Attention deficit hyperactivity disorder (ADHD) is a common childhood developmental disorder. In recent years, pattern recognition methods have been increasingly applied to neuroimaging studies of ADHD. However, these methods often suffer from limited accuracy and interpretability, impeding their contribution to the identification of ADHD-related biomarkers. To address these limitations, we applied the amplitude of low-frequency fluctuation (ALFF) results for the limbic system and cerebellar network as input data and conducted a binary hypothesis testing framework for ADHD biomarker detection. Our study on the ADHD-200 dataset at multiple sites resulted in an average classification accuracy of 93%, indicating strong discriminative power of the input brain regions between the ADHD and control groups. Moreover, our approach identified critical brain regions, including the thalamus, hippocampal gyrus, and cerebellum Crus 2, as biomarkers. Overall, this investigation uncovered potential ADHD biomarkers in the limbic system and cerebellar network through the use of ALFF realizing highly credible results, which can provide new insights for ADHD diagnosis and treatment.
Citation: Ying Chen, Lele Wang, Zhixin Li, Yibin Tang, Zhan Huan. Unveiling critical ADHD biomarkers in limbic system and cerebellum using a binary hypothesis testing approach[J]. Mathematical Biosciences and Engineering, 2024, 21(4): 5803-5825. doi: 10.3934/mbe.2024256
[1] | Maurizio Verri, Giovanna Guidoboni, Lorena Bociu, Riccardo Sacco . The role of structural viscoelasticity in deformable porous media with incompressible constituents: Applications in biomechanics. Mathematical Biosciences and Engineering, 2018, 15(4): 933-959. doi: 10.3934/mbe.2018042 |
[2] | Ziad Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Muhammad Jawad, Rashid Jan, Kamsing Nonlaopon . Thermal boundary layer analysis of MHD nanofluids across a thin needle using non-linear thermal radiation. Mathematical Biosciences and Engineering, 2022, 19(12): 14116-14141. doi: 10.3934/mbe.2022658 |
[3] | K. Maqbool, S. Shaheen, A. M. Siddiqui . Effect of nano-particles on MHD flow of tangent hyperbolic fluid in a ciliated tube: an application to fallopian tube. Mathematical Biosciences and Engineering, 2019, 16(4): 2927-2941. doi: 10.3934/mbe.2019144 |
[4] | Wei-wei Jiang, Xin-xin Zhong, Guang-quan Zhou, Qiu Guan, Yong-ping Zheng, Sheng-yong Chen . An automatic measurement method of spinal curvature on ultrasound coronal images in adolescent idiopathic scoliosis. Mathematical Biosciences and Engineering, 2020, 17(1): 776-788. doi: 10.3934/mbe.2020040 |
[5] | Bei Liu, Wenbin Tan, Xian Zhang, Ziqi Peng, Jing Cao . Recognition study of denatured biological tissues based on multi-scale rescaled range permutation entropy. Mathematical Biosciences and Engineering, 2022, 19(1): 102-114. doi: 10.3934/mbe.2022005 |
[6] | Wei Lin, Fengshuang Yang . Computational analysis of cutting parameters based on gradient Voronoi model of cancellous bone. Mathematical Biosciences and Engineering, 2022, 19(11): 11657-11674. doi: 10.3934/mbe.2022542 |
[7] | Cornel M. Murea, H. G. E. Hentschel . A finite element method for growth in biological development. Mathematical Biosciences and Engineering, 2007, 4(2): 339-353. doi: 10.3934/mbe.2007.4.339 |
[8] | Jianhua Song, Lei Yuan . Brain tissue segmentation via non-local fuzzy c-means clustering combined with Markov random field. Mathematical Biosciences and Engineering, 2022, 19(2): 1891-1908. doi: 10.3934/mbe.2022089 |
[9] | Ewa Majchrzak, Mikołaj Stryczyński . Dual-phase lag model of heat transfer between blood vessel and biological tissue. Mathematical Biosciences and Engineering, 2021, 18(2): 1573-1589. doi: 10.3934/mbe.2021081 |
[10] | Xu Guo, Yuanming Jing, Haizhou Lou, Qiaonv Lou . Effect and mechanism of long non-coding RNA ZEB2-AS1 in the occurrence and development of colon cancer. Mathematical Biosciences and Engineering, 2019, 16(6): 8109-8120. doi: 10.3934/mbe.2019408 |
Attention deficit hyperactivity disorder (ADHD) is a common childhood developmental disorder. In recent years, pattern recognition methods have been increasingly applied to neuroimaging studies of ADHD. However, these methods often suffer from limited accuracy and interpretability, impeding their contribution to the identification of ADHD-related biomarkers. To address these limitations, we applied the amplitude of low-frequency fluctuation (ALFF) results for the limbic system and cerebellar network as input data and conducted a binary hypothesis testing framework for ADHD biomarker detection. Our study on the ADHD-200 dataset at multiple sites resulted in an average classification accuracy of 93%, indicating strong discriminative power of the input brain regions between the ADHD and control groups. Moreover, our approach identified critical brain regions, including the thalamus, hippocampal gyrus, and cerebellum Crus 2, as biomarkers. Overall, this investigation uncovered potential ADHD biomarkers in the limbic system and cerebellar network through the use of ALFF realizing highly credible results, which can provide new insights for ADHD diagnosis and treatment.
In the last several decades, the kinetic theory of polyatomic gases witnessed extensive interest due to its vigorous relation with a wide range of practical applications including spacecraft flights, hypersonic flights and aerodynamics [1], plasma physics [20], thermal sciences [13,23], combustion processes, and chemical reactors. In the context of polyatomic gases, Borgnakke and Larsen proposed a microscopic model [6]. Later on, an entropic kinetic model consistent with [6] has been derived [8]. This model originates from the Boltzmann equation, which was a breakthrough in the kinetic theory, and offered an accurate description of the gas flow.
However, it is usually expensive and cumbersome to solve the Boltzmann equation directly. As an alternative to the Boltzmann equation, kinetic theory provides macroscopic models for not too large Knudsen numbers. These models are derived as approximations to the Boltzmann equation and offer high computational speed and explicit equations for macroscopic variables, which are helpful for understanding and analyzing the flow behavior. Macroscopic models are classically obtained by Chapman-Enskog method [5] and moments method [22,18]. Using the Chapman-Enskog method, Nagnibeda and Kustova [19] studied the strong vibrational nonequilibrium in diatomic gases and reacting mixture of polyatomic gases, and derived the first-order distribution function and governing equations. Cai and Li [10] extended the NRxx model to polyatomic gases using the ES-BGK model of [2] and [9]. In [24], the existence result of the ES-BGK model was achieved in the case where the solution lies close to equilibrium.
Simplified Boltzmann models for mixtures of polyatomic gases have also been proposed in [3,12]. The authors of [4] developed a generalized macroscopic 14 field theory for the polyatomic gases, based on the methods of extended thermodynamics [18]. In the full non-linear Boltzmann equation, Gamba and Pavić-Čolić [15] established existence and uniqueness theory in the space homogeneous setting.
The relation of the kinetic theory with the spectral theory was initiated by Grad [17], who was behind the history of serious investigation of the spectral properties of the linearized Boltzmann operator for monoatomic gases. With his pioneering work, Grad showed that the linearized collision operator
In fact, diatomic gases gain a solid importance due to the fact that in the upper atmosphere of the earth, the diatomic molecules Oxygen (
The plan of the document is the following: In section 2, we give a brief recall on the collision model [8], which describes the microscopic state diatomic gases. In section 3, we define the linearized operator
For the sake of clarity, we present the model in [8] on which our work is mainly based. We start with physical conservation equations and proceed as follows.
Without loss of generality, we first assume that the particle mass equals unity, and we denote as usual by
v+v∗=v′+v′∗ | (1) |
12v2+12v2∗+I+I∗=12v′2+12v′2∗+I′+I′∗. | (2) |
From the above equations, we can deduce the following equation representing the conservation of total energy in the center of mass reference frame:
14(v−v∗)2+I+I∗=14(v′−v′∗)2+I′+I′∗=E, |
with
14(v′−v′∗)2=REI′+I′∗=(1−R)E, |
and
I′=r(1−R)EI′∗=(1−r)(1−R)E. |
Using the above equations, we can express the post-collisional velocities in terms of the other quantities by the following
v′≡v′(v,v∗,I,I∗,ω,R)=v+v∗2+√RETω[v−v∗|v−v∗|]v′∗≡v′∗(v,v∗,I,I∗,ω,R)=v+v∗2−√RETω[v−v∗|v−v∗|], |
where
14(v−v∗)2=R′EI+I∗=(1−R′)E, |
and
I=r′(1−R′)EI∗=(1−r′)(1−R′)E. |
Finally, the post-collisional energies can be given in terms of the pre-collisional energies by the following relation
I′=r(1−R)r′(1−R′)II′∗=(1−r)(1−R)(1−r′)(1−R′)I∗. |
The Boltzmann equation for an interacting single polyatomic gas reads
∂tf+v.∇xf=Q(f,f), | (3) |
where
Q(f,f)(v,I)=∫R3×R+×S2×(0,1)2(f′f′∗(I′I′∗)α−ff∗(II∗)α)×B×(r(1−r))α(1−R)2α×IαIα∗(1−R)R1/2dRdrdωdI∗dv∗, | (4) |
where we use the standard notations
Q(f,f)(v,I)=∫R3×R+×S2×(0,1)2(f′f′∗−ff∗)×B×(1−R)R1/2dRdrdωdI∗dv∗, | (5) |
The function
B(v,v∗,I,I∗,r,R,ω)=B(v∗,v,I∗,I,1−r,R,−ω),B(v,v∗,I,I∗,r,R,ω)=B(v′,v′∗,I′,I′∗,r′,R′,ω). | (6) |
Main assumptions on
Together with the above assumption (6), we assume the following boundedness assumptions on the collision cross section
C1φ(R)ψ(r)|ω.(v−v∗)|v−v∗||(|v−v∗|γ+Iγ2+Iγ2∗)≤B(v,v∗,I,I∗,r,R,ω), | (7) |
and
B(v,v∗,I,I∗,r,R,ω)≤C2φ˜α(R)ψ˜β(r)(|v−v∗|γ+Iγ2+Iγ2∗), | (8) |
where for any
ψp(r)=(r(1−r))p,and φp(R)=(1−R)p. |
In addition,
φ(R)≤φ˜α(R),and ψ(r)≤ψ˜β(r), | (9) |
and
We remark that the above assumptions (7) and (8) are compatible with Maxwell molecules, hard spheres and hard potentials in the monoatomic case.
We state first the H-theorem for diatomic gases which was initially established for polyatomic gases in [8]. Namely, suppose that the positivity assumption of
D(f)=∫R3∫R+Q(f,f)logfdIdv≤0, |
and the following are equivalent
1. The collision operator
2. The entropy production vanishes, i.e.
3. There exists
f(v,I)=n(2πkT)32kTe−1kT(12(v−u)2+I), | (10) |
where
Mn,u,T(v,I)=n(2πκT)32kTe−1κT(12(v−u)2+I), | (11) |
where
n=∫R3∫R+fdIdv,nu=∫R3∫R+vfdIdv,52nT=∫R3∫R+((v−u)22+I)fdIdv. |
Without loss of generality, we will consider in the sequel a normalized version
M(v,I)=M1,0,1(v,I)=1(2π)32e−12v2−I. |
We look for a solution
f(v,I)=M(v,I)+M12(v,I)g(v,I). | (12) |
The linearization of the Boltzmann operator (5) around
Lg=M−12[Q(M,M12g)+Q(M12g,M)], |
In particular,
Lg=M−12∫Δ[M′M′12∗g′∗−MM12∗g∗+M′12M′∗g′−M12M∗g]B(1−R)R1/2drdRdωdI∗dv∗. | (13) |
Thanks to the conservation of total energy (2) we have
L(g)=−∫ΔBM12M12∗g∗(1−R)R1/2drdRdωdI∗dv∗−∫ΔBM∗g(1−R)R1/2drdRdωdI∗dv∗+∫ΔBM12∗M′12g′∗(1−R)R1/2drdRdωdI∗dv∗+∫ΔBM12∗M′12∗g′(1−R)R1/2drdRdωdI∗dv∗. |
Here,
L=K−νId, |
where
Kg=∫ΔBM12∗M′12g′∗(1−R)R1/2drdRdωdI∗dv∗+∫ΔBM12∗M′12∗g′(1−R)R1/2drdRdωdI∗dv∗−∫ΔBM12M12∗g∗(1−R)R1/2drdRdωdI∗dv∗, | (14) |
and
ν(v,I)=∫ΔBM∗(1−R)R1/2drdRdωdI∗dv∗, | (15) |
which represents the collision frequency. We write also
K1=∫ΔBM12M12∗g∗(1−R)R1/2drdRdωdI∗dv∗, | (16) |
K2=∫ΔBM12∗M′12g′∗(1−R)R1/2drdRdωdI∗dv∗, | (17) |
and
K3=∫ΔBM12∗M′12∗g′(1−R)R1/2drdRdωdI∗dv∗. | (18) |
The linearized operator
kerL=M1/2span {1,vi,12v2+I}i=1,⋯,3. |
Since
Dom(ν Id)={g∈L2(R3×R+):νg∈L2(R3×R+)}, |
then
We give now the main result on the linearized Boltzmann operator based on the assumptions of the collision cross section (8) and (7). In particular, using (7) we prove that the multiplication operator by
We state the following theorem, which is the main result of the paper.
Theorem 4.1. The operator
We carry out the proof of the coercivity of
Proof. Throughout the proof, we prove the compactness of each
Compactness of
k1(v,I,v∗,I∗)=1(2π)32∫S2×(0,1)2Be−14v2∗−14v2−12I∗−12I(1−R)R1/2drdRdω, |
and therefore
K1g(v,I)=∫R3×R+g(v∗,I∗)k1(v,I,v∗,I∗)dI∗dv∗∀(v,I)∈R3×R+. |
If
Lemma 4.2. With the assumption (8) on
Proof. Applying Cauchy-Schwarz we get
||k1||2L2≤c∫R3∫R+∫R3∫R+(Iγ+Iγ∗+|v−v∗|2γ)e−12v2∗−12v2−I∗−IdIdvdI∗dv∗≤c∫R3e−12v2∗[∫|v−v∗|≤1e−12v2dv+∫|v−v∗|≥1|v−v∗|⌈2γ⌉e−12v2dv]dv∗≤c∫R3e−12v2∗[∫|v−v∗|≥1⌈2γ⌉∑k=0|v|k|v∗|⌈2γ⌉−ke−12v2dv]dv∗≤c⌈2γ⌉∑k=0∫R3|v∗|⌈2γ⌉−ke−12v2∗[∫R3|v|ke−12v2dv]dv∗<∞, |
where
This implies that
Compactness of
Lemma 4.3. Let
σ=Tω(v−v∗|v−v∗|)=v−v∗|v−v∗|−2v−v∗|v−v∗|.ωω, | (19) |
then the Jacobian of the
dω=dσ2|σ−v−v∗|v−v∗||. |
Proof. It's enough to assume that
dσω:R3⟼R3→ω⟶→σ=−2⟨v−v∗|v−v∗|,→ω⟩ω−2⟨v−v∗|v−v∗|,ω⟩→ω. | (20) |
Let
Gram=|→σ1|2|→σ2|2−⟨→σ1,→σ2⟩2, |
where
|→σ1|2=4(⟨v−v∗|v−v∗|,→ω1⟩2+⟨v−v∗|v−v∗|,ω⟩2)=4|v−v∗|v−v∗||2=4,|→σ2|2=4(⟨v−v∗|v−v∗|,→ω2⟩2+⟨v−v∗|v−v∗|,ω⟩2)=4⟨v−v∗|v−v∗|,ω⟩2, |
and
⟨σ1,σ2⟩=0. |
As a result,
Gram=16⟨v−v∗|v−v∗|,ω⟩2=4|σ−v−v∗|v−v∗||2. |
We thus write
K2g(v,I)=∫Δe−I∗2−12r(1−R)((v−v∗)24+I+I∗)−14v2∗−14(v+v∗2+√R(14(v−v∗)2+I+I∗)σ)2×g(v+v∗2−√R(14(v−v∗)2+I+I∗)σ,(1−R)(1−r)[14(v−v∗)2+I+I∗])1(2π)32(1−R)R12B|σ−v−v∗|v−v∗||−1drdRdσdI∗dv∗. | (21) |
We seek first to write
h:R3×R+⟼h(R3×R+)⊂R3×R+(v∗,I∗)⟼(x,y)=(v+v∗2−√R(14(v−v∗)2+I+I∗)σ,(1−R)(1−r)[14(v−v∗)2+I+I∗]), |
for fixed
v∗=2x+2√Rayσ−v,I∗=ay−I−(x−v+√Rayσ)2, |
and
v′=x+2√Rayσ,I′=r1−ry, |
where
J=|∂v∗∂I∗∂x∂y|=8(1−r)(1−R), |
and the positivity of
Hv,IR,r,σ=h(R3×R+)={(x,y)∈R3×R+:ay−I−(x−v+√Rayσ)2>0}. | (22) |
In fact,
Hv,IR,r,σ={(x,y)∈R3×R+:x∈Bv−√Rayσ(√ay−I) and y∈((1−r)(1−R)I,+∞)}. |
Therefore, equation (
K2g=1(2π)32∫(0,1)2×S2∫Hv,IR,r,σ(1−R)R12JB|σ−v−x−√Rayσ|v−x−√Rayσ||−1g(x,y)×e−ay−I−(x−v+√Rayσ)22−r2(1−r)y−14(2x+2√Rayσ−v)2−14(x+2√Rayσ)2dydxdσdrdR. | (23) |
We now point out the kernel form of
Hv,I:={(y,x,σ,r,R)∈Δ:R∈(0,1),r∈(0,1),σ∈S2,x∈Bv−√Rayσ(√ay−I), and y∈((1−r)(1−R)I,+∞)}. |
We remark that
Hv,I=Hv,Ix,y×R3×R+ which is equivalent to Hv,I=(0,1)×(0,1)×S2×Hv,IR,r,σ. |
In other words,
Hv,Ix,y={(r,R,σ)∈(0,1)×(0,1)×S2:(y,x,σ,r,R)∈Hv,I}. | (24) |
Then by Fubini theorem, it holds that
K2g(v,I)=1(2π)32∫Hv,I(1−R)R12JB|σ−v−x−√Rayσ|v−x−√Rayσ||−1g(x,y)×e−ay−I−(x−v+√Rayσ)22−r2(1−r)y−14(2x+2√Rayσ−v)2−14(x+2√Rayσ)2dydxdσdrdR=1(2π)32∫R3×R+∫Hv,Ix,y(1−R)R12JB|σ−v−x−√Rayσ|v−x−√Rayσ||−1g(x,y)×e−ay−I−(x−v+√Rayσ)22−r2(1−r)y−14(2x+2√Rayσ−v)2−14(x+2√Rayσ)2dσdrdRdydx. | (25) |
The kernel of
Lemma 4.4. With the assumption (8) on
k2(v,I,x,y)=1(2π)32∫Hv,Ix,y(1−R)R12JB|σ−v−x−√Rayσ|v−x−√Rayσ||−1×e−ay−I−(x−v+√Rayσ)22−r2(1−r)y−14(2x+2√Rayσ−v)2−14(x+2√Rayσ)2dσdrdR |
is in
Proof. Rewriting
‖k2‖2L2≤c∫R3∫R+∫R3∫R+∫(0,1)2×S2(1−R)2RJ2B2×e−[ay−I−(x−v+√RayTω(v−v∗|v−v∗|))2]−r(1−r)y−12(2x+2√RayTω(v−v∗|v−v∗|)−v)2e−12(x+2√RayTω(v−v∗|v−v∗|))2dωdrdRdydxdIdv. |
Writing back in
‖k2‖2L2≤c∫R3∫R+∫R3∫R+∫(0,1)2×S2e−I∗−12v2∗−r(1−R)((v−v∗)24+I)(1−R)2RJB2(v,v∗,I,I∗,r,R,ω)dωdrdRdI∗dv∗dIdv. |
Assumption (8) on
‖k2‖2L2≤c∫(0,1)2∫R3∫R+∫R3∫R+(1−R)2RJ(|v−v∗|2γ+Iγ+Iγ∗)(r(1−r))2˜β(1−R)2˜α×e−I∗−12v2∗−r(1−R)((v−v∗)24+I)dIdvdI∗dv∗drdR≤c∫(0,1)2r2˜β−52−γ(1−r)2˜β−1R(1−R)2˜α−32−γdrdR<∞. |
with
Remark 1. For any
∫R3∫R+∫R3∫R+IaIb∗|v−v∗|ce−I∗−12v2∗−r(1−R)(v−v∗)24−r(1−R)IdIdvdI∗dv∗≤C(∫R+Iae−r(1−R)IdI)(∫R3[∫R3|v−v∗|ce−r(1−R)(v−v∗)24dv]e−12v2∗dv∗)≤C[r(1−R)]−a−1[r(1−R)]−c+32, |
for some constant
The lemma is thus proved, which implies that
Compactness of
K3g(v,I)=∫Δe−I∗2−12(1−r)(1−R)((v−v∗)24+I+I∗)e−14v2∗−14(v+v∗2−√R(14(v−v∗)2+I+I∗)σ)2g(v+v∗2+√R(14(v−v∗)2+I+I∗)σ,r(1−R)[14(v−v∗)2+I+I∗])1(2π)32R12(1−R)B|σ−v−v∗|v−v∗||−1drdRdσdI∗dv∗, |
inherits the same form as
˜h:R3×R+⟼R3×R+(v∗,I∗)⟼(x,y)=(v+v∗2+√R(14(v−v∗)2+I+I∗)σ,r(1−R)[14(v−v∗)2+I+I∗]), |
is calculated to be
˜J=8r(1−R). |
The final requirement for the kernel of
∫(0,1)2(1−r)2˜β−52−γr2˜β−1R(1−R)2˜α−32−γdrdR<∞, |
which holds by the change of variable
To this extent, the perturbation operator
We give in this section some properties of
Proposition 1 (Coercivity of
ν(v,I)≥c(|v|γ+Iγ/2+1), |
for any
Proof. The collision frequency (15) is
ν(v,I)=∫ΔBe−I∗−12v2∗drdRdωdI∗dv∗, |
where by
ν(v,I)≥c∫S2∫R3(|v−v∗|γ+Iγ/2)e−12v2∗dωdv∗≥c(Iγ/2+∫R3||v|−|v∗||γe−12v2∗dv∗), |
where
ν(v,I)≥c(Iγ/2+∫|v∗|≤12|v|(|v|−|v∗|)γe−12v2∗dv∗)≥c(Iγ/2+|v|γ∫|v∗|≤12e−12v2∗dv∗)≥c(|v|γ+Iγ/2+1). |
For
ν(v,I)≥c(Iγ/2+∫|v∗|≥2(|v∗|−|v|)γe−12v2∗dv∗)≥c(Iγ/2+∫|v∗|≥2e−12v2∗dv∗)≥c(1+Iγ/2+|v|γ). |
The result is thus proved. We give now the following proposition, which is a generalization of the work of Grad [17], in which he proved that the collision frequency of monoatomic single gases is monotonic based on the choice of the collision cross section
Proposition 2 (monotony of
∫(0,1)2×S2(1−R)R12B(|V|,I,I∗,r,R,ω)drdRdω | (26) |
is increasing (respectively decreasing) in
In particular, for Maxwell molecules, where
B(v,v∗,I,I∗,r,R,ω)=Cφ(r)ψ(R)(|v−v∗|γ+Iγ/2+Iγ/2∗), |
the integral (26) is increasing, and thus
In fact, if
Proof. We remark first that
ν(|v|,I)=1(2π)32∫Δ(1−R)R12B(|V|,I,I∗,r,R,ω)e−12(v−V)2−I∗drdRdωdI∗dV, | (27) |
where
The partial derivative of
∂ν∂vi=1(2π)32∫(1−R)R12vi−v∗i|v−v∗|∂B∂|v−v∗|(|v−v∗|,I,I∗,r,R,ω)e−12v2∗−I∗drdRdωdI∗dv∗. | (28) |
Perform the change of variable
∂ν∂vi=1(2π)32∫(1−R)R12Vi|V|∂B∂|V|(|V|,I,I∗,r,R,ω)e−12(v−V)2−I∗drdRdωdI∗dV, |
and thus,
3∑i=1vi∂ν∂vi=1(2π)32∫(1−R)R12v.V|V|∂B∂|V|(|V|,I,I∗,r,R,ω) | (29) |
e−12(v−V)2−I∗drdRdωdI∗dV. | (30) |
Applying Fubini theorem, we write (29) as
3∑i=1vi∂ν∂vi=1(2π)32∫[∫(1−R)R12∂B∂|V|(|V|,I,I∗,r,R,ω)drdRdω]v.V|V| | (31) |
e−12(v−V)2−I∗dI∗dV. | (32) |
The partial derivative of
I∂ν∂I=1(2π)32∫(1−R)R12I∂B∂I(|V|,I,I∗,r,R,ω)e−12(v−V)2−I∗drdRdωdI∗dV=1(2π)32I∫[∫(1−R)R12∂B∂I(|V|,I,I∗,r,R,ω)drdRdω]e−12(v−V)2−I∗dI∗dV. | (33) |
When
∫(1−R)R12∂B∂|V|(|V|,I,I∗,r,R,ω)drdRdω. |
It's clear as well that the partial derivative of
∫(1−R)R12∂B∂I(|V|,I,I∗,r,R,ω)drdRdω. |
As a result, for a collision cross-section
∫(0,1)2×S2(1−R)R12B(|V|,I,I∗,r,R,ω)drdRdω |
is increasing (respectively decreasing) in
[1] |
G. Polanczyk, P. Jensen, Epidemiologic considerations in attention deficit hyperactivity disorder: A review and update, Child Adolesc. Psychiatr. Clin. N. Am., 17 (2008), 245–260. https://doi.org/10.1016/j.chc.2007.11.006 doi: 10.1016/j.chc.2007.11.006
![]() |
[2] |
Z. Zhang, G. Li, Y. Xu, X. Tang, Application of artificial intelligence in the MRI classification task of human brain neurological and psychiatric diseases: A scoping review, Diagnostics, 11 (2021), 1402. https://doi.org/10.3390/diagnostics11081402 doi: 10.3390/diagnostics11081402
![]() |
[3] |
M. Quaak, L. Mortel, R. M. Thomas, G. V. Wingen, Deep learning applications for the classification of psychiatric disorders using neuroimaging data: Systematic review and meta-analysis, Neuroimage Clin., 30 (2021), 102584. https://doi.org/10.1016/j.nicl.2021.102584 doi: 10.1016/j.nicl.2021.102584
![]() |
[4] |
L. Zou, J. Zheng, C. Miao, M. J. Mckeown, Z. J. Wang, 3D CNN based automatic diagnosis of attention deficit hyperactivity disorder using functional and structural MRI, IEEE Access, 5 (2017), 23626–23636. https://doi.org/10.1109/ACCESS.2017.2762703 doi: 10.1109/ACCESS.2017.2762703
![]() |
[5] | L. Su, S. I. Kamata, ADHD classification with low-frequency fluctuation feature map based on 3D CBAMe, in Proceedings of the 7th International Conference on Biomedical Signal and Image Processing, ACM, (2022), 74–79. https://doi.org/10.1145/3563737.3563749 |
[6] |
M. Chen, H. Li, J. Wang, J. R. Dillman, N. A. Parikh, L. He, A multichannel deep neural network model analyzing multiscale functional brain connectome data for attention deficit hyperactivity disorder detection, Radiol. Artif. Intell., 2 (2019), e190012. https://doi.org/10.1148/ryai.2019190012 doi: 10.1148/ryai.2019190012
![]() |
[7] |
Y. Tang, J. Sun, C. Wang, Y. Zhong, A. Jiang, G. Liu, et al., ADHD classification using auto-encoding neural network and binary hypothesis testing, Artif. Intell. Med., 123 (2022), 102209. https://doi.org/10.1016/j.artmed.2021.102209 doi: 10.1016/j.artmed.2021.102209
![]() |
[8] |
Y. Sun, L. Zhao, Z. Lan, X. Jia, S. Xue, Differentiating boys with ADHD from those with typical development based on whole-brain functional connections using a machine learning approach, Neuropsychiatr. Dis. Treat., 16 (2020), 691–702. https://doi.org/10.2147/NDT.S239013 doi: 10.2147/NDT.S239013
![]() |
[9] |
Y. Zang, Y. He, C. Zhu, Q. Cao, M. Sui, M. Liang, et al., Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI, Brain Dev., 29 (2007), 83–91. https://doi.org/10.1016/j.braindev.2006.07.002 doi: 10.1016/j.braindev.2006.07.002
![]() |
[10] |
M. Hoogman, J. Bralten, D. P. Hibar, M. Mennes, M. P. Zwiers, L. S. J. Schweren, et al., Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: A cross-sectional mega-analysis, Lancet Psychiatry, 4 (2017), 310–319. https://doi.org/10.1016/S2215-0366(17)30049-4 doi: 10.1016/S2215-0366(17)30049-4
![]() |
[11] |
L. Liu, S. Tang, F. X. Wu, Y. P. Wang, J. Wang, An ensemble hybrid feature selection method for neuropsychiatric disorder classification, IEEE/ACM Trans. Comput. Biol. Bioinf., 19 (2021), 1459–1471. https://doi.org/10.1109/TCBB.2021.3053181 doi: 10.1109/TCBB.2021.3053181
![]() |
[12] |
J. B. Colby, J. D. Rudie, J. A. Brown, P. K. Douglas, M. S. Cohen, Z. Shehzad, Insights into multimodal imaging classification of ADHD, Front. Syst. Neurosci., 6 (2012), 59. https://doi.org/10.3389/fnsys.2012.00059 doi: 10.3389/fnsys.2012.00059
![]() |
[13] |
M. Wang, B. Jie, W. Bian, X. Ding, W. Zhou, Z. Wang, et al., Graph-kernel based structured feature selection for brain disease classification using functional connectivity networks, IEEE Access, 7 (2019), 35001–35011. https://doi.org/10.1109/ACCESS.2019.2903332 doi: 10.1109/ACCESS.2019.2903332
![]() |
[14] |
Y. Zhao, H. Chen, R. T. Ogden, Wavelet-based weighted LASSO and screening approaches in functional linear regression, J. Comput. Graphical Stat., 24 (2015), 655–675. https://doi.org/10.1080/10618600.2014.925458 doi: 10.1080/10618600.2014.925458
![]() |
[15] | M. Nunez-Garcia, S. Simpraga, M. A. Jurado, M. Garolera, R. Pueyo, L. Igual, FADR: Functional-anatomical discriminative regions for rest fMRI characterization, in Machine Learning in Medical Imaging, Springer, (2015), 61–68. https://doi.org/10.1007/978-3-319-24888-2_8 |
[16] |
H. W. Loh, C. P. Ooi, P. D. Barua, E. E. Palmer, F. Molinari, U. R. Acharya, Automated detection of ADHD: Current trends and future perspective, Comput. Biol. Med., 146 (2022), 105525. https://doi.org/10.1016/j.compbiomed.2022.105525 doi: 10.1016/j.compbiomed.2022.105525
![]() |
[17] |
Z. Mao, Y. Su, G. Xu, X. Wang, Y. Huang, W. Yue, et al., Spatio-temporal deep learning method for ADHD fMRI classification, Inf. Sci., 499 (2019), 1–11. https://doi.org/10.1016/j.ins.2019.05.043 doi: 10.1016/j.ins.2019.05.043
![]() |
[18] |
T. Zhang, C. Li, P. Li, Y. Peng, X. Kang, C. Jiang, et al., Separated channel attention convolutional neural network (SC-CNN-attention) to identify ADHD in multi-site rs-fMRI dataset, Entropy, 22 (2020), 893. https://doi.org/10.3390/e22080893 doi: 10.3390/e22080893
![]() |
[19] |
Z. Wang, Y. Zhu, H. Shi, Y. Zhang, C. Yan, A 3D multiscale view convolutional neural network with attention for mental disease diagnosis on MRI images, Math. Biosci. Eng., 18 (2021), 6978–6994. https://doi.org/10.3934/mbe.2021347 doi: 10.3934/mbe.2021347
![]() |
[20] |
N. Qiang, Q. Dong, F. Ge, H. Liang, B. Ge, S. Zhang, et al., Deep variational autoencoder for mapping functional brain networks, IEEE Trans. Cognit. Dev. Syst., 13 (2020), 841–852. https://doi.org/10.1109/TCDS.2020.3025137 doi: 10.1109/TCDS.2020.3025137
![]() |
[21] |
N. Qiang, Q. Dong, H. Liang, B. Ge, S. Zhang, C. Zhang, et al., A novel ADHD classification method based on resting state temporal templates (RSTT) using spatiotemporal attention auto-encoder, Neural. Comput. Appl., 34 (2022), 7815–7833. https://doi.org/10.1007/s00521-021-06868-w doi: 10.1007/s00521-021-06868-w
![]() |
[22] |
A. Gyurak, M. S. Goodkind, J. H. Kramer, B. L. Miller, R. W. Levenson, Executive functions and the down-regulation and up-regulation of emotion, Cognit. Emotion, 26 (2012), 103–118. https://doi.org/10.1080/02699931.2011.557291 doi: 10.1080/02699931.2011.557291
![]() |
[23] |
C. Fu, S. Chen, A. Qian, R. Zhou, J. Zhou, J. Li, et al., Larger thalamus correlated with inattentive severity in the inattentive subtype of ADHD without comorbidity, Psychiatry Res., 304 (2021), 114079. https://doi.org/10.1016/j.psychres.2021.114079 doi: 10.1016/j.psychres.2021.114079
![]() |
[24] |
G. W. Schrimsher, R. L. Billingsley, E. F. Jackson, B. D. Moore, Caudate nucleus volume asymmetry predicts attention-deficit hyperactivity disorder (ADHD) symptomatology in children, J. Child Neurol., 17 (2002), 877–884. https://doi.org/10.1177/08830738020170122001 doi: 10.1177/08830738020170122001
![]() |
[25] |
T. Frodl, J. Stauber, N. Schaaff, N. Koutsouleris, J. Scheuerecker, M. Ewers, et al., Amygdala reduction in patients with ADHD compared with major depression and healthy volunteers, Acta Psychiatr. Scand., 121 (2010), 111–118. https://doi.org/10.1111/j.1600-0447.2009.01489.x doi: 10.1111/j.1600-0447.2009.01489.x
![]() |
[26] |
K. Nickel, L. T. Elst, E. Perlov, R. Jitten-Schachenmeier, D. Beier, D. Endres, et al., Manual morphometry of hippocampus and amygdala in adults with attention-deficit hyperactivity disorder, Psychiatry Res. Neuroimaging, 267 (2017), 32–35. https://doi.org/10.1016/j.pscychresns.2017.07.001 doi: 10.1016/j.pscychresns.2017.07.001
![]() |
[27] |
K. J. Plessen, R. Bansal, H. Zhu, R. Whiteman, J. Amat, G. A. Quackenbush, et al., Hippocampus and amygdala morphology in attention-deficit/hyperactivity disorder, Arch. Gen. Psychiatry, 63 (2006), 795–807. https://doi.org/10.1001/archpsyc.63.7.795 doi: 10.1001/archpsyc.63.7.795
![]() |
[28] |
Y. Wang, Q. Xu, S. Li, G. Li, C. Zuo, S. Liao, et al., Gender differences in anomalous subcortical morphology for children with ADHD, Neurosci. Lett., 665 (2018), 176–181. https://doi.org/10.1016/j.neulet.2017.12.006 doi: 10.1016/j.neulet.2017.12.006
![]() |
[29] |
S. B. Hong, Thalamocortical functional connectivity in youth with attention-deficit/hyperactivity disorder, J. Psychiatry Neurosci., 48 (2023), E50–E60. https://doi.org/10.1503/jpn.220109 doi: 10.1503/jpn.220109
![]() |
[30] |
J. Posner, F. Siciliano, Z. Wang, J. Liu, E. Sonuga-Barke, L. Greenhill, A multimodal MRI study of the hippocampus in medication-naive children with ADHD: What connects ADHD and depression, Psychiatry Res. Neuroimaging, 224 (2014), 112–118. https://doi.org/10.1016/j.pscychresns.2014.08.006 doi: 10.1016/j.pscychresns.2014.08.006
![]() |
[31] |
M. M. Bruchhage, M. P. Bucci, E. B. Becker, Cerebellar involvement in autism and ADHD, Handb. Clin. Neurol., 155 (2018), 61–72. https://doi.org/10.1016/B978-0-444-64189-2.00004-4 doi: 10.1016/B978-0-444-64189-2.00004-4
![]() |
[32] |
M. V. Cherkasova, L. Hechtman, Neuroimaging in attention-deficit hyperactivity disorder: Beyond the frontostriatal circuitry, Can. J. Psychiatry, 54 (2009), 651–664. https://doi.org/10.1177/070674370905401002 doi: 10.1177/070674370905401002
![]() |
[33] |
G. Bush, Attention-deficit/hyperactivity disorder and attention networks, Neuropsychopharmacology, 35 (2010), 278–300. https://doi.org/10.1038/npp.2009.120 doi: 10.1038/npp.2009.120
![]() |
[34] |
L. A. Friedman, J. L. Rapoport, Brain development in ADHD, Curr. Opin. Neurobiol., 30 (2015), 106–111. https://doi.org/10.1016/j.conb.2014.11.007 doi: 10.1016/j.conb.2014.11.007
![]() |
[35] |
Y. Chen, Y. Tang, C. Wang, X. Liu, L. Zhao, Z. Wang, ADHD classification by dual subspace learning using resting-state functional connectivity, Artif. Intell. Med., 103 (2020), 101786. https://doi.org/10.1016/j.artmed.2019.101786 doi: 10.1016/j.artmed.2019.101786
![]() |
[36] |
Y. Tang, X. Li, Y. Chen, Y. Zhong, A. Jiang, C. Wang, High-accuracy classification of attention deficit hyperactivity disorder with l2,1-norm linear discriminant analysis and binary hypothesis testing, IEEE Access, 8 (2020), 56228–56237. https://doi.org/10.1109/ACCESS.2020.2982401 doi: 10.1109/ACCESS.2020.2982401
![]() |
[37] |
Y. Tang, C. Wang, Y. Chen, N. Sun, A. Jiang, Z. Wang, Identifying ADHD individuals from resting-state functional connectivity using subspace clustering and binary hypothesis testing, J. Atten. Disord., 25 (2021), 736–748. https://doi.org/10.1177/1087054719837749 doi: 10.1177/1087054719837749
![]() |
[38] |
N. Liu, X. Li, E. Qi, M. Xu, L. Li, B. Gao, A novel ensemble learning paradigm for medical diagnosis with imbalanced data, IEEE Access, 8 (2020), 171263–171280. https://doi.org/10.1109/ACCESS.2020.3014362 doi: 10.1109/ACCESS.2020.3014362
![]() |
[39] |
Q. Yuan, K. Chen, Y. Yu, N. Q. K. Le, M. C. H. Chua, Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding, Briefings Bioinf., 24 (2023), bbac630. https://doi.org/10.1093/bib/bbac630 doi: 10.1093/bib/bbac630
![]() |
[40] |
S. Singh, N. Q. K. Le, C. Wang, Vf-pred: Predicting virulence factor using sequence alignment percentage and ensemble learning models, Comput. Biol. Med., 168 (2024), 107662. https://doi.org/10.1016/j.compbiomed.2023.107662 doi: 10.1016/j.compbiomed.2023.107662
![]() |
[41] |
Y. Qin, Y. Lou, Y. Huang, R. Chen, W. Yue, An ensemble deep learning approach combining phenotypic data and fMRI for ADHD diagnosis, J. Signal Process. Syst., 94 (2022), 1269–1281. https://doi.org/10.1007/s11265-022-01812-0 doi: 10.1007/s11265-022-01812-0
![]() |
[42] |
B. Miao, L. L. Zhang, J. L. Guan, Q. F. Meng, Y. L. Zhang, Classification of ADHD individuals and neurotypicals using reliable RELIEF: A resting-state study, IEEE Access, 7 (2019), 62163–62171. https://doi.org/10.1109/ACCESS.2019.2915988 doi: 10.1109/ACCESS.2019.2915988
![]() |
[43] |
L. Shao, Y. Xu, D. Fu, Classification of ADHD with bi-objective optimization, J. Biomed. Inf., 84 (2018), 164–170. https://doi.org/10.1016/j.jbi.2018.07.011 doi: 10.1016/j.jbi.2018.07.011
![]() |
[44] |
A. Riaz, M. Asad, E. Alonso, G. Slabaugh, Fusion of fMRI and non-imaging data for ADHD classification, Comput. Med. Imaging Graphics, 65 (2018), 115–128. https://doi.org/10.1016/j.compmedimag.2017.10.002 doi: 10.1016/j.compmedimag.2017.10.002
![]() |
[45] |
A. Riaz, M. Asad, E. Alonso, G. Slabaugh, Deepfmri: End-to-end deep learning for functional connectivity and classification of ADHD using fmri, J. Neurosci. Methods, 335 (2020), 108506. https://doi.org/10.1016/j.jneumeth.2019.108506 doi: 10.1016/j.jneumeth.2019.108506
![]() |
[46] |
S. Liu, L. Zhao, X. Wang, Q. Xin, J. Zhao, D. S. Guttery, et al., Deep spatio-temporal representation and ensemble classification for attention deficit/hyperactivity disorder, IEEE Trans. Neural Syst. Rehabil. Eng., 29 (2020), 1–10. https://doi.org/10.1109/TNSRE.2020.3019063 doi: 10.1109/TNSRE.2020.3019063
![]() |
[47] |
S. Pei, C. Wang, S. Cao, Z. Lv, Data augmentation for fmri-based functional connectivity and its application to cross-site adhd classification, IEEE Trans. Instrum. Meas., 72 (2022), 1–15. https://doi.org/10.1109/TIM.2022.3232670 doi: 10.1109/TIM.2022.3232670
![]() |
[48] |
H. Suzuki, K. N. Botteron, J. L. Luby, A. C. Belden, M. S. Gaffrey, C. M. Babb, et al., Structural-functional correlations between hippocampal volume and cortico-limbic emotional responses in depressed children, Cogn. Affect. Behav. Neurosci., 13 (2013), 135–151. https://doi.org/10.3758/s13415-012-0121-y doi: 10.3758/s13415-012-0121-y
![]() |
[49] |
V. Vuontela, S. Carlson, A. M. Troberg, T. Fontell, P. Simola, S. Saarinen, et al., Working memory, attention, inhibition, and their relation to adaptive functioning and behavioral/emotional symptoms in school-aged children, Child Psychiatry Hum. Dev., 44 (2013), 105–122. https://doi.org/10.1007/s10578-012-0313-2 doi: 10.1007/s10578-012-0313-2
![]() |
[50] |
E. M. Valera, S. V. Faraone, K. E. Murray, L. J. Seidman, Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder, Biol. Psychiatry, 61 (2007), 1361–1369. https://doi.org/10.1016/j.biopsych.2006.06.011 doi: 10.1016/j.biopsych.2006.06.011
![]() |
[51] |
T. Frodl, N. Skokauskas, Meta-analysis of structural MRI studies in children and adults with attention deficit hyperactivity disorder indicates treatment effects, Acta Psychiatr. Scand., 125 (2012), 114–126. https://doi.org/10.1111/j.1600-0447.2011.01786.x doi: 10.1111/j.1600-0447.2011.01786.x
![]() |
[52] |
T. Nakao, J. Radua, K. Rubia, D. Mataix-Cols, Gray matter volume abnormalities in ADHD: Voxel-based meta-analysis exploring the effects of age and stimulant medication, Am. J. Psychiatry, 168 (2011), 1154–1163. https://doi.org/10.1176/appi.ajp.2011.11020281 doi: 10.1176/appi.ajp.2011.11020281
![]() |
[53] |
I. Ivanov, R. Bansal, X. Hao, H. Zhu, C. Kellendonk, L. Miller, et al., Morphological abnormalities of the thalamus in youths with attention deficit hyperactivity disorder, Am. J. Psychiatry, 167 (2010), 397–408. https://doi.org/10.1176/appi.ajp.2009.09030398 doi: 10.1176/appi.ajp.2009.09030398
![]() |
[54] |
S. Mackie, P. Shaw, R. Lenroot, R. Pierson, D. K. Greenstein, T. F. Nugent, et al., Cerebellar development and clinical outcome in attention deficit hyperactivity disorder, Am. J. Psychiatry, 164 (2007), 647–655. https://doi.org/10.1176/appi.ajp.164.4.647 doi: 10.1176/appi.ajp.164.4.647
![]() |
[55] |
F. X. Castellanos, J. N. Giedd, P. C. Berquin, J. M. Walter, W. Sharp, T. Tran, et al., Quantitative brain magnetic resonance imaging in girls with attention-deficit/hyperactivity disorder, Arch. Gen. Psychiatry, 58 (2001), 289–295. https://doi.org/10.1001/archpsyc.58.3.289 doi: 10.1001/archpsyc.58.3.289
![]() |
[56] |
S. H. Mostofsky, A. L. Reiss, P. Lockhart, M. B. Denckla, Evaluation of cerebellar size in attention-deficit hyperactivity disorder, J. Child Neurol., 13 (1998), 434–439. https://doi.org/10.1177/088307389801300904 doi: 10.1177/088307389801300904
![]() |
[57] |
J. D. Schmahmann, Disorders of the cerebellum: Ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome, J. Neuropsychiatry Clin. Neurosci., 16 (2004), 367–378. https://doi.org/10.1176/appi.neuropsych.16.3.367 doi: 10.1176/appi.neuropsych.16.3.367
![]() |
[58] |
K. P. Schulz, J. Fan, C. Y. Tang, J. H. Newcorn, M. S. Buchsbaum, A. M. Cheung, et al., Response inhibition in adolescents diagnosed with attention deficit hyperactivity disorder during childhood: An event-related FMRI study, Am. J. Psychiatry, 161 (2004), 1650–1657. https://doi.org/10.1176/appi.ajp.161.9.1650 doi: 10.1176/appi.ajp.161.9.1650
![]() |
[59] |
D. Riva, C. Giorgi, The cerebellum contributes to higher functions during development: Evidence from a series of children surgically treated for posterior fossa tumours, Brain, 123 (2000), 1051–1061. https://doi.org/10.1093/brain/123.5.1051 doi: 10.1093/brain/123.5.1051
![]() |
[60] |
D. Dong, Q. Ming, X. Wang, W. Yu, Y. Jiang, Q. Wu, et al., Temporoparietal junction hypoactivity during pain-related empathy processing in adolescents with conduct disorder, Front. Psychol., 7 (2017), 231676. https://doi.org/10.3389/fpsyg.2016.02085 doi: 10.3389/fpsyg.2016.02085
![]() |
[61] |
G. Bush, Cingulate, frontal, and parietal cortical dysfunction in attention-deficit/hyperactivity disorder, Biol. Psychiatryry, 69 (2011), 1160–1167. https://doi.org/10.1016/j.biopsych.2011.01.022 doi: 10.1016/j.biopsych.2011.01.022
![]() |
[62] |
F. Biondo, C. N. Thunell, B. Xu, C. Chu, T. Jia, A. Ing, et al., Sex differences in neural correlates of common psychopathological symptoms in early adolescence, Psychol. Med., 52 (2022), 3086–3096. https://doi.org/10.1017/S0033291720005140 doi: 10.1017/S0033291720005140
![]() |
[63] |
K. Jiang, Y. Yi, L. Li, H. Li, H. Shen, F. Zhao, et al., Functional network connectivity changes in children with attention-deficit hyperactivity disorder: A resting-state fMRI study, Int. J. Dev. Neurosci., 78 (2019), 1–6. https://doi.org/10.1016/j.ijdevneu.2019.07.003 doi: 10.1016/j.ijdevneu.2019.07.003
![]() |
1. | Shingo Kosuge, Kazuo Aoki, Navier–Stokes Equations and Bulk Viscosity for a Polyatomic Gas with Temperature-Dependent Specific Heats, 2022, 8, 2311-5521, 5, 10.3390/fluids8010005 | |
2. | Niclas Bernhoff, Linearized Boltzmann Collision Operator: I. Polyatomic Molecules Modeled by a Discrete Internal Energy Variable and Multicomponent Mixtures, 2023, 183, 0167-8019, 10.1007/s10440-022-00550-6 | |
3. | Ricardo Alonso, Milana Čolić, Integrability Propagation for a Boltzmann System Describing Polyatomic Gas Mixtures, 2024, 56, 0036-1410, 1459, 10.1137/22M1539897 | |
4. | Niclas Bernhoff, Compactness Property of the Linearized Boltzmann Collision Operator for a Mixture of Monatomic and Polyatomic Species, 2024, 191, 1572-9613, 10.1007/s10955-024-03245-4 | |
5. | Ricardo J. Alonso, Milana Čolić, Irene M. Gamba, The Cauchy Problem for Boltzmann Bi-linear Systems: The Mixing of Monatomic and Polyatomic Gases, 2024, 191, 1572-9613, 10.1007/s10955-023-03221-4 | |
6. | Renjun Duan, Zongguang Li, Global bounded solutions to the Boltzmann equation for a polyatomic gas, 2023, 34, 0129-167X, 10.1142/S0129167X23500362 | |
7. | Gyounghun Ko, Sung-jun Son, Global stability of the Boltzmann equation for a polyatomic gas with initial data allowing large oscillations, 2025, 425, 00220396, 506, 10.1016/j.jde.2025.01.038 | |
8. | Stephane Brull, Annamaria Pollino, An ES-BGK model for non polytropic gases with a general framework, 2025, 0, 1937-5093, 0, 10.3934/krm.2025010 |