This paper revisits the issue of stability analysis of neural networks subjected to time-varying delays. A novel approach, termed a compound-matrix-based integral inequality (CPBII), which accounts for delay derivatives using two adjustable parameters, is introduced. By appropriately adjusting these parameters, the CPBII efficiently incorporates coupling information along with delay derivatives within integral inequalities. By using CPBII, a novel stability criterion is established for neural networks with time-varying delays. The effectiveness of this approach is demonstrated through a numerical illustration.
Citation: Wenlong Xue, Zhenghong Jin, Yufeng Tian. Stability analysis of delayed neural networks via compound-parameter -based integral inequality[J]. AIMS Mathematics, 2024, 9(7): 19345-19360. doi: 10.3934/math.2024942
[1] | Elena Izquierdo-Kulich, Margarita Amigó de Quesada, Carlos Manuel Pérez-Amor, Magda Lopes Texeira, José Manuel Nieto-Villar . The dynamics of tumor growth and cells pattern morphology. Mathematical Biosciences and Engineering, 2009, 6(3): 547-559. doi: 10.3934/mbe.2009.6.547 |
[2] | Bojie Yang, Zhuoqin Yang . Deterministic and stochastic approaches to a minimal model for the transition from autophagy to apoptosis. Mathematical Biosciences and Engineering, 2024, 21(2): 3207-3228. doi: 10.3934/mbe.2024142 |
[3] | Gheorghe Craciun, Baltazar Aguda, Avner Friedman . Mathematical Analysis Of A Modular Network Coordinating The Cell Cycle And Apoptosis. Mathematical Biosciences and Engineering, 2005, 2(3): 473-485. doi: 10.3934/mbe.2005.2.473 |
[4] | Elena Izquierdo-Kulich, Margarita Amigó de Quesada, Carlos Manuel Pérez-Amor, José Manuel Nieto-Villar . Morphogenesis and aggressiveness of cervix carcinoma. Mathematical Biosciences and Engineering, 2011, 8(4): 987-997. doi: 10.3934/mbe.2011.8.987 |
[5] | Ming Zhang, Yingying Zhou, Yanli Zhang . High Expression of TLR2 in the serum of patients with tuberculosis and lung cancer, and can promote the progression of lung cancer. Mathematical Biosciences and Engineering, 2020, 17(3): 1959-1972. doi: 10.3934/mbe.2020104 |
[6] | Alexis B. Cook, Daniel R. Ziazadeh, Jianfeng Lu, Trachette L. Jackson . An integrated cellular and sub-cellular model of cancer chemotherapy and therapies that target cell survival. Mathematical Biosciences and Engineering, 2015, 12(6): 1219-1235. doi: 10.3934/mbe.2015.12.1219 |
[7] | Ying Jiang, Min Luo, Jianfeng Jiao, Ruiqi Wang . Study on cell apoptosis based on bifurcation and sensitivity analysis. Mathematical Biosciences and Engineering, 2019, 16(5): 3235-3250. doi: 10.3934/mbe.2019161 |
[8] | Shequn Gu, Jihui Luo, Wenxiu Yao . The regulation of miR-139-5p on the biological characteristics of breast cancer cells by targeting COL11A1. Mathematical Biosciences and Engineering, 2020, 17(2): 1428-1441. doi: 10.3934/mbe.2020073 |
[9] | Floriane Lignet, Vincent Calvez, Emmanuel Grenier, Benjamin Ribba . A structural model of the VEGF signalling pathway: Emergence of robustness and redundancy properties. Mathematical Biosciences and Engineering, 2013, 10(1): 167-184. doi: 10.3934/mbe.2013.10.167 |
[10] | Katrine O. Bangsgaard, Morten Andersen, Vibe Skov, Lasse Kjær, Hans C. Hasselbalch, Johnny T. Ottesen . Dynamics of competing heterogeneous clones in blood cancers explains multiple observations - a mathematical modeling approach. Mathematical Biosciences and Engineering, 2020, 17(6): 7645-7670. doi: 10.3934/mbe.2020389 |
This paper revisits the issue of stability analysis of neural networks subjected to time-varying delays. A novel approach, termed a compound-matrix-based integral inequality (CPBII), which accounts for delay derivatives using two adjustable parameters, is introduced. By appropriately adjusting these parameters, the CPBII efficiently incorporates coupling information along with delay derivatives within integral inequalities. By using CPBII, a novel stability criterion is established for neural networks with time-varying delays. The effectiveness of this approach is demonstrated through a numerical illustration.
[1] |
N. Huo, B. Li, Y. Li, Global exponential stability and existence of almost periodic solutions in distribution for Clifford-valued stochastic high-order Hopfield neural networks with time-varying delays, AIMS Math., 7 (2022), 3653–3679. http://dx.doi.org/10.3934/math.2022202 doi: 10.3934/math.2022202
![]() |
[2] |
H. Qiu, L. Wan, Z. Zhou, Q. Zhang, Q. Zhou, Global exponential periodicity of nonlinear neural networks with multiple time-varying delays, AIMS Math., 8 (2023), 12472–12485. http://dx.doi.org/10.3934/math.2023626 doi: 10.3934/math.2023626
![]() |
[3] |
R. Wei, J. Cao, W. Qian, C. Xue, X. Ding, Finite-time and fixed-time stabilization of inertial memristive Cohen-Grossberg neural networks via non-reduced order method, AIMS Math., 6 (2021), 6915–6932. http://dx.doi.org/10.3934/math.2021405 doi: 10.3934/math.2021405
![]() |
[4] |
J. Kim, Further improvement of Jensen inequality and application to stability of time-delayed systems, Automatica, 64 (2016), 121–125. https://doi.org/10.1016/j.automatica.2015.08.025 doi: 10.1016/j.automatica.2015.08.025
![]() |
[5] |
O. M. Kwon, M. J. Park, S. M. Lee, J. H. Park, E. J. Cha, Stability for neural networks with time-varying delays via some new approaches, IEEE T. Neur. Net. Lear., 24 (2013), 181–193. https://doi.org/10.1109/TNNLS.2012.2224883 doi: 10.1109/TNNLS.2012.2224883
![]() |
[6] |
X. M. Zhang, Q. L. Han, Z. Zeng, Hierarchical type stability criteria for delayed neural networks via canonical Bessel-Legendre inequalities, IEEE T. Cybern., 48 (2018), 1660–1671. https://doi.org/10.1109/TCYB.2017.2776283 doi: 10.1109/TCYB.2017.2776283
![]() |
[7] |
T. Wu, S. Gorbachev, H. Lam, J. Park, L. Xiong, J. Cao, Adaptive event-triggered space-time sampled-data synchronization for fuzzy coupled RDNNs under hybrid random cyberattacks, IEEE T. Fuzzy Syst., 31 (2023), 1855–1869. https://doi.org/10.1109/TFUZZ.2022.3215747 doi: 10.1109/TFUZZ.2022.3215747
![]() |
[8] |
T. Wu, J. Cao, J. Park, K. Shi, L. Xiong, T. Huang, Attack-resilient dynamic event-triggered synchronization of fuzzy reaction-diffusion dynamic networks with multiple cyberattacks, IEEE T. Fuzzy Syst., 32 (2024), 498–509. https://doi.org/10.1109/TFUZZ.2023.3300882 doi: 10.1109/TFUZZ.2023.3300882
![]() |
[9] |
T. Wu, J. Cao, L. Xiong, J. Park, X. Tan, Adaptive event-triggered mechanism to synchronization of reaction-diffusion CVNNs and its application in image secure communication, IEEE T. Syst. Man Cy-S., 53 (2023), 5307–5320. https://doi.org/10.1109/TSMC.2023.3258222 doi: 10.1109/TSMC.2023.3258222
![]() |
[10] |
C. K. Zhang, Y. He, L. Jiang, M. Wu, Notes on stability of time-delay systems: Bounding inequalities and augmented Lyapunov-Krasovskii functionals, IEEE T. Autom. Control, 62 (2017), 5331–5336. https://doi.org/10.1109/TAC.2016.2635381 doi: 10.1109/TAC.2016.2635381
![]() |
[11] |
W. Lin, Y. He, C. Zhang, M. Wu, J. Shen, Extended dissipativity analysis for Markovian jump neural networks with time-varying delay via delay-product-type functionals, IEEE T. Neur. Net. Lear., 30 (2019), 2528–2537. https://doi.org/10.1109/TNNLS.2018.2885115 doi: 10.1109/TNNLS.2018.2885115
![]() |
[12] |
Y. Tian, Z. Wang, Extended dissipativity analysis for Markovian jump neural networks via double-integral-based delay-product-type Lyapunov functional, IEEE T. Neur. Net. Lear., 32 (2020), 3240–3246. https://doi.org/10.1109/TNNLS.2020.3008691 doi: 10.1109/TNNLS.2020.3008691
![]() |
[13] | K. Gu, V. L. Kharitonov, J. Chen, Stability of Time-Delay Systems, 2003. |
[14] |
A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: application to time-delay systems, Automatica, 49 (2013), 2860–2866. https://doi.org/10.1016/j.automatica.2013.05.030 doi: 10.1016/j.automatica.2013.05.030
![]() |
[15] |
H.B. Zeng, Y. He, M. Wu, J. She, Free-matrix-based integral inequality for stability analysis of systems with time-varying delay, IEEE T. Autom. Control, 60 (2015), 2768–2772. https://doi.org/10.1109/TAC.2015.2404271 doi: 10.1109/TAC.2015.2404271
![]() |
[16] |
H.B. Zeng, Y. He, M. Mu, J. She, New results on stability analysis for systems with discrete distributed delay, Automatica, 60 (2015), 189–192. https://doi.org/10.1016/j.automatica.2015.07.017 doi: 10.1016/j.automatica.2015.07.017
![]() |
[17] |
X. M. Zhang, W. J. Lin, Q. L. Han, Y. He, M. Wu, Global asymptotic stability for delayed neural networks using an integral inequality based on nonorthogonal polynomials, IEEE T. Neur. Net. Lear., 29 (2018), 4487–4493. https://doi.org/10.1109/TNNLS.2017.2750708 doi: 10.1109/TNNLS.2017.2750708
![]() |
[18] |
J. Chen, S. Xu, B. Zhang, Single/Multiple integral inequalities with applications to stability analysis of time-delay systems, IEEE T. Autom. Control, 62 (2017), 3488–3493. https://doi.org/10.1109/TAC.2016.2617739 doi: 10.1109/TAC.2016.2617739
![]() |
[19] |
C. K. Zhang, Y. He, L. Jiang, W. J. Lin, M. Wu, Delay-dependent stability analysis of neural networks with time-varying delay: A generalized free-weighting-matrix approach, Appl. Math. Comput., 294 (2017), 102–120. https://doi.org/10.1016/j.amc.2016.08.043 doi: 10.1016/j.amc.2016.08.043
![]() |
[20] |
A. Seuret, F. Gouaisbaut, Hierarchy of LMI conditions for the stability analysis of time-delay systems, Syst. Control Lett., 81 (2015), 1–8. https://doi.org/10.1016/j.sysconle.2015.03.007 doi: 10.1016/j.sysconle.2015.03.007
![]() |
[21] |
A. Seuret, F. Gouaisbaut, Stability of linear systems with time-varying delays using Bessel-Legendre inequalities, IEEE T. Autom. Control, 63 (2018), 225–232. https://doi.org/10.1109/TAC.2017.2730485 doi: 10.1109/TAC.2017.2730485
![]() |
[22] |
Y. Huang, Y. He, J. An, M. Wu, Polynomial-type Lyapunov-Krasovskii functional and Jacobi-Bessel inequality: Further results on stability analysis of time-delay systems, IEEE Trans. Autom. Control, 66 (2021), 2905–2912. https://doi.org/10.1109/TAC.2020.3013930 doi: 10.1109/TAC.2020.3013930
![]() |
[23] |
P. Park, J. W. Ko, C. Jeong, Reciprocally convex approach to stability of systems with time-varying delays, Automatica, 47 (2011), 235–238. https://doi.org/10.1016/j.automatica.2010.10.014 doi: 10.1016/j.automatica.2010.10.014
![]() |
[24] |
X. M. Zhang, Q. L. Han, A. Seuret, F. Gouaisbaut, An improved reciprocally convex inequality and an augmented Lyapunov-Krasovskii functional for stability of linear systems with time-varying delay, Automatica, 84 (2017), 221–226. https://doi.org/10.1016/j.automatica.2017.04.048 doi: 10.1016/j.automatica.2017.04.048
![]() |
[25] |
C. Zhang, Y. He, L. Jiang, M. Wu, Q. Wang, An extended reciprocally convex matrix inequality for stability analysis of systems with time-varying delay, Automatica, 85 (2017), 481–485. https://doi.org/10.1016/j.automatica.2017.07.056 doi: 10.1016/j.automatica.2017.07.056
![]() |
[26] |
W. I. Lee, S. Y. Lee, P. G. Park, Affine Bessel-Legendre inequality: Application to stability analysis for systems with time-varying delays, Automatica, 93 (2018), 535–539. https://doi.org/10.1016/j.automatica.2018.03.073 doi: 10.1016/j.automatica.2018.03.073
![]() |
[27] |
J. Chen, J. H. Park, S. Xu, Stability analysis for delayed neural networks with an improved general free-matrix-based integral inequality, IEEE T. Neur. Net. Lear. Syst., 31 (2020), 675–684. https://doi.org/10.1109/TNNLS.2019.2909350 doi: 10.1109/TNNLS.2019.2909350
![]() |
[28] |
Y. Tian, Y. Yang, X. Ma, X. Su, Stability of discrete-time delayed systems via convex function-based summation inequality, Appl. Math. Lett., 145 (2023), 108764, https://doi.org/10.1016/j.aml.2023.108764 doi: 10.1016/j.aml.2023.108764
![]() |
1. | Nishi Kumari Singh, Sangeeta Choudhary, Bacterial and archaeal diversity in oil fields and reservoirs and their potential role in hydrocarbon recovery and bioprospecting, 2021, 0944-1344, 10.1007/s11356-020-11705-z | |
2. | Hongxing Yang, Yanlin Zhang, Shaochuang Chuang, Weimiao Cao, Zhepu Ruan, Xihui Xu, Jiandong Jiang, Bioaugmentation of acetamiprid-contaminated soil with Pigmentiphaga sp. strain D-2 and its effect on the soil microbial community, 2021, 0963-9292, 10.1007/s10646-020-02336-8 | |
3. | Jinye Hu, Yuling Bao, Yuqi Zhu, Ranagul Osman, Mengfan Shen, Zhan Zhang, Li Wang, Shuyuan Cao, Lei Li, Qian Wu, The Preliminary Study on the Association Between PAHs and Air Pollutants and Microbiota Diversity, 2020, 79, 0090-4341, 321, 10.1007/s00244-020-00757-4 | |
4. | Li-Li Miao, Jie Qu, Zhi-Pei Liu, Hydroxylation at Multiple Positions Initiated the Biodegradation of Indeno[1,2,3-cd]Pyrene in Rhodococcus aetherivorans IcdP1, 2020, 11, 1664-302X, 10.3389/fmicb.2020.568381 | |
5. | Miroslav Špano, Jaromír Říha, Alena Španová, Ondrej Šedo, Bohuslav Rittich, Bacterial Diversity in the Asphalt Concrete Lining of the Upper Water Reservoir of a Pumped-Storage Scheme, 2020, 12, 2073-4441, 3045, 10.3390/w12113045 | |
6. | Dalel Daâssi, Afef Nasraoui-Hajaji, Salwa Bawasir, Fakher Frikha, Tahar Mechichi, Biodegradation of C20 carbon clusters from Diesel Fuel by Coriolopsis gallica: optimization, metabolic pathway, phytotoxicity, 2021, 11, 2190-572X, 10.1007/s13205-021-02769-w | |
7. | Hadassa L. de Oliveira, Graciela M. Dias, Bianca C. Neves, Genome sequence of Pseudomonas aeruginosa PA1-Petro—A role model of environmental adaptation and a potential biotechnological tool, 2022, 8, 24058440, e11566, 10.1016/j.heliyon.2022.e11566 | |
8. | Irshad Ahmad, Microalgae–Bacteria Consortia: A Review on the Degradation of Polycyclic Aromatic Hydrocarbons (PAHs), 2022, 47, 2193-567X, 19, 10.1007/s13369-021-06236-9 | |
9. | Barkat Ali, Wasim Sajjad, Nikhat Ilahi, Ali Bahadur, Shichang Kang, Soot biodegradation by psychrotolerant bacterial consortia, 2022, 33, 0923-9820, 407, 10.1007/s10532-022-09990-1 | |
10. | Apolonia Rodríguez, Sandra G. Zárate, Agatha Bastida, Identification of New Dioxygenases Able to Recognize Polycyclic Aromatic Hydrocarbons with High Aromaticity, 2022, 12, 2073-4344, 279, 10.3390/catal12030279 | |
11. | Hu Chen, Ying Wang, Puyu Wang, Yongkang Lv, Assessing quinoline removal performances of an aerobic continuous moving bed biofilm reactor (MBBR) bioaugmented with Pseudomonas citronellios LV1, 2022, 10049541, 10.1016/j.cjche.2022.09.009 | |
12. | Nor Asyikin Ismail, Norhafezah Kasmuri, Nurhidayah Hamzah, Microbial Bioremediation Techniques for Polycyclic Aromatic Hydrocarbon (PAHs)—a Review, 2022, 233, 0049-6979, 10.1007/s11270-022-05598-6 | |
13. | Santosh Kumar Singh, Anil Kumar Haritash, Bacterial degradation of mixed-PAHs and expression of PAH-catabolic genes, 2023, 39, 0959-3993, 10.1007/s11274-022-03489-w | |
14. | Alexis Nzila, Musa M. Musa, Emmanuel Afuecheta, Assad Al-Thukair, Saravanan Sankaran, Lei Xiang, Qing X. Li, Benzo[A]Pyrene Biodegradation by Multiple and Individual Mesophilic Bacteria under Axenic Conditions and in Soil Samples, 2023, 20, 1660-4601, 1855, 10.3390/ijerph20031855 | |
15. | Dibyajit Lahiri, Moupriya Nag, Ankita Dey, Tanmay Sarkar, Sanket Joshi, Soumya Pandit, Alok Prasad Das, Siddhartha Pati, Smaranika Pattanaik, Vijay Kumar Tilak, Rina Rani Ray, Biofilm Mediated Degradation of Petroleum Products, 2022, 39, 0149-0451, 389, 10.1080/01490451.2021.1968979 | |
16. | Arfin Imam, Sunil Kumar Suman, Pankaj K. Kanaujia, Anjan Ray, Biological machinery for polycyclic aromatic hydrocarbons degradation: A review, 2022, 343, 09608524, 126121, 10.1016/j.biortech.2021.126121 | |
17. | A Akhdiya, R A Sanjaya, , Isolation and identification of fenobucarb degrading bacteria from Pangalengan farm land, 2021, 883, 1755-1307, 012007, 10.1088/1755-1315/883/1/012007 | |
18. | Temitope Kolapo Kehinde, Biosurfactant producing abilities of some bacteria isolated from bitumen contaminated soils, 2021, 26900777, 026, 10.17352/ojeb.000023 | |
19. | Kuralay Yessentayeva, Anne Reinhard, Ramza Berzhanova, Togzhan Mukasheva, Tim Urich, Annett Mikolasch, Bacterial crude oil and polyaromatic hydrocarbon degraders from Kazakh oil fields as barley growth support, 2024, 108, 0175-7598, 10.1007/s00253-024-13010-y | |
20. | Olga Maslova, Olga Senko, Marina A. Gladchenko, Sergey N. Gaydamaka, Elena Efremenko, Prospects for Combined Applications of Nanostructured Catalysts and Biocatalysts for Elimination of Hydrocarbon Pollutants, 2023, 13, 2076-3417, 5815, 10.3390/app13095815 | |
21. | Rand R. Ahmed, Ahmed A. Al-Obaidi, Zainab Bahaa Mohammed, Bioremediation of contaminated soil by crude oil of Baiji refinery by extraction of the local dominant bacteria, 2024, 1374, 1755-1307, 012010, 10.1088/1755-1315/1374/1/012010 | |
22. | Arthur Paul Schwab, Bioremediation of Polyaromatic Hydrocarbons in Soils: A Review of Recent Progress, 2024, 10, 2198-6592, 710, 10.1007/s40726-024-00324-8 | |
23. | Larissa O. da Silva, Sara H. de Oliveira, Rafael G. C. da Silva, Magda R. S. Vieira, Ivanilda R. de Melo, Severino L. Urtiga Filho, Soil Corrosivity Under Natural Attenuation, 2024, 27, 1980-5373, 10.1590/1980-5373-mr-2023-0563 | |
24. | Yifan Jiang, Chunqing Fu, Bingwen Xu, Jingru Cui, Yue Feng, Liang Tan, Performance of a novel Built-in Static Magnetic Field – Biological Aerated Filter (BSMF–BAF) for treating high-salt textile dyeing wastewater, 2024, 370, 03014797, 122548, 10.1016/j.jenvman.2024.122548 | |
25. | Selvaraj Barathi, Gitanjali J, Gandhimathi Rathinasamy, Nadana Sabapathi, K.N. Aruljothi, Jintae Lee, Sabariswaran Kandasamy, Recent trends in polycyclic aromatic hydrocarbons pollution distribution and counteracting bio-remediation strategies, 2023, 337, 00456535, 139396, 10.1016/j.chemosphere.2023.139396 | |
26. | Divya Baskaran, Hun-Soo Byun, Current trend of polycyclic aromatic hydrocarbon bioremediation: Mechanism, artificial mixed microbial strategy, machine learning, ground application, cost and policy implications, 2024, 498, 13858947, 155334, 10.1016/j.cej.2024.155334 | |
27. | Masoumeh Tahmasbizadeh, Mahnaz Nikaeen, Hossein Movahedian Attar, Hossein Khanahmad, Mohammad Khodadadi, Resuscitation-promoting factors: Novel strategies for the bioremediation of crude oil-contaminated soils, 2025, 271, 00139351, 121085, 10.1016/j.envres.2025.121085 | |
28. | Robert Conlon, David N. Dowling, Kieran J. Germaine, Assessing Microbial Activity and Rhizoremediation in Hydrocarbon and Heavy Metal-Impacted Soil, 2025, 13, 2076-2607, 848, 10.3390/microorganisms13040848 | |
29. | Zeena Ghazi Faisal, Mohannad Mohammed Jameel, Othman Abbas Abdullah, Maurizio Petruccioli, Isolation and Identification of Black Oil‐Degrading Bacteria From Lubricant‐Contaminated Soil in Northern Baghdad, Iraq, 2025, 2025, 2356-6140, 10.1155/tswj/4009105 |