Hepatitis B is a worldwide viral infection that causes cirrhosis, hepatocellular cancer, the need for liver transplantation, and death. This work proposed a mathematical representation of Hepatitis B Virus (HBV) transmission traits emphasizing the significance of applied mathematics in comprehending how the disease spreads. The work used an updated Atangana-Baleanu fractional difference operator to create a fractional-order model of HBV. The qualitative assessment and well-posedness of the mathematical framework were looked at, and the global stability of equilibrium states as measured by the Volterra-type Lyapunov function was summarized. The exact answer was guaranteed to be unique using the Lipschitz condition. Additionally, there were various analyses of this new type of operator to support the operator's efficacy. We observe that the explored discrete fractional operators will be χ2-increasing or decreasing in certain domains of the time scale Nj:=j,j+1,... by looking at the fundamental characteristics of the proposed discrete fractional operators along with χ-monotonicity descriptions. For numerical simulations, solutions were constructed in the discrete generalized form of the Mittag-Leffler kernel, highlighting the impacts of the illness caused by numerous causes. The order of the fractional derivative had a significant influence on the dynamical process utilized to construct the HBV model. Researchers and policymakers can benefit from the suggested model's ability to forecast infectious diseases such as HBV and take preventive action.
Citation: Muhammad Farman, Ali Akgül, J. Alberto Conejero, Aamir Shehzad, Kottakkaran Sooppy Nisar, Dumitru Baleanu. Analytical study of a Hepatitis B epidemic model using a discrete generalized nonsingular kernel[J]. AIMS Mathematics, 2024, 9(7): 16966-16997. doi: 10.3934/math.2024824
[1] | Shiqi Ma . On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, 2021, 29(3): 2391-2415. doi: 10.3934/era.2020121 |
[2] | Xinlin Cao, Huaian Diao, Jinhong Li . Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29(1): 1753-1782. doi: 10.3934/era.2020090 |
[3] | Xiaoping Fang, Youjun Deng, Wing-Yan Tsui, Zaiyun Zhang . On simultaneous recovery of sources/obstacles and surrounding mediums by boundary measurements. Electronic Research Archive, 2020, 28(3): 1239-1255. doi: 10.3934/era.2020068 |
[4] | Yan Chang, Yukun Guo . Simultaneous recovery of an obstacle and its excitation sources from near-field scattering data. Electronic Research Archive, 2022, 30(4): 1296-1321. doi: 10.3934/era.2022068 |
[5] | Deyue Zhang, Yukun Guo . Some recent developments in the unique determinations in phaseless inverse acoustic scattering theory. Electronic Research Archive, 2021, 29(2): 2149-2165. doi: 10.3934/era.2020110 |
[6] | Koung Hee Leem, Jun Liu, George Pelekanos . A regularized eigenmatrix method for unstructured sparse recovery. Electronic Research Archive, 2024, 32(7): 4365-4377. doi: 10.3934/era.2024196 |
[7] | Messoud Efendiev, Vitali Vougalter . Linear and nonlinear non-Fredholm operators and their applications. Electronic Research Archive, 2022, 30(2): 515-534. doi: 10.3934/era.2022027 |
[8] | Won-Ki Seo . Fredholm inversion around a singularity: Application to autoregressive time series in Banach space. Electronic Research Archive, 2023, 31(8): 4925-4950. doi: 10.3934/era.2023252 |
[9] | Yanjiao Li, Yue Zhang . Dynamic behavior on a multi-time scale eco-epidemic model with stochastic disturbances. Electronic Research Archive, 2025, 33(3): 1667-1692. doi: 10.3934/era.2025078 |
[10] | Zhaoyan Meng, Shuting Lyu, Mengqing Zhang, Xining Li, Qimin Zhang . Sufficient and necessary conditions of near-optimal controls for a stochastic listeriosis model with spatial diffusion. Electronic Research Archive, 2024, 32(5): 3059-3091. doi: 10.3934/era.2024140 |
Hepatitis B is a worldwide viral infection that causes cirrhosis, hepatocellular cancer, the need for liver transplantation, and death. This work proposed a mathematical representation of Hepatitis B Virus (HBV) transmission traits emphasizing the significance of applied mathematics in comprehending how the disease spreads. The work used an updated Atangana-Baleanu fractional difference operator to create a fractional-order model of HBV. The qualitative assessment and well-posedness of the mathematical framework were looked at, and the global stability of equilibrium states as measured by the Volterra-type Lyapunov function was summarized. The exact answer was guaranteed to be unique using the Lipschitz condition. Additionally, there were various analyses of this new type of operator to support the operator's efficacy. We observe that the explored discrete fractional operators will be χ2-increasing or decreasing in certain domains of the time scale Nj:=j,j+1,... by looking at the fundamental characteristics of the proposed discrete fractional operators along with χ-monotonicity descriptions. For numerical simulations, solutions were constructed in the discrete generalized form of the Mittag-Leffler kernel, highlighting the impacts of the illness caused by numerous causes. The order of the fractional derivative had a significant influence on the dynamical process utilized to construct the HBV model. Researchers and policymakers can benefit from the suggested model's ability to forecast infectious diseases such as HBV and take preventive action.
In this paper, we mainly focus on the random inverse problems associated with the following time-harmonic Schrödinger system
(−Δ−E+potential)u(x)=source,x∈Rn, | (1.1) |
where
u(x)=α⋅uin(x)+usc(x) | (1.2) |
where
limr→∞r(∂usc∂r−i√Eusc)=0,r:=|x|, | (1.3) |
that characterizes the outgoing nature of the scattered field
Under different assumptions of the potential and source, of the dimension, and of the incident wave, the regularity of the Schrödinger system (1.1)-(1.3) behaves differently and calls for different techniques for the recovery procedure. The randomness of the Schrödinger system (1.1)-(1.3) can present either in the potential, or in the source, or in both. In this paper we shall investigate all of these three cases, survey the results in the literature and give details of part of the proofs.
There are rich literature on the inverse scattering problem using either passive or active measurements as data. For a fixed potential, the recovery of the deterministic unknown source of the system is called the inverse source problem. For the theoretical analysis and computational methods of the inverse source problems, readers may refer to [3,4,5,9,31,34] and references therein. The simultaneous recovery of the deterministic unknown source and potential are also studied in the literature. In [17,26], the authors considered the simultaneous recovery of an unknown source and its surrounding medium parameter. This type of inverse problems also arises in the deterministic magnetic anomaly detections using geomagnetic monitoring [11,12] with passive measurements. While [11,12,17,26] focus on deterministic setting with passive measurements, the works [2,6,7,18,19,20,27,33] pay attention to random settings. We are particularly interested in the case with a single realization of the random sample. The single-realization recovery has been studied in the literature. In this paper we mainly focus on [8,18,19,20,21,22,23,24,25].
In [18,19], Lassas et. al. considered the inverse scattering problem for the two-dimensional random Schrödinger system
In 2019, Caro et. al. [8] considered an inverse scattering problem for an
In [20], Li, et. al. studied the case where the potential is zero and the source is migr field. In [24] Li, et. al. studied the same setting but with the energy level
Then in [23], Li, et. al. further extended their study to Maxwell's equation. The recovery procedure in these three works share the same idea–the leading order term in the Bonn expansion gives the recovery of the desired statistics while the higher order terms converge to zero. The proof of these converges involve the utilization of Fourier integral operator. We shall give detailed explanations in Section 3.
In [21], the authors consider the direct and inverse scatterings for (1.1)–(1.3) with a deterministic potential and a random source. The random source is a generalized Gaussian random field with local mean value function and local variance function, which are assumed to be bounded and compactly supported. The well-posedness of the direct scattering has been formulated in some weighted
In [25], the authors extended the work [21] to the case where the source is a migr field. The direct scattering problem is formulated in a similar manner as in [21], while the technique used in the inverse scattering problem differs from that of [21]. In order to analyze the asymptotics of higher order terms in the Bonn expansion corresponding to the migr fields, stationary phase lemma and pseudodifferential operator are utilized.
Then the authors extended the work [25] to the case where both the potential and the source are random (of migr type), and the extended result is presented in [22]. The results between [21] and [22,25] have two major differences. First, in [21] the random part of the source is assumed to be a Gaussian white noise, while in [22] the potential and the source are assumed to be migr fields. The migr field can fit larger range of randomness by tuning its rough order and rough strength. Second, in [22] both the source and potential are random, while in [25] the potential is assumed to be deterministic. These two facts make [22] much more challenging than that in [25]. The techniques used in the estimates of higher order terms in [22] are pseudodifferential operators and microlocal analysis and we shall give a detailed treatment in Section 4.
Although the techniques used in [21,22,25] are different, the recovery formulae fall into the same pattern. The thesis [28] partially collected these three works[21,22,25] and readers may refer to the thesis for a more coherent discussion on this topic.
In this paper we mainly pay attention to two types of random model, the Gaussian white noise and the migr field. The Gaussian white noise is well-known and readers may refer to [21,Section 2.1] for more details. Here we give a brief introduction to the migr field. We assume
ω∈Ω ↦ 〈f(⋅,ω),φ〉∈C,φ∈S(Rn), |
is a Gaussian random variable whose probabilistic measure depends on the test function
Eω(〈¯f(⋅,ω)−E(f(⋅,ω)),φ〉〈f(⋅,ω)−E(f(⋅,ω)),ψ〉), | (1.4) |
can be understood as the covariance of
Cf:φ∈S(Rn) ↦ Cf(φ)∈S′(Rn), |
in a way that \(\mathfrak C_f (\varphi) \colon \psi \in \mathscr{S}({\mathbb{R}^n}) \ \mapsto \ (\mathfrak C_f (\varphi))(\psi) \in \mathbb C\) where
(Cf(φ))(ψ):=Eω(〈¯f(⋅,ω)−E(f(⋅,ω)),φ〉〈f(⋅,ω)−E(f(⋅,ω)),ψ〉). |
The operator
Definition 1.1 (Migr field). A generalized Gaussian random distribution
1. the expectation
2.
3. the covariance operator
4.
We call a microlocally isotropic Gaussian random distribution as an migr field.
For the case where both the source and the potential are deterministic and are
usc(x)=eik|x||x|(n−1)/2u∞(ˆx,k,d)+o(|x|−(n−1)/2),x∈Rn. |
In (1.1), let us denote the source term as
In [18,19] the authors considered the inverse scattering problem for the two-dimensional random Schrödinger system
Theorem 1.1. In [18,19], for
R(x,y)=limK→+∞1K−1∫K1k2+m|usc(x,y,k,ω)|2dk |
holds almost surely where
R(x,x):=126+mπ2∫R2μq(z)|x−z|2dz,x∈U. |
and the
In [8], the authors considered
Theorem 1.2. In [8], the limit
ˆμq(2τˆx)≃limK→+∞1K∫2KKkmu∞(ˆx,−ˆx,k)¯u∞(ˆx,−ˆx,k+τ)dk,ˆx∈S2, τ>0. |
holds almost surely.
We note that the near-field data are used in [18,19], while in [8], the authors used the far-field data.
Part of the results in [20] and [23,24] are similar to each other and we only survey the first result in [20]. In [20] the authors studied the Helmholtz equation
Theorem 1.3. In [20], the limit
∫μf(z)|x−z|dz≃limK→+∞1K−1∫K1k1+m|usc(x,k,ω)|2dk,x∈U, |
holds almost surely.
In [21], the authors considered direct and inverse scattering for (1.1)–(1.3) with an unknown deterministic potential and a Gaussian noise source of the form
Theorem 1.4. In [21], the identity
^σ2(x)=4√2πlimj→+∞1Kj∫2KjKj¯u∞(ˆx,k,ω)⋅u∞(ˆx,k+τ,ω)dk. |
holds almost surely.
The paper [25] extended the work [21] to the case where the source is a migr field
Theorem 1.5. In [25], assume
ˆμ(τˆx)=4√2πlimj→+∞1Kj∫2KjKjkm¯u∞(ˆx,k,ω)⋅u∞(ˆx,k+τ,ω)dk, |
holds for
Then in [22] the authors further extended the work [25] to the case where both the potential
dist(CH(Df),CH(Dq)):=inf{|x−y|;x∈CH(Df),y∈CH(Dq)}>0, | (1.5) |
where
Theorem 1.6. In [22], suppose that
2<mf<4, mf<5mq−11. |
Assume that (1.5) is satisfied and
ˆμf(τˆx)={limK→+∞4√2πK∫2KKkmf¯u∞(ˆx,k,ω)u∞(ˆx,k+τ,ω)dk,ˆx⋅n≥0, ¯ˆμf(−τˆx),ˆx⋅n<0, | (1.6) |
where
When
ˆμq(τˆx)={limK→+∞4√2πK∫2KKkmq¯u∞(ˆx,k,−ˆx,ω)u∞(ˆx,k+τ2,−ˆx,ω)dk, ˆx⋅n≥0, ¯ˆμf(−τˆx),ˆx⋅n<0, | (1.7) |
where
Remark 1.1. In Theorem 1.6, the data sets
Readers should note that the recovery formulae in Theorems 1.1–1.6 only use a single realization of the randomness; the terms on the left-hand-sides are independent of the random sample
The rest of this paper is organized as follows. In Section 2, we first give some preliminaries and present the well-posedness of the direct problems. In Section 3, we give the sketch of the proofs in [8,18,19,20,23,24]. Section 4 is devoted to the details of the works [22,25]. We conclude the paper in Section 5 with some remarks and open problems.
Due to the presence of the randomness, the regularity of the potential and/or the source may be too bad to fall into the scenarios of standard PDEs techniques. In this section, we show some details used in reformulating the direct problems of (1.1)-(1.3) in a proper sense. Before that, we first present some preliminaries as well as some facts related to the migr field for the subsequent use.
For convenient reference and self- containedness, we first present some preliminary and auxiliary results. In this paper we mainly focus on the two- and three-dimensional cases. Nevertheless, some of the results derived also hold for higher dimensions and in those cases, we choose to present the results in the general dimension
Throughout the paper, we write
The Fourier transform and inverse Fourier transform of a function
\begin{align*} & \mathcal{F} \varphi (\xi) = \widehat \varphi(\xi) : = (2\pi)^{-n/2} \int e^{-ix\cdot \xi} \varphi(x) \,\mathrm{d}{x}, \\ & \mathcal{F}^{-1} \varphi (\xi) : = (2\pi)^{-n/2} \int e^{ix\cdot \xi} \varphi(x) \,\mathrm{d}{x}. \end{align*} |
Set
\Phi(x,y) = \Phi_k(x,y) : = \frac {e^{ik|x-y|}}{4\pi|x-y|}, \quad x\in\mathbb{R}^3\backslash\{y\}. |
\begin{equation} ( {\mathcal{R}_{k}} \varphi)(x) : = \int_{ \mathbb{R}^3} \Phi_k(x,y) \varphi(y) \,\mathrm{d}{{y}}, \quad x \in \mathbb{R}^3, \end{equation} | (2.1) |
where
Write
\begin{equation} \begin{aligned} \left\| {{\varphi}} \right\|_{L_\delta^p( {\mathbb{R}^n})} : = \ & \left\| {{〈\cdot〉^{\delta} \varphi(\cdot)}} \right\|_{L^p( {\mathbb{R}^n})} = \big( \int_{ {\mathbb{R}^n}} 〈x〉^{p\delta} |\varphi|^p \,\mathrm{d}{{x}} \big)^{\frac 1 p}, \\ L_\delta^p( {\mathbb{R}^n}) : = \ & \{\, \varphi \in L_{loc}^1( {\mathbb{R}^n}) \,;\, \left\| {{\varphi}} \right\|_{L_\delta^p( {\mathbb{R}^n})} < +\infty \,\}. \end{aligned} \end{equation} | (2.2) |
We also define
\begin{equation*} \left\| {{f}} \right\|_{H_\delta^{s,p}( {\mathbb{R}^n})} : = \left\| {{(I-\Delta)^{s/2} f}} \right\|_{L_\delta^p( {\mathbb{R}^n})}, \ H_\delta^{s,p}( {\mathbb{R}^n}) = \{ f \in \mathscr{S}'; \left\| {{f}} \right\|_{H_\delta^{s,p}( {\mathbb{R}^n})} < +\infty\}, \end{equation*} |
where
\begin{equation} \left\| {{f}} \right\|_{H_\delta^s( {\mathbb{R}^n})} = \left\| {{〈\cdot〉^s \widehat f(\cdot)}} \right\|_{H^\delta( {\mathbb{R}^n})}. \end{equation} | (2.3) |
Let
\big| (D_{x}^{\alpha}D_{\xi}^{\beta}\sigma)(x,\xi) \big| \leq C_{\alpha, \beta}(1+|\xi|)^{m-|\beta|}, \quad \forall x, \xi \in {\mathbb{R}^n}. |
We call any function
\begin{align*} (T_{\sigma}\varphi)(x) & : = (2\pi)^{-n/2} \int_{ {\mathbb{R}^n}} e^{ix \cdot \xi} \sigma(x,\xi) \hat{\varphi}(\xi) \,\mathrm{d}{{\xi}} \\ & \ = (2\pi)^{-n} \iint_{ {\mathbb{R}^n} \times {\mathbb{R}^n}} e^{i(x-y) \cdot \xi} \sigma(x,\xi) \varphi(y) \,\mathrm{d}{y} \,\mathrm{d}{{\xi}}, \quad \forall \varphi \in \mathscr{S}( {\mathbb{R}^n}). \end{align*} |
Recall Definition 1.1. Lemma 2.1 below shows how the rough order of a migr field is related to its Sobolev regularity.
Lemma 2.1. Let
Proof of Lemma 2.1. See [8,Proposition 2.4].
By the Schwartz kernel theorem (see [15,Theorem 5.2.1]), there exists a kernel
\begin{equation} (\mathfrak C_h \varphi)(\psi) = \mathbb E_\omega ( 〈\overline{h(\cdot,\omega)},\varphi〉 〈h(\cdot,\omega),\psi〉) = \iint K_h(x,y) \varphi(x) \psi(y) \,\mathrm{d}{x} \,\mathrm{d}{y}, \end{equation} | (2.4) |
for all
\left\{\begin{array}{l} K_{h}(x, y) = (2 \pi)^{-n} \int e^{i(x-y) \cdot \xi} c_{h}(x, \xi) \mathrm{d} \xi, \;\;\;\;\;\;\;\;\;\;\;\;(\rm 2.5a)\\ c_{h}(x, \xi) = \int e^{-i \xi \cdot(x-y)} K_{h}(x, y) \mathrm{d} x,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(\rm 2.5b) \end{array}\right. |
hold in the distributional sense, and the integrals in (2.5) shall be understood as oscillatory integrals. {Despite} the fact that
K_h(x,y) \sim \mathbb E_\omega \big( \overline{h(x,\omega)} h(y,\omega) \big). |
One way to study the direct problem of (1.1)-(1.3) is to transform it into the Lippmann-Schwinger equation, and then use the Bonn expansion to define a solution. To that end, the estimate of the operator norm of the resolvent
\begin{equation*} (I - {\mathcal{R}_{k}} q) u^{sc} = \alpha {\mathcal{R}_{k}} q u^{in} - {\mathcal{R}_{k}} f. \end{equation*} |
We demonstrate two lemmas dealing with the lack of regularity when utilizing Agmon's estimates. Lemma 2.2 (cf. [25,Lemma 2.2]) shows the resolvent can take a migr field as an input without any trouble, while Lemma 2.3 (cf. [22,Theorem 2.1]) gives a variation of Agmon's estimate to fit our own problem settings.
Lemma 2.2. Assume
Proof. We split
\begin{align} & \mathbb{E} ( \left\| {{ {\mathcal{R}_{k}} (f - \mathbb{E}f)(\cdot,\omega)}} \right\|_{L_{-1/2-\epsilon}^2}^2 ) \\ = & \int_{ \mathbb{R}^3} 〈x〉^{-1-2\epsilon} \mathbb{E} ( 〈\overline {f - \mathbb{E}f}, \Phi_{-k,x}〉 〈f - \mathbb{E}f, \Phi_{k,x}〉 ) \,\mathrm{d}{{x}} = \int_{ \mathbb{R}^3} 〈x〉^{-1-2\epsilon} 〈\mathfrak C_f \Phi_{-k,x}, \Phi_{k,x}〉 \,\mathrm{d}{{x}} \\ \simeq & \int 〈x〉^{-1-2\epsilon} \int_{D_f} \big( \int_{D_f} \frac{\mathcal I(y,z) e^{-ik|x-z|}}{|x-z| \cdot |y-z|^2} \,\mathrm{d}{{z}} \big) \cdot \frac{e^{ik|x-y|}}{|x-y|} \,\mathrm{d}{{y}} \,\mathrm{d}{{x}}, \end{align} | (2.6) |
where
\mathcal I(y,z) : = \int_{ \mathbb{R}^3} |y-z|^2 e^{i(y-z) \cdot \xi} c_f(y,\xi) \,\mathrm{d}{{\xi}}. |
When
\begin{align} |\mathcal I(y,z)| & = \big| \sum\limits_{j = 1}^3 \int_{ \mathbb{R}^3} e^{i(y-z) \cdot \xi} (\partial_{\xi_j}^2 c_f)(y,\xi) \,\mathrm{d}{{\xi}} \big| \sum\limits_{j = 1}^3 \int_{ \mathbb{R}^3} C_j 〈\xi〉^{-m-2} \,\mathrm{d}{{\xi}} \leq C_0 < +\infty, \end{align} | (2.7) |
for some constant
\begin{equation} \int_{D_f} |x-y|^{-j} \,\mathrm{d}{{y}} \leq C_{f,j} 〈x〉^{-j}, \quad \forall x \in \mathbb{R}^3, \end{equation} | (2.8) |
for some constant
\begin{align*} & \mathbb{E} ( \left\| {{ {\mathcal{R}_{k}} (f - \mathbb{E}f)(\cdot,\omega)}} \right\|_{L_{-1/2-\epsilon}^2}^2 ) \nonumber\\ \lesssim & \int 〈x〉^{-1-2\epsilon} \big( \iint_{D_f \times D_f} (|x-z| \cdot |y-z|^2 \cdot |x-y|)^{-1} \,\mathrm{d}{{z}} \,\mathrm{d}{{y}} \big) \,\mathrm{d}{{x}} \nonumber\\ \leq & \int 〈x〉^{-1-2\epsilon} C_f 〈x〉^{-2} \,\mathrm{d}{{x}} \leq C_f < +\infty, \end{align*} |
which gives
\begin{equation} \mathbb{E} ( \left\| {{ {\mathcal{R}_{k}} (f - \mathbb{E}f)(\cdot,\omega)}} \right\|_{L_{-1/2-\epsilon}^2}^2 ) \leq C_f < +\infty. \end{equation} | (2.9) |
By using the Hölder inequality applied to the probability measure, we obtain from (2.9) that
\begin{equation} \mathbb{E} \left\| {{ {\mathcal{R}_{k}} (f - \mathbb{E}f)}} \right\|_{L_{-1/2-\epsilon}^2} \leq [ \mathbb{E} ( \left\| {{ {\mathcal{R}_{k}} (f - \mathbb{E}f)}} \right\|_{L_{-1/2-\epsilon}^2}^2 ) ]^{1/2} \leq C_f^{1/2} < +\infty, \end{equation} | (2.10) |
for some constant
The proof is complete.
Lemma 2.3. For any
\left\| {{ {\mathcal{R}_{k}} \varphi}} \right\|_{H_{-1/ 2 - \epsilon}^s( \mathbb{R}^3)} \leq C_{\epsilon,s} k^{-(1 - 2s)} \left\| {{\varphi}} \right\|_{H_{1/2 + \epsilon}^{-s}( \mathbb{R}^3)}, \quad \varphi \in H_{1/2 + \epsilon}^{-s}( \mathbb{R}^3). |
Proof. We adopt the concept of Limiting absorption principle to first show desired results on a family of operator
Define an operator
\begin{equation} \mathcal{R}_{k,\tau} \varphi(x) : = (2\pi)^{-3/2} \int_{ \mathbb{R}^3} e^{ix\cdot \xi} \frac {\hat \varphi(\xi)} {|\xi|^2 - k^2 - i\tau} \,\mathrm{d}{\xi}, \end{equation} | (2.11) |
where
\begin{equation} \left\{\begin{aligned} & \chi \in C_c^\infty( {\mathbb{R}^n}),\, 0 \leq \chi \leq 1, \\ & \chi(x) = 1 \mbox{ when } |x| \leq 1, \\ & \chi(x) = 0 \mbox{ when } |x| \geq 2. \end{aligned}\right. \end{equation} | (2.12) |
Write
\begin{align} & \ (\mathcal{R}_{k,\tau} \varphi,\psi)_{L^2( \mathbb{R}^3)} \\ = \ & \ \int_{ \mathbb{R}^3} \mathcal{R}_{k,\tau} \varphi (x) \overline{\psi(x)} \,\mathrm{d}{x} = \int_{ \mathbb{R}^3} \mathcal{F}\{\mathcal{R}_{k,\tau} \varphi\} (\xi) \cdot \mathcal{F}\{\mathfrak{R} \overline \psi\}(\xi) \,\mathrm{d}{\xi} \\ = \ & \ \int_0^\infty \frac {(1 - \chi^2(r - k))} {r^2 - k^2 - i\tau} \,\mathrm{d}{r} \cdot \int_{|\xi| = r} \hat \varphi (\xi) \cdot \widehat{\mathfrak{R} \overline \psi}(\xi) \,\mathrm{d}{{S(\xi)}} \\ & \ + \int_0^\infty \frac {〈r〉^{1/p}\, r^2 \chi^2(r - k)} {r^2 - k^2 - i\tau} \,\mathrm{d}{r} \times \int_{\mathbb{S}^2} [〈k〉^{\frac {-1} {2p}} \hat \varphi (k\omega)] [〈k〉^{\frac {-1} {2p}} \widehat{\mathfrak{R} \overline \psi}(k\omega)] \,\mathrm{d}{{S(\omega)}} \\ & \ + \int_0^\infty \frac {〈r〉^{1/p}\, r^2 \chi^2(r - k)} {r^2 - k^2 - i\tau} \,\mathrm{d}{r} \cdot \int_{\mathbb{S}^2} \{ [〈r〉^{\frac {-1} {2p}} \hat \varphi (r\omega)] [〈r〉^{\frac {-1} {2p}} \widehat{\mathfrak{R} \overline \psi}(r\omega)] \\ & - [〈k〉^{\frac {-1} {2p}} \hat \varphi (k\omega)] [〈k〉^{\frac {-1} {2p}} \widehat{\mathfrak{R} \overline \psi}(k\omega)] \} \,\mathrm{d}{{S(\omega)}} \\ = : & \ I_1(\tau) + I_2(\tau) + I_3(\tau). \end{align} | (2.13) |
Here we divide
Now we estimate
\begin{equation} (p^{1/p} q^{1/q}) a^{1/p} b^{1/q} \leq a + b. \end{equation} | (2.14) |
Note that
\begin{align} |I_1(\tau)| & \leq \int_0^\infty \frac {1 - \chi^2(r - k)} {1 \cdot p^{1/p} q^{1/q} (r+1)^{1/p} (k-1)^{1/q}} \,\mathrm{d}{r} \cdot \int_{|\xi| = r} |\hat \varphi (\xi)| \cdot |\hat \psi(\xi)| \,\mathrm{d}{{S(\xi)}} \quad (\text{by } (2.14)) \\ & \leq C_p k^{1/p - 1} \left\| {{\varphi}} \right\|_{H_\delta^{-1/(2p)}( \mathbb{R}^3)} \left\| {{\psi}} \right\|_{H_\delta^{-1/(2p)}( \mathbb{R}^3)}, \end{align} | (2.15) |
where
We next estimate
\begin{align} I_2(\tau) & = \int_{\mathbb{S}^2} [〈k〉^{\frac {-1} {2p}} \hat \varphi (k\omega)] [〈k〉^{\frac {-1} {2p}} \widehat{\mathfrak{R} \overline \psi}(k\omega)] \int_0^\infty \frac {〈r〉^{\frac 1 p} r^2 \chi^2(r - k) \,\mathrm{d}{r}} {r^2 - k^2 - i\tau} \,\mathrm{d}{{S(\omega)}}. \end{align} | (2.16) |
It can be shown that, by choosing a fixed
\begin{equation} |p_\tau(r)| \geq \tau_0 k {\rm{\; and }}\; |r| \lesssim k, \ \forall r \in \{ r ; 2 \geq |r - k| \geq \tau_0 \} \cup \Gamma_{k,\tau_0},\, \forall \tau \in (0,\tau_0), \end{equation} | (2.17) |
where
\begin{align} |I_2(\tau)| & \leq \int_{|\xi| = k} 〈\xi〉^{\frac {-1} {2p}} |\hat \varphi (\xi)| \cdot 〈\xi〉^{\frac {-1} {2p}} |\hat \psi(\xi)| \big( \int_{\{ r \in \mathbb{R}_+ \,;\, 2 \geq |r - k| \geq \tau_0 \}} \frac {〈r〉^{\frac 1 p} (r/k)^2} {\tau_0 k} \,\mathrm{d}{r} \big) \,\mathrm{d}{{S(\xi)}} \\ & \ \ \ + \int_{|\xi| = k} 〈\xi〉^{\frac {-1} {2p}} |\hat \varphi (\xi)| \cdot 〈\xi〉^{\frac {-1} {2p}} |\hat \psi(\xi)| \big( \int_{\Gamma_{k,\tau_0}} \frac {(1+|r|^2)^{\frac 1 {2p}} (|r|/k)^2} {\tau_0 k} \,\mathrm{d}{r} \big) \,\mathrm{d}{{S(\xi)}} \\ & \leq C_{\tau_0} \int_{|\xi| = k} 〈\xi〉^{\frac {-1} {2p}} |\hat \varphi (\xi)| 〈\xi〉^{\frac {-1} {2p}} |\hat \psi(\xi)| \big( \int_{\Gamma_{k,\tau_0} \cup \{ r \in \mathbb{R}_+; 2 \geq |r - k| \geq \tau_0 \}} \frac {〈k〉^{1/p}} {\tau_0 k} \,\mathrm{d}{r} \big) \,\mathrm{d}{{S(\xi)}} \\ & \ \ \ + C_{\tau_0} \int_{|\xi| = k} 〈\xi〉^{\frac {-1} {2p}} |\hat \varphi (\xi)| 〈\xi〉^{\frac {-1} {2p}} |\hat \psi(\xi)| \big( \int_{\Gamma_{k,\tau_0}} \frac {〈k〉^{1/p}} {\tau_0 k} \,\mathrm{d}{r} \big) \,\mathrm{d}{{S(\xi)}} \\ & \leq C_{\tau_0} k^{1/p - 1} \big( \int_{|\xi| = k} |〈\xi〉^{\frac {-1} {2p}} \hat h(\xi)|^2 \,\mathrm{d}{{S(\xi)}} \big)^{\frac 1 2} \big( \int_{|\xi| = k} |〈\xi〉^{\frac {-1} {2p}} \hat \psi(\xi)|^2 \,\mathrm{d}{{S(\xi)}} \big)^{\frac 1 2} \\ & \leq C_{\tau_0,\epsilon} k^{1/p - 1} \left\| {{\varphi}} \right\|_{H_{1/2 + \epsilon}^{-1/(2p)}( \mathbb{R}^3)} \left\| {{\psi}} \right\|_{H_{1/2 + \epsilon}^{-1/(2p)}( \mathbb{R}^3)}, \end{align} | (2.18) |
where the constant
Finally, we estimate
\begin{align} |I_3(\tau)| & \leq \int_0^\infty \frac {〈r〉^{1/p} \chi^2(r - k)} {|r^2 - k^2|} \cdot \left\| {{\mathbb F_r}} \right\|_{L^2(\mathbb S_r^2)} \cdot \big( r^2 \int_{\mathbb{S}^2} |\mathbb G_r - \mathbb G_k|^2 \,\mathrm{d}{{S(\omega)}} \big)^{\frac 1 2} \,\mathrm{d}{r} \\ & \ \ \ + \int_0^\infty \frac {〈r〉^{1/p} \chi^2(r - k)} {|r^2 - k^2|} \cdot \big( r^2 \int_{\mathbb{S}^2} |\mathbb F_r - \mathbb F_k|^2 \,\mathrm{d}{{S(\omega)}} \big)^{\frac 1 2} \cdot \big(\frac r k \big)^2 \left\| {{\mathbb G_k}} \right\|_{L^2(\mathbb S_k^2)} \,\mathrm{d}{r}, \end{align} | (2.19) |
where
\begin{align} |I_3(\tau)| & \leq C_{\alpha,\epsilon} \int_0^\infty \frac {〈r〉^{1/p} \chi^2(r - k)} {|r - k| (r+k)} \cdot \left\| {{\mathbb F}} \right\|_{H^{1/2+\epsilon}( \mathbb{R}^3)} \cdot |r - k|^\alpha \cdot \left\| {{\mathbb G}} \right\|_{H^{1/2+\epsilon}( \mathbb{R}^3)} \,\mathrm{d}{r} \\ & \leq C_{\alpha,\epsilon,p} \int_0^\infty \frac {〈r〉^{1/p} \chi^2(r - k)} {|r - k|^{1-\alpha} (r+1)^{1/p} (k-1)^{1-1/p}} \,\mathrm{d}{r} \cdot \left\| {{\mathbb F}} \right\|_{H^{1/2+\epsilon}( \mathbb{R}^3)} \left\| {{\mathbb G}} \right\|_{H^{1/2+\epsilon}( \mathbb{R}^3)} \\ & \leq C_{\alpha,\epsilon,p} k^{1/p-1} \left\| {{\varphi}} \right\|_{H_{1/2+\epsilon}^{-1/(2p)}( \mathbb{R}^3)} \cdot \left\| {{\psi}} \right\|_{H_{1/2+\epsilon}^{-1/(2p)}( \mathbb{R}^3)}, \end{align} | (2.20) |
where the
Combining (2.13), (2.15), (2.18) and (2.20), we arrive at
\begin{equation*} |(\mathcal{R}_{k,\tau} \varphi,\psi)_{L^2( \mathbb{R}^3)}| \leq |I_1(\tau)| + |I_2(\tau)| + |I_3(\tau)| \leq C k^{1/p - 1} \left\| {{\varphi}} \right\|_{H_{1/2 + \epsilon}^{-1/(2p)}( \mathbb{R}^3)} \left\| {{\psi}} \right\|_{H_{1/2 + \epsilon}^{-1/(2p)}( \mathbb{R}^3)}, \end{equation*} |
which implies that
\begin{equation} \left\| {{\mathcal{R}_{k,\tau} \varphi}} \right\|_{H_{-1/2 - \epsilon}^{1/(2p)}( \mathbb{R}^3)} \leq C k^{1/p - 1} \left\| {{\varphi}} \right\|_{H_{1/2 + \epsilon}^{-1/(2p)}( \mathbb{R}^3)} \end{equation} | (2.21) |
for some constant
Next we investigate the limiting case
|I_j(\tau_1) - I_j(\tau_2)| \leq \tilde\tau^\beta k^{1/p - 1} \left\| {{\varphi}} \right\|_{H_{1/2 + \epsilon}^{-1/(2p)}( \mathbb{R}^3)} \left\| {{\psi}} \right\|_{H_{1/2 + \epsilon}^{-1/(2p)}( \mathbb{R}^3)}, \quad (j = 1,2,3) |
holds for
\begin{equation*} \left\| {{\mathcal{R}_{k,\tau_1} \varphi - \mathcal{R}_{k,\tau_2} \varphi}} \right\|_{H_{-1/2 - \epsilon}^{-1/(2p)}( \mathbb{R}^3)} \lesssim \tilde \tau \left\| {{\varphi}} \right\|_{H_{1/2 + \epsilon}^{-1/(2p)}( \mathbb{R}^3)}, \quad \forall \tau_1,\tau_2 \in (0,\tilde \tau), \end{equation*} |
and thus
\begin{equation} \lim\limits_{\tilde \tau \to 0^+} \mathcal{R}_{k,\tilde \tau} \varphi = {\mathcal{R}_{k}} \varphi \quad\text{ in }\quad H_{-1/2 - \epsilon}^{1/(2p)}( \mathbb{R}^3). \end{equation} | (2.22) |
Hence from (2.21) and (2.22) we conclude that
\left\| {{ {\mathcal{R}_{k}} \varphi}} \right\|_{H_{-1/2 - \epsilon}^{1/(2p)}( \mathbb{R}^3)} \leq C_{\epsilon,p} k^{-(1 - 1/p)} \left\| {{\varphi}} \right\|_{H_{1/2 + \epsilon}^{-1/(2p)}( \mathbb{R}^3)} |
holds for any
The proof is complete.
With the help of Lemmas 2.2 and 2.3, the direct problems can be reformulated. Readers may refer to [25,Theorem 2.1], [22,Theorem 2.3], [19,Theorem 4.3], [20,Theorem 3.3], and [24,Theorem 3.3] as examples of how to formulate the direct problems, and we omit the details here.
In this section we consider key steps in the works [8,18,19,20,23,24]. Lemma 3.3 is crucial in the key steps of the works, and its proof relies on Lemmas 3.1 and 3.2. We shall first investigate these useful lemmas.
Lemma 3.1 is a standard result in the field of oscillatory integral and microlocal analysis.
Lemma 3.1. Assume
\begin{align} \int_{ \mathbb{R}_x^n \times \mathbb{R}_\xi^n} e^{ix\cdot \xi} \,\mathrm{d}{x} \,\mathrm{d}{\xi} & = (2\pi)^{n}, \end{align} | (3.1) |
\begin{align} \int_{ \mathbb{R}_x^n \times \mathbb{R}_\xi^n} e^{ix\cdot \xi} x^\alpha \xi^\beta \,\mathrm{d}{x} \,\mathrm{d}{\xi} & = (2\pi)^{n} i^{|\alpha|} \alpha! \delta^{\alpha \beta}. \end{align} | (3.2) |
Here
Proof. The integral in (3.1) should be understood as oscillatory integral. Fix a cutoff function
\begin{align} \int_{ \mathbb{R}_x^n \times \mathbb{R}_\xi^n} e^{ix\cdot \xi} \,\mathrm{d}{x} \,\mathrm{d}{\xi} & = \lim\limits_{\epsilon \to 0^+} \int e^{ix\cdot \xi} \chi(\epsilon x) \chi(\epsilon \xi) \,\mathrm{d}{x} \,\mathrm{d}{\xi} \\ & = (2\pi)^{n/2} \lim\limits_{\epsilon \to 0^+} \int \chi(\epsilon^2 \xi) \widehat\chi(-\xi) \,\mathrm{d}{\xi}. \end{align} | (3.3) |
Denote
\begin{align*} \int_{ \mathbb{R}_x^n \times \mathbb{R}_\xi^n} e^{ix\cdot \xi} \,\mathrm{d}{x} \,\mathrm{d}{\xi} & = (2\pi)^{n/2} \int \widehat\chi(-\xi) \,\mathrm{d}{\xi} = (2\pi)^{n} \chi(0) = (2\pi)^{n}. \end{align*} |
We arrive at (3.1).
To show (3.2), we first show that
\begin{equation} (2\pi)^{-n} \iint e^{-iy\cdot \eta} y^\alpha \eta^\beta \,\mathrm{d}{y} \,\mathrm{d}{\eta} = (2\pi)^{-n} \iint e^{-iy\cdot \eta} D_\eta^\alpha(\eta^\beta) \,\mathrm{d}{y} \,\mathrm{d}{\eta}, \end{equation} | (3.4) |
where
\begin{align} & \iint e^{-iy\cdot \eta} y^\alpha \eta^\beta \,\mathrm{d}{y} \,\mathrm{d}{\eta} = \lim\limits_{\epsilon \to 0^+} \iint e^{-iy\cdot \eta} y^\alpha \eta^\beta \chi(\epsilon y) \chi(\epsilon \eta) \,\mathrm{d}{y} \,\mathrm{d}{\eta} \\ = & \lim\limits_{\epsilon \to 0^+} \iint (-D_\eta)^\alpha(e^{-iy\cdot \eta})\, \eta^\beta \chi(\epsilon y) \chi(\epsilon \eta) \,\mathrm{d}{y} \,\mathrm{d}{\eta} \\ = & \lim\limits_{\epsilon \to 0^+} \iint e^{-iy\cdot \eta} \chi(\epsilon y) D_\eta^\alpha \big( \eta^\beta \chi(\epsilon \eta) \big) \,\mathrm{d}{y} \,\mathrm{d}{\eta} \\ = & \lim\limits_{\epsilon \to 0^+} \sum\limits_{0 < \gamma \leq \alpha} \epsilon^{|\gamma|} \binom{\alpha}{\gamma} \iint e^{-iy\cdot \eta} \chi(\epsilon y) \cdot D_\eta^{\alpha-\gamma}(\eta^\beta) \cdot \big( \partial^\gamma \chi \big) (\epsilon \eta) \,\mathrm{d}{y} \,\mathrm{d}{\eta} \\ & \ + \iint e^{-iy\cdot \eta} D_\eta^\alpha \big( \eta^\beta \big) \,\mathrm{d}{y} \,\mathrm{d}{\eta}. \end{align} | (3.5) |
As
\begin{align*} \iint e^{-iy\cdot \eta} \chi(\epsilon y) \cdot D_\eta^{\alpha-\gamma}(\eta^\beta) \cdot \big( \partial^\gamma \chi \big) (\epsilon \eta) \,\mathrm{d}{y} \,\mathrm{d}{\eta} \to & \ D_\eta^{\alpha-\gamma}(\eta^\beta) \cdot \big( \partial^\gamma \chi \big) (\epsilon \eta) \big|_{\eta = 0} \quad (\epsilon \to 0^+). \end{align*} |
Because
\begin{equation} \lim\limits_{\epsilon \to 0^+} \epsilon^{|\gamma|} \sum\limits_{0 < \gamma \leq \alpha} \binom{\alpha}{\gamma} \iint e^{-iy\cdot \eta} \chi(\epsilon y) \cdot D_\eta^{\alpha-\gamma}(\eta^\beta) \cdot \big( \partial^\gamma \chi \big) (\epsilon \eta) \,\mathrm{d}{y} \,\mathrm{d}{\eta} = 0. \end{equation} | (3.6) |
Combining (3.5) and (3.6), we arrive at
\iint e^{-iy\cdot \eta} y^\alpha \eta^\beta \,\mathrm{d}{y} \,\mathrm{d}{\eta} = \lim\limits_{\epsilon \to 0^+} \iint e^{-iy\cdot \eta} y^\alpha \eta^\beta \chi(\epsilon y) \chi(\epsilon \eta) \,\mathrm{d}{y} \,\mathrm{d}{\eta} = \iint e^{-iy\cdot \eta} D_\eta^\alpha \big( \eta^\beta \big) \,\mathrm{d}{y} \,\mathrm{d}{\eta}. |
We proved (3.4).
Then, for multi-indexes
\begin{equation*} \int e^{ix\cdot \xi} x^\alpha \xi^\beta \,\mathrm{d}{x} \,\mathrm{d}{\xi} = \int e^{ix\cdot \xi} (-D_\xi)^\alpha (\xi^\beta) \,\mathrm{d}{x} \,\mathrm{d}{\xi} = 0. \end{equation*} |
When
\begin{equation*} \int e^{ix\cdot \xi} x^\alpha \xi^\beta \,\mathrm{d}{x} \,\mathrm{d}{\xi} = \int e^{ix\cdot \xi} (-D_\xi)^\alpha (\xi^\alpha) \,\mathrm{d}{x} \,\mathrm{d}{\xi} = \int e^{ix\cdot \xi} i^{|\alpha|} \alpha! \,\mathrm{d}{x} \,\mathrm{d}{\xi} = (2\pi)^n i^{|\alpha|} \alpha!. \end{equation*} |
We have arrived at (3.2).
We also need [16,Lemma 18.2.1] and we present a proof below.
Lemma 3.2. If
u(x) = \int e^{i 〈x',\xi'〉} a(x,\xi') \,\mathrm{d}{\xi}', |
then there exists
u(x) = \int e^{i 〈x',\xi'〉} \tilde a(x'',\xi') \,\mathrm{d}{\xi}', |
and
\tilde a(x'',\xi') \sim \sum\limits_{\alpha} i^{|\alpha|} \partial_{x'}^\alpha \partial_{\xi'}^\alpha a(0,x'',\xi') / \alpha!. |
Remark 3.1. Note if
Proof. The
\tilde a(x'',\xi') = (2\pi)^{-k/2} \mathcal{F}_{x'} \{ u(x',x'') \}(\xi') = (2\pi)^{-k} \int e^{-ix' \cdot \xi'} u(x',x'') \,\mathrm{d}{x}'. |
Then we can have
\begin{align*} \tilde a(x'',\xi') & = (2\pi)^{-k} \int e^{-ix' \cdot \xi'} u(x) \,\mathrm{d}{x}' = (2\pi)^{-k} \int e^{ix' \cdot \theta} a(x,\xi' + \theta) \,\mathrm{d}{\theta} \,\mathrm{d}{x}'. \end{align*} |
By adopting the way used in [1,§I.8.1] in computing the oscillatory integral, we can easily show that
|\partial_{\xi'}^\alpha [\chi(x,\theta) a(2^k x',x'',\xi' + 2^k \theta)]| \lesssim 2^{mk} 〈\xi'〉^k, |
so
The idea of the proof is to expand
\begin{align} a(x',x'',\xi' + \theta) & = \sum\limits_{|\alpha| + |\beta| \leq 2N} \frac {x'^\alpha \theta^\beta}{\alpha! \beta!} \partial_{x'}^\alpha \partial_{\xi'}^\beta a(0, x'',\xi') \\ & \quad + \sum\limits_{|\alpha| + |\beta| = 2N+1} \frac {x'^\alpha \theta^\beta}{\alpha! \beta!} \partial_{x'}^\alpha \partial_{\xi'}^\beta a(\eta x', x'',\xi' + \eta \theta), \quad 0 < \eta < 1, \end{align} |
and to use Lemma 3.1. We have
\begin{align} \tilde a(x'', \xi') & = (2\pi)^{-k} \int e^{ix' \cdot \theta} a(x',x'',\xi' + \theta) \,\mathrm{d}{\theta} \,\mathrm{d}{x}' \\ \\ & = \sum\limits_{|\alpha| \leq N} i^{|\alpha|} \partial_{x'}^\alpha \partial_{\xi'}^\beta a(0, x'',\xi') / \alpha! \\ & \quad + \sum\limits_{\substack{|\alpha| + |\beta| = 2N+1 \\ \gamma \leq \alpha \leq \beta + \gamma}} C_{\alpha,\beta,\gamma} \int e^{ix' \cdot \theta} (\partial_{x'}^\alpha \partial_{\xi'}^{\beta + \gamma} a) (\eta^{|\gamma|}) \partial_\theta^{\alpha - \gamma} (\theta^\beta) \,\mathrm{d}{\theta} \,\mathrm{d}{x}' . \end{align} | (3.7) |
Note that the constraint
\begin{equation*} 2N + 1 = |\alpha| + |\beta| \leq 2|\beta| + |\gamma| \leq 2(|\beta| + |\gamma|) \quad \Rightarrow \quad |\beta + \gamma| \geq N + 1. \end{equation*} |
Now we show that each remainder term in (3.7) is controlled by
\begin{align*} &\tilde a(x'', \xi') - \sum\limits_{|\alpha| \leq N} i^{|\alpha|} \partial_{x'}^\alpha \partial_{\xi'}^\beta a(0, x'',\xi') / \alpha!\\ & = \int e^{ix' \cdot \theta} \chi_0(x',\theta) b \,\mathrm{d}{\theta} \,\mathrm{d}{x}' \nonumber \\ & \quad + \sum\limits_{\ell \geq 1} \int e^{ix' \cdot \theta} \chi(x'/2^\ell,\theta/2^\ell) b(x', x'', \theta; \xi',\eta) \,\mathrm{d}{\theta} \,\mathrm{d}{x}', \end{align*} |
where
\begin{align} & \int e^{ix' \cdot \theta} \chi(x'/2^\ell,\theta/2^\ell) b(x', x'', \theta; \xi',\eta) \,\mathrm{d}{\theta} \,\mathrm{d}{x}' \\ \lesssim & \ 2^{2\ell k} \int \big( \frac {(\theta,x') \cdot \nabla_{(x',\theta)}} {i2^{2\ell} (|x'|^2+|\theta|^2)} \big)^L (e^{i 2^{2\ell} x' \cdot \theta}) \cdot \chi(x',\theta) b(x', x'', \theta; \xi', 2^\ell \eta) \,\mathrm{d}{\theta} \,\mathrm{d}{x}' \\ \lesssim & \ 〈\xi'〉^{m-N-1} \cdot 2^{\ell(2k + 1 - 2L)} \int_{ \mathop{{\rm{supp}}} \chi} C_L 2^{\ell (|m-N-1|+L)} \,\mathrm{d}{\theta} \,\mathrm{d}{x}' \\ \lesssim & \ 〈\xi'〉^{m-N-1} \cdot 2^{\ell(2k + 1 + |m-N-1| - L)}, \end{align} |
thus if we take
|\sum\limits_{\ell \geq 1} \int e^{ix' \cdot \theta} \chi(x'/2^\ell,\theta/2^\ell) b \,\mathrm{d}{\theta} \,\mathrm{d}{x}'| \lesssim \sum\limits_{\ell \geq 1} 〈\xi'〉^{m-N-1} 2^{\ell(2k + 1 + |m-N-1| - L)} \lesssim 〈\xi'〉^{m-N-1}. |
This shows
\tilde a(x'', \xi') - \sum\limits_{|\alpha| \leq N} i^{|\alpha|} \partial_{x'}^\alpha \partial_{\xi'}^\alpha a(0,x'',\xi') / \alpha! \in S^{m-N-1}( \mathbb{R}^{n-k} \times \mathbb{R}^k). |
The proof is complete.
We also need [16,Lemma 18.2.9] and we present a proof below.
Lemma 3.3. Assume that
u(x) = \int e^{i 〈x', \xi'〉} a(x,\xi') \,\mathrm{d}{\xi}', \quad \xi' \in \mathbb{R}^k, |
and a
\rho^* u(y) = \int e^{i 〈y', \xi'〉} \tilde a(y'',\xi') \,\mathrm{d}{\xi}', |
and
\tilde a(y'',\eta) - a(0,\rho_2(0,y''),(\psi(0,y''))^{T,-1} \eta) |\det\psi(0,y'')|^{-1} \in S^{m-1}( \mathbb{R}^{n-k} \times \mathbb{R}^k), |
where
Remark 3.2. The condition "
Proof. Because
\begin{align*} \tilde u(y) & : = \rho^* u(y) = u(\rho(y)) = \int e^{i 〈\rho_1(y), \xi'〉} \bar a(\rho_2(y),\xi') \,\mathrm{d}{\xi}' \\ & = \int e^{i 〈\psi(y) \cdot y', \xi'〉} \bar a(\rho_2(y),\xi') \,\mathrm{d}{\xi}' = \int e^{i 〈y', (\psi(y) )^{T} \xi'〉} \bar a(\rho_2(y),\xi') \,\mathrm{d}{\xi}', \nonumber \end{align*} |
According to Remark 3.1, we could continue
\begin{align*} \tilde u(y) & = \int e^{i 〈y', (\psi(y))^{T} \xi'〉} \chi(y') \bar a(\rho_2(y),(\psi(y))^{T,-1} (\psi(y))^{T} \xi') |\det\psi(y)|^{-1} {\rm{d}} ((\psi(y) )^{T} \xi') + v(y) \nonumber \\ & = \int e^{i 〈y', \eta〉} \chi(y') \bar a(\rho_2(y),(\psi(y))^{T,-1} \eta) |\det\psi(y)|^{-1} \,\mathrm{d}{\eta} + v(y), \nonumber \end{align*} |
where
\tilde a(y'',\eta) - \bar a(\rho_2(0,y''),(\psi(0,y''))^{T,-1} \eta) |\det\psi(0,y'')|^{-1} \in S^{m-1}( \mathbb{R}^{n-k} \times \mathbb{R}^k). |
Note that
\tilde a(y'',\eta) - a(0,\rho_2(0,y''),(\psi(0,y''))^{T,-1} \eta) |\det\psi(0,y'')|^{-1} \in S^{m-1}( \mathbb{R}^{n-k} \times \mathbb{R}^k). |
The proof is complete.
Finally, we need Lemma 3.4.
Lemma 3.4. For any stochastic process
\begin{equation} \int_1^{+\infty} k^{m-1} \mathbb E (|g(k,\cdot)|) \,\mathrm{d}{k} < +\infty, \end{equation} | (3.8) |
it holds that
\begin{equation} \lim\limits_{K \to +\infty} \frac 1 K \int_K^{2K} k^m g(k,\omega) \,\mathrm{d}{k} = 0, \ \rm{\; a.s.\; } \omega \in \Omega. \end{equation} | (3.9) |
Proof. Check [22,Lemma 4.1].
Lemma 3.4 turns the justification of the ergodicity into the asymptotic analysis of the expectation of related terms.
With the help of Lemma 3.4, the most difficult part of the work [18,19,20,23,24] boils down to the estimate of the integral
\begin{equation} \mathbb I (x,y,k_1,k_2) : = \int e^{ik_1(|x - z_1| + |z_1 - y|) - ik_2(|x - z_2| + |z_2 - y|)} C(z_1,z_2) \,\mathrm{d}{z_1} \,\mathrm{d}{z_2}, \end{equation} | (3.10) |
where
One wonders the decaying rate of
Proposition 3.1. Assume
|\mathbb I (x,y,k_1,k_2)| \leq C_N 〈k_1 - k_2〉^{-N} (k_1 + k_2)^{-m}, |
holds uniformly for
Proof. Denote
\begin{align} \phi(z_1,z_2, x,y, k_1, k_2) & = \frac {k_1 + k_2} 2 \big[ (|x - z_1| + |z_1 - y|) - (|x - z_2| + |z_2 - y|) \big] \\ & \quad + \frac {k_1 - k_2} 2 \big[ (|x - z_1| + |z_1 - y|) + (|x - z_2| + |z_2 - y|) \big]. \end{align} | (3.11) |
We note that the
\begin{equation*} \tau_1 \colon \quad v = z_1 - z_2, \quad w = z_1 + z_2. \end{equation*} |
The pull-back of
\begin{equation} C_1(v,w) : = (\tau_1^{-1})^* C(v,w) = C(\tau_1^{-1}(v,w)) = \int e^{i v \cdot \xi} c((v + w)/2,\xi) \,\mathrm{d}{\xi}. \end{equation} | (3.12) |
Second, in order to make the phase function
\begin{equation} \tau_2 \colon \quad \left\{ \begin{aligned} s_1 & = (|x - z_1| + |z_1 - y|) - (|x - z_2| + |z_2 - y|), \\ t_1 & = (|x - z_1| + |z_1 - y|) + (|x - z_2| + |z_2 - y|). \end{aligned} \right. \end{equation} | (3.13) |
We comment that under (3.13), the phase function
\begin{equation} C_2(s,t) : = (\tau_1 \circ \tau_2^{-1})^* C_1(s,t) = \int e^{i s \cdot \xi} c_2(t,\xi) \,\mathrm{d}{\xi}, \end{equation} | (3.14) |
By using Lemma 3.3, we can express
The relationship (3.14) also gives
C_2(s,t) = (\tau_1 \circ \tau_2^{-1})^* (\tau_1^{-1})^* C(s,t) = (\tau_2^{-1})^* C(s,t), |
and hence we can do the change of variables
\begin{align} &\mathbb I (x,y,k_1,k_2) \\ & = \int e^{ik_1(|x - z_1| + |z_1 - y|) - ik_2(|x - z_2| + |z_2 - y|)} C(\tau_2^{-1} \circ \tau_2(z_1,z_2)) {\rm{d}} (\tau_2^{-1} \circ \tau_2(z_1,z_2)) \\ & = \int e^{i(k_1 + k_2) s_1 / 2 + i(k_1 - k_2) t_1 / 2} C(\tau_2^{-1} (s,t)) |\det \tau_2^{-1}(s,t)| {\rm{d}} (s,t) \\ & = \int e^{i(k_1 + k_2) s \cdot e_1 / 2 + i(k_1 - k_2) t \cdot e_1 / 2} C_2(s,t) |\det \tau_2^{-1}(s,t)| \,\mathrm{d}{s} \,\mathrm{d}{t}. \end{align} | (3.15) |
Here we need the help of Lemma 3.2 to deal with the
\begin{equation} C_2(s,t) |\det \tau_2^{-1}(s,t)| = \int e^{i s \cdot \xi} \tilde c_2(t,\xi) \,\mathrm{d}{\xi}. \end{equation} | (3.16) |
The computation of the leading term of
\tilde c_2(t,\xi) - c_2(t,\xi) |\det \tau_2^{-1}(0,t)| \in S^{-m-1}. |
Combining (3.15) and (3.16), we arrive at
\begin{align*} \mathbb I (x,y,k_1,k_2) & = \int e^{i(k_1 + k_2) s \cdot e_1 / 2 + i(k_1 - k_2) t \cdot e_1 / 2} \int e^{i s \cdot \xi} \tilde c_2(t,\xi) \,\mathrm{d}{\xi} \,\mathrm{d}{s} \,\mathrm{d}{t} \\ & \simeq \int e^{i(k_1 - k_2) t \cdot e_1 / 2} \tilde c_2(t,-(k_1 + k_2)e_1 / 2) \,\mathrm{d}{t}. \end{align*} |
Now we can see
We would like to comment that the estimation of
In this section we consider the key steps in the works [22,25]. In [22,25], the authors use far-field data to achieve the recovery, and this makes the derivations different from what has been discussed in Section 3. A different methodology is required to obtain accurate estimate of the decaying rate. Lemmas 4.1–4.3 plays key roles in the derivation. Before stepping into the key steps in the derivation, we shall first investigate some useful lemmas.
First, let us recall the notion of the fractional Laplacian [30] of order
\begin{equation} (-\Delta)^{s/2} \varphi(x) : = (2\pi)^{-n} \iint e^{i(x-y) \cdot \xi} |\xi|^s \varphi(y) \,\mathrm{d}{y} \,\mathrm{d}{\xi}, \end{equation} | (4.1) |
where the integration is defined as an oscillatory integral. When
In the following two lemmas, we present the results in a more general form where the space dimension
Lemma 4.1. For any
\begin{equation*} (-\Delta_\xi)^{s/2} (e^{ix \cdot \xi}) = |x|^s e^{ix \cdot \xi} \end{equation*} |
in the distributional sense.
Proof. Check [22,Lemma 3.1].
Lemma 4.2. For any
\big( (-\Delta_\xi)^{s/2} c \big) (x,\xi) \in S^{m-s} \quad \mathit{\text{for any}} \quad c(x,\xi) \in S^m. |
Proof. Check [22,Corollary 3.1].
In the sequel, we denote
Lemma 4.3. Assume
\begin{equation*} \int_\Omega |t|^{-\alpha} |t - p|^{-\beta} \,\mathrm{d}{t} \leq C_{\alpha,\beta} \times \begin{cases} |p|^{n - \alpha - \beta} + ( \mathop{{\rm{diam}}} (\Omega))^{n - \alpha - \beta}, & \alpha + \beta \neq n, \\ \ln \frac 1 {|p|} + \ln ( \mathop{{\rm{diam}}}(\Omega)) +C_{\alpha, \beta}, & \alpha + \beta = n. \end{cases} \end{equation*} |
Proof. Check [25,Lemma 3.5].
In this subsection we restrict ourselves to
\begin{equation} \mathbb J : = \int e^{ik\varphi(y,s,z,t)} \big( \int e^{i(z-y) \cdot \xi} c_q(z,\xi) \,\mathrm{d}{\xi} \big) \big( \int e^{i(t-s) \cdot \eta} c_f(t,\xi) \,\mathrm{d}{\eta} \big) \,\mathrm{d}{{(s, y, t, z)}}, \end{equation} | (4.2) |
in terms of
\begin{equation*} L_1 : = \frac {(y-s) \cdot \nabla_s} {ik|y-s|}, \quad L_2 = L_{2,\hat x} : = \frac {\nabla_y \varphi \cdot \nabla_y} {ik|\nabla_y \varphi|}, \end{equation*} |
where
L_1 (e^{ik\varphi(y,s,z,t)}) = L_2 (e^{ik\varphi(y,s,z,t)}) = e^{ik\varphi(y,s,z,t)}. |
In what follows, we shall use
\begin{align} \mathbb J = & \int \big( L_1^2 L_2^2 \big) (e^{ik\varphi(y,s,z,t)}) \cdot \big( \int e^{i(z-y) \cdot \xi} c_q(z,\xi) \,\mathrm{d}{\xi} \big) \cdot \big( \int e^{i(t-s) \cdot \eta} c_f(t,\eta) \,\mathrm{d}{\eta} \big) \,\mathrm{d}{{(s, y, t, z)}} \\ \simeq & \ k^{-4} \int_{\mathcal D} e^{ik\varphi(y,s,z,t)} \big[ \mathcal J_1\, (\mathcal K_1\, \mathcal{C} + \vec{\mathcal K}_2 \cdot \vec{ \mathcal{C}} + \sum\limits_{a,b = 1,2,3} \mathcal K_{3;a,b}\, \mathcal{C}_{a,b}) \\ & \ + \sum\limits_{c = 1,2,3} \mathcal J_{2;c}\, (\mathcal K_1\, \mathcal{C}_c + \vec{\mathcal K}_2 \cdot \vec{ \mathcal{C}}_c + \sum\limits_{a,b = 1,2,3} \mathcal K_{3;a,b}\, \mathcal{C}_{a,b,c}) \\ & \ + \sum\limits_{a',b' = 1,2,3} \mathcal J_{3;a',b'} (\mathcal K_1\, \mathcal{C}_{a',b'} + \vec{\mathcal K}_2 \cdot \vec{ \mathcal{C}}_{a',b'} + \sum\limits_{a,b = 1,2,3} \mathcal K_{3;a,b}\, \mathcal{C}_{a,b,a',b'}) \big] \,\mathrm{d}{{(s, y, t, z)}}, \end{align} | (4.3) |
where the integral domain
\begin{alignat*} {2} & \mathcal J_1 : = \int e^{i(t-s) \cdot \eta}\, c_f(t,\eta) \,\mathrm{d}{\eta}, & \quad & \mathcal K_1 : = \int e^{i(z-y) \cdot \xi}\, c_q(z,\xi) \,\mathrm{d}{\xi}, \\ & \vec{\mathcal J}_2 : = \nabla_s \int e^{i(t-s) \cdot \eta}\, c_f(t,\eta) \,\mathrm{d}{\eta}, & \quad & \vec{\mathcal K}_2 : = \nabla_y \int e^{i(z-y) \cdot \xi}\, c_q(z,\xi) \,\mathrm{d}{\xi}, \\ & \mathcal J_{3;a,b} : = \partial_{s_a,s_b}^2 \int e^{i(t-s) \cdot \eta}\, c_f(t,\eta) \,\mathrm{d}{\eta}, & \quad & \mathcal K_{3;a,b} : = \partial_{y_a,y_b}^2 \int e^{i(z-y) \cdot \xi}\, c_q(z,\xi) \,\mathrm{d}{\xi}, \end{alignat*} |
and
Here we only show how to estimate
\begin{align} |\mathcal J_1| & = |\int e^{i(t-s) \cdot \eta}\, c_f(t,\eta) \,\mathrm{d}{\eta}| = |s-t|^{-2} \cdot |\int \Delta_\eta (e^{i(s-t) \cdot \eta})\, c_f(t,\eta) \,\mathrm{d}{\eta}| \\ & = |s-t|^{-2} \cdot |\int e^{i(t-s) \cdot \eta} (\Delta_\eta c_f) (t,\eta) \,\mathrm{d}{\eta}| \leq |s-t|^{-2} \int |(\Delta_\eta c_f) (t,\eta)| \,\mathrm{d}{\eta} \\ & \lesssim |s-t|^{-2} \int 〈\eta〉^{-m_f-2} \,\mathrm{d}{\eta} \lesssim |s-t|^{-2}. \end{align} | (4.4) |
Similarly, we can have
\begin{equation} |\mathcal J_1|,\, |\vec{\mathcal J}_2|,\, |\mathcal K_1|,\, |\vec{\mathcal K}_2| \lesssim |y-z|^{-2}. \end{equation} | (4.5) |
But for
\begin{align} \mathcal J_{3;a,b} & \simeq \int e^{i(t-s) \cdot \eta} \cdot c_f(t,\eta) \eta_a \eta_b \,\mathrm{d}{\eta} \simeq |s-t|^{-2} \int \Delta_\eta (e^{i(t-s) \cdot \eta}) \cdot c_f(t,\eta) \eta_a \eta_b \,\mathrm{d}{\eta} \\ & = |s-t|^{-2} \int e^{i(t-s) \cdot \eta} \cdot \Delta_\eta (c_f(t,\eta) \eta_a \eta_b) \,\mathrm{d}{\eta}. \end{align} | (4.6) |
Note that
\begin{equation*} |\mathcal J_{3;a,b}| \lesssim |s-t|^{-3} \int |\nabla_\eta \Delta_\eta (c_f(t,\eta) \eta_a \eta_b)| \,\mathrm{d}{\eta} \leq |s-t|^{-3} \int 〈\eta〉^{-m_f-1} \,\mathrm{d}{\eta}. \end{equation*} |
The term
\begin{align} |\mathcal J_{3;a,b}| & \simeq |s-t|^{-2} \cdot \big| |s-t|^{-s} \int (-\Delta_\eta)^{s/2} (e^{i(t-s) \cdot \eta}) \cdot \Delta_\eta (c_f(t,\eta) \eta_j \eta_\ell) \,\mathrm{d}{\eta} \big| \\ & = |s-t|^{-2-s} \cdot |\int e^{i(t-s) \cdot \eta} \cdot (-\Delta_\eta)^{s/2} \big( \Delta_\eta (c_f(t,\eta) \eta_j \eta_\ell) \big) \,\mathrm{d}{\eta}| \\ & \lesssim |s-t|^{-2-s} \int 〈\eta〉^{-m_f+2-2-s} \,\mathrm{d}{\eta} = |s-t|^{-2-s} \int 〈\eta〉^{-m_f-s} \,\mathrm{d}{\eta}, \end{align} | (4.7) |
where the number
\left\{\begin{array}{l} -m_{f}-s < -3, \;\;\;\;\;\;\;\;\;\;\;\;(\rm 4.8a)\\ -2-s > -3.\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(\rm 4.8b) \end{array}\right. |
Thanks to the condition (4.8a), we can continue (4.7) as
\begin{align} |\mathcal J_{3;a,b} | & \lesssim |s-t|^{-2-s} \int 〈\eta〉^{-m_f-s} \,\mathrm{d}{\eta} \lesssim |s-t|^{-2-s}. \end{align} | (4.9) |
Using similar arguments, we can also conclude that
Combining (4.3), (4.5) and (4.9), we arrive at
\begin{align} |\mathbb J| & \lesssim k^{-4} \int_{\mathcal D} (|\mathcal J_1| + |\vec{\mathcal J}_2| + \sum\limits_{a',b' = 1,2,3} |\mathcal J_{3;a',b'}|) \cdot (|\mathcal K_1| + |\vec{\mathcal K}_2| + \sum\limits_{a,b = 1,2,3} |\mathcal K_{3;a,b}|) \,\mathrm{d}{{(s, y, t, z)}} \\ & \lesssim k^{-4} \int_{\widetilde{\mathcal D}} |s - t|^{-2-s} \,\mathrm{d}{s} \,\mathrm{d}{t} \cdot \int_{\widetilde{\mathcal D}} |y - z|^{-2-s} \,\mathrm{d}{y} \,\mathrm{d}{z} \end{align} | (4.10) |
for some sufficiently large but bounded domain
In this subsection we restrict ourselves to
\begin{equation} \mathbb K(x,y) : = \iint_{D_f \times D_f} K_f(s,t) \Phi(s-y; k_1) \overline \Phi(t-x; k_2) \,\mathrm{d}{{s}} \,\mathrm{d}{{t}}, \end{equation} | (4.11) |
where
\begin{align} \mathbb K(z,y) & \simeq \iint_{\widetilde{\mathcal D} \times \widetilde{\mathcal D}} e^{ik_1|s-y| -ik_2|t-z|} \big( |s-y|^{-1} |t-z|^{-1} \int e^{i(s-t) \cdot \xi} c(s,\xi) \,\mathrm{d}{{\xi}} \big) \,\mathrm{d}{{s}} \,\mathrm{d}{{t}}. \end{align} | (4.12) |
Define two differential operators
L_1 : = \frac {(s-y) \cdot \nabla_s} {ik_1|s-y|} \quad \text{and} \quad L_2 : = \frac {(t-z) \cdot \nabla_t} {-ik_2|t-z|}. |
It can be verified that
L_1 L_2 (e^{ik_1|s-y|-ik_2|t-z|}) = e^{ik_1|s-y|-ik_2|t-z|}. |
Hence, noting that the integrand is compactly supported in
\begin{align} & \ |\mathbb K(z,y) | \\ \simeq & \ |\iint_{\widetilde{\mathcal D} \times \widetilde{\mathcal D}} L_1 L_2 (e^{ik_1|s-y| -ik_2|t-z|}) \big( |s-y|^{-1} |t-z|^{-1} \int e^{i(s-t) \cdot \xi} c_1(s,t,z,y,\xi) \,\mathrm{d}{{\xi}} \big) \,\mathrm{d}{{s}} \,\mathrm{d}{{t}}| \\ \lesssim & \ k_1^{-1} k_2^{-1} \iint_{\widetilde{\mathcal D} \times \widetilde{\mathcal D}} \big[ |s-y|^{-2} |t-z|^{-2} \mathcal J_0 + |s-y|^{-2} |t-z|^{-1} (\max\limits_a \mathcal J_{1;a}) \\ & + |s-y|^{-1} |t-z|^{-2} (\max\limits_{a}\mathcal J_{1;a}) + |s-y|^{-1} |t-z|^{-1} (\max\limits_{a,b} \mathcal J_{2;a,b}) \big] \,\mathrm{d}{s} \,\mathrm{d}{t}, \end{align} | (4.13) |
where
\begin{align*} \mathcal J_0 & : = |\int e^{i(s-t) \cdot \xi}\, c_1(s,t,z,y,\xi) \,\mathrm{d}{\xi}|, \\ \mathcal J_{1;a} & : = |\int e^{i(s-t) \cdot \xi}\, \xi_a c_1(s,t,z,y,\xi) \,\mathrm{d}{\xi}|, \\ \mathcal J_{2;a,b} & : = |\int e^{i(s-t) \cdot \xi}\, \xi_a \xi_b c_1(s,t,z,y,\xi) \,\mathrm{d}{\xi}|. \end{align*} |
Because of the condition
\left\{\begin{array}{l} -m-\tau < -3, \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(\rm 4.14a)\\ -2-\tau > -3.\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(\rm 4.14b) \end{array}\right. |
By using Lemmas 4.1 and 4.2, these quantities
\begin{align} \mathcal J_0 & = |s-t|^{-\tau} \cdot |\int (-\Delta_\xi)^{\tau/2} (e^{i(s-t) \cdot \xi}) c_1 (s,t,z,y,\xi) \,\mathrm{d}{\xi}| \\ & = |s-t|^{-\tau} \cdot |\int e^{i(s-t) \cdot \xi}\, (-\Delta_\xi)^{\tau/2} (c_1 (s,t,z,y,\xi)) \,\mathrm{d}{\xi}| \\ & \lesssim |s-t|^{-\tau} \cdot \int 〈\xi〉^{-m-\tau} \,\mathrm{d}{\xi} \lesssim |s-t|^{-\tau}. \end{align} | (4.15) |
The last inequality in (4.15) makes use of the fact (4.14a). Similarly, by first using fractional Laplacian and then using first-order differential operator on
\begin{align} \mathcal J_{1;a} & \leq C |s-t|^{-1-\tau} \int 〈\xi〉^{-m+1-1-\tau} \,\mathrm{d}{\xi} \leq C |s-t|^{-1-\tau}, \end{align} | (4.16) |
\begin{align} \mathcal J_{2;a,b} & \leq C |s - t|^{-2-\tau} |\int 〈\xi〉^{-m+2-2-\tau} \,\mathrm{d}{\xi}| \leq C |s - t|^{-2-\tau}, \end{align} | (4.17) |
where the constant
\begin{align} k_1 k_2 |\mathbb K(z,y)| & \lesssim \iint_{\widetilde{\mathcal D} \times \widetilde{\mathcal D}} \big[ |s-y|^{-2} |t-z|^{-2} |s - t|^{-\tau} + |s-y|^{-2} |t-z|^{-1} |s - t|^{-1-\tau} \\ & + |s-y|^{-1} |t-z|^{-2} |s - t|^{-1-\tau} + |s-y|^{-1} |t-z|^{-1} |s - t|^{-2-\tau} \big] \,\mathrm{d}{s} \,\mathrm{d}{t} \\ & = : \mathbb I_1 + \mathbb I_2 + \mathbb I_3 + \mathbb I_4. \end{align} | (4.18) |
Denote
\begin{align} \mathbb I_1 & = \iint_{\widetilde{\mathcal D} \times \widetilde{\mathcal D}} |s-y|^{-2} |t-z|^{-2} |s - t|^{-\tau} \,\mathrm{d}{s} \,\mathrm{d}{t} \\ & \leq \int_{\mathbf D} |s|^{-2} \big( \int_{\mathbf D} |t|^{-2} |t - (s+y-z)|^{-\tau} \,\mathrm{d}{t} \big) \,\mathrm{d}{s} \\ & \lesssim C_{\widetilde{\mathcal D}} + \int_{\mathbf D} |s|^{-2} |s - (z-y)|^{-(\tau-1)} \,\mathrm{d}{s} \\ & \simeq |z-y|^{2-\tau} + C_{\widetilde{\mathcal D}}. \end{align} | (4.19) |
Note that in (4.19) we used Lemma 4.3 twice. Similarly,
\begin{equation} \mathbb I_2,\, \mathbb I_3,\, \mathbb I_4 \lesssim |z-y|^{2-\tau} + C_{\widetilde{\mathcal D}}. \end{equation} | (4.20) |
Recall that
\begin{equation*} |\mathbb K(z,y)| \leq C k_1^{-1} k_2^{-1} (|z-y|^{2-\tau} + C_{\widetilde{\mathcal D}}) \leq C k^{-2} (( \mathop{{\rm{diam}}} D_V)^{2-\tau} + C_{\widetilde{\mathcal D}}) \lesssim k^{-2}. \end{equation*} |
We have reviewed the recoveries of some statistics by using the near-field data as well as far-field data generated under a single realization of the randomness. In this paper we mainly focus on time-harmonic Schrödinger systems. One of the possible ways to extend the current works is to study the Helmholtz systems. It would be also interesting to conduct the work in the time domain. Moreover, the stability of the recovering procedure is also worth of investigation.
[1] | F. A. Wodajo, T. T. Mekonnen, Effect of intervention of vaccination and treatment on the transmission dynamics of HBV disease: A mathematical model analysis, J. Math., 2022, 1–17. https://doi.org/10.1155/2022/9968832 |
[2] |
S. Tsukuda, K. Watashi, Hepatitis B virus biology and life cycle, Antiviral Res., 182 (2020), 104925. https://doi.org/10.1016/j.antiviral.2020.104925 doi: 10.1016/j.antiviral.2020.104925
![]() |
[3] | E. E. Conners, L. Panagiotakopoulos, M. G. Hofmeister, P. R. Spradling, L. M. Hagan, A. M. Harris, et al., Screening and testing for hepatitis B virus infection: CDC recommendations-United States, 2023, MMWR Recomm. Rep., 72 (2023), 1. |
[4] |
J. E. Flores, A. J. Thompson, M. Ryan, J. Howell, The global impact of hepatitis B vaccination on hepatocellular carcinoma, Vaccines, 10 (2022), 793. https://doi.org/10.3390/vaccines10050793 doi: 10.3390/vaccines10050793
![]() |
[5] |
N. Chitnis, J. M. Hyman, J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Bol., 70 (2008), 1272–1296. https://doi.org/10.1007/s11538-008-9299-0 doi: 10.1007/s11538-008-9299-0
![]() |
[6] |
J. P. Chretien, S. Riley, D. B. George, Mathematical modeling of the West Africa Ebola epidemic, Elife, 4 (2015), e09186. https://doi.org/10.7554/eLife.09186 doi: 10.7554/eLife.09186
![]() |
[7] | M. F. Tabassum, M. Saeed, A. Akgül, M. Farman, N. A. Chaudhry, Treatment of HIV/AIDS epidemic model with vertical transmission by using evolutionary Padé-approximation, Chaos Soliton. Fract., 134 (2020), 109686. |
[8] |
M. Farman, A. Shehzad, A. Akgül, D. Baleanu, M. D. L. Sen, Modelling and analysis of a measles epidemic model with the constant proportional Caputo operator, Symmetry, 15 (2023), 468. https://doi.org/10.3390/sym15020468 doi: 10.3390/sym15020468
![]() |
[9] | S. Zhao, Z. Xu, Y. Lu, A mathematical model of hepatitis B virus transmission and its application for vaccination strategy in China, Int. J. Epidemiol., 29 (2000), 744–752. |
[10] |
K. Wang, W. Wang, Propagation of HBV with spatial dependence, Math. Biosci., 210 (2007), 78–95. https://doi.org/10.1016/j.mbs.2007.05.004 doi: 10.1016/j.mbs.2007.05.004
![]() |
[11] |
N. K. Martin, P. Vickerman, M. Hickman, Mathematical modelling of hepatitis C treatment for injecting drug users, J. Theor. Biol., 274 (2011), 58–66. https://doi.org/10.1016/j.jtbi.2010.12.041 doi: 10.1016/j.jtbi.2010.12.041
![]() |
[12] |
A. V. Kamyad, R. Akbari, A. A. Heydari, A. Heydari, Mathematical modeling of transmission dynamics and optimal control of vaccination and treatment for hepatitis B virus, Comput. Math. Methods Med., 2014 (2014), 475451. https://doi.org/10.1155/2014/475451 doi: 10.1155/2014/475451
![]() |
[13] |
S. Ullah, M. A. Khan, J. F. Gómez-Aguilar, Mathematical formulation of hepatitis B virus with optimal control analysis, Optim. Control Appl. Methods, 40 (2019), 529–544. https://doi.org/10.1002/oca.2493 doi: 10.1002/oca.2493
![]() |
[14] |
F. A. Wodajo, D. M. Gebru, H. T. Alemneh, Mathematical model analysis of effective intervention strategies on transmission dynamics of hepatitis B virus, Sci. Rep., 13 (2023), 8737. https://doi.org/10.1038/s41598-023-35815-z doi: 10.1038/s41598-023-35815-z
![]() |
[15] |
M. Farman, C. Alfiniyah, A. Shehzad, Modelling and analysis tuberculosis (TB) model with hybrid fractional operator, Alex. Eng. J., 72 (2023), 463–478. https://doi.org/10.1016/j.aej.2023.04.017 doi: 10.1016/j.aej.2023.04.017
![]() |
[16] |
F. E. Guma, O. M. Badawy, M. Berir, M. A. Abdoon, Numerical analysis of fractional-order dynamic dengue disease epidemic in Sudan, J. Niger. Soc. Phys. Sci., 5 (2023), 1464–1464. https://doi.org/10.46481/jnsps.2023.1464 doi: 10.46481/jnsps.2023.1464
![]() |
[17] |
C. Xu, M. Farman, A. Hasan, A. Akgül, M. Zakarya, W. Albalawi, et al., Lyapunov stability and wave analysis of COVID-19 omicron variant of real data with fractional operator, Alex. Eng. J., 61 (2022), 11787–11802. https://doi.org/10.1016/j.aej.2022.05.025 doi: 10.1016/j.aej.2022.05.025
![]() |
[18] |
Y. Gu, M. Khan, R. Zarin, A. Khan, A. Yusuf, U. W. Humphries, Mathematical analysis of a new nonlinear dengue epidemic model via deterministic and fractional approach, Alex. Eng. J., 67 (2023), 1–21. https://doi.org/10.1016/j.aej.2022.10.057 doi: 10.1016/j.aej.2022.10.057
![]() |
[19] |
M. Farman, S. Jamil, K. S. Nisar, A. Akgül, Mathematical study of fractal-fractional leptospirosis disease in human and rodent populations dynamical transmission, Ain Shams Eng. J., 15 (2024), 102452. https://doi.org/10.1016/j.asej.2023.102452 doi: 10.1016/j.asej.2023.102452
![]() |
[20] |
K. Wang, C. Wei, Fractal soliton solutions for the fractal-fractional shallow water wave equation arising in ocean engineering, Alex. Eng. J., 65 (2023), 859–865. https://doi.org/10.1016/j.aej.2022.10.024 doi: 10.1016/j.aej.2022.10.024
![]() |
[21] |
K. A. Abro, A. Atangana, J. F. Gomez-Aguilar, Optimal synchronization of fractal-fractional differentials on chaotic convection for Newtonian and non-Newtonian fluids, Eur. Phys. J. Spec. Top., 232 (2023), 2403–2414. https://doi.org/10.1140/epjs/s11734-023-00913-6 doi: 10.1140/epjs/s11734-023-00913-6
![]() |
[22] |
I. Dassios, T. Kërçi, D. Baleanu, F. Milano, Fractional-order dynamical model for electricity markets, Math. Method. Appl. Sci., 46 (2023), 8349–8361. https://doi.org/10.1002/mma.7892 doi: 10.1002/mma.7892
![]() |
[23] | J. A. Conejero, J. Franceschi, E. Picó-Marco, Fractional vs. ordinary control systems: What does the fractional derivative provide? Mathematics, 10 (2022), 2719. |
[24] | C. Xu, D. Mu, Z. Liu, Y. Pang, C. Aouiti, O. Tunc, et al., Bifurcation dynamics and control mechanism of a fractional-order delayed Brusselator chemical reaction model, Match, 89 (2023). https://doi.org/10.46793/match.89-1.073X |
[25] |
L. C. Cardoso, F. L. P. Dos Santos, R. F. Camargo, Analysis of fractional-order models for hepatitis B, Comput. Appl. Math., 37 (2018), 4570–4586. https://doi.org/10.1007/s40314-018-0588-4 doi: 10.1007/s40314-018-0588-4
![]() |
[26] |
M. A. Khan, Z. Hammouch, D. Baleanu, Modeling the dynamics of hepatitis E via the Caputo-Fabrizio derivative, Math. Model Nat. Phenom., 14 (2019), 311. https://doi.org/10.1051/mmnp/2018074 doi: 10.1051/mmnp/2018074
![]() |
[27] |
S. A. A. Shah, M. A. Khan, M. Farooq, S. Ullah, E. O. Alzahrani, A fractional order model for Hepatitis B virus with treatment via Atangana-Baleanu derivative, Physica A, 538 (2020), 122636. https://doi.org/10.1016/j.physa.2019.122636 doi: 10.1016/j.physa.2019.122636
![]() |
[28] |
F. Gao, X. Li, W. Li, X. Zhou, Stability analysis of a fractional-order novel hepatitis B virus model with immune delay based on Caputo-Fabrizio derivative, Chaos Soliton. Fract., 142 (2021), 110436. https://doi.org/10.1016/j.chaos.2020.110436 doi: 10.1016/j.chaos.2020.110436
![]() |
[29] | X. P. Li, A. Din, A. Zeb, S. Kumar, T. Saeed, The impact of Lévy noise on a stochastic and fractal-fractional Atangana-Baleanu order hepatitis B model under real statistical data, Chaos Soliton. Fract., 154 (2022), 111623. |
[30] |
J. Lin, J. Bai, S. Reutskiy, J. Lu, A novel RBF-based meshless method for solving time-fractional transport equations in 2D and 3D arbitrary domains, Eng. Comput., 39 (2023), 1905–1922. https://doi.org/10.1007/s00366-022-01601-0 doi: 10.1007/s00366-022-01601-0
![]() |
[31] |
T. Abdeljawad, D. Baleanu, Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels, Adv. Differ. Eq., 2016 (2016), 1–18. https://doi.org/10.1186/s13662-016-0949-5 doi: 10.1186/s13662-016-0949-5
![]() |
[32] |
T. Abdeljawad, Fractional difference operators with discrete generalized Mittag-Leffler kernels, Chaos Soliton. Fract., 126 (2019), 315–324. https://doi.org/10.1016/j.chaos.2019.06.012 doi: 10.1016/j.chaos.2019.06.012
![]() |
[33] |
P. O. Mohammed, H. M. Srivastava, D. Baleanu, K. M. Abualnaja, Modified fractional difference operators defined using Mittag-Leffler kernels, Symmetry, 14 (2022), 1519. https://doi.org/10.3390/sym14081519 doi: 10.3390/sym14081519
![]() |
[34] |
M. Farman, A. Shehzad, A. Akgül, D. Baleanu, N. Attia, A. M. Hassan, Analysis of a fractional order Bovine Brucellosis disease model with discrete generalized Mittag-Leffler kernels, Res. Phys., 52 (2023), 106887. https://doi.org/10.1016/j.rinp.2023.106887 doi: 10.1016/j.rinp.2023.106887
![]() |
[35] |
G. Narayanan, M. S. Ali, G. Rajchakit, A. Jirawattanapanit, B. Priya, Stability analysis for Nabla discrete fractional-order of Glucose-Insulin Regulatory System on diabetes mellitus with Mittag-Leffler kernel, Biomed. Signal Proces., 80 (2023), 104295. https://doi.org/10.1016/j.bspc.2022.104295 doi: 10.1016/j.bspc.2022.104295
![]() |
[36] | T. Abdeljawad, On delta and nabla Caputo fractional differences and dual identities, Discrete Dyn. Nat. Soc., 2013 (2013). https://doi.org/10.1155/2013/406910 |
[37] | T. Abdeljawad, F. Jarad, D. Baleanu, A semigroup-like property for discrete Mittag-Leffler functions, Adv. Diff. Eq., 2012 (2012), 1–7. |
[38] |
T. Abdeljawad, D. Baleanu, Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel, Chaos Soliton. Fract., 102 (2017), 106–110. https://doi.org/10.1186/1687-1847-2012-72 doi: 10.1186/1687-1847-2012-72
![]() |
[39] | P. O. Mohammed, H. M. Srivastava, D. Baleanu, K. M. Abualnaja, Modified fractional difference operators defined using Mittag-Leffler kernels, Symmetry, 14 (2022), 1519. https://doi.org/10.3390/sym14081519 |
[40] |
P. O. Mohammed, C. S. Goodrich, A. B. Brzo, Y. S. Hamed, New classifications of monotonicity investigation for discrete operators with Mittag-Leffler kernel, Math. Biosci. Eng., 19 (2022), 4062–4074. https://doi.org/10.3934/mbe.2022186 doi: 10.3934/mbe.2022186
![]() |
[41] |
C. Vargas-De-León, Volterra-type Lyapunov functions for fractional-order epidemic systems, Commun. Nonlinear Sci. Numer. Simul., 24 (2015), 75–85. https://doi.org/10.1016/j.cnsns.2014.12.013 doi: 10.1016/j.cnsns.2014.12.013
![]() |
1. | Jianliang Li, Peijun Li, Xu Wang, Inverse Random Potential Scattering for Elastic Waves, 2023, 21, 1540-3459, 426, 10.1137/22M1497183 | |
2. | Qi Lü, Xu Zhang, Inverse problems for stochastic partial differential equations: Some progresses and open problems, 2023, 0, 2155-3289, 0, 10.3934/naco.2023014 |