: 10.5901/mjss.2012.v3n15p125
![]() |
[50] |
Jackson AB (2018) Discretionary accruals: earnings management... or not? Abacus 54: 136–153. https://doi.org/10.1111/abac.12117 doi: 10.1111/abac.12117
![]() |
[51] | Jameson M (1988) Practical guide to creative accounting. London: Kong Page. |
[52] |
Jiang JX, Petroni KR, Wang IY (2010) CFOs and CEOs: Who have the most influence on earnings management? J Financ Econ 96: 513–526. https://doi.org/10.1016/j.jfineco.2010.02.007 doi: 10.1016/j.jfineco.2010.02.007
![]() |
[53] | Jones M (2011) Creative Accounting, fraud and international accounting scandals. Chichester: Joho Wiley & Sons, Ltd. |
[54] |
Kothari SP, Mizik N, Roychowdhury S (2016) Managing for the moment: The role of earnings management via real activities versus accruals in SEO valuation. Account Rev 91: 559–586. https://doi.org/10.2308/accr-51153 doi: 10.2308/accr-51153
![]() |
[55] | Kubanová J, Linda B (2009) Kritické hodnoty a kvantily vybraný ch rozdělení pravděpodobností. Pardubice: Univerzita Pardubice. |
[56] |
Kuběnka M (2018) Improvement of prosperity prediction in Czech manufacturing industries. Inž Eko 29: 516–525. https://doi.org/10.5755/j01.ee.29.5.18231 doi: 10.5755/j01.ee.29.5.18231
![]() |
[57] |
Li Y, Qian X, Zhang L, et al. (2017) Exploring spatial explicit greenhouse gas inventories: Location-based accounting approach and implications in Japan. J Clean Prod 167: 702–712. https://doi.org/10.1016/j.jclepro.2017.08.219 doi: 10.1016/j.jclepro.2017.08.219
![]() |
[58] |
Linsmeier TJ, Wheeler E (2021) The debate over subsequent accounting for goodwill. Account Horiz 35: 107–128. https://doi.org/10.2308/HORIZONS-19-054 doi: 10.2308/HORIZONS-19-054
![]() |
[59] |
Lo AW, Wong RM, Firth M (2010) Can corporate governance deter management from manipulating earnings? Evidence from related-party sales transactions in China. J Corp Financ 16: 225–235. https://doi.org/10.1016/j.jcorpfin.2009.11.002 doi: 10.1016/j.jcorpfin.2009.11.002
![]() |
[60] | Lucchese M, Carlo FD (2020) Inventories Accounting under US-GAAP and IFRS Standards: The Differences That Hinder the Full Convergence. Int J Bus Manag 15: 180–195. https://dois.org/10.5539/ijbm.v15n7p180 |
[61] |
Massa M, Zhang B, Zhang H (2015) The invisible hand of short selling: Does short selling discipline earnings management? Rev Financ Stud 28: 1701–1736. https://doi.org/10.1093/rfs/hhu147 doi: 10.1093/rfs/hhu147
![]() |
[62] | McBarnet D, Whelan C (1999) Creative accounting and the cross-eyed javelin thrower. John Wiley & Sons Inc. |
[63] |
Milesi-Ferretti GM (2004) Good, bad or ugly? On the effects of fiscal rules with creative accounting. J Public Econs 88: 377–394. https://doi.org/10.1016/S0047-2727(02)00076-2 doi: 10.1016/S0047-2727(02)00076-2
![]() |
[64] | Mulford CW, Comiskey EE (2005) The financial numbers game: detecting creative accounting practices. New York: John Wiley & Sons. |
[65] |
Mutuc EB, Lee JS, Tsai FS (2019) Doing good with creative accounting? Linking corporate social responsibility to earnings management in market economy, country and business sector contexts. Sustainability 11: 4568. https://doi.org/10.3390/su11174568 doi: 10.3390/su11174568
![]() |
[66] |
Palazzi F, Sgrò F, Ciambotti M, et al. (2020) Technological intensity as a moderating variable for the intellectual capital–performance relationship. Knowl Process Manag 27: 3–14. https://doi.org/10.1002/kpm.1617 doi: 10.1002/kpm.1617
![]() |
[67] | Pasko O, Chen F, Tkal Y, et al. (2021) Do Converged to IFRS National Standards and Corporate Governance Attributes Affect Accounting Conservatism. Evidence from China. Sci Papers U Pardubice-Ser D- Faculty Econ Admin 29. https://doi.org/10.46585/sp29021272 |
[68] | Popescu VA, Popescu GN, Roman C, et al. (2009) From creative accounting to the moral and financial crisis. Metal Int 14: 141–149. |
[69] | Remenarić B, Kenfelja I, Mijoč I (2018) Creative accounting–motives, techniques and possibilities of prevention. Ekon Vjesn 31: 193–199. |
[70] |
Repousis S (2016) Using Beneish model to detect corporate financial statement fraud in Greece. J Financ Crime 23: 1063–1073. https://doi.org/10.1108/JFC-11-2014-0055 doi: 10.1108/JFC-11-2014-0055
![]() |
[71] |
Rodríguez-Pérez G, Van Hemmen S (2010) Debt, diversification and earnings management. J Account Public Policy 29: 138–159. https://doi.org/10.1016/j.jaccpubpol.2009.10.005 doi: 10.1016/j.jaccpubpol.2009.10.005
![]() |
[72] | Safta IL, Achim MV, Borlea SN (2020) Manipulation of financial statements through the use of creative accounting. Case of Romanian companies. Stud Univ Vasile Goldis Arad Seria Stiinte Economice 30: 90–107. |
[73] |
Sharma N (2020) Creative accounting: an interaction of HR and accounting. JIMS8M: J Indian Manag Strategy 25: 19–27. https://doi.org/10.5958/0973-9343.2020.00003.4 doi: 10.5958/0973-9343.2020.00003.4
![]() |
[74] |
Sohn BC (2016) The effect of accounting comparability on the accrual-based and real earnings management. J Account Public Policy 35: 513–539. https://doi.org/10.1016/j.jaccpubpol.2016.06.003 doi: 10.1016/j.jaccpubpol.2016.06.003
![]() |
[75] | Stangova N, Vighova A (2016) Possibilities of creative accounting avoidance in the Slovak Republic. Econ Ann-XXI 158: 97–100. http://dx.doi.org/10.21003/ea.V158-22 |
[76] |
Stockmans A, Lybaert N, Voordeckers W (2010) Socioemotional wealth and earnings management in private family firms. Fam Bus Rev 23: 280–294. https://doi.org/10.1177/089448651037445 doi: 10.1177/089448651037445
![]() |
[77] |
Stubben SR (2010) Discretionary revenues as a measure of earnings management. Account Rev 85: 695–717. https://doi.org/10.2308/accr.2010.85.2.695 doi: 10.2308/accr.2010.85.2.695
![]() |
[78] |
Suer AZ (2014) The Recognition of Provisions: Evidence from BIST100 Non-financial Companies. Procedia Econ Financ 9: 391–401. https://doi.org/10.1016/S2212-5671(14)00040-9 doi: 10.1016/S2212-5671(14)00040-9
![]() |
[79] |
Taherinia M, Tavakoli N, Tavakoli F (2018) The impact of creative accounting on the probability of fraud in the companies accepted in the Tehran stock exchange. Ind Eng Manag Syst 17: 709–718. https://doi.org/10.7232/iems.2018.17.4.709 doi: 10.7232/iems.2018.17.4.709
![]() |
[80] | Tassadaq F, Malik QA (2015) Creative accounting & financial reporting: model development & empirical testing. Int J Econ Financ Iss 5: 544–551. |
[81] |
Vladu AB, Amat O, Cuzdriorean DD (2017) Truthfulness in accounting: How to discriminate accounting manipulators from non-manipulators. J Bus Ethics 140: 633–648. https://doi.org/10.1007/s10551-016-3048-3 doi: 10.1007/s10551-016-3048-3
![]() |
[82] | Watts RL, Zimmerman JL (1990) Positive accounting theory: a ten year perspective. Account Rev, 131–156. |
[83] |
Zang AY (2012) Evidence on the trade-off between real activities manipulation and accrual-based earnings management. Account Rev 87: 675–703. https://doi.org/10.2308/accr-10196 doi: 10.2308/accr-10196
![]() |
1. | Qi Wang, Yufeng Guo, Dongrui Zhang, Yingwei Wang, Ying Xu, Jilai Yu, Research on wind farm participating in AGC based on wind power variogram characteristics, 2022, 19, 1551-0018, 8288, 10.3934/mbe.2022386 | |
2. | Swati Jain, Dr Krishna Teeth Chaturvedi, Review on Economic Load Dispatch and Associated Artificial Intelligence Algorithms, 2021, 7, 2582-4600, 34, 10.24113/ijoscience.v7i3.370 | |
3. | Mahdi Azizi, Milad Baghalzadeh Shishehgarkhaneh, Mahla Basiri, Optimum design of truss structures by Material Generation Algorithm with discrete variables, 2022, 3, 27726622, 100043, 10.1016/j.dajour.2022.100043 | |
4. | Dinu Calin Secui, Monica Liana Secui, Social small group optimization algorithm for large-scale economic dispatch problem with valve-point effects and multi-fuel sources, 2024, 54, 0924-669X, 8296, 10.1007/s10489-024-05517-8 | |
5. | Rahul Gupta, Ashish Khanna, Bal Virdee, AOBL-IPACO: A novel and optimized algorithm to mitigate losses in electrical grid systems, 2024, 2511-2104, 10.1007/s41870-024-02211-3 | |
6. | Thammarsat Visutarrom, Tsung-Che Chiang, Economic dispatch using metaheuristics: Algorithms, problems, and solutions, 2024, 150, 15684946, 110891, 10.1016/j.asoc.2023.110891 | |
7. | Xiaobao Yu, Zhenyu Dong, Dandan Zheng, Siwei Deng, Analysis of critical peak electricity price optimization model considering coal consumption rate of power generation side, 2023, 31, 1614-7499, 41514, 10.1007/s11356-023-29754-5 | |
8. | Balasim M. Hussein, Ahmed I. Jaber, Mohammed W. Abdulwahhab, Hayder J. Mohammed, Nikolay V. Korovkin, 2024, Application of Intelligent Optimization Algorithms on Economic Dispatch Problem, 979-8-3503-6370-8, 453, 10.1109/SCM62608.2024.10554111 | |
9. | Muhammet Demirbas, Serhat Duman, Burcin Ozkaya, Yunus Balci, Deniz Ersoy, M. Kenan Döşoğlu, Ugur Guvenc, Bekir Emre Altun, Hasan Uzel, Enes Kaymaz, Fuzzy-Based Fitness–Distance Balance Snow Ablation Optimizer Algorithm for Optimal Generation Planning in Power Systems, 2025, 18, 1996-1073, 3048, 10.3390/en18123048 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 455.0000 | 4 | 130.0000 | 7 | 430.0000 | 10 | 159.7871 | 13 | 25.0000 |
2 | 380.0000 | 5 | 170.0000 | 8 | 71.2594 | 11 | 80.0000 | 14 | 15.0000 |
3 | 130.0000 | 6 | 460.0000 | 9 | 58.4944 | 12 | 80.0000 | 15 | 15.0000 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
EMA [52] | 32704.4503 | 32704.4504 | 32704.4506 | NA |
FA [27] | 32704.5000 | 32856.1000 | 33175.0000 | 147.17022 |
ICS [50] | 32706.7358 | 32714.4669 | 32752.5183 | NA |
WCA [49] | 32704.4492 | 32704.5096 | 32704.5196 | 4.513e-05 |
RTO [51] | 32701.8145 | 32704.5300 | 32715.1800 | 5.07 |
OLCSO [2] | 32692.3961 | 32692.3981 | 32692.4033 | 0.0022 |
IWO | 32691.8615 | 32691.9392 | 32692.1421 | 0.0927 |
HIWO | 32691.5614 | 32691.8615 | 32691.8616 | 0.0001 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 113.9993 | 9 | 289.4281 | 17 | 489.2798 | 25 | 523.2794 | 33 | 190.0000 |
2 | 113.9993 | 10 | 279.5996 | 18 | 489.2793 | 26 | 523.2794 | 34 | 200.0000 |
3 | 120.0000 | 11 | 243.5995 | 19 | 511.2795 | 27 | 10.0000 | 35 | 199.9999 |
4 | 179.7330 | 12 | 94.0000 | 20 | 511.2793 | 28 | 10.0000 | 36 | 164.7999 |
5 | 87.7999 | 13 | 484.0391 | 21 | 523.2794 | 29 | 10.0000 | 37 | 109.9998 |
6 | 139.9998 | 14 | 484.0390 | 22 | 523.2794 | 30 | 87.7999 | 38 | 110.0000 |
7 | 300.0000 | 15 | 484.0393 | 23 | 523.2794 | 31 | 190.0000 | 39 | 109.9999 |
8 | 299.9997 | 16 | 484.0391 | 24 | 523.2794 | 32 | 190.0000 | 40 | 549.9999 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
ORCCRO [28] | 136855.19 | 136855.19 | 136855.19 | NA |
BBO [28] | 137026.82 | 137116.58 | 137587.82 | NA |
DE/BBO [28] | 136950.77 | 136966.77 | 137150.77 | NA |
SDE [29] | 138157.46 | NA | NA | NA |
OIWO [32] | 136452.68 | 136452.68 | 136452.68 | NA |
HAAA [37] | 136433.5 | 136436.6 | NA | 3.341896 |
IWO | 136543.8580 | 137009.5641 | 137679.1073 | 292.9686 |
HIWO | 136430.9504 | 136435.2127 | 136441.1059 | 4.3238 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 110.8335 | 17 | 489.3362 | 33 | 189.9994 | 49 | 284.6071 | 65 | 523.2794 |
2 | 111.5439 | 18 | 489.2794 | 34 | 165.1983 | 50 | 130.0000 | 66 | 523.2835 |
3 | 97.3834 | 19 | 511.2731 | 35 | 199.9997 | 51 | 94.0040 | 67 | 10.0000 |
4 | 179.7603 | 20 | 511.2666 | 36 | 199.9998 | 52 | 94.0000 | 68 | 10.0000 |
5 | 87.9806 | 21 | 523.2525 | 37 | 109.9999 | 53 | 214.7298 | 69 | 10.0000 |
6 | 139.9997 | 22 | 523.2805 | 38 | 110.0000 | 54 | 394.2675 | 70 | 87.8052 |
7 | 259.5584 | 23 | 523.2794 | 39 | 109.9987 | 55 | 394.2967 | 71 | 190.0000 |
8 | 284.7677 | 24 | 523.2794 | 40 | 511.2603 | 56 | 304.4839 | 72 | 189.9997 |
9 | 284.6331 | 25 | 523.2794 | 41 | 110.9296 | 57 | 489.3082 | 73 | 189.9991 |
10 | 130.0000 | 26 | 523.2958 | 42 | 110.8195 | 58 | 489.2773 | 74 | 164.7786 |
11 | 169.0220 | 27 | 10.0000 | 43 | 97.3706 | 59 | 511.2121 | 75 | 199.9994 |
12 | 94.0000 | 28 | 10.0000 | 44 | 179.7187 | 60 | 511.2992 | 76 | 200.0000 |
13 | 214.7422 | 29 | 10.0000 | 45 | 87.8560 | 61 | 523.2830 | 77 | 109.9990 |
14 | 394.1929 | 30 | 89.6856 | 46 | 139.9995 | 62 | 523.3201 | 78 | 110.0000 |
15 | 394.2794 | 31 | 189.9993 | 47 | 259.6320 | 63 | 523.2794 | 79 | 109.9996 |
16 | 394.3050 | 32 | 189.9992 | 48 | 284.6702 | 64 | 523.2794 | 80 | 511.2482 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
THS [34] | 243192.6899 | 243457.36 | NA | 120.9889 |
CSO [40] | 243195.3781 | 243546.6283 | 244038.7352 | NA |
HAAA [37] | 242815.9 | 242883 | 242944.5 | 29.2849 |
GWO [35] | 242825.4799 | 242829.8192 | 242837.1303 | 0.093 |
IWO | 246386.4038 | 248088.2077 | 249888.0623 | 844.0919 |
HIWO | 242815.2096 | 242836.1110 | 242872.4662 | 10.3458 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 2.4000 | 23 | 68.9000 | 45 | 659.9999 | 67 | 70.0000 | 89 | 82.4977 |
2 | 2.4000 | 24 | 350.0000 | 46 | 616.2499 | 68 | 70.0000 | 90 | 89.2333 |
3 | 2.4000 | 25 | 400.0000 | 47 | 5.4000 | 69 | 70.0000 | 91 | 57.5687 |
4 | 2.4000 | 26 | 400.0000 | 48 | 5.4000 | 70 | 359.9999 | 92 | 99.9986 |
5 | 2.4000 | 27 | 499.9992 | 49 | 8.4000 | 71 | 399.9999 | 93 | 439.9998 |
6 | 4.0000 | 28 | 500.0000 | 50 | 8.4000 | 72 | 399.9998 | 94 | 499.9999 |
7 | 4.0000 | 29 | 199.9997 | 51 | 8.4000 | 73 | 105.2864 | 95 | 600.0000 |
8 | 4.0000 | 30 | 99.9998 | 52 | 12.0000 | 74 | 191.4091 | 96 | 471.5717 |
9 | 4.0000 | 31 | 10.0000 | 53 | 12.0000 | 75 | 89.9996 | 97 | 3.6000 |
10 | 64.5432 | 32 | 19.9993 | 54 | 12.0000 | 76 | 49.9999 | 98 | 3.6000 |
11 | 62.2465 | 33 | 79.9950 | 55 | 12.0000 | 77 | 160.0000 | 99 | 4.4000 |
12 | 36.2739 | 34 | 249.9998 | 56 | 25.2000 | 78 | 295.4962 | 100 | 4.4000 |
13 | 56.6406 | 35 | 359.9999 | 57 | 25.2000 | 79 | 175.0102 | 101 | 10.0000 |
14 | 25.0000 | 36 | 399.9997 | 58 | 35.0000 | 80 | 98.2829 | 102 | 10.0000 |
15 | 25.0000 | 37 | 39.9998 | 59 | 35.0000 | 81 | 10.0000 | 103 | 20.0000 |
16 | 25.0000 | 38 | 69.9996 | 60 | 45.0000 | 82 | 12.0000 | 104 | 20.0000 |
17 | 154.9999 | 39 | 99.9998 | 61 | 45.0000 | 83 | 20.0000 | 105 | 40.0000 |
18 | 154.9993 | 40 | 119.9984 | 62 | 45.0000 | 84 | 199.9999 | 106 | 40.0000 |
19 | 155.0000 | 41 | 157.4299 | 63 | 184.9996 | 85 | 324.9972 | 107 | 50.0000 |
20 | 155.0000 | 42 | 219.9999 | 64 | 184.9996 | 86 | 440.0000 | 108 | 30.0000 |
21 | 68.9000 | 43 | 439.9999 | 65 | 184.9984 | 87 | 14.0886 | 109 | 40.0000 |
22 | 68.9000 | 44 | 559.9998 | 66 | 184.9997 | 88 | 24.0910 | 110 | 20.0000 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
ORCCRO [28] | 198016.29 | 198016.32 | 198016.89 | NA |
BBO [28] | 198241.166 | 198413.45 | 199102.59 | NA |
DE/BBO [28] | 198231.06 | 198326.66 | 198828.57 | NA |
OIWO [32] | 197989.14 | 197989.41 | 197989.93 | NA |
OLCSO [2] | 197988.8576 | 197989.5832 | 197990.4551 | 0.3699 |
IWO | 198252.3594 | 198621.3233 | 198902.7697 | 138.4714 |
HIWO | 197988.1927 | 197988.1969 | 197988.2045 | 0.0025 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 115.2442 | 29 | 500.9998 | 57 | 103.0000 | 85 | 115.0000 | 113 | 94.0000 |
2 | 189.0000 | 30 | 500.9994 | 58 | 198.0000 | 86 | 207.0000 | 114 | 94.0000 |
3 | 190.0000 | 31 | 505.9993 | 59 | 311.9941 | 87 | 207.0000 | 115 | 244.0000 |
4 | 190.0000 | 32 | 505.9997 | 60 | 281.1604 | 88 | 175.0000 | 116 | 244.0000 |
5 | 168.5393 | 33 | 506.0000 | 61 | 163.0000 | 89 | 175.0000 | 117 | 244.0000 |
6 | 189.9932 | 34 | 505.9998 | 62 | 95.0000 | 90 | 175.0000 | 118 | 95.0000 |
7 | 489.9992 | 35 | 499.9996 | 63 | 160.0000 | 91 | 175.0000 | 119 | 95.0000 |
8 | 489.9996 | 36 | 500.0000 | 64 | 160.0000 | 92 | 579.9998 | 120 | 116.0000 |
9 | 495.9997 | 37 | 240.9993 | 65 | 489.9465 | 93 | 645.0000 | 121 | 175.0000 |
10 | 495.9994 | 38 | 240.9999 | 66 | 196.0000 | 94 | 983.9998 | 122 | 2.0000 |
11 | 495.9997 | 39 | 773.9996 | 67 | 489.9717 | 95 | 977.9993 | 123 | 4.0000 |
12 | 496.0000 | 40 | 769.0000 | 68 | 489.9908 | 96 | 681.9997 | 124 | 15.0000 |
13 | 506.0000 | 41 | 3.0000 | 69 | 130.0000 | 97 | 719.9998 | 125 | 9.0000 |
14 | 509.0000 | 42 | 3.0000 | 70 | 234.7202 | 98 | 717.9993 | 126 | 12.0000 |
15 | 506.0000 | 43 | 249.2474 | 71 | 137.0000 | 99 | 719.9997 | 127 | 10.0000 |
16 | 504.9997 | 44 | 246.0287 | 72 | 325.4950 | 100 | 963.9998 | 128 | 112.0000 |
17 | 505.9997 | 45 | 249.9973 | 73 | 195.0000 | 101 | 958.0000 | 129 | 4.0000 |
18 | 505.9997 | 46 | 249.9863 | 74 | 175.0000 | 102 | 1006.9992 | 130 | 5.0000 |
19 | 504.9994 | 47 | 241.0622 | 75 | 175.0000 | 103 | 1006.0000 | 131 | 5.0000 |
20 | 505.0000 | 48 | 249.9950 | 76 | 175.0000 | 104 | 1012.9999 | 132 | 50.0000 |
21 | 504.9998 | 49 | 249.9916 | 77 | 175.0000 | 105 | 1019.9996 | 133 | 5.0000 |
22 | 505.0000 | 50 | 249.9995 | 78 | 330.0000 | 106 | 953.9999 | 134 | 42.0000 |
23 | 504.9998 | 51 | 165.0000 | 79 | 531.0000 | 107 | 951.9998 | 135 | 42.0000 |
24 | 504.9996 | 52 | 165.0000 | 80 | 530.9995 | 108 | 1005.9996 | 136 | 41.0000 |
25 | 536.9997 | 53 | 165.0000 | 81 | 398.6524 | 109 | 1013.0000 | 137 | 17.0000 |
26 | 536.9995 | 54 | 165.0000 | 82 | 56.0000 | 110 | 1020.9998 | 138 | 7.0000 |
27 | 548.9998 | 55 | 180.0000 | 83 | 115.0000 | 111 | 1014.9996 | 139 | 7.0000 |
28 | 548.9993 | 56 | 180.0000 | 84 | 115.0000 | 112 | 94.0000 | 140 | 26.0000 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
SDE [29] | 1560236.85 | NA | NA | NA |
OIWO [32] | 1559712.2604 | NA | NA | NA |
HAAA [37] | 1559710.00 | 1559712.87 | 1559731.00 | 4.1371 |
GWO [35] | 1559953.18 | 1560132.93 | 1560228.40 | 1.024 |
KGMO [41] | 1583944.60 | 1583952.14 | 1583963.52 | NA |
IWO | 1564050.0027 | 1567185.2227 | 1571056.6280 | 1678.8488 |
HIWO | 1559709.5266 | 1559709.6956 | 1559709.8959 | 0.0856 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 218.6095 | 33 | 280.6560 | 65 | 279.6118 | 97 | 287.7203 | 129 | 431.0758 |
2 | 209.2361 | 34 | 238.9676 | 66 | 238.5645 | 98 | 238.6988 | 130 | 275.8790 |
3 | 279.6486 | 35 | 279.9554 | 67 | 287.7296 | 99 | 426.2750 | 131 | 219.6189 |
4 | 240.3113 | 36 | 240.9831 | 68 | 241.2519 | 100 | 272.6741 | 132 | 210.4739 |
5 | 280.0206 | 37 | 290.1069 | 69 | 427.7708 | 101 | 217.5647 | 133 | 281.6640 |
6 | 238.4301 | 38 | 240.0425 | 70 | 272.9907 | 102 | 211.9593 | 134 | 238.9676 |
7 | 288.2326 | 39 | 426.3102 | 71 | 218.5918 | 103 | 280.6578 | 135 | 276.5752 |
8 | 239.5051 | 40 | 275.6392 | 72 | 212.7020 | 104 | 239.2363 | 136 | 239.3707 |
9 | 425.6549 | 41 | 219.6195 | 73 | 281.6629 | 105 | 276.3263 | 137 | 287.7806 |
10 | 275.6903 | 42 | 210.9690 | 74 | 238.9676 | 106 | 240.7144 | 138 | 238.5645 |
11 | 217.5646 | 43 | 282.6711 | 75 | 279.3688 | 107 | 290.0715 | 139 | 430.7874 |
12 | 212.4544 | 44 | 240.3113 | 76 | 237.6239 | 108 | 238.8332 | 140 | 275.8606 |
13 | 280.6558 | 45 | 279.7868 | 77 | 289.9995 | 109 | 425.7918 | 141 | 218.6539 |
14 | 238.6988 | 46 | 237.4895 | 78 | 239.9082 | 110 | 275.2705 | 142 | 210.7215 |
15 | 279.9370 | 47 | 287.7274 | 79 | 425.2406 | 111 | 217.5671 | 143 | 281.6640 |
16 | 240.7144 | 48 | 240.0425 | 80 | 276.0112 | 112 | 212.2069 | 144 | 239.3707 |
17 | 287.6968 | 49 | 427.4497 | 81 | 218.5923 | 113 | 281.6664 | 145 | 276.3578 |
18 | 239.7738 | 50 | 275.6817 | 82 | 212.2069 | 114 | 239.6394 | 146 | 239.6394 |
19 | 427.4049 | 51 | 219.6197 | 83 | 282.7049 | 115 | 276.0940 | 147 | 287.7565 |
20 | 275.6990 | 52 | 213.4447 | 84 | 237.7582 | 116 | 240.3113 | 148 | 239.3707 |
21 | 217.5665 | 53 | 282.6717 | 85 | 279.7940 | 117 | 290.0972 | 149 | 426.3023 |
22 | 212.2069 | 54 | 237.8926 | 86 | 239.3707 | 118 | 239.5051 | 150 | 275.6371 |
23 | 283.6805 | 55 | 276.2856 | 87 | 290.0916 | 119 | 429.4367 | 151 | 217.5647 |
24 | 239.7738 | 56 | 239.5051 | 88 | 239.2363 | 120 | 275.6690 | 152 | 212.2069 |
25 | 279.9011 | 57 | 287.6883 | 89 | 427.0504 | 121 | 217.5656 | 153 | 279.6493 |
26 | 240.9831 | 58 | 238.5645 | 90 | 275.7937 | 122 | 210.2264 | 154 | 238.4301 |
27 | 290.0737 | 59 | 429.9489 | 91 | 217.5643 | 123 | 280.6617 | 155 | 279.9078 |
28 | 240.8488 | 60 | 275.5096 | 92 | 212.9496 | 124 | 239.7738 | 156 | 240.4457 |
29 | 427.1007 | 61 | 218.5915 | 93 | 282.6732 | 125 | 275.9409 | 157 | 287.7385 |
30 | 276.2995 | 62 | 212.9496 | 94 | 240.4457 | 126 | 240.1769 | 158 | 238.5645 |
31 | 219.6189 | 63 | 282.6705 | 95 | 279.4854 | 127 | 287.6965 | 159 | 426.9110 |
32 | 211.7117 | 64 | 239.9082 | 96 | 240.1769 | 128 | 238.4301 | 160 | 272.7775 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
ORCCRO [28] | 10004.20 | 10004.21 | 10004.45 | NA |
OIWO [32] | 9981.9834 | 9982.991 | 9983.998 | NA |
BBO [28] | 10008.71 | 10009.16 | 10010.59 | NA |
DE/BBO [28] | 10007.05 | 10007.56 | 10010.26 | NA |
CBA [31] | 10002.8596 | 10006.3251 | 10045.2265 | 9.5811 |
IWO | 9984.8409 | 9985.5127 | 9986.1947 | 0.3252 |
HIWO | 9981.7867 | 9982.0010 | 9982.1922 | 0.0934 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 455.0000 | 4 | 130.0000 | 7 | 430.0000 | 10 | 159.7871 | 13 | 25.0000 |
2 | 380.0000 | 5 | 170.0000 | 8 | 71.2594 | 11 | 80.0000 | 14 | 15.0000 |
3 | 130.0000 | 6 | 460.0000 | 9 | 58.4944 | 12 | 80.0000 | 15 | 15.0000 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
EMA [52] | 32704.4503 | 32704.4504 | 32704.4506 | NA |
FA [27] | 32704.5000 | 32856.1000 | 33175.0000 | 147.17022 |
ICS [50] | 32706.7358 | 32714.4669 | 32752.5183 | NA |
WCA [49] | 32704.4492 | 32704.5096 | 32704.5196 | 4.513e-05 |
RTO [51] | 32701.8145 | 32704.5300 | 32715.1800 | 5.07 |
OLCSO [2] | 32692.3961 | 32692.3981 | 32692.4033 | 0.0022 |
IWO | 32691.8615 | 32691.9392 | 32692.1421 | 0.0927 |
HIWO | 32691.5614 | 32691.8615 | 32691.8616 | 0.0001 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 113.9993 | 9 | 289.4281 | 17 | 489.2798 | 25 | 523.2794 | 33 | 190.0000 |
2 | 113.9993 | 10 | 279.5996 | 18 | 489.2793 | 26 | 523.2794 | 34 | 200.0000 |
3 | 120.0000 | 11 | 243.5995 | 19 | 511.2795 | 27 | 10.0000 | 35 | 199.9999 |
4 | 179.7330 | 12 | 94.0000 | 20 | 511.2793 | 28 | 10.0000 | 36 | 164.7999 |
5 | 87.7999 | 13 | 484.0391 | 21 | 523.2794 | 29 | 10.0000 | 37 | 109.9998 |
6 | 139.9998 | 14 | 484.0390 | 22 | 523.2794 | 30 | 87.7999 | 38 | 110.0000 |
7 | 300.0000 | 15 | 484.0393 | 23 | 523.2794 | 31 | 190.0000 | 39 | 109.9999 |
8 | 299.9997 | 16 | 484.0391 | 24 | 523.2794 | 32 | 190.0000 | 40 | 549.9999 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
ORCCRO [28] | 136855.19 | 136855.19 | 136855.19 | NA |
BBO [28] | 137026.82 | 137116.58 | 137587.82 | NA |
DE/BBO [28] | 136950.77 | 136966.77 | 137150.77 | NA |
SDE [29] | 138157.46 | NA | NA | NA |
OIWO [32] | 136452.68 | 136452.68 | 136452.68 | NA |
HAAA [37] | 136433.5 | 136436.6 | NA | 3.341896 |
IWO | 136543.8580 | 137009.5641 | 137679.1073 | 292.9686 |
HIWO | 136430.9504 | 136435.2127 | 136441.1059 | 4.3238 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 110.8335 | 17 | 489.3362 | 33 | 189.9994 | 49 | 284.6071 | 65 | 523.2794 |
2 | 111.5439 | 18 | 489.2794 | 34 | 165.1983 | 50 | 130.0000 | 66 | 523.2835 |
3 | 97.3834 | 19 | 511.2731 | 35 | 199.9997 | 51 | 94.0040 | 67 | 10.0000 |
4 | 179.7603 | 20 | 511.2666 | 36 | 199.9998 | 52 | 94.0000 | 68 | 10.0000 |
5 | 87.9806 | 21 | 523.2525 | 37 | 109.9999 | 53 | 214.7298 | 69 | 10.0000 |
6 | 139.9997 | 22 | 523.2805 | 38 | 110.0000 | 54 | 394.2675 | 70 | 87.8052 |
7 | 259.5584 | 23 | 523.2794 | 39 | 109.9987 | 55 | 394.2967 | 71 | 190.0000 |
8 | 284.7677 | 24 | 523.2794 | 40 | 511.2603 | 56 | 304.4839 | 72 | 189.9997 |
9 | 284.6331 | 25 | 523.2794 | 41 | 110.9296 | 57 | 489.3082 | 73 | 189.9991 |
10 | 130.0000 | 26 | 523.2958 | 42 | 110.8195 | 58 | 489.2773 | 74 | 164.7786 |
11 | 169.0220 | 27 | 10.0000 | 43 | 97.3706 | 59 | 511.2121 | 75 | 199.9994 |
12 | 94.0000 | 28 | 10.0000 | 44 | 179.7187 | 60 | 511.2992 | 76 | 200.0000 |
13 | 214.7422 | 29 | 10.0000 | 45 | 87.8560 | 61 | 523.2830 | 77 | 109.9990 |
14 | 394.1929 | 30 | 89.6856 | 46 | 139.9995 | 62 | 523.3201 | 78 | 110.0000 |
15 | 394.2794 | 31 | 189.9993 | 47 | 259.6320 | 63 | 523.2794 | 79 | 109.9996 |
16 | 394.3050 | 32 | 189.9992 | 48 | 284.6702 | 64 | 523.2794 | 80 | 511.2482 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
THS [34] | 243192.6899 | 243457.36 | NA | 120.9889 |
CSO [40] | 243195.3781 | 243546.6283 | 244038.7352 | NA |
HAAA [37] | 242815.9 | 242883 | 242944.5 | 29.2849 |
GWO [35] | 242825.4799 | 242829.8192 | 242837.1303 | 0.093 |
IWO | 246386.4038 | 248088.2077 | 249888.0623 | 844.0919 |
HIWO | 242815.2096 | 242836.1110 | 242872.4662 | 10.3458 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 2.4000 | 23 | 68.9000 | 45 | 659.9999 | 67 | 70.0000 | 89 | 82.4977 |
2 | 2.4000 | 24 | 350.0000 | 46 | 616.2499 | 68 | 70.0000 | 90 | 89.2333 |
3 | 2.4000 | 25 | 400.0000 | 47 | 5.4000 | 69 | 70.0000 | 91 | 57.5687 |
4 | 2.4000 | 26 | 400.0000 | 48 | 5.4000 | 70 | 359.9999 | 92 | 99.9986 |
5 | 2.4000 | 27 | 499.9992 | 49 | 8.4000 | 71 | 399.9999 | 93 | 439.9998 |
6 | 4.0000 | 28 | 500.0000 | 50 | 8.4000 | 72 | 399.9998 | 94 | 499.9999 |
7 | 4.0000 | 29 | 199.9997 | 51 | 8.4000 | 73 | 105.2864 | 95 | 600.0000 |
8 | 4.0000 | 30 | 99.9998 | 52 | 12.0000 | 74 | 191.4091 | 96 | 471.5717 |
9 | 4.0000 | 31 | 10.0000 | 53 | 12.0000 | 75 | 89.9996 | 97 | 3.6000 |
10 | 64.5432 | 32 | 19.9993 | 54 | 12.0000 | 76 | 49.9999 | 98 | 3.6000 |
11 | 62.2465 | 33 | 79.9950 | 55 | 12.0000 | 77 | 160.0000 | 99 | 4.4000 |
12 | 36.2739 | 34 | 249.9998 | 56 | 25.2000 | 78 | 295.4962 | 100 | 4.4000 |
13 | 56.6406 | 35 | 359.9999 | 57 | 25.2000 | 79 | 175.0102 | 101 | 10.0000 |
14 | 25.0000 | 36 | 399.9997 | 58 | 35.0000 | 80 | 98.2829 | 102 | 10.0000 |
15 | 25.0000 | 37 | 39.9998 | 59 | 35.0000 | 81 | 10.0000 | 103 | 20.0000 |
16 | 25.0000 | 38 | 69.9996 | 60 | 45.0000 | 82 | 12.0000 | 104 | 20.0000 |
17 | 154.9999 | 39 | 99.9998 | 61 | 45.0000 | 83 | 20.0000 | 105 | 40.0000 |
18 | 154.9993 | 40 | 119.9984 | 62 | 45.0000 | 84 | 199.9999 | 106 | 40.0000 |
19 | 155.0000 | 41 | 157.4299 | 63 | 184.9996 | 85 | 324.9972 | 107 | 50.0000 |
20 | 155.0000 | 42 | 219.9999 | 64 | 184.9996 | 86 | 440.0000 | 108 | 30.0000 |
21 | 68.9000 | 43 | 439.9999 | 65 | 184.9984 | 87 | 14.0886 | 109 | 40.0000 |
22 | 68.9000 | 44 | 559.9998 | 66 | 184.9997 | 88 | 24.0910 | 110 | 20.0000 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
ORCCRO [28] | 198016.29 | 198016.32 | 198016.89 | NA |
BBO [28] | 198241.166 | 198413.45 | 199102.59 | NA |
DE/BBO [28] | 198231.06 | 198326.66 | 198828.57 | NA |
OIWO [32] | 197989.14 | 197989.41 | 197989.93 | NA |
OLCSO [2] | 197988.8576 | 197989.5832 | 197990.4551 | 0.3699 |
IWO | 198252.3594 | 198621.3233 | 198902.7697 | 138.4714 |
HIWO | 197988.1927 | 197988.1969 | 197988.2045 | 0.0025 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 115.2442 | 29 | 500.9998 | 57 | 103.0000 | 85 | 115.0000 | 113 | 94.0000 |
2 | 189.0000 | 30 | 500.9994 | 58 | 198.0000 | 86 | 207.0000 | 114 | 94.0000 |
3 | 190.0000 | 31 | 505.9993 | 59 | 311.9941 | 87 | 207.0000 | 115 | 244.0000 |
4 | 190.0000 | 32 | 505.9997 | 60 | 281.1604 | 88 | 175.0000 | 116 | 244.0000 |
5 | 168.5393 | 33 | 506.0000 | 61 | 163.0000 | 89 | 175.0000 | 117 | 244.0000 |
6 | 189.9932 | 34 | 505.9998 | 62 | 95.0000 | 90 | 175.0000 | 118 | 95.0000 |
7 | 489.9992 | 35 | 499.9996 | 63 | 160.0000 | 91 | 175.0000 | 119 | 95.0000 |
8 | 489.9996 | 36 | 500.0000 | 64 | 160.0000 | 92 | 579.9998 | 120 | 116.0000 |
9 | 495.9997 | 37 | 240.9993 | 65 | 489.9465 | 93 | 645.0000 | 121 | 175.0000 |
10 | 495.9994 | 38 | 240.9999 | 66 | 196.0000 | 94 | 983.9998 | 122 | 2.0000 |
11 | 495.9997 | 39 | 773.9996 | 67 | 489.9717 | 95 | 977.9993 | 123 | 4.0000 |
12 | 496.0000 | 40 | 769.0000 | 68 | 489.9908 | 96 | 681.9997 | 124 | 15.0000 |
13 | 506.0000 | 41 | 3.0000 | 69 | 130.0000 | 97 | 719.9998 | 125 | 9.0000 |
14 | 509.0000 | 42 | 3.0000 | 70 | 234.7202 | 98 | 717.9993 | 126 | 12.0000 |
15 | 506.0000 | 43 | 249.2474 | 71 | 137.0000 | 99 | 719.9997 | 127 | 10.0000 |
16 | 504.9997 | 44 | 246.0287 | 72 | 325.4950 | 100 | 963.9998 | 128 | 112.0000 |
17 | 505.9997 | 45 | 249.9973 | 73 | 195.0000 | 101 | 958.0000 | 129 | 4.0000 |
18 | 505.9997 | 46 | 249.9863 | 74 | 175.0000 | 102 | 1006.9992 | 130 | 5.0000 |
19 | 504.9994 | 47 | 241.0622 | 75 | 175.0000 | 103 | 1006.0000 | 131 | 5.0000 |
20 | 505.0000 | 48 | 249.9950 | 76 | 175.0000 | 104 | 1012.9999 | 132 | 50.0000 |
21 | 504.9998 | 49 | 249.9916 | 77 | 175.0000 | 105 | 1019.9996 | 133 | 5.0000 |
22 | 505.0000 | 50 | 249.9995 | 78 | 330.0000 | 106 | 953.9999 | 134 | 42.0000 |
23 | 504.9998 | 51 | 165.0000 | 79 | 531.0000 | 107 | 951.9998 | 135 | 42.0000 |
24 | 504.9996 | 52 | 165.0000 | 80 | 530.9995 | 108 | 1005.9996 | 136 | 41.0000 |
25 | 536.9997 | 53 | 165.0000 | 81 | 398.6524 | 109 | 1013.0000 | 137 | 17.0000 |
26 | 536.9995 | 54 | 165.0000 | 82 | 56.0000 | 110 | 1020.9998 | 138 | 7.0000 |
27 | 548.9998 | 55 | 180.0000 | 83 | 115.0000 | 111 | 1014.9996 | 139 | 7.0000 |
28 | 548.9993 | 56 | 180.0000 | 84 | 115.0000 | 112 | 94.0000 | 140 | 26.0000 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
SDE [29] | 1560236.85 | NA | NA | NA |
OIWO [32] | 1559712.2604 | NA | NA | NA |
HAAA [37] | 1559710.00 | 1559712.87 | 1559731.00 | 4.1371 |
GWO [35] | 1559953.18 | 1560132.93 | 1560228.40 | 1.024 |
KGMO [41] | 1583944.60 | 1583952.14 | 1583963.52 | NA |
IWO | 1564050.0027 | 1567185.2227 | 1571056.6280 | 1678.8488 |
HIWO | 1559709.5266 | 1559709.6956 | 1559709.8959 | 0.0856 |
Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi | Generators | Pi |
1 | 218.6095 | 33 | 280.6560 | 65 | 279.6118 | 97 | 287.7203 | 129 | 431.0758 |
2 | 209.2361 | 34 | 238.9676 | 66 | 238.5645 | 98 | 238.6988 | 130 | 275.8790 |
3 | 279.6486 | 35 | 279.9554 | 67 | 287.7296 | 99 | 426.2750 | 131 | 219.6189 |
4 | 240.3113 | 36 | 240.9831 | 68 | 241.2519 | 100 | 272.6741 | 132 | 210.4739 |
5 | 280.0206 | 37 | 290.1069 | 69 | 427.7708 | 101 | 217.5647 | 133 | 281.6640 |
6 | 238.4301 | 38 | 240.0425 | 70 | 272.9907 | 102 | 211.9593 | 134 | 238.9676 |
7 | 288.2326 | 39 | 426.3102 | 71 | 218.5918 | 103 | 280.6578 | 135 | 276.5752 |
8 | 239.5051 | 40 | 275.6392 | 72 | 212.7020 | 104 | 239.2363 | 136 | 239.3707 |
9 | 425.6549 | 41 | 219.6195 | 73 | 281.6629 | 105 | 276.3263 | 137 | 287.7806 |
10 | 275.6903 | 42 | 210.9690 | 74 | 238.9676 | 106 | 240.7144 | 138 | 238.5645 |
11 | 217.5646 | 43 | 282.6711 | 75 | 279.3688 | 107 | 290.0715 | 139 | 430.7874 |
12 | 212.4544 | 44 | 240.3113 | 76 | 237.6239 | 108 | 238.8332 | 140 | 275.8606 |
13 | 280.6558 | 45 | 279.7868 | 77 | 289.9995 | 109 | 425.7918 | 141 | 218.6539 |
14 | 238.6988 | 46 | 237.4895 | 78 | 239.9082 | 110 | 275.2705 | 142 | 210.7215 |
15 | 279.9370 | 47 | 287.7274 | 79 | 425.2406 | 111 | 217.5671 | 143 | 281.6640 |
16 | 240.7144 | 48 | 240.0425 | 80 | 276.0112 | 112 | 212.2069 | 144 | 239.3707 |
17 | 287.6968 | 49 | 427.4497 | 81 | 218.5923 | 113 | 281.6664 | 145 | 276.3578 |
18 | 239.7738 | 50 | 275.6817 | 82 | 212.2069 | 114 | 239.6394 | 146 | 239.6394 |
19 | 427.4049 | 51 | 219.6197 | 83 | 282.7049 | 115 | 276.0940 | 147 | 287.7565 |
20 | 275.6990 | 52 | 213.4447 | 84 | 237.7582 | 116 | 240.3113 | 148 | 239.3707 |
21 | 217.5665 | 53 | 282.6717 | 85 | 279.7940 | 117 | 290.0972 | 149 | 426.3023 |
22 | 212.2069 | 54 | 237.8926 | 86 | 239.3707 | 118 | 239.5051 | 150 | 275.6371 |
23 | 283.6805 | 55 | 276.2856 | 87 | 290.0916 | 119 | 429.4367 | 151 | 217.5647 |
24 | 239.7738 | 56 | 239.5051 | 88 | 239.2363 | 120 | 275.6690 | 152 | 212.2069 |
25 | 279.9011 | 57 | 287.6883 | 89 | 427.0504 | 121 | 217.5656 | 153 | 279.6493 |
26 | 240.9831 | 58 | 238.5645 | 90 | 275.7937 | 122 | 210.2264 | 154 | 238.4301 |
27 | 290.0737 | 59 | 429.9489 | 91 | 217.5643 | 123 | 280.6617 | 155 | 279.9078 |
28 | 240.8488 | 60 | 275.5096 | 92 | 212.9496 | 124 | 239.7738 | 156 | 240.4457 |
29 | 427.1007 | 61 | 218.5915 | 93 | 282.6732 | 125 | 275.9409 | 157 | 287.7385 |
30 | 276.2995 | 62 | 212.9496 | 94 | 240.4457 | 126 | 240.1769 | 158 | 238.5645 |
31 | 219.6189 | 63 | 282.6705 | 95 | 279.4854 | 127 | 287.6965 | 159 | 426.9110 |
32 | 211.7117 | 64 | 239.9082 | 96 | 240.1769 | 128 | 238.4301 | 160 | 272.7775 |
Algorithms | SCmin ($) | SCavg ($) | SCmax ($) | SCstd |
ORCCRO [28] | 10004.20 | 10004.21 | 10004.45 | NA |
OIWO [32] | 9981.9834 | 9982.991 | 9983.998 | NA |
BBO [28] | 10008.71 | 10009.16 | 10010.59 | NA |
DE/BBO [28] | 10007.05 | 10007.56 | 10010.26 | NA |
CBA [31] | 10002.8596 | 10006.3251 | 10045.2265 | 9.5811 |
IWO | 9984.8409 | 9985.5127 | 9986.1947 | 0.3252 |
HIWO | 9981.7867 | 9982.0010 | 9982.1922 | 0.0934 |