This paper introduced an efficient method to obtain the solution of linear and nonlinear weakly singular kernel fractional integro-differential equations (WSKFIDEs). It used Riemann-Liouville fractional integration (R-LFI) to remove singularities and approximated the regularized problem with a combined approach using the generalized fractional step-Mittag-Leffler function (GFSMLF) and operational integral fractional Mittag matrix (OIFMM) method. The resulting algebraic equations were turned into an optimization problem. We also proved the method's accuracy in approximating any function, as well as its fractional differentiation and integration within WSKFIDEs. The proposed method was performed on some attractive examples in order to show how their solutions behave at various values of the fractional order ϝ. The paper provided a valuable contribution to the field of fractional calculus (FC) by presenting a novel method for solving WSKFIDEs. Additionally, the accuracy of this method was verified by comparing its results with those obtained using other methods.
Citation: Ismail Gad Ameen, Dumitru Baleanu, Hussien Shafei Hussien. Efficient method for solving nonlinear weakly singular kernel fractional integro-differential equations[J]. AIMS Mathematics, 2024, 9(6): 15819-15836. doi: 10.3934/math.2024764
[1] | Tyson Loudon, Stephen Pankavich . Mathematical analysis and dynamic active subspaces for a long term model of HIV. Mathematical Biosciences and Engineering, 2017, 14(3): 709-733. doi: 10.3934/mbe.2017040 |
[2] | A. M. Elaiw, N. H. AlShamrani . Stability of HTLV/HIV dual infection model with mitosis and latency. Mathematical Biosciences and Engineering, 2021, 18(2): 1077-1120. doi: 10.3934/mbe.2021059 |
[3] | Ting Guo, Zhipeng Qiu . The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission. Mathematical Biosciences and Engineering, 2019, 16(6): 6822-6841. doi: 10.3934/mbe.2019341 |
[4] | Yicang Zhou, Yiming Shao, Yuhua Ruan, Jianqing Xu, Zhien Ma, Changlin Mei, Jianhong Wu . Modeling and prediction of HIV in China: transmission rates structured by infection ages. Mathematical Biosciences and Engineering, 2008, 5(2): 403-418. doi: 10.3934/mbe.2008.5.403 |
[5] | Cameron Browne . Immune response in virus model structured by cell infection-age. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022 |
[6] | Nara Bobko, Jorge P. Zubelli . A singularly perturbed HIV model with treatment and antigenic variation. Mathematical Biosciences and Engineering, 2015, 12(1): 1-21. doi: 10.3934/mbe.2015.12.1 |
[7] | A. M. Elaiw, N. H. AlShamrani . Analysis of an HTLV/HIV dual infection model with diffusion. Mathematical Biosciences and Engineering, 2021, 18(6): 9430-9473. doi: 10.3934/mbe.2021464 |
[8] | B. M. Adams, H. T. Banks, Hee-Dae Kwon, Hien T. Tran . Dynamic Multidrug Therapies for HIV: Optimal and STI Control Approaches. Mathematical Biosciences and Engineering, 2004, 1(2): 223-241. doi: 10.3934/mbe.2004.1.223 |
[9] | Sophia Y. Rong, Ting Guo, J. Tyler Smith, Xia Wang . The role of cell-to-cell transmission in HIV infection: insights from a mathematical modeling approach. Mathematical Biosciences and Engineering, 2023, 20(7): 12093-12117. doi: 10.3934/mbe.2023538 |
[10] | Tinevimbo Shiri, Winston Garira, Senelani D. Musekwa . A two-strain HIV-1 mathematical model to assess the effects of chemotherapy on disease parameters. Mathematical Biosciences and Engineering, 2005, 2(4): 811-832. doi: 10.3934/mbe.2005.2.811 |
This paper introduced an efficient method to obtain the solution of linear and nonlinear weakly singular kernel fractional integro-differential equations (WSKFIDEs). It used Riemann-Liouville fractional integration (R-LFI) to remove singularities and approximated the regularized problem with a combined approach using the generalized fractional step-Mittag-Leffler function (GFSMLF) and operational integral fractional Mittag matrix (OIFMM) method. The resulting algebraic equations were turned into an optimization problem. We also proved the method's accuracy in approximating any function, as well as its fractional differentiation and integration within WSKFIDEs. The proposed method was performed on some attractive examples in order to show how their solutions behave at various values of the fractional order ϝ. The paper provided a valuable contribution to the field of fractional calculus (FC) by presenting a novel method for solving WSKFIDEs. Additionally, the accuracy of this method was verified by comparing its results with those obtained using other methods.
[1] |
G. S. Teodoro, J. A. T. Machado, E. C. de Oliveira, A review of definitions of fractional derivatives and other operators, J. Comput. Phys., 388 (2019), 195–208. https://doi.org/10.1016/j.jcp.2019.03.008 doi: 10.1016/j.jcp.2019.03.008
![]() |
[2] |
H. G. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Q. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 213–231. https://doi.org/10.1016/j.cnsns.2018.04.019 doi: 10.1016/j.cnsns.2018.04.019
![]() |
[3] | J. F. Gómez-Aguilar, A. Atangana, Applications of fractional calculus to modeling in dynamics and chaos, Boca Raton: Chapman & Hall/CRC Press, 2022. https://doi.org/10.1201/9781003006244 |
[4] | J. A. T. Machado, Fractional calculus: fundamentals and applications, In: Acoustics and vibration of mechanical structures—AVMS-2017: Proceedings of the 14th AVMS Conference, 2018, 3–11. https://doi.org/10.1007/978-3-319-69823-6_1 |
[5] | S. Chakraverty, R. M. Jena, S. K. Jena, Computational fractional dynamical systems: fractional differential equations and applications, John Wiley & Sons, 2023. |
[6] |
C. Ionescu, A. Lopes, D. Copot, J. A. T. Machado, J. H. T. Bates, The role of fractional calculus in modeling biological phenomena: a review, Commun. Nonlinear Sci. Numer. Simul., 51 (2017), 141–159. https://doi.org/10.1016/j.cnsns.2017.04.001 doi: 10.1016/j.cnsns.2017.04.001
![]() |
[7] |
J. A. T. Machado, M. F. Silva, R. S. Barbosa, I. S. Jesus, C. M. Reis, M. G. Marcos, et al., Some applications of fractional calculus in engineering, Math. Probl. Eng., 2010 (2010), 1–34. https://doi.org/10.1155/2010/639801 doi: 10.1155/2010/639801
![]() |
[8] | S. Das, Observation of fractional calculus in physical system description, In: Functional fractional calculus, Berlin, Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-642-20545-3_3 |
[9] | R. Hilfer, Applications of fractional calculus in physics, World Scientific, 2000. |
[10] | H. Jafari, B. Mehdinejadiani, D. Baleanu, Fractional calculus for modeling unconfined groundwater, Berlin, Boston: De Gruyter, 2019. https://doi.org/10.1515/9783110571905-007 |
[11] | N. Su, Fractional calculus for hydrology, soil science and geomechanics, Boca Raton: CRC Press, 2020. https://doi.org/10.1201/9781351032421 |
[12] |
C. P. Li, Y. Q. Chen, J. Kurths, Fractional calculus and its applications, Phil. Trans. R. Soc. A, 371 (2013), 20130037. http://dx.doi.org/10.1098/rsta.2013.0037 doi: 10.1098/rsta.2013.0037
![]() |
[13] |
Z. J. Meng, L. F. Wang, H. Li, W. Zhang, Legendre wavelets method for solving fractional integro-differential equations, Int. J. Comput. Math., 92 (2015), 1275–1291. https://doi.org/10.1080/00207160.2014.932909 doi: 10.1080/00207160.2014.932909
![]() |
[14] |
K. Kumar, R. K. Pandey, S. Sharma, Comparative study of three numerical schemes for fractional integro-differential equations, J. Comput. Appl. Math., 315 (2017), 287–302. https://doi.org/10.1016/j.cam.2016.11.013 doi: 10.1016/j.cam.2016.11.013
![]() |
[15] |
M. B. Almatrafi, A. R. Alharbi, A. R. Seadawy, Structure of analytical and numerical wave solutions for the Ito integro-differential equation arising in shallow water waves, J. King Saud Univ. Sci., 33 (2021), 101375. https://doi.org/10.1016/j.jksus.2021.101375 doi: 10.1016/j.jksus.2021.101375
![]() |
[16] |
K. Agilan, V. Parthiban, Initial and boundary value problem of fuzzy fractional-order nonlinear Volterra integro-differential equations, J. Appl. Math. Comput., 69 (2023), 1765–1793. https://doi.org/10.1007/s12190-022-01810-2 doi: 10.1007/s12190-022-01810-2
![]() |
[17] |
M. Derakhshan, M. Jahanshahi, H. K. demneh, Investigation the boundary and initial value problems including fractional integro-differential equations with singular kernels, J. Adv. Math. Model., 11 (2021), 97–108. https://doi.org/10.22055/JAMM.2021.34670.1848 doi: 10.22055/JAMM.2021.34670.1848
![]() |
[18] |
X. H. Yang, Z. M. Zhang, On conservative, positivity preserving, nonlinear FV scheme on distorted meshes for the multi-term nonlocal Nagumo-type equations, Appl. Math. Lett., 150 (2024), 108972. https://doi.org/10.1016/j.aml.2023.108972 doi: 10.1016/j.aml.2023.108972
![]() |
[19] |
J. W. Wang, X. X. Jiang, X. H. Yang, H. X. Zhang, A nonlinear compact method based on double reduction order scheme for the nonlocal fourth-order PDEs with Burgers' type nonlinearity, J. Appl. Math. Comput., 70 (2024), 489–511. https://doi.org/10.1007/s12190-023-01975-4 doi: 10.1007/s12190-023-01975-4
![]() |
[20] |
J. W. Wang, X. X. Jiang, H. X. Zhang, A BDF3 and new nonlinear fourth-order difference scheme for the generalized viscous Burgers' equation, Appl. Math. Lett., 151 (2024), 109002. https://doi.org/10.1016/j.aml.2024.109002 doi: 10.1016/j.aml.2024.109002
![]() |
[21] |
L. J. Wu, H. X. Zhang, X. H. Yang, F. R. Wang, A second-order finite difference method for the multi-term fourth-order integral-differential equations on graded meshes, Comput. Appl. Math., 41 (2022), 313. https://doi.org/10.1007/s40314-022-02026-7 doi: 10.1007/s40314-022-02026-7
![]() |
[22] |
X. H. Yang, W. L. Qiu, H. F. Chen, H. X. Zhang, Second-order BDF ADI Galerkin finite element method for the evolutionary equation with a nonlocal term in three-dimensional space, Appl. Numer. Math., 172 (2022), 497–513. https://doi.org/10.1016/j.apnum.2021.11.004 doi: 10.1016/j.apnum.2021.11.004
![]() |
[23] |
F. R. Wang, X. H. Yang, H. X. Zhang, L. J. Wu, A time two-grid algorithm for the two dimensional nonlinear fractional PIDE with a weakly singular kernel, Math. Comput. Simul., 199 (2022), 38–59. https://doi.org/10.1016/j.matcom.2022.03.004 doi: 10.1016/j.matcom.2022.03.004
![]() |
[24] | H. X. Zhang, X. X. Jiang, F. R. Wang, X. H. Yang, The time two-grid algorithm combined with difference scheme for 2D nonlocal nonlinear wave equation, J. Appl. Math. Comput., 2024, 1–25. https://doi.org/10.1007/s12190-024-02000-y |
[25] |
F. Safari, An accurate RBF-based meshless technique for the inverse multi-term time-fractional integro-differential equation, Eng. Anal. Bound. Elem., 153 (2023), 116–125. https://doi.org/10.1016/j.enganabound.2023.05.015 doi: 10.1016/j.enganabound.2023.05.015
![]() |
[26] |
S. Z. Rida, H. S. Hussien, Efficient Mittag-Leffler collocation method for solving linear and nonlinear fractional differential equations, Mediterr. J. Math., 15 (2018), 1–15. https://doi.org/10.1007/s00009-018-1174-0 doi: 10.1007/s00009-018-1174-0
![]() |
[27] |
S. Z. Rida, H. S. Hussien, A. H. Noreldeen, M. M. Farag, Effective fractional technical for some fractional initial value problems, Int. J. Appl. Comput. Math., 8 (2022), 149. https://doi.org/10.1007/s40819-022-01346-w doi: 10.1007/s40819-022-01346-w
![]() |
[28] |
M. S. Akel, H. S. Hussein, Numerical treatment of solving singular integral equations by using Sinc approximations, Appl. Math. Comput., 218 (2011), 3565–3573. https://doi.org/10.1016/j.amc.2011.08.102 doi: 10.1016/j.amc.2011.08.102
![]() |
[29] |
S. Behera, S. S. Ray, On a wavelet-based numerical method for linear and nonlinear fractional Volterra integro-differential equations with weakly singular kernels, Comput. Appl. Math., 41 (2022), 211. https://doi.org/10.1007/s40314-022-01897-0 doi: 10.1007/s40314-022-01897-0
![]() |
[30] |
G. D. Shi, Y. L. Gong, M. X. Yi, Alternative Legendre polynomials method for nonlinear fractional integro-differential equations with weakly singular kernel, J. Math., 2021 (2021), 1–13. https://doi.org/10.1155/2021/9968237 doi: 10.1155/2021/9968237
![]() |
[31] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[32] | D. Baleanu, Z. B. Guvenc, J. A. T. Machado, New trends in nanotechnology and fractional calculus applications, Dordrecht: Springer, 2010. https://doi.org/10.1007/978-90-481-3293-5 |
[33] |
M. Bahmanpour, M. T. Kajani, M. Maleki, Solving Fredholm integral equations of the first kind using Muntz wavelets, Appl. Numer. Math., 143 (2019), 159–171. https://doi.org/10.1016/j.apnum.2019.04.007 doi: 10.1016/j.apnum.2019.04.007
![]() |
[34] |
S. C. Shiralashetti, S. Kumbinarasaiah, Laguerre wavelets exact Parseval frame-based numerical method for the solution of system of differential equations, Int. J. Comput. Math., 6 (2020), 101. https://doi.org/10.1007/s40819-020-00848-9 doi: 10.1007/s40819-020-00848-9
![]() |
[35] |
B. B. Tavasani, A. H. R. Sheikhani, H. Aminikhah, Numerical scheme to solve a class of variable-order Hilfer-Prabhakar fractional differential equations with Jacobi wavelets polynomials, Appl. Math. J. Chinese Univ., 37 (2022), 35–51. https://doi.org/10.1007/s11766-022-4241-z doi: 10.1007/s11766-022-4241-z
![]() |
[36] | D. Hong, J. Z. Wang, R. Gardner, Real analysis with an introduction to wavelets and applications, Elsevier, 2005. |
[37] | A. M. Mathai, H. J. Haubold, Special functions for applied scientists, New York: Springer, 2008. https://doi.org/10.1007/978-0-387-75894-7 |
[38] |
J. Shahni, R. Singh, Laguerre wavelet method for solving Thomas-Fermi type equations, Eng. Comput., 38 (2022), 2925–2935. https://doi.org/10.1007/s00366-021-01309-7 doi: 10.1007/s00366-021-01309-7
![]() |
[39] |
B. Q. Tang, X. F. Li, Solution of a class of Volterra integral equations with singular and weakly singular kernels, Appl. Math. Comput., 199 (2008), 406–413. https://doi.org/10.1016/j.amc.2007.09.058 doi: 10.1016/j.amc.2007.09.058
![]() |
[40] | P. K. Kythe, P. Puri, Computational methods for linear integral equations, Boston: Birkhauser, 2002. |
[41] |
M. X. Yi, J. Huang, CAS wavelet method for solving the fractional integro-differential equation with a weakly singular kernel, Int. J. Comput. Math., 92 (2015), 1715–1728. https://doi.org/10.1080/00207160.2014.964692 doi: 10.1080/00207160.2014.964692
![]() |
[42] |
V. V. Zozulya, P. I. Gonzalez-Chi, Weakly singular, singular and hypersingular integrals in 3-D elasticity and fracture mechanics, J. Chin. Inst. Eng., 22 (1999), 763–775. https://doi.org/10.1080/02533839.1999.9670512 doi: 10.1080/02533839.1999.9670512
![]() |
[43] |
S. Nemati, S. Sedaghat, I. Mohammadi, A fast numerical algorithm based on the second kind Chebyshev polynomials for fractional integro-differential equations with weakly singular kernels, J. Comput. Appl. Math., 308 (2016), 231–242. https://doi.org/10.1016/j.cam.2016.06.012 doi: 10.1016/j.cam.2016.06.012
![]() |
[44] |
Y. X. Wang, L. Zhu, Z. Wang, Fractional-order Euler functions for solving fractional integro-differential equations with weakly singular kernel, Adv. Differ. Equ., 2018 (2018), 1–13. https://doi.org/10.1186/s13662-018-1699-3 doi: 10.1186/s13662-018-1699-3
![]() |
[45] |
S. Nemati, P. M. Lima, Numerical solution of nonlinear fractional integro-differential equations with weakly singular kernels via a modification of hat functions, Appl. Math. Comput., 327 (2018), 79–92. https://doi.org/10.1016/j.amc.2018.01.030 doi: 10.1016/j.amc.2018.01.030
![]() |
1. | Marios M. Hadjiandreou, Raúl Conejeros, D. Ian Wilson, Planning of patient-specific drug-specific optimal HIV treatment strategies, 2009, 64, 00092509, 4024, 10.1016/j.ces.2009.06.009 | |
2. | Hassan Zarei, Ali Vahidian Kamyad, Sohrab Effati, Maximizing of Asymptomatic Stage of Fast Progressive HIV Infected Patient Using Embedding Method, 2010, 01, 2153-0653, 48, 10.4236/ica.2010.11006 | |
3. | Xinqi Xie, Junling Ma, P. van den Driessche, Backward bifurcation in within-host HIV models, 2021, 00255564, 108569, 10.1016/j.mbs.2021.108569 | |
4. | Esteban A. Hernandez-Vargas, Dhagash Mehta, Richard H. Middleton, Towards Modeling HIV Long Term Behavior, 2011, 44, 14746670, 581, 10.3182/20110828-6-IT-1002.00685 | |
5. | I Hosseini, F Mac Gabhann, Mechanistic Models Predict Efficacy of CCR5‐Deficient Stem Cell Transplants in HIV Patient Populations, 2016, 5, 2163-8306, 82, 10.1002/psp4.12059 | |
6. | Esteban A. Hernandez-Vargas, Richard H. Middleton, Modeling the three stages in HIV infection, 2013, 320, 00225193, 33, 10.1016/j.jtbi.2012.11.028 | |
7. | M. M. Hadjiandreou, R. Conejeros, D. Ian Wilson, 2012, Controlling AIDS progression in patients with rapid HIV dynamics, 978-1-4577-1096-4, 4078, 10.1109/ACC.2012.6314737 | |
8. | Esteban A. Hernandez-Vargas, Richard H. Middleton, Patrizio Colaneri, Franco Blanchini, 2010, Dynamic optimization algorithms to mitigate HIV escape, 978-1-4244-7745-6, 827, 10.1109/CDC.2010.5717251 | |
9. | Robert J. Smith, B. D. Aggarwala, Can the viral reservoir of latently infected CD4+ T cells be eradicated with antiretroviral HIV drugs?, 2009, 59, 0303-6812, 697, 10.1007/s00285-008-0245-4 | |
10. | YUEPING DONG, WANBIAO MA, GLOBAL PROPERTIES FOR A CLASS OF LATENT HIV INFECTION DYNAMICS MODEL WITH CTL IMMUNE RESPONSE, 2012, 10, 0219-6913, 1250045, 10.1142/S0219691312500452 | |
11. | Hassan Zarei, Ali Vahidian Kamyad, Sohrab Effati, Multiobjective Optimal Control of HIV Dynamics, 2010, 2010, 1024-123X, 1, 10.1155/2010/568315 | |
12. | M. Arantxa Colchero, Yanink N. Caro-Vega, Gilberto Sánchez-González, Sergio Bautista-Arredondo, A literature review of reporting standards of HIV progression models, 2012, 26, 0269-9370, 1335, 10.1097/QAD.0b013e3283533ae2 | |
13. | G. Bocharov, V. Chereshnev, I. Gainova, S. Bazhan, B. Bachmetyev, J. Argilaguet, J. Martinez, A. Meyerhans, Human Immunodeficiency Virus Infection : from Biological Observations to Mechanistic Mathematical Modelling, 2012, 7, 0973-5348, 78, 10.1051/mmnp/20127507 | |
14. | Elizabeth Gross, Brent Davis, Kenneth L. Ho, Daniel J. Bates, Heather A. Harrington, Numerical algebraic geometry for model selection and its application to the life sciences, 2016, 13, 1742-5689, 20160256, 10.1098/rsif.2016.0256 | |
15. | 2019, 9780128130520, 221, 10.1016/B978-0-12-813052-0.00023-3 | |
16. | Tyson Loudon, Stephen Pankavich, Mathematical analysis and dynamic active subspaces for a long term model of HIV, 2017, 14, 1551-0018, 709, 10.3934/mbe.2017040 | |
17. | Marcos A. Capistrán, A study of latency, reactivation and apoptosis throughout HIV pathogenesis, 2010, 52, 08957177, 1011, 10.1016/j.mcm.2010.03.022 | |
18. | Marios M. Hadjiandreou, Raul Conejeros, D. Ian Wilson, Long-term HIV dynamics subject to continuous therapy and structured treatment interruptions, 2009, 64, 00092509, 1600, 10.1016/j.ces.2008.12.010 | |
19. | 2019, 9780128130520, 105, 10.1016/B978-0-12-813052-0.00017-8 | |
20. | Ali Heydari, S.N. Balakrishnan, Optimal multi-therapeutic HIV treatment using a global optimal switching scheme, 2013, 219, 00963003, 7872, 10.1016/j.amc.2013.01.070 | |
21. | Esteban A. Hernandez-Vargas, Modeling Kick-Kill Strategies toward HIV Cure, 2017, 8, 1664-3224, 10.3389/fimmu.2017.00995 | |
22. | Emiliano Mancini, Rick Quax, Andrea De Luca, Sarah Fidler, Wolfgang Stohr, Peter M. A. Sloot, Siddappa N. Byrareddy, A study on the dynamics of temporary HIV treatment to assess the controversial outcomes of clinical trials: An in-silico approach, 2018, 13, 1932-6203, e0200892, 10.1371/journal.pone.0200892 | |
23. | 2019, 9780128130520, 129, 10.1016/B978-0-12-813052-0.00018-X | |
24. | Esteban Hernandez-Vargas, Patrizio Colaneri, Richard Middleton, Franco Blanchini, Discrete-time control for switched positive systems with application to mitigating viral escape, 2011, 21, 10498923, 1093, 10.1002/rnc.1628 | |
25. | H. Zarei, A. V. Kamyad, M. H. Farahi, Optimal Control of HIV Dynamic Using Embedding Method, 2011, 2011, 1748-670X, 1, 10.1155/2011/674318 | |
26. | Matthias Haering, Andreas Hördt, Michael Meyer-Hermann, Esteban A. Hernandez-Vargas, Computational Study to Determine When to Initiate and Alternate Therapy in HIV Infection, 2014, 2014, 2314-6133, 1, 10.1155/2014/472869 | |
27. | Esteban A. Hernandez-Vargas, Richard H. Middleton, Patrizio Colaneri, Optimal and MPC Switching Strategies for Mitigating Viral Mutation and Escape, 2011, 44, 14746670, 14857, 10.3182/20110828-6-IT-1002.01137 | |
28. | Charlotte Lew, 2022, Neural Network Modeling of HIV Acute and Chronic Phases With and Without Antiretroviral Intervention, 978-1-6654-7184-8, 47, 10.1109/TransAI54797.2022.00014 | |
29. | Qiang-hui Xu, Ji-cai Huang, Yue-ping Dong, Yasuhiro Takeuchi, A Delayed HIV Infection Model with the Homeostatic Proliferation of CD4+ T Cells, 2022, 38, 0168-9673, 441, 10.1007/s10255-022-1088-2 | |
30. | Konstantin E. Starkov, Anatoly N. Kanatnikov, Eradication Conditions of Infected Cell Populations in the 7-Order HIV Model with Viral Mutations and Related Results, 2021, 9, 2227-7390, 1862, 10.3390/math9161862 | |
31. | Huseyin Tunc, Murat Sari, Seyfullah Kotil, Machine learning aided multiscale modelling of the HIV-1 infection in the presence of NRTI therapy, 2023, 11, 2167-8359, e15033, 10.7717/peerj.15033 | |
32. | A. N. Kanatnikov, O. S. Tkacheva, Behavior of Trajectories of a Four-Dimensional Model of HIV Infection, 2023, 59, 0012-2661, 1451, 10.1134/S00122661230110022 | |
33. | Cameron Clarke, Stephen Pankavich, Three-stage modeling of HIV infection and implications for antiretroviral therapy, 2024, 88, 0303-6812, 10.1007/s00285-024-02056-1 | |
34. | A. N. Kanatnikov, O. S. Tkacheva, Behavior of Trajectories of a Four-Dimensional Model of HIV Infection, 2023, 59, 0374-0641, 1451, 10.31857/S037406412311002X | |
35. | A. M. Elaiw, E. A. Almohaimeed, A. D. Hobiny, Analysis of HHV-8/HIV-1 co-dynamics model with latency, 2024, 139, 2190-5444, 10.1140/epjp/s13360-024-05202-2 | |
36. | A. M. Elaiw, E. A. Almohaimeed, A. D. Hobiny, Stability of HHV-8 and HIV-1 co-infection model with latent reservoirs and multiple distributed delays, 2024, 9, 2473-6988, 19195, 10.3934/math.2024936 | |
37. | Yueping Dong, Jicai Huang, Yasuhiro Takeuchi, Qianghui Xu, 2024, Chapter 2, 978-981-97-7849-2, 11, 10.1007/978-981-97-7850-8_2 | |
38. | A. M. Elaiw, E. A. Almohaimeed, A. D. Hobiny, Modeling the co-infection of HTLV-2 and HIV-1 in vivo, 2024, 32, 2688-1594, 6032, 10.3934/era.2024280 | |
39. | Xia Wang, Yue Wang, Yueping Dong, Libin Rong, Dynamics of a delayed HIV infection model with cell-to-cell transmission and homeostatic proliferation, 2024, 139, 2190-5444, 10.1140/epjp/s13360-024-05845-1 | |
40. | A.M. Elaiw, E.A. Almohaimeed, A.D. Hobiny, Stability analysis of a diffusive HTLV-2 and HIV-1 co-infection model, 2025, 116, 11100168, 232, 10.1016/j.aej.2024.11.074 | |
41. | Jing Cai, Jun Zhang, Kai Wang, Zhixiang Dai, Zhiliang Hu, Yueping Dong, Zhihang Peng, Evaluating the long-term effects of combination antiretroviral therapy of HIV infection: a modeling study, 2025, 90, 0303-6812, 10.1007/s00285-025-02196-y | |
42. | Jun Zhang, Jing Cai, Yasuhiro Takeuchi, Yueping Dong, Zhihang Peng, Rich dynamics induced by homeostatic proliferation of both CD4+ T cells and macrophages in HIV infection and persistence, 2025, 2025, 2731-4235, 10.1186/s13662-025-03941-9 | |
43. | A. M. Elaiw, E. A. Almohaimeed, Within-host dynamics of HTLV-2 and HIV-1 co-infection with delay, 2025, 19, 1751-3758, 10.1080/17513758.2025.2506536 | |
44. | A. M. Elaiw, E. Dahy, H. Z. Zidan, A. A. Abdellatif, Stability of an HIV-1 abortive infection model with antibody immunity and delayed inflammatory cytokine production, 2025, 140, 2190-5444, 10.1140/epjp/s13360-025-06475-x |