Processing math: 70%
Research article

Analytical and numerical analyses of a viscous strain gradient problem involving type Ⅱ thermoelasticity

  • In this paper, a thermoelastic problem involving a viscous strain gradient beam is considered from the analytical and numerical points of view. The so-called type Ⅱ thermal law is used to model the heat conduction and two possible dissipation mechanisms are introduced in the mechanical part, which is considered for the first time within strain gradient theory. An existence and uniqueness result is proved by using semigroup arguments, and the exponential energy decay is obtained. The lack of differentiability for the semigroup of contractions is also shown. Then, fully discrete approximations are introduced by using the finite element method and the backward time scheme, for which a discrete stability property and a priori error estimates are proved. The linear convergence is derived under suitable additional regularity conditions. Finally, some numerical simulations are presented to demonstrate the accuracy of the approximations and the behavior of the discrete energy decay.

    Citation: Noelia Bazarra, José R. Fernández, Jaime E. Muñoz-Rivera, Elena Ochoa, Ramón Quintanilla. Analytical and numerical analyses of a viscous strain gradient problem involving type Ⅱ thermoelasticity[J]. AIMS Mathematics, 2024, 9(7): 16998-17024. doi: 10.3934/math.2024825

    Related Papers:

    [1] Raimund Bürger, Gerardo Chowell, Leidy Yissedt Lara-Díıaz . Comparative analysis of phenomenological growth models applied to epidemic outbreaks. Mathematical Biosciences and Engineering, 2019, 16(5): 4250-4273. doi: 10.3934/mbe.2019212
    [2] Juan Pablo Aparicio, Carlos Castillo-Chávez . Mathematical modelling of tuberculosis epidemics. Mathematical Biosciences and Engineering, 2009, 6(2): 209-237. doi: 10.3934/mbe.2009.6.209
    [3] Huiping Zang, Shengqiang Liu, Yi Lin . Evaluations of heterogeneous epidemic models with exponential and non-exponential distributions for latent period: the Case of COVID-19. Mathematical Biosciences and Engineering, 2023, 20(7): 12579-12598. doi: 10.3934/mbe.2023560
    [4] Takeshi Miyama, Sung-mok Jung, Katsuma Hayashi, Asami Anzai, Ryo Kinoshita, Tetsuro Kobayashi, Natalie M. Linton, Ayako Suzuki, Yichi Yang, Baoyin Yuan, Taishi Kayano, Andrei R. Akhmetzhanov, Hiroshi Nishiura . Phenomenological and mechanistic models for predicting early transmission data of COVID-19. Mathematical Biosciences and Engineering, 2022, 19(2): 2043-2055. doi: 10.3934/mbe.2022096
    [5] Jinlong Lv, Songbai Guo, Jing-An Cui, Jianjun Paul Tian . Asymptomatic transmission shifts epidemic dynamics. Mathematical Biosciences and Engineering, 2021, 18(1): 92-111. doi: 10.3934/mbe.2021005
    [6] Yicang Zhou, Zhien Ma . Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences and Engineering, 2009, 6(2): 409-425. doi: 10.3934/mbe.2009.6.409
    [7] Yukihiko Nakata, Ryosuke Omori . The change of susceptibility following infection can induce failure to predict outbreak potential by R0. Mathematical Biosciences and Engineering, 2019, 16(2): 813-830. doi: 10.3934/mbe.2019038
    [8] Cheng-Cheng Zhu, Jiang Zhu, Xiao-Lan Liu . Influence of spatial heterogeneous environment on long-term dynamics of a reaction-diffusion SVIR epidemic model with relaps. Mathematical Biosciences and Engineering, 2019, 16(5): 5897-5922. doi: 10.3934/mbe.2019295
    [9] Qinghua Liu, Siyu Yuan, Xinsheng Wang . A SEIARQ model combine with Logistic to predict COVID-19 within small-world networks. Mathematical Biosciences and Engineering, 2023, 20(2): 4006-4017. doi: 10.3934/mbe.2023187
    [10] Salihu S. Musa, Shi Zhao, Winnie Mkandawire, Andrés Colubri, Daihai He . An epidemiological modeling investigation of the long-term changing dynamics of the plague epidemics in Hong Kong. Mathematical Biosciences and Engineering, 2024, 21(10): 7435-7453. doi: 10.3934/mbe.2024327
  • In this paper, a thermoelastic problem involving a viscous strain gradient beam is considered from the analytical and numerical points of view. The so-called type Ⅱ thermal law is used to model the heat conduction and two possible dissipation mechanisms are introduced in the mechanical part, which is considered for the first time within strain gradient theory. An existence and uniqueness result is proved by using semigroup arguments, and the exponential energy decay is obtained. The lack of differentiability for the semigroup of contractions is also shown. Then, fully discrete approximations are introduced by using the finite element method and the backward time scheme, for which a discrete stability property and a priori error estimates are proved. The linear convergence is derived under suitable additional regularity conditions. Finally, some numerical simulations are presented to demonstrate the accuracy of the approximations and the behavior of the discrete energy decay.



    The theme of fractional calculus (FC) has appeared as a broad and interesting research point due to its broad applications in science and engineering. FC is now greatly evolved and embraces a wide scope of interesting findings. To obtain detailed information on applications and recent results about this topic, we refer to [1,2,3,4,5] and the references therein.

    Some researchers in the field of FC have realized that innovation for new FDs with many non-singular or singular kernels is very necessary to address the need for more realistic modeling problems in different fields of engineering and science. For instance, we refer to works of Caputo and Fabrizio [6], Losada and Nieto [7] and Atangana-Baleanu [8]. The class of FDs and fractional integrals (FIs) concerning functions is a considerable branch of FC. This class of operators with analytic kernels is a new evolution proposed in [1,9,10]. Every one of these operators is appropriate broader to cover various kinds of FC and catch diversified behaviors in fractional models. Joining the previous ideas yields another, significantly wide, which is a class of function-dependent-kernel fractional derivatives. This covers both of the two preceding aforesaid classes see [11,12].

    In another context, the Langevin equations (LEs) were formulated by Paul Langevin in 1908 to describe the development of physical phenomena in fluctuating environments [13]. After that, diverse generalizations of the Langevin equation have been deliberated by many scholars we mention here some works [14,15,16]. Recently, many researchers have investigated sufficient conditions of the qualitative properties of solutions for the nonlinear fractional LEs involving various types of fractional derivatives (FDs) and by using different types of methods such as standard fixed point theorems (FPTs), Leray-Schauder theory, variational methods, etc., e.g. [17,18,19,20,21,22,23,24]. Some recent results on the qualitative properties of solutions for fractional LEs with the generalized Caputo FDs can be found in [25,26,27,28,29,30], e.g., Ahmad et al. [25] established the existence results for a nonlinear LE involving a generalized Liouville-Caputo-type

    {ρcDα1a+(ρcDα2a++λ)z(ς)=F(ς,z(ς)),ς[a,T], λR,z(a)=0,z(η)=0, z(T)=μ ρIδa+z(ξ), a<η<ξ<T. (1.1)

    Seemab et al. [26] investigated the existence and UHR stability results for a nonlinear implicit LE involving a ϑ -Caputo FD

    {cDα1,ϑa+(cDα2,ϑa++λ)z(ς)=F(ς,z(ς),cDα1,ϑa+z(ς)),ς(a,T), λ>0,z(a)=0,z(η)=0, z(T)=μ Iδ;ϑa+z(ξ), 0a<η<ξ<T<. (1.2)

    The Hyers-Ulam (U-H) stability and existence for various types of generalized FDEs are established in the papers [31,32,33,34,35,36,37,38,39,40,41,42,43].

    Motivated by the above works and inspired by novel developments in ϑ -FC, in the reported research, we investigate the existence, uniqueness, and U-H-type stability of the solutions for the nonlinear fractional Langevin differential equation (for short FLDE) described by

    {Dα2;ϑa+(Dα1;ϑa++λ)z(ς)=F(ς,z(ς)),ςJ=[a,b],z(a)=0,z(a)=0,z(a)=0,Dα1;ϑa+z(a)=Iδ;ϑa+z(ξ),Dα1;ϑa+z(b)+κz(b)=0, (1.3)

    where Dε;ϑa+ denote the ϑ-Caputo FD of order ε{α1,α2} such that α1(2,3], α2(1,2], ξ(a,b), δ>0, Iα1;ϑa+ is the ϑ-fractional integral of the Riemann-Liouville (RL) type, F:J×RR is a continuous function, and λ,κ R, ξ(a,b).

    The considered problem in this work is more general, in other words, when we take certain values of function ϑ, the problem (1.3) is reduced to many problems in the frame of classical fractional operators. Also, the gained results here are novel contributes and an extension of the evolution of FDEs that involving a generalized Caputo operator, especially, the study of stability analysis of Ulam-Hyers type of fractional Langevin equations is a qualitative addition to this work. Besides, analysis of the results was restricted to a minimum of assumptions.

    Here is a brief outline of the paper. Section 2 provides the definitions and preliminary results required to prove our main findings. In Section 3, we establish the existence, uniqueness, and stability in the sense of Ulam for the system (1.3). In Section 5, we give some related examples to light the gained results.

    We start this part by giving some basic definitions and results required for fractional analysis.

    Consider the space of real and continuous functions U=C(J,R) space with the norm

    z=sup{|z(ς)|:ςJ}.

    Let ϑC1=C1(J,R) be an increasing differentiable function such that ϑ(ς)0, for all ςJ.

    Now, we start by defining ϑ-fractionals operators as follows:

    Definition 2.1. [1] The ϑ-RL fractional integral of order α1>0 for an integrable function ω:JR is given by

    Iα1;ϑa+ω(ς)=1Γ(α1)ςaϑ(s)(ϑ(ς)ϑ(s))α11ω(s)ds. (2.1)

    Definition 2.2. [1] Let α1(n1,n), nN, ω:JR is an integrable function, and ϑCn(J,R), the ϑ-RL FD of a function ω of order α1 is given by

    Dα1;ϑa+ω(ς)=(Dςϑ(ς))n Inα1;ϑa+ω(ς),

    where n=[α1]+1 and Dς=ddt.

    Definition 2.3. [9] For α1(n1,n), and ω,ϑCn(J,R), the ϑ-Caputo FD of a function ω of order α1 is given by

     cDα1;ϑa+ω(ς)= Inα1;ϑa+ω[n]ϑ(ς),

    where n=[α1]+1 for α1N, n=α1 for α1N, and ω[n]ϑ(ς)=(Dςϑ(ς))nω(ς).

    From the above definition, we can express ϑ-Caputo FD by formula

     cDα1;ϑa+ω(ς)={ςaϑ(s)(ϑ(ς)ϑ(s))nα11Γ(nα1)ω[n]ϑ(s)ds,ifα1N,ω[n]ϑ(ς),ifα1N. (2.2)

    Also, the ϑ-Caputo FD of order α1 of ω is defined as

    cDα1;ϑa+ω(ς)=Dα1;ϑa+[ω(ς)n1k=0ω[k]ϑ(a)k!(ϑ(ς)ϑ(a))k].

    For more details see [9,Theorem 3].

    Lemma 2.4. [1] For α1,α2>0, and ωC(J,R), we have

    Iα1;ϑa+Iα2;ϑa+ω(ς)=Iα1+α2;ϑa+ω(ς),a.e.ςJ.

    Lemma 2.5. [44] Let α1>0.

    If ωC(J,R), then

    cDα1;ϑa+Iα1;ϑa+ω(ς)=ω(ς),ςJ,

    and if ωCn1(J,R), then

    Iα1;ϑa+cDα1;ϑa+ω(ς)=ω(ς)n1k=0ω[k]ϑ(a)k![ϑ(ς)ϑ(a)]k,ςJ.

    for all ςJ. Moreover, if mN be an integer and ωCn+m(J,R) a function. Then, the following holds:

    (1ϑ(ς)ddt)mDα1;ϕa+ω(ς)= cDa+m;ϕa+ω(ς)+m1k=0(ϑ(ς)ϑ(a))k+n^α1mΓ(k+nα1m+1)ω[k+n]ϑ(a) (2.3)

    Observe that from Eq (2.3), if ω[k]ϑ(a)=0, for all k=n,n+1,,n+m1 we can get the following relation

    z[m]ϑDa,ϑa+z(ς)= cDα1+m;ϑa+z(ς),ςJ

    Lemma 2.6. [1,9] For ς>a,α10, α2>0, we have

    Iα1;ϑa+(ϑ(ς)ϑ(a))α21=Γ(α2)Γ(α2+α1)(ϑ(ς)ϑ(a))α2+α11,

    cDα1;ϑa+(ϑ(ς)ϑ(a))α21=Γ(α2)Γ(α2α1)(ϑ(ς)ϑ(a))α2α11,

    cDα1;ϑa+(ϑ(ς)ϑ(a))k=0,k{0,,n1},nN.

    Theorem 2.7. (Banach's FPT [45]). Let (R,d) be a nonempty complete metric space with a contraction mapping G:RR i.e., d(Gz,Gϰ)Ld(z,ϰ) for all z,ϰR, where L(0,1) is a constant. Then G possesses a unique fixed point.

    Theorem 2.8. (Kransnoselskii's FPT [46]). Let E be a Banach space. Let S is a nonempty convex, closed and bounded subset of E and let A1,A2 be mapping from S to E such that:

    (i) A1z+A2ϰS whenever z,ϰS

    (ii) A1 is continuous and compact;

    (iii) A2 is a contraction.

    Then there exists zS such that z=A1z+A2z.

    This portion interests in the existence, uniqueness, and Ulam stability of solutions to the suggested problem (1.3).

    The next auxiliary lemma, which attentions the linear term of a problem (1.3), plays a central role in the afterward findings.

    Lemma 3.1. Let α1(2,3], α2(1,2]. Then the linear BVP

    {Dα2;ϑa+(Dα1;ϑ+λ)z(ς)=σ(ς),ςJ=[a,b],z(a)=0,z(a)=0,z(a)=0,Dα1;ϑa+z(a)=Iδ;ϑa+z(γ),Dα1;ϑa+z(b)+κz(b)=0, (3.1)

    has a unique solution defined by

    z(ς)=Iα1+α2;ϑa+σ(ς)λIα1;ϑa+z(ς)+μ(ς)Iδ;ϑa+σ(ξ)+ν(ς){λ(κλ)Iα1;ϑa+z(b)(κλ)Iα1+α2;ϑa+σ(b)Iα2;ϑa+σ(b)ϖIδ;ϑa+z(ξ)}, (3.2)

    where

    μ(ς)=(ϑ(ς)ϑ(a))α1Γ(α1+1), (3.3)

    and

    ν(ς)=(ϑ(ς)ϑ(a))α1+1(ϑ(b)ϑ(a))Γ(α1+2)+(κλ), (3.4)

    with

    ϖ=(1+(κλ)Γ(α1+1)), (3.5)

    Proof. Applying the RL operator Iα2;ϑa+ to (3.1) it follows from Lemma 2.5 that

    (Dα1a++λ)z(ς)=c0+c1(ϑ(ς)ϑ(a))+Iα2;ϑa+σ(ς),ς(a,b]. (3.6)

    Again, we apply the RL operator Iα1;ϑa+ and use the results of Lemma 2.5 to get

    z(ς)=Iα1+α2;ϑa+σ(ς)λIα1a+z(ς)+c0(ϑ(ς)ϑ(a))α1+1Γ(α1+2)+c1(ϑ(ς)ϑ(a))α1Γ(α1+1)+c2(ϑ(ς)ϑ(a))2+c3(ϑ(ς)ϑ(a))+c4, (3.7)

    where c0,c1,c2,c3,c4R. By utilizing the boundary conditions in (3.1) and (3.7), we obtain c2=0,c3=0,c4=0.

    Hence,

    z(ς)=Iα1+α2;ϑa+σ(ς)λIα1a+z(ς)+c0(ϑ(ς)ϑ(a))α1+1Γ(α1+2)+c1(ϑ(ς)ϑ(a))α1Γ(α1+1), (3.8)

    Now, by using the conditions Dα1;ϑa+z(a)=Iδ;ϑa+z(γ) and Dα1;ϑa+z(b)+κz(b)=0, we get

    c1=Iδ;ϑa+z(ξ), (3.9)
    c0=((ϑ(ς)ϑ(a))α1+1(ϑ(b)ϑ(a))Γ(α1+2)+(κλ))×{λ(κλ)Iα1;ϑa+z(b)(κλ)Iα1+α2;ϑa+σ(b)Iα2;ϑa+σ(b)(1+(κλ)Γ(α1+1))Iδ;ϑa+z(ξ)}. (3.10)

    Substituting c0 and c1 in (3.8), we finish with (3.2).

    The reverse direction can be shown easily with the help of results in Lemmas 2.5 and 2.6, i.e. Eq (3.2) solves problem (3.1). This ends the proof.

    Now, we shall need to the following lemma:

    Lemma 3.2. The functions μ and ν are continuous functions on J and satisfy the following properties:

    (1) μ=max0ςb|μ(ς)|,

    (2) ν=max0<ς<b|ν(ς)|,

    where μ and ν are defined by Lemma 3.1.

    Here, we give the following hypotheses:

    (H1) The function F:J×RR is continuous.

    (H2) There exists a constant L>0 such that

    |F(ς,z)F(ς,ϰ)|L|zϰ|,ςJ,z,ϰR.

    (H3) There exist positive functions h(ς)C(J,R+) with bounds h such that

    |F(ς,z(ς))|h(ς), for all (ς,z)J×R.

    For simplicity, we denote

    M:=supς[a,b]|F(ς,0)|.
    Δ:={(L(ϑ(b)ϑ(a))α1+α2Γ(α1+α2+1)(1+ν|κλ|)+|λ|(1+ν|κλ|)(ϑ(b)ϑ(a))α1Γ(α1+1))+(Lν(ϑ(b)ϑ(a))α2Γ(α2+1)+(μ+ν|ϖ|)(ϑ(ξ)ϑ(a))δΓ(δ+1))}, (3.11)
    Gχϑ(ς,s)=ϑ(s)(ϑ(ς)ϑ(s))χ1Γ(χ),χ>0. (3.12)

    As a result of Lemma 3.1, we have the subsequent lemma:

    Lemma 3.3. Suppose that F:J×RR is continuous. A function z(ς) solves (1.3) if and only if it is a fixed-point of the operator G:UU defined by

    Gz(ς)=ςaGα1+α2ϑ(ς,s)F(s,z(s))ds+λςaGα1ϑ(ς,s)z(s)ds+μ(ς)ξaGδϑ(ξ,s)F(s,z(s))ds+ν(ς){λ(κλ)baGα1ϑ(b,s)z(s)ds(κλ)baGα1+α2ϑ(b,s)F(s,z(s))dsbaGα2ϑ(b,s)F(s,z(s))dsϖξaGδϑ(ξ,s)z(s)ds}. (3.13)

    Now, we are willing to give our first result which based on Theorem 2.7.

    Theorem 3.4. Suppose that (H1) and (H2) hold. If Δ<1, where Δ is given by (3.11), then there exists a unique solution for (1.3) on the interval J.

    Proof. Thanks to Lemma 3.1, we consider the operator G:UU defined by (3.13). Thus, G is well defined as F is a continuous. Then the fixed point of G coincides with the solution of FLDE (1.3). Next, the Theorem 2.7 will be used to prove that G has a fixed point. For this end, we show that G is a contraction.

    Let BR={zU:zR}, where R>MΛ11LΛ1Λ2. Since

    |F(s,z(s)|=|F(s,z(s))F(s,0)+F(s,0)||F(s,z(s))F(s,0)|+|F(s,0)|(L|z(s)|+|F(s,0)|)LR+M

    we obtain

    |Gz(ς)|=ςaGα1+α2ϑ(ς,s)|F(s,z(s))|ds+|λ|ςaGα1ϑ(ς,s)|z(s)|ds+μξaGδϑ(ξ,s)|z(s)|ds+ν(ς){|λ(κλ)|baGα1ϑ(b,s)|z(s)|ds+(κλ)baGα1+α2ϑ(b,s)|F(s,z(s))|ds+baGα2ϑ(b,s)|F(s,z(s))|ds+ϖξaGδϑ(ξ,s)|z(s)|ds}LR+M{ςaGα1+α2ϑ(ς,s)|F(s,z(s))|ds+ν(ς){|κλ|baGα1+α2ϑ(b,s)|F(s,z(s))|ds+νbaGα2ϑ(b,s)|F(s,z(s))|ds}+R{|λ|ςaGα1ϑ(ς,s)|z(s)|ds+μξaGδϑ(ξ,s)|z(s)|ds+ν(ς){|λ(κλ)|baGα1ϑ(b,s)|z(s)|ds+ϖξaGδϑ(ξ,s)|z(s)|ds}}LR+M{(ϑ(b)ϑ(a))α1+α2Γ(α1+α2+1)(1+ν|κλ|)+ν(ϑ(b)ϑ(a))α2Γ(α2+1)}+R{|λ|(1+ν|κλ|)(ϑ(b)ϑ(a))α1Γ(α1+1)+(μ+ν|ϖ|)(ϑ(ξ)ϑ(a))δΓ(δ+1)}(LR+M)Λ1+Λ2RR. (3.14)

    which implies that GzR, i.e.,

    GBRBR.

    Now, let z,ϰU. Then, for every ςJ, using (H2), we can get

    |Gϰ(ς)Gz(ς)|ςaGα1+α2ϑ(ς,s)|F(s,ϰ(s))F(s,z(s))|ds+|λ|ςaGα1ϑ(ς,s)|ϰ(s)z(s)|ds+μξaGδϑ(ξ,s)|ϰ(s)z(s)|ds+ν(ς){|λ(κλ)|baGα1ϑ(b,s)|ϰ(s)z(s)|ds+|κλ|baGα1+α2ϑ(b,s)|F(s,ϰ(s))F(s,z(s))|ds+baGα2ϑ(b,s)|F(s,ϰ(s))F(s,z(s))|ds+ϖξaGδϑ(ξ,s)|ϰ(s)z(s)|ds}ςaLGa+α2ϑ(ς,s)|ϰ(s)z(s)|ds+|λ|ςaGα1ϑ(ς,s)|ϰ(s)z(s)|ds+μξaGδϑ(ξ,s)|ϰ(s)z(s)|ds+ν(ς){|λ(κλ)|baGα1ϑ(b,s)|ϰ(s)z(s)|ds+(κλ)baGα1+α2ϑ(b,s)L|ϰ(s)z(s)|ds+baGα2ϑ(b,s)L|ϰ(s)z(s)|ds+ϖξaGδϑ(ξ,s)|ϰ(s)z(s)|ds}=ςa(LGα1+α2ϑ(ς,s)+|λ|Gα1ϑ(ς,s))|ϰ(s)z(s)|ds+(μ+ν|ϖ|)ξaGδϑ(ξ,s)|ϰ(s)z(s)|ds+νba(|κλ|(λGα1ϑ(b,s)+LGα1+α2ϑ(ς,s))+LGα2ϑ(b,s))|ϰ(s)z(s)|dsϰz{ςa(LGα1+α2ϑ(ς,s)+|λ|Gα1ϑ(ς,s))ds+(μ+ν|ϖ|)ξaGδϑ(ξ,s)ds+νba(|κλ|(λGα1ϑ(b,s)+LGα1+α2ϑ(ς,s))+LGα2ϑ(b,s))ds} (3.15)

    Also note that

    ςaGχϑ(ς,s)ds(ϑ(b)ϑ(a))χΓ(χ+1),χ>0.

    Using the above arguments, we get

    GϰGz{(L(ϑ(b)ϑ(a))α1+α2Γ(α1+α2+1)(1+ν|κλ|)+|λ|(1+ν|κλ|)(ϑ(b)ϑ(a))α1Γ(α1+1))+(Lν(ϑ(b)ϑ(a))α2Γ(α2+1)+(μ+ν|ϖ|)(ϑ(ξ)ϑ(a))δΓ(δ+1))}ϰz=Δϰz.

    As Δ<1, we derive that G is a contraction. Hence, by Theorem 2.7, G has a unique fixed point which is a unique solution of FLDE (1.3). This ends the proof.

    Now, we apply the Theorem 2.8 to obtain the existence result.

    Theorem 3.5. Let us assume (H1)–(H3) hold. Then FLDE (1.3) has at least one solution on J if Λ3<1, where it is supposed that

    Λ3:={(L(ϑ(b)ϑ(a))α1+α2Γ(α1+α2+1)(ν|κλ|)+|λ|(ν|κλ|)(ϑ(b)ϑ(a))α1Γ(α1+1))+(Lν(ϑ(b)ϑ(a))α2Γ(α2+1)+(μ+ν|ϖ|)(ϑ(ξ)ϑ(a))δΓ(δ+1))}.

    Proof. By the assumption (H3), we can fix

    ρλ1h(1λ2),

    where Bρ={zU:zρ}. Let us split the operator G:UU defined by (3.13) as G=G1+G2, where G1 and G2 are given by

    G1z(ς)=ςaGα1+α2ϑ(ς,s)F(s,z(s))ds+λςaGα1ϑ(ς,s)z(s)ds, (3.16)

    and

    G2z(ς)=μ(ς)ξaGδϑ(ξ,s)F(s,z(s))ds+ν(ς){λ(κλ)baGα1ϑ(b,s)z(s)ds(κλ)baGα1+α2ϑ(b,s)F(s,z(s))dsbaGα2ϑ(b,s)F(s,z(s))dsϖξaGδϑ(ξ,s)z(s)ds}. (3.17)

    The proof will be split into numerous steps:

    Step 1: G1(z)+G2(z)Bρ.

    G1z+G2z1=supςJ|G1z(ς)+G2z1(ς)|ςaGα1+α2ϑ(ς,s)|F(s,z(s))|ds+|λ|ςaGα1ϑ(ς,s)|z(s)|ds+μξaGδϑ(ξ,s)|z(s)|ds+ν(ς){|λ(κλ)|baGα1ϑ(b,s)|z(s)|ds+|κλ|baGα1+α2ϑ(b,s)|F(s,z(s))|ds+baGα2ϑ(b,s)|F(s,z(s))|ds+ϖξaGδϑ(ξ,s)|z(s)|ds} (3.18)
    h{ςaGα1+α2ϑ(ς,s)|F(s,z(s))|ds+ν(ς){|κλ|baGα1+α2ϑ(b,s)|F(s,z(s))|ds+νbaGα2ϑ(b,s)|F(s,z(s))|ds}+ρ{|λ|ςaGα1ϑ(ς,s)|z(s)|ds+μξaGδϑ(ξ,s)|z(s)|ds+ν(ς){|λ(κλ)|baGα1ϑ(b,s)|z(s)|ds+ϖξaGδϑ(ξ,s)|z(s)|ds}}h{(ϑ(b)ϑ(a))α1+α2Γ(α1+α2+1)(1+ν|κλ|)+ν(ϑ(b)ϑ(a))α2Γ(α2+1)}+ρ{|λ|(1+ν|κλ|)(ϑ(b)ϑ(a))α1Γ(α1+1)+(μ+ν|ϖ|)(ϑ(ξ)ϑ(a))δΓ(δ+1)}hΛ1+Λ2ρρ. (3.19)

    Hence

    G1(z)+G2(z1)ρ,

    which shows that G1z+G2z1Bρ.

    Step 2: G2 is a contraction map on Bρ.

    Due to the contractility of G as in Theorem 3.4, then G2 is a contraction map too.

    Step 3: G1 is completely continuous on Bρ.

    From the continuity of F(,z()), it follows that G1 is continuous.

    Since

    G1z=supςJ|G1z(ς)|ςaGα1+α2ϑ(ς,s)|F(s,z(s))|ds+|λ|ςaGα1ϑ(ς,s)|z(s)|dsh(ϑ(b)ϑ(a))α1+α2Γ(α1+α2+1)+|λ|(ϑ(b)ϑ(a))α1Γ(α1+1)ρ:=N, zBρ,

    we get G1zN which emphasize that G1 uniformly bounded on Bρ.

    Finally, we prove the compactness of G1.

    For zBρ and ςJ, we can estimate the operator derivative as follows:

    |(G1z)(1)ϑ(ς)|ςaGα1+α21ϑ(ς,s)|F(s,z(s))|ds+|λ|ςaGα11ϑ(ς,s)|z(s)|dsh(ϑ(b)ϑ(a))α1+α2Γ(α1+α2+1)+|λ|(ϑ(b)ϑ(a))α1Γ(α1+1)ρ:=,

    where we used the fact

    Dkϑ Iα1,ϑa+=Iα1k,ϑa+,  ω(k)ϑ(ς)=(1ϑ(ς)ddς)kω(ς) for k=0,1,...,n1.

    Hence, for each ς1,ς2J with a<ς1<ς2<b and for zBρ, we get

    |(G1z)(ς2)(G1z)(ς1)|=ς2ς1|(G1z)(s)|ds(ς2ς1),

    which as (\varsigma _{2}-\varsigma _{1}) tends to zero independent of z . So, \mathcal{G}_{1} is equicontinuous. In light of the foregoing arguments along with Arzela–Ascoli theorem, we derive that \mathcal{G}_{1} is compact on B_{\rho } . Thus, the hypotheses of Theorem 2.8 holds, so there exists at least one solution of (1.3) on \mathrm{J} .

    In the current section, we are interested in studying Ulam-Hyers (U-H) and the generalized Ulam-Hyers stability types of the problem (1.3).

    Let \varepsilon > 0 . We consider the next inequality:

    \begin{equation} \left|\mathcal{D}_{a^{+}}^{\alpha_{2} ; \vartheta}\left(\mathcal{D}_{a^{+}}^{a ; \vartheta}-\lambda\right) \tilde{z}(\varsigma)-\mathcal{F}(\varsigma, \tilde{z} (\varsigma))\right| \leq \varepsilon, \quad \varsigma \in\mathrm{J}. \end{equation} (4.1)

    Definition 4.1. FLDE (1.3) is stable in the frame of U-H type if there exists c_{\mathcal{F}}\in \mathbb{R}^{+} such that for every \varepsilon > 0 and for each solution \tilde{z} \in \mathcal{U} of the inequality (4.1) there exists a solution z \in \mathcal{U} of (1.3) with

    \begin{equation*} |\tilde{z}(\varsigma)-z(\varsigma)| \leq \varepsilon c_{\mathcal{F}}, \quad \varsigma \in\mathrm{J}. \end{equation*}

    Definition 4.2. FLDE (1.3) has the generalized U-H stability if there exists C_{\mathcal{F}}: \mathrm{C}\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right) along with C_{\mathcal{F}}(0) = 0 such that for every \varepsilon > 0 and for each solution \tilde{z} \in \mathcal{U} of the inequality (4.1), a solution z \in C(\mathrm{J}, \mathbb{R}) of (1.3) exists uniquely for which

    \begin{equation*} |\tilde{z}(\varsigma)-z(\varsigma)| \leq C_{\mathcal{F}}(\varepsilon), \quad \varsigma \in\mathrm{J}. \end{equation*}

    Remark 4.3. A function \tilde{z} \in \mathcal{U} is a solution of the inequality (4.1) if and only if there exists a function \varrho \in \mathcal{U} (which depends on solution \tilde{z} ) such that

    1. |\varrho(\varsigma)| \leq \varepsilon, \varsigma \in\mathrm{J} .

    2. \mathcal{D}_{a^{+}}^{\alpha_{2}; \vartheta}\left(\mathcal{D}_{a^{+}}^{a, \vartheta}-\lambda\right) \tilde{z}(\varsigma) = \mathcal{F}(\varsigma, \tilde{z} (\varsigma))+\varrho(\varsigma), \quad \varsigma \in\mathrm{J}.

    Theorem 4.4. Let \Delta < 1 , (H1) and (H2) hold. Then the FLDE (1.3) is U-H stable on \mathrm{J} and consequently generalized U-H stable.

    Proof. For \varepsilon > 0 and \tilde{z} \in C(\mathrm{J}, \mathbb{R}) be a function which fulfills the inequality (4.1). Let z \in \mathcal{U} the unique solution of

    \begin{equation} \left\{ \begin{array}{l} \mathcal{D}_{a^{+}}^{\alpha_{2}; \vartheta}\left(\mathcal{D}^{\alpha_{1}; \vartheta}+\lambda\right) z(\varsigma) = \mathcal{F}(\varsigma, z(\varsigma)), \quad \varsigma \in \mathrm{J} = [a, b], \\ z(a) = 0, z^{\prime }(a) = 0, z^{\prime \prime }(a) = 0, \\ \mathcal{D}_{a^{+}}^{\alpha_{1}; \vartheta}z(a) = \mathcal{I}_{a^{+}}^{\delta; \vartheta} z(\gamma), \\ \mathcal{D}_{a^{+}}^{\alpha_{1}; \vartheta} z(b)+\kappa z(b) = 0. \end{array} \right. \end{equation} (4.2)

    By Lemma 3.1, we have

    \begin{equation} \begin{aligned} z(\varsigma) = &\int_{a}^{\varsigma} \mathcal{G}_{\vartheta}^{\alpha_{1}+\alpha_{2}}(\varsigma, s)\mathcal{F}\left(s, z(s)\right)\mathrm{d} \mathrm{s}+\lambda \int_{a}^{\varsigma} \mathcal{G}_{\vartheta}^{\alpha_{1}}(\varsigma, s)z(s)\mathrm{d} \mathrm{s}\\ &+\mu(\varsigma) \int_{a}^{\xi} \mathcal{G}_{\vartheta}^{\delta}(\xi, s) \mathcal{F}\left(s, z(s)\right)\mathrm{d} \mathrm{s}\\ &+\nu(\varsigma)\left\{ \lambda(\kappa-\lambda)\int_{a}^{b} \mathcal{G}_{\vartheta}^{\alpha_{1}}(b, s) z(s)\mathrm{d} \mathrm{s} -(\kappa-\lambda)\int_{a}^{b} \mathcal{G}_{\vartheta}^{\alpha_{1}+\alpha_{2}}(b, s)\mathcal{F}\left(s, z(s)\right)\mathrm{d} \mathrm{s}\right.\\ &\left.-\int_{a}^{b} \mathcal{G}_{\vartheta}^{\alpha_{2}}(b, s)\mathcal{F}\left(s, z(s)\right)\mathrm{d} \mathrm{s} -\varpi\int_{a}^{\xi} \mathcal{G}_{\vartheta}^{\delta}(\xi, s)z(s)\mathrm{d} \mathrm{s} \right\}. \end{aligned} \end{equation} (4.3)

    Since we have assumed that \widetilde{z} is a solution of (4.1), hence by Remark 4.3

    \begin{equation} \left\{ \begin{array}{l} \mathcal{D}_{a^{+}}^{\alpha_{2}; \vartheta}(\mathcal{D}_{a^{+}}^{\alpha_{1}; \vartheta}+\lambda) \widetilde{z}(\varsigma) = \mathcal{F}(\varsigma, \widetilde{z} (\varsigma))+\varrho(\varsigma), \quad \varsigma \in \mathrm{J} = [0, b], \\ z(a) = 0, z^{\prime }(a) = 0, z^{\prime \prime }(a) = 0, \\ \mathcal{D}_{a^{+}}^{\alpha_{1}; \vartheta}z(a) = \mathcal{I}_{a^{+}}^{\delta; \vartheta} z(\gamma), \\ \mathcal{D}_{a^{+}}^{\alpha_{1}; \vartheta} z(b)+\kappa z(b) = 0. \end{array} \right. \end{equation} (4.4)

    Again by Lemma 3.1, we have

    \begin{equation} \begin{aligned} \widetilde{z}(\varsigma) = &\int_{a}^{\varsigma} \mathcal{G}_{\vartheta}^{\alpha_{1}+\alpha_{2}}(\varsigma, s)\mathcal{F}\left(s, \widetilde{z}(s)\right)\mathrm{d} \mathrm{s}+\lambda \int_{a}^{\varsigma} \mathcal{G}_{\vartheta}^{\alpha_{1}}(\varsigma, s)\widetilde{z}(s)\mathrm{d} \mathrm{s}\\ &+\mu(\varsigma) \int_{a}^{\xi} \mathcal{G}_{\vartheta}^{\delta}(\xi, s) \mathcal{F}\left(s, \widetilde{z}(s)\right)\mathrm{d} \mathrm{s}\\ &+\nu(\varsigma)\left\{ \lambda(\kappa-\lambda)\int_{a}^{b} \mathcal{G}_{\vartheta}^{\alpha_{1}}(b, s) \widetilde{z}(s)\mathrm{d} \mathrm{s} -(\kappa-\lambda)\int_{a}^{b} \mathcal{G}_{\vartheta}^{\alpha_{1}+\alpha_{2}}(b, s)\mathcal{F}\left(s, \widetilde{z}(s)\right)\mathrm{d} \mathrm{s}\right.\\ &\left.-\int_{a}^{b} \mathcal{G}_{\vartheta}^{\alpha_{2}}(b, s)\mathcal{F}\left(s, \widetilde{z}(s)\right)\mathrm{d} \mathrm{s} -\varpi\int_{a}^{\xi} \mathcal{G}_{\vartheta}^{\delta}(\xi, s)\widetilde{z}(s)\mathrm{d} \mathrm{s} \right\} \\ &+\int_{a}^{\varsigma} \mathcal{G}_{\vartheta}^{\alpha_{1}+\alpha_{2}}(\varsigma, s)\varrho\left(s\right)\mathrm{d} \mathrm{s}+\mu(\varsigma) \int_{a}^{\xi} \mathcal{G}_{\vartheta}^{\delta}(\xi, s) \varrho\left(s\right)\mathrm{d} \mathrm{s}\\ &+\nu(\varsigma)\left\{ (\lambda-\kappa)\int_{a}^{b} \mathcal{G}_{\vartheta}^{\alpha_{1}+\alpha_{2}}(b, s)\varrho\left(s\right)\mathrm{d} \mathrm{s} -\int_{a}^{b} \mathcal{G}_{\vartheta}^{\alpha_{2}}(b, s)\varrho\left(s\right)\mathrm{d} \mathrm{s} \right\}. \end{aligned} \end{equation} (4.5)

    On the other hand, for any \varsigma\in\mathrm{J}

    \begin{equation*} \begin{aligned} |\tilde{z}(\varsigma)-z(\varsigma)| & \leq \int_{a}^{\varsigma} \mathcal{G}_{\vartheta}^{\alpha_{1}+\alpha_{2}}(\varsigma, s)|\varrho(s)| \mathrm{d} s+\nu^{\ast}|\kappa-\lambda|\int_{a}^{b} \mathcal{G}_{\vartheta}^{\alpha_{1}+\alpha_{2}}(b, s)|\varrho(s)| \mathrm{d} s+\nu^{\ast}\int_{a}^{b} \mathcal{G}_{\vartheta}^{\alpha_{2}}(b, s)|\varrho(s)| \mathrm{d} s\\ &+\int_{a}^{\varsigma} \mathcal{G}_{\vartheta}^{\alpha_{1}+\alpha_{2}}(\varsigma, s)|\mathcal{F}(s, \varkappa(s))-\mathcal{F}(s, z(s))| \mathrm{d} \mathbf{s}+|\lambda| \int_{a}^{\varsigma} \mathcal{G}_{\vartheta}^{\alpha_{1}}(\varsigma, s)|\varkappa(s)-z(s)| \mathrm{d} \mathbf{s} \\ &+\mu^{\ast}\int_{a}^{\xi} \mathcal{G}_{\vartheta}^{\delta}(\xi, s)|\varkappa(s)-z(s)| \mathrm{d} \mathbf{s} +\nu(\varsigma)\left\{ |\lambda(\kappa-\lambda)|\int_{a}^{b} \mathcal{G}_{\vartheta}^{\alpha_{1}}(b, s)|\varkappa(s)-z(s)|\mathrm{d} \mathrm{s}\right.\\ &+(\kappa-\lambda)\int_{a}^{b} \mathcal{G}_{\vartheta}^{\alpha_{1}+\alpha_{2}}(b, s)|\mathcal{F}(s, \varkappa(s))-\mathcal{F}(s, z(s))|\mathrm{d} \mathrm{s}\\ &\left.+\int_{a}^{b} \mathcal{G}_{\vartheta}^{\alpha_{2}}(b, s)|\mathcal{F}(s, \varkappa(s))-\mathcal{F}(s, z(s))|\mathrm{d} \mathrm{s} +\varpi\int_{a}^{\xi} \mathcal{G}_{\vartheta}^{\delta}(\xi, s)|\varkappa(s)-z(s)|\mathrm{d} \mathrm{s} \right\}.\\ \end{aligned} \end{equation*}

    Using part (i) of Remark 4.3 and (H2), we get

    \begin{equation*} |\tilde{z}(\varsigma)-z(\varsigma)| \leq \left(\frac{(\vartheta(b)-\vartheta(a))^{ \alpha_{1}+\alpha_{2}}}{\Gamma(\alpha_{1}+\alpha_{2}+1)}\left[\nu^{\ast}|\kappa-\lambda|+1 \right]+\nu^{\ast}\frac{(\vartheta(b)-\vartheta(a))^{\alpha_{2}}}{\Gamma(\alpha_{2}+1)} \right) \varepsilon+\Delta\|\tilde{z}-z\|, \end{equation*}

    where \Delta is defined by (3.11). In consequence, it follows that

    \begin{equation*} \|\tilde{z}-z\|_{\infty} \leq \left(\frac{(\vartheta(b)-\vartheta(a))^{\alpha_{1}+\alpha_{2}}}{ \Gamma(\alpha_{1}+\alpha_{2}+1)}\frac{\left[\nu^{\ast}|\kappa-\lambda|+1\right]}{ (1-\Delta)}+\frac{\nu^{\ast}}{(1-\Delta)}\frac{(\vartheta(b)-\vartheta(a))^{ \alpha_{2}}}{\Gamma(\alpha_{2}+1)}\right) \varepsilon. \end{equation*}

    If we let c_{\mathcal{F}} = \left(\frac{(\vartheta(b)-\vartheta(a))^{\alpha_{1}+\alpha_{2}}}{ \Gamma(\alpha_{1}+\alpha_{2}+1)}\frac{\left[\nu^{\ast}(\kappa-\lambda)+1\right]}{ (1-\Delta)}+\frac{\nu^{\ast}}{(1-\Delta)}\frac{(\vartheta(b)-\vartheta(a))^{ \alpha_{2}}}{\Gamma(\alpha_{2}+1)}\right), then, the U-H stability condition is satisfied. More generally, for C_{\mathcal{F}}(\varepsilon) = \left(\frac{ (\vartheta(b)-\vartheta(a))^{\alpha_{1}+\alpha_{2}}}{\Gamma(\alpha_{1}+\alpha_{2}+1)}\frac{\left[ \nu^{\ast}|\kappa-\lambda|+1\right]}{(1-\Delta)}+\frac{\nu^{\ast}}{ (1-\Delta)}\frac{(\vartheta(b)-\vartheta(a))^{\alpha_{2}}}{\Gamma(\alpha_{2}+1)}\right) \varepsilon ; C_{\mathcal{F}}(0) = 0 the generalized U-H stability condition is also fulfilled.

    This section is intended to illustrate the reported results with relevant examples.

    Example 5.1. We formulate the system of FLDE in the frame of Caputo type:

    \begin{equation} \left\{ \begin{array}{l} {\ }^{c} \mathcal{D}_{0^{+}}^{1.2}\left({\ }^{c} \mathcal{D} _{0^{+}}^{2.5}+0.4\right) z(\varsigma) = \frac{1}{e^{\varsigma}+9}\left(1+\frac{|z(\varsigma)|}{1+|z(\varsigma)|} \right), \varsigma \in[0, 1], \\ z(0) = 0, z^{\prime }(0) = 0, z^{\prime \prime }(0) = 0, \\ \mathcal{D}_{0^{+}}^{1.2; \varsigma}z(0) = \mathcal{I}_{0^{+}}^{0.5; \vartheta} z(0.1) , \\ \mathcal{D}_{0^{+}}^{1.2; \varsigma} z(1)+0.5 z(1) = 0. \end{array} \right. \end{equation} (5.1)

    In this case we take

    \begin{equation*} \begin{aligned} \alpha_{1} & = 2.5, \alpha_{2} = 1.2, \lambda = 0.4, \kappa = 0.5, \delta = 0.5, \xi = 0.1, a = 0, b = 1, \vartheta(\varsigma) = \varsigma \\ \text{and}\quad \mathcal{F}(\varsigma, z) & = \frac{1}{e^{\varsigma}+9}\left(1+\frac{|z(\varsigma)|}{1+|z(\varsigma)|} \right). \end{aligned} \end{equation*}

    Obviously, the hypothesis (H1) of the Theorem 3.4 is fulfilled. On the opposite hand, for each \varsigma \in[0, 1], z, \varkappa \in \mathbb{R} we have

    \begin{equation*} |\mathcal{F}(\varsigma, z)-\mathcal{F}(\varsigma, \varkappa)| \leq \frac{1}{10}|z-\varkappa|. \end{equation*}

    Hence, \left(H_{2}\right) holds with \mathcal{L} = 0.1. Thus, we find that \Delta = 0.7635 < 1. Since all the assumptions in Theorem 3.4 hold, the FLDE (5.1) has a unique solution on [0, 1]. Moreover, Theorem 4.4 ensures that the FLDE (1.3) is U-H stable and generalized U-H stable.

    Example 5.2. We formulate the system of FLDE in the frame of Hadamard type:

    \begin{equation} \left\{ \begin{array}{l} {\ }^{H} \mathcal{D}_{1^{+}}^{1.5; \ln \varsigma}\left({\ }^{H} \mathcal{D} _{1^{+}}^{2.7; \ln \varsigma}+0.18\right) z(\varsigma) = \frac{1}{(\varsigma+1)^{2}} (1+\sin z(\varsigma)), \varsigma \in[1, e], \\ z(1) = 0, z^{\prime }(1) = 0, z^{\prime \prime }(1) = 0, \\ {\ }^{H} \mathcal{D}_{1^{+}}^{1.5; \ln \varsigma}z(1) = {\ }^{H} \mathcal{I}_{1^{+}}^{0.9; \ln \varsigma} z(2), \\ {\ }^{H} \mathcal{D}_{1^{+}}^{1.5; \ln \varsigma} z(e)+0.2 z(e) = 0. \end{array} \right. \end{equation} (5.2)

    Here

    \begin{equation} \mathcal{F}(\varsigma, z(\varsigma)) = \frac{1}{5(\varsigma+1)^{2}} (1+\sin z(\varsigma)). \end{equation} (5.3)

    Obviously, the assumption (H1) of the Theorem 3.4 holds. On the other hand, for any \varsigma \in[1, e], z, \varkappa \in \mathbb{R} we get

    \begin{equation*} |\mathcal{F}(\varsigma, z)-\mathcal{F}(\varsigma, \varkappa)| \leq \frac{1}{10}|z-\varkappa|. \end{equation*}

    Consequently, \left(H_{2}\right) holds with \mathcal{L} = 0.1. Besides, by computation directly we find that \Delta = 0.8731 < 1 .

    To illustrate Theorem 3.5, it is clear that the function f satisfies (H1) and (H3) with \Vert h\Vert = 0.1 . In addition, \Lambda_3 \approx 0.7823 < 1 . It follows from theorem 3.5 that the FLDE (5.2) has a unique solution on [1, e] .

    Example 5.3. We formulate the system of FLDE in the frame of \vartheta -Caputo type:

    \begin{equation} \left\{ \begin{array}{l} {\ }^{c} \mathcal{D}_{0^{+}}^{1.9;\vartheta}\left({\ }^{c} \mathcal{D} _{0^{+}}^{2.9;\vartheta}+0.25\right) z(\varsigma) = \frac{e^{\varsigma}}{4(e^{\varsigma}+1)} (1+\arctan z(\varsigma)), \varsigma \in[0, 1], \\ z(0) = 0, z^{\prime }(0) = 0, z^{\prime \prime }(0) = 0, \\ \mathcal{D}_{0^{+}}^{\alpha_{1}; \vartheta}z(0) = \mathcal{I}_{a^{+}}^{5.4; \vartheta} z(0.3), \\ \mathcal{D}_{0^{+}}^{\alpha_{1}; \vartheta} z(1)+0.1 z(1) = 0. \end{array} \right. \end{equation} (5.4)

    Take

    \begin{equation*} \begin{aligned} \alpha_{1} & = 1.9, \alpha_{2} = 2.5, \lambda = 0.25, \delta = 5.4, \kappa = 0.1, \xi = 0.3, a_{0} = 0, b_{0} = 1, \vartheta(\varsigma) = e^{\varsigma} \\ \end{aligned} \end{equation*}
    \begin{equation} \mathcal{F}(\varsigma, z) = \frac{e^{\varsigma}}{4(e^{\varsigma}+1)} (1+\arctan z(\varsigma)). \end{equation} (5.5)

    For any \varsigma \in[0, 1], z, \varkappa \in \mathbb{R} we obtain

    \begin{equation*} |\mathcal{F}(\varsigma, z)-\mathcal{F}(\varsigma, \varkappa)| \leq \frac{1}{8}|z-\varkappa|. \end{equation*}

    Hence, (H2) holds with \mathcal{L} = 0.125. Moreover, by computation directly we find that \Delta = 0.7133 < 1 . It follows from Theorem 3.4 that FLDE (5.4) has a unique solution on [0, 1].

    To illustrate Theorem 3.5, it is clear that the function \mathcal{F}(\varsigma, z) given by (5.5) satisfies the hypotheses (H1)–(H3) with \Vert h\Vert = 0.125 . and \Lambda_3 \approx 0.3247 < 1 . It follows from Theorem 3.5 that the FLDE (5.2) has a unique solution on [0, 1] .

    In this reported article, we have considered a class of nonlinear Langevin equations involving two different fractional orders in the frame of Caputo function-dependent-kernel fractional derivatives with antiperiodic boundary conditions. The existence and uniqueness results are established for the suggested problem. Our perspective is based on properties of \vartheta -Caputo's derivatives and applying of Krasnoselskii's and Banach's fixed point theorems. Moreover, we discuss the Ulam-Hyers stability criteria for the at-hand problem. Some related examples illustrating the effectiveness of the theoretical results are presented. The results obtained are recent and provide extensions to some known results in the literature. Furthermore, they cover many fractional Langevin equations that contain classical fractional operators.

    This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University, Saudi Arabia through the Fast-track Research Funding Program.

    The authors declare that there is no conflict of interests regarding the publication of this paper.



    [1] J. Baldonedo, J. R. Fernández, A. Magaña, R. Quintanilla, Decay for strain gradient porous elastic waves, Z. Angew. Math. Phys., 74 (2023), 35. https://doi.org/10.1007/s00033-022-01930-6 doi: 10.1007/s00033-022-01930-6
    [2] P. G. Ciarlet, Basic error estimates for elliptic problems, In: Handbook of numerical analysis, Amsterdam: North-Holland, 2 (1991), 17–351. https://doi.org/10.1016/S1570-8659(05)80039-0
    [3] P. Clement, Approximation by finite element functions using local regularization, R.A.I.R.O. Anal. Numer., 9 (1975), 77–84. https://doi.org/10.1051/m2an/197509R200771 doi: 10.1051/m2an/197509R200771
    [4] M. Campo, J. R. Fernández, K. L. Kuttler, M. Shillor, J. M. Viaño, Numerical analysis and simulations of a dynamic frictionless contact problem with damage, Comput. Methods Appl. Mech. Eng., 196 (2006), 476–488. https://doi.org/10.1016/j.cma.2006.05.006 doi: 10.1016/j.cma.2006.05.006
    [5] K. J. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, New York: Springer, 2000. https://doi.org/10.1007/b97696
    [6] A. E. Green, P. M. Naghdi, A re-examination of the basic postulates of themomechanics, Proc. R. Soc. Lond. A, 432 (1991), 171–194. https://doi.org/10.1098/rspa.1991.0012 doi: 10.1098/rspa.1991.0012
    [7] A. E. Green, P. M. Naghdi, On undamped heat waves in an elastic solid, J. Thermal Stresses, 15 (1992), 253–264. https://doi.org/10.1080/01495739208946136 doi: 10.1080/01495739208946136
    [8] A. E. Green, P. M. Naghdi, Thermoelasticity without energy dissipation, J. Elasticity, 31 (1993), 189–208. https://doi.org/10.1007/BF00044969 doi: 10.1007/BF00044969
    [9] A. E. Green, P. M. Naghdi, A unified procedure for construction of theories of deformable media: Ⅰ. Classical continuum physics, Proc. Roy. Soc. London A, 448 (1995), 335–356. https://doi.org/10.1098/rspa.1995.0020 doi: 10.1098/rspa.1995.0020
    [10] A. E. Green, P. M. Naghdi, A unified procedure for construction of theories of deformable media: Ⅱ. Generalized continua, Proc. Roy. Soc. London A, 448 (1995), 357–377. https://doi.org/10.1098/rspa.1995.0021 doi: 10.1098/rspa.1995.0021
    [11] A. E. Green, P. M. Naghdi, A unified procedure for construction of theories of deformable media: Ⅲ. Mixtures of interacting continua, Proc. Roy. Soc. London A, 448 (1995), 379–388. https://doi.org/10.1098/rspa.1995.0022 doi: 10.1098/rspa.1995.0022
    [12] D. Ieşan, R. Quintanilla, Strain gradient theory of chiral Cosserat thermoelasticity without energy dissipation, J. Math. Anal. Appl., 437 (2016), 1219–1235. https://doi.org/10.1016/j.jmaa.2016.01.058 doi: 10.1016/j.jmaa.2016.01.058
    [13] S. Jiang, R. Racke, Evolution equations in thermoelasticity, Chapman & Hall/CRC, 2000. https://doi.org/10.1201/9781482285789
    [14] M. C. Leseduarte, A. Magaña, R. Quintanilla, On the time decay of solutions in porous-thermo-elasticity of type Ⅱ, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 375–391.
    [15] Z. Y. Liu, S. M. Zheng, Semigroups associated with dissipative systems, Chapman & Hall/CRC, 1999.
    [16] A. Magaña, R. Quintanilla, Decay of quasi-static porous-thermo-elastic waves, Z. Angew. Math. Phys., 72 (2021), 125. https://doi.org/10.1007/s00033-021-01557-z doi: 10.1007/s00033-021-01557-z
    [17] A. Miranville, R. Quintanilla, Exponential decay in one-dimensional type Ⅱ thermoviscoelasticity with voids, J. Comput. Appl. Math., 368 (2020), 112573. https://doi.org/10.1016/j.cam.2019.112573 doi: 10.1016/j.cam.2019.112573
    [18] A. Pazy, Semigroup of linear operators and applications to partial diferential equations, New York: Springer, 1983. https://doi.org/10.1007/978-1-4612-5561-1
    [19] J. Prüss, On the spectrum of C_{0}-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847–857.
    [20] R. Quintanilla, Thermoelasticity without energy dissipation of nonsimple materials, Z. Angew. Math. Mech., 83 (2003), 172–180. https://doi.org/10.1002/zamm.200310017 doi: 10.1002/zamm.200310017
    [21] J. M. Rivera, E. O. Ochoa, R. Quintanilla, Time decay of viscoelastic plates with type Ⅱ heat conduction, J. Math. Anal. Appl., 528 (2023), 127592. https://doi.org/10.1016/j.jmaa.2023.127592 doi: 10.1016/j.jmaa.2023.127592
  • This article has been cited by:

    1. Hashem Althagafi, Ahmed Ghezal, Solving a system of nonlinear difference equations with bilinear dynamics, 2024, 9, 2473-6988, 34067, 10.3934/math.20241624
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1209) PDF downloads(61) Cited by(0)

Figures and Tables

Figures(3)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog