We present an example of a three-degrees-of-freedom polynomial Hamilton function with a critical point characterized by indefinite quadratic part with a Morse index 2. This function generates a Hamiltonian system wherein all eigenvalues equal , but it lacks small-amplitude periodic solutions with a period
Citation: Henryk Żoła̧dek. An example in Hamiltonian dynamics[J]. Communications in Analysis and Mechanics, 2024, 16(2): 431-447. doi: 10.3934/cam.2024020
[1] | D. Marene Larruskain, Inmaculada Zamora, Oihane Abarrategui, Garikoitz Buigues, Víctor Valverde, Araitz Iturregi . Adapting AC Lines to DC Grids for Large-Scale Renewable Power Transmission. AIMS Energy, 2014, 2(4): 385-398. doi: 10.3934/energy.2014.4.385 |
[2] | Arben Gjukaj, Rexhep Shaqiri, Qamil Kabashi, Vezir Rexhepi . Renewable energy integration and distributed generation in Kosovo: Challenges and solutions for enhanced energy quality. AIMS Energy, 2024, 12(3): 686-705. doi: 10.3934/energy.2024032 |
[3] | Chukwuebuka Okafor, Christian Madu, Charles Ajaero, Juliet Ibekwe, Happy Bebenimibo, Chinelo Nzekwe . Moving beyond fossil fuel in an oil-exporting and emerging economy: Paradigm shift. AIMS Energy, 2021, 9(2): 379-413. doi: 10.3934/energy.2021020 |
[4] | Victoria Gartman, Kathrin Wichmann, Lea Bulling, María Elena Huesca-Pérez, Johann Köppel . Wind of Change or Wind of Challenges: Implementation factors regarding wind energy development, an international perspective. AIMS Energy, 2014, 2(4): 485-504. doi: 10.3934/energy.2014.4.485 |
[5] | Albert K. Awopone, Ahmed F. Zobaa . Analyses of optimum generation scenarios for sustainable power generation in Ghana. AIMS Energy, 2017, 5(2): 193-208. doi: 10.3934/energy.2017.2.193 |
[6] | Ashebir Dingeto Hailu, Desta Kalbessa Kumsa . Ethiopia renewable energy potentials and current state. AIMS Energy, 2021, 9(1): 1-14. doi: 10.3934/energy.2021001 |
[7] | Gustavo Henrique Romeu da Silva, Andreas Nascimento, Christoph Daniel Baum, Nazem Nascimento, Mauro Hugo Mathias, Mohd Amro . Renewable energy perspectives: Brazilian case study on green hydrogen production. AIMS Energy, 2025, 13(2): 449-470. doi: 10.3934/energy.2025017 |
[8] | Fazri Amir, Hafiz Muhammad, Nasruddin A. Abdullah, Samsul Rizal, Razali Thaib, Hamdani Umar . Performance analysis of heat recovery in Heat Pipe Heat Exchanger on room air conditioning systems. AIMS Energy, 2023, 11(4): 612-627. doi: 10.3934/energy.2023031 |
[9] | María del P. Pablo-Romero, Rafael Pozo-Barajas . Global changes in total and wind electricity (1990–2014). AIMS Energy, 2017, 5(2): 290-312. doi: 10.3934/energy.2017.2.290 |
[10] | Surender Reddy Salkuti . Sustainable energy technologies for emerging renewable energy and electric vehicles. AIMS Energy, 2024, 12(6): 1264-1270. doi: 10.3934/energy.2024057 |
We present an example of a three-degrees-of-freedom polynomial Hamilton function with a critical point characterized by indefinite quadratic part with a Morse index 2. This function generates a Hamiltonian system wherein all eigenvalues equal , but it lacks small-amplitude periodic solutions with a period
[1] | A. M. Lyapunov, The General Problem of the Stability of Motion, Taylor & Francis Group, London, 1992. https://doi.org/10.1115/1.2901415 |
[2] | H. Żoła̧dek, Normal forms, invariant manifolds and Lyapunov theorems, Commun. Analysis Mech., 15 (2023), 300–341. https://doi.org/10.3934/cam.2023016 |
[3] | H. Poincaré, Mémoire sur les Courbes Définies par une Équation Différentielle, in: Œuvres de Henri Poincaré 1, Gauthier–Villars, Paris, 1951. |
[4] |
D. S. Schmidt, Periodic solutions near a resonant equilibrium of a Hamiltonian system, Celestial Mech., 9 (1974), 81–103. https://doi.org/10.1007/BF01236166 doi: 10.1007/BF01236166
![]() |
[5] |
A. Weinstein, Normal modes for nonlinear Hamiltonian systems, Invent. Math, 20 (1973), 47–57. https://doi.org/10.1007/BF01405263 doi: 10.1007/BF01405263
![]() |
[6] | J. Mawhin, J. Willem, Critical Point Theory and Hamiltonian Systems, Springer, New York, 1989. https://doi.org/10.1007/971-1-4757-2061-7 |
[7] |
J. Moser, Periodic orbits near an equilibrium and a theorem by Alan Weinstein, Comm. Pure Appl. Math, 29 (1976), 724–747. https://doi.org/10.1016/s0304-0208(08)71098-3 doi: 10.1016/s0304-0208(08)71098-3
![]() |
[8] |
A. Szulkin, Bifurcation of strongly indefinite functionals and a Liapunov type theorem for Hamiltonian systems, Differential Integral Equations, 7 (1994), 217–234. https://doi.org/10.57262/die/1369926976 doi: 10.57262/die/1369926976
![]() |
[9] |
E. N. Dancer, S. Rybicki, A note on periodic solutions of autonomous Hamiltonian systems emanating from degenerate stationary solutions, Differential Integral Equations, 12 (1999), 147–160. https://doi.org/10.57262/die/1367265626 doi: 10.57262/die/1367265626
![]() |
[10] |
A. Gołȩbiewska, E. Pérez-Chavela, S. Rybicki, A. Ureña, Bifurcation of closed orbits from equilibria of Newtonian systems with Coriolis forces, J. Differential Equations, 338 (2022), 441–473. https://doi.org/10.1016/j.jde.2022.08.004 doi: 10.1016/j.jde.2022.08.004
![]() |
[11] |
D. Strzelecki, Periodic solutions of symmetric Hamiltonian systems, Arch. Rational Mech. Anal, 237 (2020), 921–950. https://doi.org/10.1007/s00205-020-01522-6 doi: 10.1007/s00205-020-01522-6
![]() |
[12] |
A. van Straten, A note on the number of periodic orbits near a resonant equilibrium point, Nonlinearity, 2 (1989), 445–458. https://doi.org/10.1007/BF02570469 doi: 10.1007/BF02570469
![]() |
[13] | G. D. Birkhoff, Dynamical Systems, Amer. Math. Soc., Providence, 1927. https://doi.org/10.1016/B978-044450871-3/50149-2 |
[14] | V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, Mathematical Aspects of the Mathematical and Celestial Mechanics, Encyclopaedia of Math. Sci., Dynamical Systems, 3, Springer, New York, 1988. https://doi.org/10.2307/3619341 |
1. | Mario Abundo, Enrica Pirozzi, Integrated stationary Ornstein–Uhlenbeck process, and double integral processes, 2018, 494, 03784371, 265, 10.1016/j.physa.2017.12.043 | |
2. | Giacomo Ascione, Yuliya Mishura, Enrica Pirozzi, Fractional Ornstein-Uhlenbeck Process with Stochastic Forcing, and its Applications, 2021, 23, 1387-5841, 53, 10.1007/s11009-019-09748-y | |
3. | Giuseppe D'Onofrio, Enrica Pirozzi, Successive spike times predicted by a stochastic neuronal model with a variable input signal, 2016, 13, 1551-0018, 495, 10.3934/mbe.2016003 | |
4. | Aniello Buonocore, Luigia Caputo, Giuseppe D’Onofrio, Enrica Pirozzi, Closed-form solutions for the first-passage-time problem and neuronal modeling, 2015, 64, 0035-5038, 421, 10.1007/s11587-015-0248-6 | |
5. | Enrica Pirozzi, Colored noise and a stochastic fractional model for correlated inputs and adaptation in neuronal firing, 2018, 112, 0340-1200, 25, 10.1007/s00422-017-0731-0 | |
6. | Giuseppe D’Onofrio, Enrica Pirozzi, Marcelo O. Magnasco, 2015, Chapter 22, 978-3-319-27339-6, 166, 10.1007/978-3-319-27340-2_22 | |
7. | Giacomo Ascione, Enrica Pirozzi, 2018, Chapter 1, 978-3-319-74726-2, 3, 10.1007/978-3-319-74727-9_1 | |
8. | Enrica Pirozzi, 2020, Chapter 26, 978-3-030-45092-2, 211, 10.1007/978-3-030-45093-9_26 | |
9. | Mario Abundo, Enrica Pirozzi, Fractionally Integrated Gauss-Markov processes and applications, 2021, 10075704, 105862, 10.1016/j.cnsns.2021.105862 | |
10. | Guowei Wang, Yan Fu, Spatiotemporal patterns and collective dynamics of bi-layer coupled Izhikevich neural networks with multi-area channels, 2022, 20, 1551-0018, 3944, 10.3934/mbe.2023184 | |
11. | Enrica Pirozzi, Some Fractional Stochastic Models for Neuronal Activity with Different Time-Scales and Correlated Inputs, 2024, 8, 2504-3110, 57, 10.3390/fractalfract8010057 | |
12. | Enrica Pirozzi, Mittag–Leffler Fractional Stochastic Integrals and Processes with Applications, 2024, 12, 2227-7390, 3094, 10.3390/math12193094 |