Loading [MathJax]/extensions/TeX/boldsymbol.js
Research article Special Issues

Extraction of PEM fuel cell parameters using Walrus Optimizer

  • The process of identifying the optimal unknown variables for the creation of a precision fuel-cell performance forecasting model using optimization techniques is known as parameter identification of the proton exchange membrane fuel cell (PEMFC). Recognizing these factors is crucial for accurately forecasting and assessing the fuel cell's performance, as they may not always be included in the manufacturer's datasheet. Six optimization algorithms—the Walrus Optimizer (WO), the Tunicate Swarm Algorithm (TSA), the Harris Hawks Optimizer (HHO), the Heap Based Optimizer (HBO), the Chimp Optimization Algorithm (ChOA), and the Osprey Optimization Algorithm (OOA) were used to compute six unknown variables of a PEMFC. Also, the proposed WO method was compared with other published works' methods such as the Equilibrium Optimizer (EO), Manta Rays Foraging Optimizer (MRFO), Neural Network Algorithm (NNA), Artificial Ecosystem Optimizer (AEO), Slap Swarm Optimizer (SSO), and Vortex Search Approach with Differential Evolution (VSDE). Minimizing the sum squares error (SSE) between the estimated and measured cell voltages requires treating these six parameters as choice variables during optimization. The WO algorithm yielded an SSE of 1.945415603, followed by HBO, HHO, TSA, ChOA, and OOA. Given that WO accurately forecasted the fuel cell's performance, it is appropriate for the development of digital twins for fuel cell applications and control systems for the automobile industry. Furthermore, it was shown that the WO convergence speed was faster than the other approaches studied.

    Citation: Essam H. Houssein, Nagwan Abdel Samee, Maali Alabdulhafith, Mokhtar Said. Extraction of PEM fuel cell parameters using Walrus Optimizer[J]. AIMS Mathematics, 2024, 9(5): 12726-12750. doi: 10.3934/math.2024622

    Related Papers:

    [1] J. O. Akanni, S. Ajao, S. F. Abimbade, Fatmawati . Dynamical analysis of COVID-19 and tuberculosis co-infection using mathematical modelling approach. Mathematical Modelling and Control, 2024, 4(2): 208-229. doi: 10.3934/mmc.2024018
    [2] Yaxin Ren, Yakui Xue . Modeling and optimal control of COVID-19 and malaria co-infection based on vaccination. Mathematical Modelling and Control, 2024, 4(3): 316-335. doi: 10.3934/mmc.2024026
    [3] Ihtisham Ul Haq, Nigar Ali, Shabir Ahmad . A fractional mathematical model for COVID-19 outbreak transmission dynamics with the impact of isolation and social distancing. Mathematical Modelling and Control, 2022, 2(4): 228-242. doi: 10.3934/mmc.2022022
    [4] Paride O. Lolika, Mlyashimbi Helikumi . Global stability analysis of a COVID-19 epidemic model with incubation delay. Mathematical Modelling and Control, 2023, 3(1): 23-38. doi: 10.3934/mmc.2023003
    [5] Ankur Jyoti Kashyap, Arnab Jyoti Bordoloi, Fanitsha Mohan, Anuradha Devi . Dynamical analysis of an anthrax disease model in animals with nonlinear transmission rate. Mathematical Modelling and Control, 2023, 3(4): 370-386. doi: 10.3934/mmc.2023030
    [6] Anita T. Kurniawati, Fatmawati, Chidozie W. Chukwu, Windarto, Faishal F. Herdicho . Optimal control of dengue fever model with a logistically growing human population. Mathematical Modelling and Control, 2025, 5(1): 48-60. doi: 10.3934/mmc.2025004
    [7] Salma Al-Tuwairqi, Asma Badrah . A qualitative analysis of a model on alpha-synuclein transport and aggregation in neurons. Mathematical Modelling and Control, 2023, 3(2): 104-115. doi: 10.3934/mmc.2023010
    [8] Monica Veronica Crankson, Olusegun Olotu, Ayodeji Sunday Afolabi, Afeez Abidemi . Modeling the vaccination control of bacterial meningitis transmission dynamics: a case study. Mathematical Modelling and Control, 2023, 3(4): 416-434. doi: 10.3934/mmc.2023033
    [9] Abdul-Fatawu O. Ayembillah, Baba Seidu, C. S. Bornaa . Mathematical modeling of the dynamics of maize streak virus disease (MSVD). Mathematical Modelling and Control, 2022, 2(4): 153-164. doi: 10.3934/mmc.2022016
    [10] Eminugroho Ratna Sari, Nikken Prima Puspita, R. N. Farah . Prevention of dengue virus transmission: insights from host-vector mathematical model. Mathematical Modelling and Control, 2025, 5(2): 131-146. doi: 10.3934/mmc.2025010
  • The process of identifying the optimal unknown variables for the creation of a precision fuel-cell performance forecasting model using optimization techniques is known as parameter identification of the proton exchange membrane fuel cell (PEMFC). Recognizing these factors is crucial for accurately forecasting and assessing the fuel cell's performance, as they may not always be included in the manufacturer's datasheet. Six optimization algorithms—the Walrus Optimizer (WO), the Tunicate Swarm Algorithm (TSA), the Harris Hawks Optimizer (HHO), the Heap Based Optimizer (HBO), the Chimp Optimization Algorithm (ChOA), and the Osprey Optimization Algorithm (OOA) were used to compute six unknown variables of a PEMFC. Also, the proposed WO method was compared with other published works' methods such as the Equilibrium Optimizer (EO), Manta Rays Foraging Optimizer (MRFO), Neural Network Algorithm (NNA), Artificial Ecosystem Optimizer (AEO), Slap Swarm Optimizer (SSO), and Vortex Search Approach with Differential Evolution (VSDE). Minimizing the sum squares error (SSE) between the estimated and measured cell voltages requires treating these six parameters as choice variables during optimization. The WO algorithm yielded an SSE of 1.945415603, followed by HBO, HHO, TSA, ChOA, and OOA. Given that WO accurately forecasted the fuel cell's performance, it is appropriate for the development of digital twins for fuel cell applications and control systems for the automobile industry. Furthermore, it was shown that the WO convergence speed was faster than the other approaches studied.



    The classical isocapacitary inequality states that among sets which share the same amount of Lebesgue measure, balls minimize the electrostatic (Newtonian) capacity, that is, for any measurable set Ω with finite measure, the following scale invariant inequality holds true

    |Ω|(2n)/ncap(Ω)|B|(2n)/ncap(B). (1.1)

    Here || stands for the ndimensional Lebesgue measure, n3, B is any ball in Rn and cap() is the standard electrostatic capacity in Rn, defined for compact sets as

    cap(Ω):=inf{Rn|u|2dx:uCc(Rn),u1in Ω}. (1.2)

    We observe that (1.1) can be rephrased in terms of the isocapacitary deficit, by saying that

    dcap(Ω):=|Ω|(2n)/ncap(Ω)|B|(2n)/ncap(B)10. (1.3)

    It is well known that the isocapacitary inequality is rigid, in the sense that dcap(Ω) vanishes if and only if Ω is equivalent to a ball up to a set of null Lebesgue measure. Thus, it appears as a natural quest the attempt of obtaining a quantitative stability version of (1.3). There are several possible geometric quantities that can properly measure the difference between a generic set and a ball with the same volume. The most natural one is the so-called Fraenkel asymmetry, first proposed by L. E. Fraenkel given by

    A(Ω)=inf{|ΩΔB||Ω|:B is a ball with |B|=|Ω|}.

    The first attempts in this direction were made in the '90s. In particular, in [23] stability inequalities of the form

    dcap(Ω)CnA(Ω)n+1

    were proved, restricting to the class of convex sets when n3*. Nevertheless, in [23] the optimal exponent was conjectured to be 2, that is

    dcap(Ω)CnA(Ω)2, (1.4)

    *In the planar case the suitable capacity is the logarithmic capacity.

    which is asymptotically sharp for small asymmetries. Inequality (1.4) was proved in the planar case in [25,Corollary 2] (see also [2] and [24] for related results with other notions of deficiencies). As far as higher dimensions are concerned, (1.4) was proved by Fraenkel in [18] for starshaped sets, while in [21] the authors provided the inequality (1.4) with a suboptimal exponent but for general sets, i.e.,

    dcap(Ω)CnA(Ω)4. (1.5)

    The conjecture in its full generality was finally established in [29]. It is worth stressing that to get this result the authors need to exploit the suboptimal inequality (1.5). We finally mention [28], where the author treated the case of the p-capacity and proved the corresponding sharp inequality. We point out that the approach followed in [28,29], while leading to the sharp exponent 2, does not allow to work out the explicit constant which multiplies the asymmetry. On the contrary, inequality (1.5) is not sharp for small values of A(Ω) but comes with an explicit constant Cn>0.

    In this work we tackle the problem of quantification of the isocapacitary inequality in the fractional framework.

    Let s(0,1) and let n>2s. We consider the fractional generalization of the capacity, defined for compact sets as follows

    caps(Ω)=inf{[u]2s:uCc(Rn),u1on Ω}, (1.6)

    where

    [u]s:=(R2n|u(x)u(y)|2|xy|n+2sdxdy)12

    denotes the fractional Gagliardo seminorm of order s. The definition of fractional capacity of a general closed set ΩRn is given in Definition 2.1, which can be easily proved to be equivalent to (1.6) when Ω is compact. As a straightforward consequence of the fractional analogue of the Pólya-Szegö inequality (proved in [1,Theorem 9.2], see also Proposition 2.10 below for an "extended" version) one can easily derive the fractional isocapacitary inequality, stating that

    |Ω|(2sn)/ncaps(Ω)|B|(2sn)/ncaps(B), (1.7)

    for any closed ΩRn with finite measure and for any closed ball B. The aim of this work is to quantify the fractional isocapacitary deficit

    dcaps(Ω):=|Ω|(2sn)/ncaps(Ω)|B|(2sn)/ncaps(B)1

    in terms of the asymmetry of Ω. We point out that, in view of the scaling properties of the fractional capacity, the term

    |B|(2sn)/ncaps(B)

    is a universal constant, not depending on the choice of the ball B. It is also worth remarking that caps() can be defined, through (1.6), on open sets O and its value coincide with caps(¯O).

    The fractional Pölya-Szegö inequality entails the rigidity of inequality (1.7), in the sense that the equality holds if and only if Ω is a ball in Rn, see [19,Theorem A.1]. We now present our main result, which amounts to a quantitative stability inequality for the fractional capacity.

    Theorem 1.1. Let s(0,1) and n>2s. There exists a constant Cn,s>0, depending only on n and s, such that for any closed set ΩRn with finite measure, there holds

    dcaps(Ω)=|Ω|(2sn)/ncaps(Ω)|B|(2sn)/ncaps(B)1Cn,sA3s(Ω). (1.8)

    Moreover the constant Cn,s can be explicitly computed, see Remark 3.5.

    Our second result investigates the asymptotic behaviour of the function scaps(Ω) when s1, for a compact set ΩRn. In particular, we obtain that a suitable normalization of caps behaves like the standard capacity as s1 (see (4.1) for the precise definition of the classical notion of capacity).

    Proposition 1.2. Let n3, then for every ΩRn compact set, we have

    lim sups1(1s)caps(Ω)ωn2cap(Ω), (1.9)

    where ωn:=|B1| and B1 denotes the unitary ball in Rn. If in addition Ω is the closure of an open bounded set with Lipschitz boundary then

    lims1(1s)caps(Ω)=ωn2cap(Ω). (1.10)

    We observe that the exponent 3/s appearing in (1.8) is likely not sharp, . Nevertheless, since the constant Cn,s in (1.8) can be explicitly computed (see Remark 3.5), together with its limit as s1 (see Remark 4.1), our result entails an improvement of (1.5), asymptotically as s1. In particular, thanks also to Proposition 1.2 and Lemma 3.3, we are able to state the following.

    The optimal exponent was conjectured to be 2 in the fractional case as well.

    Corollary 1.3. Let n3 and ΩRn be a closed set with finite measure. Then (1.8) is stable as s1 and there holds

    dcap(Ω)CnA(Ω)3,

    for some Cn>0 depending only on n, whose explicit value can be found in Remark 4.1.

    Our proof is inspired by that in [3] where the authors deal with the (non-sharp) quantitative stability of the first eigenvalue of the fractional Laplacian with homogeneous Dirichlet exterior conditions. Such a result, in turn, relies on ideas established in [2,21]. Here, we provide a sketch of these arguments, starting with the classical case and then trying to emphasize the differences occurring in the fractional framework.

    It is well known that, for any closed ΩRn with finite measure, there exists a unique function 0uΩ1, belonging to a suitable functional space, that achieves cap(Ω). Such a function is called the capacitary potential of Ω. First, by means of the coarea formula one gets

    cap(Ω)Rn|uΩ|2dx10({uΩ=t}|uΩ|dHn1)dt.

    The right-hand side of the latter equality, after some manipulation can be written in terms of the perimeter of the superlevel sets {uΩt}, i.e.,

    cap(Ω)10P({uΩt})2f1(t)dt.

    being f1 a suitably chosen real function depending only on the measure of {uΩt}. The idea is then to exploit the sharp quantitative isoperimetric inequality [13,17,20]

    dPer(E)|E|(n1)/nP(E)|B|(n1)/nP(B)A(E)2,

    holding for any ERn in a suitable class and for any ball BRn. Plugging this into the previous estimate, after some further manipulation, one gets

    dcap(Ω)10A({ut})2f2(t)dt,

    where f2 is an explicit positive integrable function depending only on the size of the superlevels of uΩ. Then we reason in the spirit of [2]:

    heuristically, as long as t is close to uΩL(Rn)=1 we expect the set {uΩt} is close to Ω in L1 and that A({uΩt})A(Ω), and then, the idea is to seek for a threshold T such that at once

    A({ut})A(Ω) as long as t(T,1) and

    ● the quantity 1Tf2(t)dt results proportional to a power of A(Ω).

    The previous two properties lead directly to the sought inequality. A bit more precisely, if the threshold T is such that 1TA(Ω), then the above strategy works, while if 1TA(Ω), then the fact that the asymmetry is large (with respect to 1T) allows, by a simple comparison argument, to get an asymptotically stronger inequality of the form

    dcap(Ω)A(Ω).

    In the fractional case the existence of a capacitary potential uΩ is guaranteed as well, see Remark 2.2. However, the arguments described above cannot be directly implemented in the fractional scenario, due to nonlocal effects. Indeed the very first step fails, since a suitable coarea formula for non-integer Sobolev spaces is missing. A way to overcome these difficulties is provided by the so called Caffarelli-Silvestre extension for functions in fractional Sobolev spaces. Loosely speaking, this tool allows us to interpret nonlocal energies of functions defined on Rn as local energies of functions depending on one more variable. Namely, one can prove a characterization of the s-capacity in the fashion of

    caps(Ω)inf{Rn+1+z12s|U(x,z)|2dxdz:U(x,0)=uΩ(x)}, (1.11)

    where

    Rn+1+:={(x,z):xRn,z>0}

    and U varies in a suitable functional space on Rn+1+. Moreover, one can prove that the infimum in (1.11) is uniquely achieved by a function 0UΩ1. We refer to Section 2.2 for the precise setting and definitions. At this point, the above strategy may be applied on every horizontal slice {(x,z):xRn} and with UΩ(,z) in place of uΩ. This way, we end up with

    dcaps(Ω)0z12s10A({U(,z)t})2fz(t)dtdz

    where, again, fz is an explicit real-valued function depending on the measure of the superlevels of U(,z). Here it appears evident the extra inconvenience due to the presence of the integral in the zvariable. To get rid of this latter problem, we adapt ideas in [3] to show the existence of a good interval (0,z0), for which the (asymmetries of the) superlevels of UΩ(,z) are close to (those of) the superlevels of uΩ, leading to

    dcaps(Ω)z00z12s10A({UΩ(,z)t})2fz(t)dtdz10A({uΩt})2fz(t)dt

    and hence conclude similarly as in the classical local case.

    In this section we introduce some prerequisites that are necessary in order to prove our main result.

    First of all, we precisely define the functional setting we work in. For any open set ORn, we consider the homogeneous fractional Sobolev space Ds,2(O), defined as the completion of Cc(O) with respect to the Gagliardo seminorm of order s

    [u]s=(R2n|u(x)u(y)|2|xy|n+2sdxdy)12.

    The space Ds,2(O) is an Hilbert space, naturally endowed with the following scalar product

    (u,v)Ds,2(Rn):=R2n(u(x)u(y))(v(x)v(y))|xy|n+2sdxdy.

    Moreover, by trivial extension we have that Ds,2(O) is continuously embedded in Ds,2(Rn). We refer to [8] and [5] for more details concerning fractional homogeneous spaces and their characterizations. We limit ourselves to recall the fractional Sobolev inequality, which reads as follows:

    Sn,su2L2s(Rn)[u]2sfor all uDs,2(Rn), (2.1)

    where

    2s:=2nn2s

    denotes the critical Sobolev exponent in the fractional framework and Sn,s>0 denotes the best constant in the inequality. In particular, this result ensures the continuity of the embedding

    Ds,2(Rn)L2s(Rn)

    and it provides the following characterization

    Ds,2(Rn)={uL2s(Rn):[u]s<}. (2.2)

    We refer to [14,Theorem 1.1] (see also [30,Theorem 7] in the Appendix) and to [5,Theorem 3.1] for the proofs of (2.1) and (2.2), respectively.

    We now introduce the definition of fractional capacity of a closed subset of Rn.

    Definition 2.1. Let ΩRn be closed and let ηΩCc(Rn) be such that ηΩ=1 in an open neighbourhood of Ω. We define the fractional capacity of order s (or s-capacity) of the set Ω as follows:

    caps(Ω):=inf{[u]2s:uDs,2(Rn),uηΩDs,2(RnΩ)}.

    First of all, we point out that the above definition does not depend on the choice of the cut-off function ηΩ. Indeed, if ˜ηΩCc(Rn) satisfies ˜ηΩ=1 in a neighbourhood of Ω, then trivially

    ηΩ+Ds,2(RnΩ)=˜ηΩ+Ds,2(RnΩ).

    We also observe that, if ΩRn is a compact set, then, by a simple regularization argument, one can easily prove that

    caps(Ω)=inf{[u]2s:uCc(Rn),u1in Ω}.

    We also point out that it is not restrictive to assume that the admissible competitors u in the definition of caps(Ω) satisfy

    0u1,a.e. in Rn,

    since

    [u+1]s[u]sfor all uDs,2(Rn),

    where u+ denotes the positive part of u and ab=min{a,b}. We refer to lemmas 2.6 and 2.7 in [32] for the proofs.

    Remark 2.2. By direct methods of the calculus of variations, it is easy to check that caps(Ω) is uniquely achieved (when caps(Ω)<) by a function uDs,2(Rn) such that uηΩDs,2(RnΩ). Hereafter, we denote such function by uΩ and we call it the s-capacitary potential (or simply the capacitary potential) associated to Ω. Moreover, it is easy to observe that 0uΩ1 a.e. in Rn and that uΩ satisfies a variational equation, that is

    (uΩ,φ)Ds,2(Rn)=0,for all φDs,2(RnΩ).

    The notion of s-capacity of a set is in relation with the fractional Laplace operator of order s, which is defined, for uCc(Rn), as follows

    (Δ)su(x):=2P.V.Rnu(x)u(y)|xy|n+2sdy=2limr0+{|xy|>r}u(x)u(y)|xy|n+2sdy,

    where P.V. means that the integral has to be seen in the principal value sense. It is natural to extend the definition of fractional Laplacian applied to any function in Ds,2(Rn), in a distributional sense. More precisely, given uDs,2(Rn), we have that (Δ)su(Ds,2(Rn)) (with (Ds,2(Rn)) denoting the dual of Ds,2(Rn)) and it acts as follows

    (Ds,2(Rn))(Δ)su,vDs,2(Rn)=(u,v)Ds,2(Rn),for all vDs,2(Rn).

    Therefore, in view of Remark 2.2, we can say that the capacitary potential uΩDs,2(Rn) weakly satisfies

    {(Δ)suΩ=0,in RnΩ,uΩ=1,in Ω.

    The proof of our main result strongly relies on an extension procedure for functions in fractional Sobolev spaces, first established in [11], which, in some sense, allows to avoid some nonlocal issues and recover a local framework. Such a procedure is commonly called Caffarelli-Silvestre extension. In this paragraph, we introduce the functional spaces emerging in the extended formulation and we discuss some of their properties, also in relation with the s-capacity of a set. We remark that, being the Caffarelli-Silvestre extension a classical tool nowadays, the results we present here can be regarded as folklore. But still, up to our knowledge, there are no explicit proofs available in the literature, hence we decided to report them here.

    For any closed set KRn+1+Rn, we define the space D1,2(¯Rn+1+K;z12s) as the completion of Cc(¯Rn+1+K) with respect to the norm

    UD1,2(¯Rn+1+K;z12s):=(Rn+1+z12s|U|2dxdz)12.

    However hereafter we simply write D1,2z(¯Rn+1+K) in place of D1,2(¯Rn+1+K;z12s).

    We have that D1,2z(¯Rn+1+K) is an Hilbert space with respect to the scalar product

    (U,V)D1,2z(¯Rn+1+K):=Rn+1+z12sUVdxdz.

    First of all we shot that the space D1,2z(¯Rn+1+K) is a well defined functional space, which is not obvious. In order to prove that, it is sufficient to prove that it is the case for D1,2z(¯Rn+1+), in view of the continuous embedding

    D1,2z(¯Rn+1+K)D1,2z(¯Rn+1+).

    To show this, we first recall by [15,Proposition 3.3] the following weighted Sobolev inequality

    (Rn+1+z12s|U|2γdxdz)12γSn,s(Rn+1+z12s|U|2dxdz)12for all UD1,2z(¯Rn+1+), (2.3)

    where Sn,s is a positive constant and γ:=1+2n2s.

    In particular this inequality yields the following continuous embedding

    D1,2z(¯Rn+1+)L2γ(Rn+1+;z12s),

    where

    L2γ(Rn+1+;z12s):={UL1loc(Rn+1+):Rn+1+z12s|U|2γdxdz<}.

    We now provide a characterization of D1,2z(¯Rn+1+) as a concrete functional space.

    Proposition 2.3. The space D1,2z(¯Rn+1+) is a functional space. In particular there holds

    D1,2z(¯Rn+1+)={UL2γ(Rn+1+;z12s):UD1,2z(¯Rn+1+)<+}.

    Proof. The fact that

    D1,2z(¯Rn+1+){UL2γ(Rn+1+;z12s):UD1,2z(¯Rn+1+)<+}

    immediately follows from (2.3). We now prove the reverse inclusion. Namely, we show that any function

    UL2γ(Rn+1+;z12s) (2.4)

    such that

    UD1,2z(¯Rn+1+)<+ (2.5)

    can be approximated by functions in Cc(¯Rn+1+) in the topology induced by the norm D1,2z(¯Rn+1+). First, suppose that U is compactly supported in ¯Rn+1+ and let

    ˜U(x,z):={U(x,z),if z>0,U(x,z),if z<0.

    Moreover, we let {ρε}ε>0 be a family of mollifiers in Rn+1 and we set

    Uε=˜Uρε|¯Rn+1+.

    We call mollifier a smooth, symmetric decreasing, positive and compactly supported function, which converges in distribution to a centered Dirac measure δ, as ε0, and such that ρεL1(Rn+1)=1.

    Clearly Uε pointwisely converge to U in ¯Rn+1, as ε0. Moreover it is equibounded in D1,2z(¯Rn+1+). Thus we easily conclude by means of the dominated convergence theorem. We consider now the general case. Fix ε>0 and let UR=UηR where ηR is the restriction to ¯Rn+1+ of a radial, smooth cut-off function defined on Rn+1 such that ηR=1 on BR, ηR=0 on Rn+1B2R and supRn+1|ηR|4R1. Since, URD1,2z(¯Rn+1+), by the previous step there exists VRCc(¯Rn+1+) such that URVRD1,2z(¯Rn+1+)ε/2, so that, by triangular inequality

    UVRD1,2z(¯Rn+1+)UURD1,2z(¯Rn+1+)+ε2.

    We are left to show that URU in D1,2z(¯Rn+1+), as R. In view of the properties of ηR, we have that

    UUR2D1,2z(¯Rn+1+)=Rn+1+z12s|U(UηR)|2dxdz2Rn+1+z12s|UηRU|2dxdz+2Rn+1+z12s|UηR|2dxdz2Rn+1+B+Rz12s|U|2dxdz+32R2B+2RB+Rz12s|U|2dxdz,

    where B+r:=BrRn+1+. Thanks to (2.5), the first term on the right-hand side in the above inequalities is infinitesimal as R tends to infinity, so it can be chosen smaller than ε/4. For what concerns the second term, by Hölder inequality we obtain that

    B+2RB+Rz12s|U|2dxdz(B+2RB+Rz12sdxdz)(γ1)/γ(B+2RB+Rz12s|U|2γdxdz)1/γ.

    By (2.4) we have that

    B+2RB+Rz12s|U|2γdxdz0,as R,

    while, by an explicit computation, also recalling that γ=1+nn2s one gets that

    supR11R2(B+2RB+Rz12sdxdz)(γ1)/γ<+.

    Hence we can choose R large enough so that

    16R2B+2RB+Rz12sU2dxdzε/4,

    and conclude that

    UVRD1,2z(¯Rn+1+)ε.

    Another fundamental fact that relates the space D1,2z(¯Rn+1+) with Ds,2(Rn) is the existence of a trace map from the former to the latter. Before stating the precise result, we recall the following classical Hardy inequality, whose proof can be found e.g., in [26].

    Lemma 2.4. Let p(1,) and a<1. Then there exists a constant C(p,a)>0 such that

    0ρa|1ρρ0f(t)dt|pdρC(p,a)0ρa|f(ρ)|pdρ,

    for all fCc([0,)).

    Proposition 2.5. There exists a linear and continuous trace operator

    Tr:D1,2z(¯Rn+1+)Ds,2(Rn)

    such that Tr(U)(x)=U(x,0) for every UCc(¯Rn+1+).

    Proof. Throughout the proof, we assume the space Ds,2(Rn) to be endowed with the following norm

    [u]s,#:=(ni=1[u]2s,i)12.

    where

    [u]_{s, i}^2: = \int_0^\infty\int_{ \mathbb R^n}\frac{\left| {u(x+\rho \mathit{\boldsymbol{e}}_i)-u(x)} \right|^2}{\rho^{1+2s}}\, dx\, d\rho,

    with \mathit{\boldsymbol{e}}_i denoting the unit vector in the positive x_i variable. The norm [\cdot]_{s, \#} is equivalent to [\cdot]_s , as proved in [3,Proposition B.1]. By density, it is sufficient to prove that there exists C > 0 such that

    \begin{equation} [U(\cdot, 0)]_{s, \#}\leq C\left\lVert {U} \right\lVert_{ \mathcal{D}^{1, 2}_z(\overline{\mathbb R^{n+1}_+})}, \quad\text{for all }U\in C_c^\infty(\overline{ \mathbb R^{n+1}_+}). \end{equation} (2.6)

    For U\in C_c^\infty(\overline{ \mathbb R^{n+1}_+}) , x\in \mathbb R^n and \rho > 0 , we rewrite

    \begin{gather*} U(x, 0) = U(x, \rho)-\int_0^\rho\frac{\partial U}{\partial z}(x, t)\, dt, \\ U(x+\rho \mathit{\boldsymbol{e}}_i, 0) = U(x+\rho \mathit{\boldsymbol{e}}_i, \rho)-\int_0^\rho\frac{\partial U}{\partial z}(x+\rho \mathit{\boldsymbol{e}}_i, t)\, dt. \end{gather*}

    Therefore

    \begin{align*} \frac{\left| {U(x+\rho\mathit{\boldsymbol{e}}_i, 0)-U(x, 0)} \right|^2}{\rho^{1+2s}}\leq & 2\rho^{1-2s}\frac{\left| {U(x+\rho\mathit{\boldsymbol{e}}_i, \rho)-U(x, \rho)} \right|^2}{\rho^2}\\ & + 2\rho^{1-2s}\left| {\frac{1}{\rho}\int_0^\rho\left( \frac{\partial U}{\partial z}(x+\rho\mathit{\boldsymbol{e}}_i, t)-\frac{\partial U}{\partial z}(x, t) \right)\, dt } \right|^2. \end{align*}

    If we integrate in the x variable we obtain

    \begin{equation*} \int_{ \mathbb R^n}\frac{\left| {U(x+\rho\mathit{\boldsymbol{e}}_i, 0)-U(x, 0)} \right|^2}{\rho^{1+2s}}\, dx\leq 2\rho^{1-2s}\left(\int_{ \mathbb R^n}\left| {\frac{\partial U}{\partial x_i}(x, \rho)} \right|^2\, dx+2\int_{ \mathbb R^n}\left| {\frac{1}{\rho}\int_0^\rho\left(\frac{\partial U}{\partial z}(x, t)\, dt \right) } \right|^2\, dx\right), \end{equation*}

    where we used the fact that

    \int_{ \mathbb R^n}\frac{\left| {U(x+\rho\mathit{\boldsymbol{e}}_i, \rho)-U(x, \rho)} \right|^2}{\rho^2}\, dx \leq \int_{ \mathbb R^n}\left| {\frac{\partial U}{\partial x_i}(x, \rho)} \right|^2\, dx

    for the first term and a change of variable for the second. By integration with respect to \rho in (0, \infty) and thanks to Lemma 2.4 (choosing p = 2 and a = 1-2s ) we infer

    [U(\cdot, 0)]_{s, i}^2\leq 2\int_{ \mathbb R^{n+1}_+}\rho^{1-2s}\left| {\frac{\partial U}{\partial x_i}(x, \rho)} \right|^2\, dx\, d\rho +C\int_{ \mathbb R^{n+1}_+}\rho^{1-2s}\left| {\frac{\partial U}{\partial z}(x, \rho)} \right|^2\, dx\, d\rho,

    for some constant C > 0 depending only on s . If we now sum for i = 1, \dots, n and take the square root, we obtain (2.6), thus concluding the proof.

    The next step is to prove that the trace map introduced in the proposition above is onto. We first introduce the Poisson kernel of the upper half-space \mathbb R^{n+1}_+ , defined as

    \begin{equation*} P_z(x): = c_{n, s}\frac{z^{2s}}{(\left| {x} \right|^2+z^2)^{\frac{n+2s}{2}}}, \quad\text{for }(x, z)\in \mathbb R^{n+1}_+ \end{equation*}

    where

    \begin{equation} c_{n, s}: = \left( \int_{ \mathbb R^n}\frac{1}{(1+\left| {x} \right|^2)^{\frac{n+2s}{2}}}\, dx \right)^{-1} = \pi^{-\frac{n}{2}}\frac{\Gamma\left(\frac{n+2s}{2}\right)}{\Gamma(s)}, \end{equation} (2.7)

    is given in such a way that

    \begin{equation*} \int_{ \mathbb R^n}P_z(x)\, dx = 1, \quad\text{for all }z > 0, \end{equation*}

    see [22,Remark 2.2]. Essentially, a convolution with this kernel allows to extend to the upper half-space \mathbb R^{n+1}_+ functions that are defined on \mathbb R^n . This is done first for functions in C_c^\infty(\mathbb R^n) and then extended by density to the whole \mathcal{D}^{s, 2}(\mathbb R^n) . Namely, we have the following.

    Proposition 2.6. Let \varphi\in \mathcal{D}^{s, 2}(\mathbb R^n) . Then the function

    \begin{equation} U_\varphi(x, z): = (P_z\star \varphi)(x) \end{equation} (2.8)

    belongs to \mathcal{D}^{1, 2}_z(\overline{\mathbb R^{n+1}_+}) and

    \begin{equation} \left\lVert {U_\varphi} \right\lVert_{ \mathcal{D}^{1, 2}_z(\overline{\mathbb R^{n+1}_+})}^2 = \alpha_{n, s}[\varphi]_s^2, \end{equation} (2.9)

    where

    \begin{equation} \alpha_{n, s}: = \frac{s(1-s)}{\pi^{\frac{n}{2}}}\frac{\Gamma(1-s)\Gamma\left(\frac{n+2s}{2}\right)}{\Gamma(s)\Gamma(2-s)} > 0. \end{equation} (2.10)

    In particular the trace operator established in Proposition 2.5 is surjective.

    Proof. For any \varphi\in C_c^\infty(\mathbb R^n) , we let

    (\mathrm{E}\varphi)(x, z): = (P_z\star \varphi)(x).

    It is easy to check that

    \begin{equation} \left\lVert {\mathrm{E}\varphi} \right\lVert_{ \mathcal{D}^{1, 2}_z(\overline{\mathbb R^{n+1}_+})}^2 = \int_{ \mathbb R^{n+1}_+}z^{1-2s}\left| {\nabla (\mathrm{E}\varphi)} \right|^2\, dx\, dz = \alpha_{n, s}[\varphi]_s^2. \end{equation} (2.11)

    For the computation of the explicit constant see e.g., [10,Remark 3.11]. Moreover, by the weighted Sobolev inequality (2.3)

    \int_{ \mathbb R^{n+1}_+}z^{1-2s}\left| {\mathrm{E}\varphi} \right|^{2\gamma}\, dx\, dz < \infty.

    Hence, by Proposition 2.3, we have that \mathrm{E}\varphi\in \mathcal{D}^{1, 2}_z(\overline{\mathbb R^{n+1}_+}) . Therefore the map

    \mathrm{E}\colon C_c^\infty( \mathbb R^n)\to \mathcal{D}^{1, 2}_z(\overline{\mathbb R^{n+1}_+})

    is linear and continuous, thus it can be uniquely extended in the whole \mathcal{D}^{s, 2}(\mathbb R^n) and (2.11) still holds. We now prove that \mathrm{E}\varphi = U_\varphi for any \varphi\in \mathcal{D}^{s, 2}(\mathbb R^n) . Let \varphi\in \mathcal{D}^{s, 2}(\mathbb R^n) and (\varphi_i)_i \subseteq C_c^\infty(\mathbb R^n) be such that \varphi_i\to\varphi in \mathcal{D}^{s, 2}(\mathbb R^n) as i\to\infty . Thanks to (2.1), we have that

    \varphi_i\to \varphi\quad\text{in }L^{2^*_s}( \mathbb R^n), \quad\text{as }i\to\infty,

    which, by definition, implies that

    \mathrm{E}\varphi_i = U_{\varphi_i}\to U_{\varphi}\quad\text{pointwise in } \mathbb R^{n+1}_+, \quad\text{as }i\to\infty.

    On the other hand \mathrm{E}\varphi_i\to \mathrm{E}\varphi in \mathcal{D}^{1, 2}_z(\overline{\mathbb R^{n+1}_+}) as i\to\infty ; hence, up to a subsequence

    \mathrm{E}\varphi_i\to \mathrm{E}\varphi\quad\text{a.e. in } \mathbb R^{n+1}_+, \quad\text{as }i\to\infty.

    Therefore \mathrm{E}\varphi = U_{\varphi} and the proof is complete.

    The following corollary, in view of the previous results, tells us that there is an isometry between the space \mathcal{D}^{s, 2}(\mathbb R^n) and the subspace of \mathcal{D}^{1, 2}_z(\overline{\mathbb R^{n+1}_+}) containing the (unique) minimizers of a certain functional.

    Corollary 2.7. Let \varphi\in \mathcal{D}^{s, 2}(\mathbb R^n) . Then the minimization problem

    \begin{equation*} \min\limits_{U\in \mathcal{D}^{1, 2}_z(\overline{\mathbb R^{n+1}_+})}\left\{ \int_{ \mathbb R^{n+1}_+}z^{1-2s}\left| {\nabla U} \right|^2\, dx\, dz\colon {\rm{Tr}} U = \varphi \right\} \end{equation*}

    admits a unique solution, which coincides with U_\varphi as in (2.8). Moreover

    \begin{equation*} \left\{ {\begin{array}{*{20}{c}} - \mathrm{div}(z^{1-2s}\nabla U_\varphi) = 0, &\mathit{\text{in}} \;\mathbb R^{n+1}_+, \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\; U_\varphi = \varphi, &\mathit{\text{on}} \;\mathbb R^n,\;\; \\ -\lim\limits_{z\to 0^+}z^{1-2s}\frac{\partial U_\varphi}{\partial z} = \alpha_{n, s} (-\Delta)^s\varphi, &\mathit{\text{on}}\; \mathbb R^n, \;\; \end{array}} \right. \end{equation*}

    in a weak sense, that is

    \int_{ \mathbb R^{n+1}_+}z^{1-2s}\nabla U_\varphi\cdot\nabla V\, dx\, dz = \alpha_{n, s}(\varphi, {\rm{Tr}} V)_{ \mathcal{D}^{s, 2}(\mathbb R^n)}, \quad\mathit{\text{for all}}\;V\in \mathcal{D}^{1, 2}_z(\overline{\mathbb R^{n+1}_+}),

    where \alpha_{n, s} > 0 is as in (2.10).

    Proof. The proof is standard. For instance see [3,Proposition 2.6] for the first part and [11] for the second.

    Remark 2.8. In view of the extension procedure described above, we can relate the notion of s -capacity with another notion of (weighted) capacity of sets in \mathbb R^{n+1} . More precisely, with a slight abuse of notation, we call \mathcal{D}^{1, 2}_z(\mathbb R^{n+1}) the completion of C_c^\infty(\mathbb R^{n+1}) with respect to the norm

    \left\lVert {U} \right\lVert_{ \mathcal{D}^{1, 2}_z(\mathbb R^{n+1})}: = \left(\int_{ \mathbb R^{n+1}}\left| {z} \right|^{1-2s}\left| {\nabla U} \right|^2\, dx\, dz\right)^{\frac{1}{2}}

    and, for any closed K \subseteq \mathbb R^{n+1} , we let

    \begin{equation*} {{{\rm{cap}}}}_{ \mathbb R^{n+1}}(K;\left| {z} \right|^{1-2s}): = \inf\left\{ \left\lVert {U} \right\lVert_{\mathcal{D}^{1, 2}_z( \mathbb R^{n+1})}^2\colon U\in\mathcal{D}^{1, 2}_z( \mathbb R^{n+1}), \; U-\zeta_K\in\mathcal{D}^{1, 2}( \mathbb R^{n+1}\setminus K) \right\}, \end{equation*}

    where \zeta_K\in C_c^\infty(\mathbb R^{n+1}) is equal to 1 in a neighborhood of K . Thanks to (2.9), after an even reflection in the z variable, one can see that

    \frac{1}{2}{{{\rm{cap}}}}_{ \mathbb R^{n+1}}(\Omega;\left| {z} \right|^{1-2s}) = \alpha_{n, s}{{{\rm{cap}}}_s}(\Omega).

    for any closed \Omega \subseteq \mathbb R^n . Moreover the unique function achieving {{{\rm{cap}}}}_{ \mathbb R^{n+1}}(\Omega; \left| {z} \right|^{1-2s}) coincides with the even-in- z reflection of P_z\star u_\Omega , with u_\Omega\in \mathcal{D}^{s, 2}(\mathbb R^n) denoting the capacitary potential of {{{\rm{cap}}}_s}(\Omega) , as in Remark 2.2.

    Hereafter we denote by

    \begin{equation} U_\Omega(x, z): = (P_z\star u_\Omega)(x), \quad \text{for }(x, z)\in \mathbb R^{n+1}_+ \end{equation}

    the restriction to the upper half-space of the potential associated to {{{\rm{cap}}}}(\Omega; \left| {z} \right|^{1-2s}) . Hence, U_\Omega\in \mathcal{D}^{1, 2}_z(\overline{\mathbb R^{n+1}_+}) satisfies 0\leq U_\Omega\leq 1 a.e. in \mathbb R^{n+1}_+ and weakly solves

    \left\{ {\begin{array}{*{20}{c}} - \mathrm{div}(z^{1-2s}\nabla U_\Omega) = 0, &\text{in } \mathbb R^{n+1}_+,\;\; \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; U_\Omega = 1, & \text{on }\Omega, \;\;\;\;\\ -\lim\limits_{z\to 0^+} z^{1-2s}\frac{\partial U_\Omega}{\partial z} = 0, &\text{on } \mathbb R^n\setminus\Omega, \end{array}} \right.

    in the sense that U_\Omega-\zeta_\Omega\in \mathcal{D}^{1, 2}_z(\overline{\mathbb R^{n+1}_+}\setminus\Omega) and

    \int_{ \mathbb R^{n+1}_+}z^{1-2s}\nabla U_\Omega\cdot\nabla V\, dx\, dz = 0, \quad\text{for all }V\in \mathcal{D}^{1, 2}_z(\overline{\mathbb R^{n+1}_+}\setminus\Omega).

    Thanks to [31,Theorem 1.1], we can observe that U_\Omega\in C^\infty(\overline{ \mathbb R^{n+1}_{+}}\setminus\Omega) . Hence, in particular u_\Omega\in C^\infty(\mathbb R^n\setminus\Omega) .

    Remark 2.9. We emphasize a technical difference with respect to [3]. Namely that the functional setting we adopt here is tailored for the problem under investigation. Indeed, being the s -capacity obtained by minimization of the (nonlocal) energy, it is natural to expect the minimizer to have only finite seminorm [\cdot]_s , together with the possibility of approximating it by means of smooth and compactly supported functions, at least for compact \Omega . Therefore, any other integrability assumption on the capacitary potential appears as artificial. Observe that, differently from our Proposition 2.6 and Corollary 2.7, in which the trace function \varphi needs just to belong to \mathcal D^{s, 2}(\mathbb R^n) , in the analogue extension result Proposition 2.6 of [3] an additional integrability assumption on \varphi is required.

    This paragraph is devoted to the isocapacitary inequality (1.7). The classical and simplest proof of the (standard) isocapacitary inequality,

    \begin{equation} |\Omega|^{(2-n)/n}{{{\rm{cap}}}}(\Omega)\geq |B|^{(2-n)/n}{{{\rm{cap}}}}(B) \end{equation} (2.12)

    is by rearrangement: given any function u: \mathbb R^n\to \mathbb R , its symmetric decreasing rearrangement is the radial decreasing function u^*: \mathbb R^n\to \mathbb R such that |\{u > t\}| = |\{u^* > t\}| . As a consequence of the Pólya-Szegö inequality

    \int_{ \mathbb R^n} |\nabla u|^2\, dx\ge \int_{ \mathbb R^n} |\nabla u^*|^2\, dx

    applied to the capacitary potential of a closed \Omega \subseteq \mathbb R^n one can easily see that {{{\rm{cap}}}}(\Omega)\ge {{{\rm{cap}}}}(B) as long as |B| = |\Omega| < \infty , from which, by scaling (2.12) holds as well. Indeed, the symmetric rearrangement of the capacitary potential of \Omega coincides with the potential of a ball with the same volume as \Omega . Following this path, one can prove the fractional isocapacitary inequality using symmetric rearrangements for the extended problem in \mathbb R^{n+1}_+ .

    As in [3,22], we define in \mathbb R^{n+1}_+ the partial Schwartz symmetrization U^* of a nonnegative function U\in \mathcal{D}_z^{1, 2}(\mathbb R^{n+1}_+) . By construction, the function U^* is obtained by taking for almost every z > 0 , the n- dimensional Schwartz symmetrization of the map

    x\mapsto U(x, z).

    More precisely: for almost every fixed z > 0 , the function U^*(\cdot, z) is defined to be the unique radially symmetric decreasing function on \mathbb R^n such that for all t > 0

    |\{ U^*(\cdot, z) > t\}| = |\{ U(\cdot, z) > t\}|.

    Proposition 2.10. Let \varphi\in \mathcal{D}^{s, 2}(\mathbb R^{n}) be a nonnegative function and let U_\varphi\in\mathcal{D}^{1, 2}_z(\overline{ \mathbb R^{n+1}_+}) as in (2.8). Then

    U^*_\varphi\in \mathcal{D}^{1, 2}_z(\overline{ \mathbb R^{n+1}_+})

    and the following Pólya-Szegö type inequalities hold true

    \begin{gather} \int_{\mathbb{R}^{n+1}_+} z^{1-2\, s}\, |\nabla U_\varphi^*|^2\, dx\, dz\leq\int_{\mathbb{R}^{n+1}_+} z^{1-2\, s}\, |\nabla U_\varphi|^2\, dx\, dz, \\ \int_{\mathbb{R}^{n+1}_+} z^{1-2\, s}\, |\partial_{z}U_\varphi^*|^2\, dx\, dz\leq\int_{\mathbb{R}^{n+1}_+} z^{1-2\, s}\, |\partial_z U_\varphi|^2\, dx\, dz. \end{gather} (2.13)

    Moreover, we have \mathrm{Tr}(U_\varphi^*) = \varphi^* . In particular, we get

    \begin{equation} \int_{\mathbb{R}^{n+1}_+} z^{1-2\, s}\, |\nabla U_\varphi^*|^2\, dx\, dz\ge \alpha_{n, s} [\varphi^*]_{\mathcal{D}^{s, 2}( \mathbb R^{n})}^2. \end{equation}

    Proof. By density, it is enough to show the result for \varphi\in C^{\infty}_{c}(\mathbb R^{n}) . In that case, the proof follows directly by [3,Proposition 3.2].

    Now, a proof of the fractional isocapacitary inequality (1.7) can be obtained as a direct consequence of the previous result, applied to \varphi = u_\Omega , and Remark 2.8.

    In this section we give the proof of our main result. The idea consists in introducing quantitative elements in the proof of the isocapacitary inequality established in the previous section. As already explained in the Introduction, the major inconvenience when working with the extended problem in \mathbb R^{n+1}_+ consists in the fact that we need to transfer information on the superlevel sets of the extension of the capacitary potential \{ U_\Omega(\cdot, z)\ge t\} for fixed z > 0 , to information on the superlevel sets of its trace u_\Omega in \mathbb R^n . This was done in Section 4 of [3] for a problem concerning the stability of the first eigenvalue of the Dirichlet fractional Laplacian.

    We start by recalling the following technical result, whose proof can be found in [3,Lemma 4.1].

    Lemma 3.1. Let \Omega, E be two measurable subsets of \mathbb R^n of finite measure and such that

    \frac{|\Omega\Delta E|}{|\Omega|}\le\frac{\delta}{3}{\mathcal A}(\Omega),

    for some \delta\in(0, 1) . Then

    {\mathcal A}(E)\ge C_\delta {\mathcal A}(\Omega),

    where

    \begin{equation} C_\delta: = \frac{3-2\delta}{3+2\delta}. \end{equation} (3.1)

    The following lemma corresponds to Proposition 2.6 of [3]. Observe that, here, the extension U_\varphi(\cdot, z) of a function \varphi\in \mathcal{D}^{s, 2}(\mathbb R^n) does not belong to L^2(\mathbb R^n) for fixed z\geq 0 ; nevertheless, with the same computations as in [3], we can show that it is close enough (depending on z ) in L^2 to its trace u . We report a proof of the lemma for the sake of completeness.

    Lemma 3.2. For any \varphi\in \mathcal{D}^{s, 2}(\mathbb R^n) , denoting by U_\varphi\in \mathcal{D}^{1, 2}_z(\overline{\mathbb R^{n+1}_+}) its extension, there holds

    \begin{equation*} \left\lVert {U_\varphi(\cdot, z)-\varphi} \right\lVert_{L^2( \mathbb R^n)}\leq {\sqrt{{c}_{n, s}}} [\varphi]_s\, z^{s}, \quad\mathit{\text{for}}\;z > 0, \end{equation*}

    where c_{n, s} is given in (2.7).

    Proof. We first prove the following preliminary fact

    \begin{equation} \int_{ \mathbb R^n}P_z(y)\left\lVert {\tau_y \varphi -\varphi } \right\lVert_{L^2( \mathbb R^n)}\, dy\leq \sqrt{c_{n, s}}z^s[\varphi]_s < \infty\quad\text{for all }\varphi\in \mathcal{D}^{s, 2}(\mathbb R^n)\; \text{and all }z\geq 0, \end{equation} (3.2)

    where \tau_y \varphi(\cdot) = \varphi(\cdot-y). Indeed, multiplying and dividing by \left| {y} \right|^{(n+2s)/2} and applying Cauchy-Schwartz inequality yields

    \begin{align*} \int_{ \mathbb R^n}P_z(y)\left\lVert {\tau_y \varphi -\varphi } \right\lVert_{L^2( \mathbb R^n)}\, dy &\leq\left(\int_{ \mathbb R^n} P_z(y)^{2}\left| {y} \right|^{n+2s}\, dy \right)^{\frac{1}{2}}\left( \int_{ \mathbb R^n}\left\lVert {\frac{\tau_y \varphi -\varphi }{\left| {y} \right|^s}} \right\lVert_{L^2( \mathbb R^n)}^2\frac{dy}{\left| {y} \right|^n} \right)^{\frac{1}{2}} \\ & = \left(\int_{ \mathbb R^n} P_z(y)^{2}\left| {y} \right|^{{n+2s}}\, dy \right)^{\frac{1}{2}}[\varphi ]_s, \end{align*}

    where, in the last step, we used the fact that

    \int_{ \mathbb R^n}\left\lVert {\frac{\tau_y \varphi -\varphi }{\left| {y} \right|^s}} \right\lVert_{L^2( \mathbb R^n)}^2\frac{dy}{\left| {y} \right|^n} = [\varphi ]_s^2.

    The proof of (3.2) ends by observing that

    \left(\int_{ \mathbb R^n} P_z(y)^{2}\left| {y} \right|^{n+2s}\, dy \right)^{\frac{1}{2}} = {\sqrt{{c}_{n, s}}} z^{s}.

    Let us now consider \varphi\in \mathcal{D}^{s, 2}(\mathbb R^n) . By definition of U_\varphi and Minkowski's inequality we have that

    \begin{equation*} \left\lVert {(U_\varphi (\cdot, z)-\varphi)\chi_{B_R} } \right\lVert_{L^2( \mathbb R^n)}\leq \int_{ \mathbb R^n}P_z(y)\left\lVert {\tau_y \varphi -\varphi } \right\lVert_{L^2(B_R)}\, dy, \end{equation*}

    for any R > 0 , where \chi_{B_R} denotes the characteristic function of the ball B_R . We conclude the proof applying Fatou's Lemma for R\to\infty and combining the resulting inequality with (3.2).

    The following result allows us to focus on compact sets without loss of generality. Therefore hereafter in this section we always assume \Omega \subseteq \mathbb R^n to be a compact set.

    Lemma 3.3 (Reduction to compact sets). Let \Omega \subseteq \mathbb R^n be a closed set with finite measure. Then

    \lim\limits_{r\to\infty}{{{\rm{cap}}}_s}(\Omega\cap \overline{B_r}) = {{{\rm{cap}}}_s}(\Omega)\quad {{and}}\quad \lim\limits_{r\to\infty}\mathcal{A}(\Omega\cap \overline{B_r}) = \mathcal{A}(\Omega),

    where B_r: = \{x\in \mathbb R^n\colon \left| {x} \right| < r \} .

    Proof. The convergence of the capacity follows from the fact that, for any sequence of closed sets \Omega_i \subseteq \mathbb R^n such that \Omega_i \subseteq\Omega_{i+1} , there holds

    {{{\rm{cap}}}_s}(\cup_{i = 1}^\infty \Omega_i) = \lim\limits_{i\to\infty}{{{\rm{cap}}}_s}(\Omega_i)

    which, in turn, can be proved by following step by step the proof of [16,Theorem 4.15,Point \rm (viii) ]. The rest of the proof is easy and can be omitted.

    Hereafter in this section, for 0\leq t\leq 1 and z\geq 0 , we let

    \begin{equation*} \Omega_{t, z}: = \{ x\in \mathbb R^n\colon U_\Omega(x, z)\geq t \}\quad\text{and}\quad \Omega_t: = \Omega_{t, 0} = \{x\in \mathbb R^n\colon u_\Omega(x)\geq t\}. \end{equation*}

    We notice that, by the continuity of u_{\Omega} , it follows that |\Omega_t\Delta\Omega|\rightarrow 0 , as t\to 1^{-} . Moreover, we set, respectively

    \begin{equation*} \mu_z(t): = |\Omega_{t, z}|\quad\text{and}\quad \mu(t): = \mu_0(t) = |\Omega_t|. \end{equation*}

    We immediately observe that \mu is left-continuous and non-increasing in (0, 1) and that

    \lim\limits_{t\to 0^+}\mu(t) = +\infty\quad\text{and}\quad \lim\limits_{t\to 1^-}\mu(t) = |\Omega|.

    We now let

    \begin{align} T = T(\Omega, {\gamma})& = \inf\left\{0\leq t\leq 1\colon|\{u_\Omega\geq t\}| \le |\Omega|\left(1+\gamma\mathcal A(\Omega)\right)\right\}, \\ & = \inf\left\{0\leq t\leq 1\colon \mu(t) \le |\Omega|\left(1+\gamma\mathcal A(\Omega)\right)\right\}. \end{align} (3.3)

    The constant \gamma is chosen in (0, 1/9) and will be settled later on. Notice that if {\mathcal A}(\Omega) > 0 then T < 1 . In addition, in view of the left-continuity of \mu , we know that

    \begin{equation} \mu(T)\geq\left| {\Omega} \right|(1+\gamma\mathcal{A}(\Omega)). \end{equation} (3.4)

    The following proposition, which will be crucial in the proof of our main result, allows to bound from below the asymmetry of the superlevel sets of U_\Omega(\cdot, z) with the asymmetry of \Omega (for certain levels t and for z small enough).

    Proposition 3.4. Let \Omega be such that {\mathcal A}(\Omega) > 0 , \gamma \in (0, 1/9) , and let T\in(0, 1) as in (3.3). Set also \widehat T = 1-T . Then, letting {c}_{n, s} be as in (2.7), if

    T+\frac18 \widehat T \le t\le T+\frac{3}{8}\widehat T \quad {{and}}\quad0 < z\le z_{0}: = {\left(\frac{\widehat{T}}{16}\sqrt{\frac{\gamma\mathcal{A}(\Omega) |\Omega|}{ {c}_{n, s}{{{{\rm{cap}}}_s}(\Omega)}}}\right)^\frac{1}{s}},

    we have

    \begin{equation} \frac{\Big|\big|\Omega_{t, z}\big|-|\Omega|\Big|}{|\Omega|}\le 3\gamma\, \mathcal{A}(\Omega), \end{equation} (3.5)

    and

    \begin{equation} \mathcal{A}\big(\Omega_{t, z}\big)\ge c_\gamma\mathcal{A}(\Omega), \end{equation} (3.6)

    where c_\gamma = C_{3\gamma} and C_{3\gamma} is as in (3.1).

    Proof. Let \tau = T+\frac{\widehat T}{2} . First of all, we observe that, by triangle inequality

    \begin{equation} \begin{aligned} {\frac{||\Omega_{t, z}|-|\Omega||}{|\Omega|}\leq}\frac{|\Omega_{t, z}\Delta\Omega|}{|\Omega|}& = \frac{|\Omega_{t, z}\setminus\Omega|}{|\Omega|}+\frac{|\Omega\setminus \Omega_{t, z}|}{|\Omega|}\\ & \le\frac{|\Omega_{t, z}\setminus\Omega_{T+\frac{\widehat{T}}{16}}|}{|\Omega|} + \frac{|\Omega_{T+\frac{\widehat T}{16}}\setminus \Omega|}{|\Omega|} + \frac{|\Omega\setminus \Omega_{t, z}|}{|\Omega|}\\ &\le \frac{|\Omega_{t, z}\setminus\Omega_{T+\frac{\widehat{T}}{16}}|}{|\Omega|}+\gamma{\mathcal A}(\Omega)+ \frac{|\Omega_{\tau}\setminus \Omega_{t, z}|}{|\Omega|}. \end{aligned} \end{equation} (3.7)

    where, in the last inequality we used the definition of T and the facts that T+\frac{\widehat{T}}{16} > T and \Omega\subseteq\Omega_\tau . For x\in\Omega_{\tau}\setminus \Omega_{t, z} we have that

    u_\Omega(x)-U_\Omega(x, z)\ge \tau-t\ge T+\frac{\widehat T}{2}- (T+\frac38\widehat T) = \frac18 \widehat T,

    which shows that \Omega_{\tau}\setminus \Omega_{t, z}\subset\{|u_\Omega-U_\Omega(\cdot, z)|\ge \frac18\widehat T \} . Hence, using Chebichev's inequality and Lemma 3.2 with \varphi = u_\Omega , it holds that

    \begin{aligned} \frac{|\Omega_{\tau}\setminus \Omega_{t, z}|}{|\Omega|} &\le\frac{|\{|u_\Omega-U_\Omega(\cdot, z)|\ge \frac18\widehat T \}|}{|\Omega|} \\ &\le \frac{64}{|\Omega|\widehat T^2}\|u_\Omega - U_\Omega(\cdot, z)\|^2_{L^2( \mathbb R^n)}\le \frac{64{c_{n, s}[u_\Omega]^2}}{|\Omega|\widehat T^2}z^{2s}\le\gamma {\mathcal A}(\Omega), \end{aligned}

    as long as z\le \left(\frac{\widehat{T}}{8}\sqrt{\frac{\gamma\mathcal{A}(\Omega) |\Omega|}{ {c}_{n, s}{{{{\rm{cap}}}_s}(\Omega)}}}\right)^\frac{1}{s} . Similarly, one can check that

    \frac{|\Omega_{t, z}\setminus\Omega_{T+\frac{\widehat{T}}{16}}|}{|\Omega|}\le \gamma{\mathcal A}(\Omega).

    as long as z\le \left(\frac{\widehat{T}}{16}\sqrt{\frac{\gamma\mathcal{A}(\Omega) |\Omega|}{ {c}_{n, s}{{{{\rm{cap}}}_s}(\Omega)}}}\right)^\frac{1}{s} . This, together with (3.7) entails that

    {\frac{||\Omega_{t, z}|-|\Omega||}{|\Omega|}\leq} 3\gamma{\mathcal A}(\Omega),

    which proves (3.5). Finally, applying Lemma 3.1 (with \delta = 3\gamma and \gamma chosen to be in (0, 1/6) ), we deduce (3.6).

    We can now give the proof of our main result.

    Proof of Theorem 1.1. By scaling invariance, we may assume |\Omega| = 1 . We also fix \gamma = 10^{-1}\in (0, 1/9) throughout the proof. We have to prove that

    \begin{equation} {{{\rm{cap}}}_s}(\Omega)-{{{\rm{cap}}}_s}(B)\ge C{{{{\rm{cap}}}_s}(B)}\mathcal A(\Omega)^{\frac{3}{s}}, \end{equation} (3.8)

    for some C > 0 , where B is a ball with unit volume.

    We start by observing that if {{{\rm{cap}}}_s}(\Omega) > 2{{{\rm{cap}}}_s}(B) , then, since \mathcal A(\Omega)\leq 2 , we easily deduce that

    {{{\rm{cap}}}_s}(\Omega)-{{{\rm{cap}}}_s}(B) > {{{\rm{cap}}}_s}(B) = \frac{{{{\rm{cap}}}_s}(B)}{2^{\frac{3}{s}}}2^{\frac{3}{s}} \geq\frac{{{{\rm{cap}}}_s}(B)}{2^{\frac{3}{s}}}\mathcal A(\Omega)^{\frac{3}{s}},

    which proves (3.8) with {C = 2^{-\frac{3}{s}}} .

    Thus, we can just consider the case in which

    \begin{equation} {{{\rm{cap}}}_s}(\Omega)\le2{{{\rm{cap}}}_s}(B). \end{equation}

    We recall that in (3.3), we have defined the level T as

    T = \inf\left\{0\leq t\leq 1\colon \mu(t) \le |\Omega|\left(1+\gamma\mathcal A(\Omega)\right)\right\}.

    Notice that by Lemma 3.1 as long as 1\ge t\ge T it holds

    {\mathcal A}(\Omega_{t})\ge c_\gamma{\mathcal A}(\Omega),

    for some c_\gamma independent of t and \Omega .

    We now distinguish between two cases, in terms of the relation of T with \mathcal{A}(\Omega) . More precisely, we let

    \begin{equation} \lambda: = \frac{n-2s}{n}\gamma\quad\text{and}\quad \kappa: = \frac{\lambda}{4(1+2\lambda)}. \end{equation} (3.9)

    We consider the ranges

    \begin{equation*} 1-T\geq \kappa\mathcal{A}(\Omega)\quad\text{and}\quad 1-T < \kappa{\mathcal A}(\Omega). \end{equation*}

    \underline {{\rm{Case}}\; 1 - T \ge \kappa A(\Omega)} . In this case we argue as in the proof of Proposition 4.4 and of Theorem 1.3 (case T > T_0 ) in [3]. The idea consists in introducing quantitative elements in the proof of the Pólya-Szegö inequality by applying the quantitative isoperimetric inequality on each (horizontal) level set \Omega_{t, z} of the function U_\Omega(\cdot, z) .

    First, we recall that

    \begin{equation} {{{\rm{cap}}}_s}(\Omega) = [u_\Omega]_{\mathcal{D}^{s, 2}(\mathbb{R}^n)}^2 = \alpha_{n, s}^{-1}\, \int_{ \mathbb R^{n+1}_+} z^{1-2\, s}\, |\nabla_x U_\Omega|^2\, dx\, dz +\alpha_{n, s}^{-1}\, \int_{ \mathbb R^{n+1}_+} z^{1-2\, s}\, \left|\partial_z U_\Omega\right|^2\, dx\, dz. \end{equation}

    For what concerns the z -derivative, from (2.13) we know that

    \int_{ \mathbb R^{n+1}_+} z^{1-2\, s}\, \left|\partial_z U_\Omega\right|^2\, dx\, dz\ge \int_{ \mathbb R^{n+1}_+} z^{1-2\, s}\, \left|\partial_z U^*_{\Omega}\right|^2\, dx\, dz.

    For the x -derivative, we argue as in the local case. By the coarea formula, we have

    \begin{equation} \begin{aligned} &\int_{ \mathbb R^{n+1}_+} z^{1-2\, s}\, |\nabla_x U_\Omega|^2\, dx\, dz\\ & \quad = \int_{0}^{+\infty}z^{1-2s}\left(\int_{0}^{+\infty}\left(\int_{\{x\in\mathbb{R}^n \, : \, U_\Omega(x, z) = t\}} \, |\nabla_x U_\Omega|^2\, \frac{d\mathcal{H}^{n-1}(x)}{|\nabla_x U_\Omega|}\right)\, dt\right)\, dz\\ & \quad \ge \int_{0}^{+\infty}z^{1-2s}\left(\int_{0}^{+\infty}\frac{P(\Omega_{t, z})^2}{ \int_{\{x\in\mathbb{R}^n \, : \, U_\Omega(x, z) = t\}}\frac{d\mathcal{H}^{n-1}(x)}{|\nabla_x U_\Omega|}}\, dt\right)\, dz \end{aligned} \end{equation} (3.10)

    where P(\Omega_{t, z}) denotes the perimeter of the set \Omega_{t, z} , and in the last step we have used Jensen's inequality. Using the quantitative isoperimetric inequality, one can prove that

    \begin{equation} P(\Omega_{t, z})^2\geq P(\Omega_{t, z}^*)^2+c_n\mu_z(t)^{\frac{2(n-1)}{n}}\mathcal{A}(\Omega_{t, z})^2, \end{equation} (3.11)

    where

    \Omega_{t, z}^*: = \{x\in \mathbb R^n\colon U_\Omega^*(x, z)\geq t\},

    and

    \begin{equation*} c_n: = 2\omega_n^{\frac{2}{n}}\frac{(2-2^{\frac{n-1}{n}})^3}{(181)^2n^{12}}. \end{equation*}

    The proof of (3.11) can be easily carried out by following [4,Lemma 2.9], see also the proof of Proposition 4.4 in [3]. By definition of symmetric rearrangement, we have that

    \mu_z(t) = \left| {\Omega_{t, z}^*} \right|\quad\text{for a.e. }t\in (0, 1)

    and, from Lemma 3.2 and inequality (3.19) in [12] (see also (2.6) in [20]), we know that

    -\mu_z'(t) = \int_{\{x\in\mathbb{R}^n \colon U_\Omega^*(x, z) = t\}}\frac{d\mathcal{H}^{n-1}(x)}{|\nabla_x U_\Omega^*|}\geq \int_{\{x\in\mathbb{R}^n \, : \, U_\Omega(x, z) = t\}}\frac{d\mathcal{H}^{n-1}(x)}{|\nabla_x U_\Omega|}.

    Therefore, combining (3.10) and (3.11) with this last inequality, we can estimate the L^2 -norm of the x -gradient as follows

    \begin{split} \int_{\mathbb{R}^{n+1}_+} z^{1-2\, s}\, |\nabla_x U_\Omega|^2\, dx\, dz &\ge \int_{0}^{+\infty}z^{1-2s}\left(\int_{0}^{+\infty}\frac{P(\Omega_{t, z}^*)^2}{-\mu_z'(t)}\, dt\right)\, dz\\ &+c_n\int_{0}^{+\infty} z^{1-2\, s}\, \left(\int_0^{+\infty}\frac{\left(\mu_z(t)^\frac{n-1}{n}\right)^2\, \mathcal{A}(\Omega_{t, z})^2}{-\mu'_z(t)} dt\right)\, dz\\ & = \int_{\mathbb{R}^{n+1}_+} z^{1-2\, s}\, |\nabla_x U^*_\Omega|^2\, dx\, dz \\ &+c_n\int_{0}^{+\infty} z^{1-2\, s}\, \left(\int_0^{+\infty}\frac{\left(\mu_z(t)^\frac{n-1}{n}\right)^2\, \mathcal{A}(\Omega_{t, z})^2}{-\mu'_z(t)} dt\right)\, dz.\\ \end{split}

    Moreover, we have seen in the proof of Theorem 2.10 that

    \alpha_{n, s}^{-1}\, \int_{ \mathbb R^{n+1}_+} z^{1-2\, s}\, |\nabla U^*_\Omega|^2\, dx\, dz\geq{{{\rm{cap}}}_s}(B).

    Collecting all together, we obtain

    \begin{split} {{{\rm{cap}}}_s}(\Omega)& = \alpha_{n, s}^{-1}\, \int_{ \mathbb R^{n+1}_+} z^{1-2\, s}\, |\nabla_x U_\Omega|^2\, dx\, dz +\alpha_{n, s}^{-1}\, \int_{ \mathbb R^{n+1}_+} z^{1-2\, s}\, \left|\partial_z U_\Omega\right|^2\, dx\, dz\\ &\geq{{{\rm{cap}}}_s}(B)+{\alpha_{n, s}^{-1}}c_n\int_{0}^{+\infty} z^{1-2\, s}\, \left(\int_0^{+\infty}\frac{\left(\mu_z(t)^\frac{n-1}{n}\right)^2\, \mathcal{A}(\Omega_{t, z})^2}{-\mu'_z(t)} dt\right)\, dz.\\ \end{split}

    We use now Proposition 3.4, to pass from \mathcal{A}(\Omega_{t, z}) to \mathcal{A}(\Omega) . Let z_0 = \left(\frac{\widehat{T}}{16}\sqrt{\frac{\gamma\mathcal{A}(\Omega) |\Omega|}{ {c}_{n, s}{{{{\rm{cap}}}_s}(\Omega)}}}\right)^\frac{1}{s} be as in Proposition 3.4. Set also \widehat T = 1-T . We have

    \begin{split} {{{\rm{cap}}}_s}(\Omega)-{{{\rm{cap}}}_s}(B)&\ge {\alpha_{n, s}^{-1}}c_n\int_{0}^{+\infty} z^{1-2\, s}\, \left(\int_{0}^{+\infty}\frac{\left(\mu_z(t)^\frac{n-1}{n}\right)^2\, \mathcal{A}(\Omega_{t, z})^2}{-\mu'_z(t)} dt\right)\, dz\\ &\ge {\alpha_{n, s}^{-1}}c_n\, \int_{0}^{z_0} z^{1-2\, s}\, \left( \int_{{T+\frac{\widehat T}{8}}}^{T+\frac{3}{8}\widehat T} \mathcal{A}(\Omega_{t, z})^2\, \frac{\left(\mu_{z}(t)^\frac{n-1}{n}\right)^2}{-\mu'_z(t)}\, dt\right)\, dz\\ &\ge{\alpha_{n, s}^{-1}} c_n\, c_\gamma^{{2}}\, \mathcal{A}(\Omega)^2\, \int_{0}^{z_0} z^{1-2\, s}\, \left( \int_{{T+\frac{\widehat T}{8}}}^{T+\frac{3}{8}\widehat T}\frac{\left(\mu_{z}(t)^\frac{n-1}{n}\right)^2}{-\mu'_z(t)}\, dt\right)\, dz, \end{split}

    where, in the last inequality, we used (3.6). It remains to estimate the term

    \begin{equation} \int_{0}^{z_0} z^{1-2\, s}\int_{T+\frac{\widehat T}{8}}^{T+\frac{3}{8}\widehat T}\frac{\left(\mu_{z}(t)^\frac{n-1}{n}\right)^2}{-\mu'_z(t)}\, dt\, dz. \end{equation} (3.12)

    First, we observe that, since \gamma < 1/9 , using (3.5) and the fact that \mathcal A(\Omega) \leq2 , we have

    \mu_z(t)\ge 1-3\gamma \mathcal A(\Omega)\geq \frac{1}{3}.

    Hence, in order to estimate (3.12), it is enough to control from below the quantity

    \int_{0}^{z_0} z^{1-2\, s}\int_{T+\frac{\widehat T}{8}}^{T+\frac{3}{8}\widehat T}\frac{1}{-\mu'_z(t)}\, dt\, dz.

    By Jensen inequality and recalling the definition of \mu_z , we have

    \int_{T+\frac{\widehat T}{8}}^{T+\frac{3}{8}\widehat T}\frac{1}{-\mu'_z(t)}\, dt\ge \frac{\widehat T^2}{16} \frac{1}{\int_{T+\frac{\widehat T}{8}}^{T+\frac{3}{8}\widehat T}-\mu_z'(t)\, dt} \ge \frac{\widehat T^2}{16}\frac{1}{|\Omega_{T+\frac{\widehat T}{8}, z}|-|\Omega_{T+\frac{3}{8}\widehat T, z}|}.

    Using again (3.5), we deduce that

    |\Omega_{T+\frac{\widehat T}{8}, z}|-|\Omega_{T+\frac{3}{8}\widehat T, z}|\le 1+3\gamma \mathcal A(\Omega) - {(1-3\gamma\mathcal{A}(\Omega))} = {6}\gamma \mathcal A(\Omega).

    We can now estimate (3.12) as follows

    \begin{equation*} \int_{0}^{z_0} z^{1-2\, s}\int_{T+\frac{\widehat T}{8}}^{T+\frac{3}{8}\widehat T}\frac{\left(\mu_{z}(t)^\frac{n-1}{n}\right)^2}{-\mu'_z(t)}\, dt\, dz\geq C_1 \frac{\widehat{T}^2}{\mathcal{A}(\Omega)}\int_{0}^{z_0} z^{1-2\, s}\, dz, \end{equation*}

    where C_1 > 0 depends only on n and \gamma . This, in turn, yields the following estimate for the capacity variation

    \begin{equation*} {{{\rm{cap}}}_s}(\Omega)-{{{\rm{cap}}}_s}(B)\geq \frac{C_2}{\alpha_{n, s}}\mathcal{A}(\Omega)\widehat{T}^2 \int_{0}^{z_0} z^{1-2\, s}\, dz, \end{equation*}

    with C_2 > 0 depending only on n and \gamma . Finally, recalling the definition of z_0 (in Proposition 3.4) and that we are in the ranges {{{\rm{cap}}}_s}(\Omega)\leq 2{{{\rm{cap}}}_s}(B) and \widehat T = 1-T\ge \mathcal \kappa {\mathcal A}(\Omega) , we obtain

    \begin{align*} {{{\rm{cap}}}_s}(\Omega)-{{{\rm{cap}}}_s}(B)&\geq \frac{C_3}{\alpha_{n, s}}\left(\frac{C_4}{c_{n, s}} \right)^{\frac{1}{s}-1}\frac{1}{(1-s){{{\rm{cap}}}_s}(B)^{\frac{1}{s}}}{{{\rm{cap}}}_s}(B)\mathcal{A}(\Omega)^{\frac{1}{s}}\widehat{T}^{\frac{2}{s}} \\ &\geq \frac{\kappa^{\frac{2}{s}}C_3}{\alpha_{n, s}}\left(\frac{C_4}{c_{n, s}}\right)^{\frac{1}{s}-1}\frac{1}{(1-s){{{\rm{cap}}}_s}(B)^{\frac{1}{s}}}{{{\rm{cap}}}_s}(B)\mathcal{A}(\Omega)^{\frac{3}{s}}, \end{align*}

    with C_3, C_4 > 0 depending on n and \gamma . In particular, given \gamma = 10^{-1} it is possible to see that

    \begin{equation} C_3 = \frac{5}{3^5(181)^2}\frac{(3\omega_n)^{\frac{2}{n}}}{n^{12}}(1-2^{-\frac{1}{n}})^3. \end{equation} (3.13)

    Therefore (3.8) holds with

    \begin{equation*} C = \frac{\kappa^{\frac{2}{s}}C_3}{\alpha_{n, s}}\left(\frac{C_4}{c_{n, s}}\right)^{\frac{1}{s}-1}\frac{1}{(1-s){{{\rm{cap}}}_s}(B)^{\frac{1}{s}}}. \end{equation*}

    \underline {{\rm{Case}}\; 1 - T < \kappa {\cal A}(\Omega)} In this case we get the quantitative inequality by means of a suitable test function for the definition of {{{\rm{cap}}}_s} . Let us define

    w_T = \min\left\{1, \frac{u_\Omega}{T}\right\}.

    It is possible to see that w_T is an admissible competitor for {{{\rm{cap}}}_s}(\Omega_T) . Indeed, let \xi_k: = \tilde{\xi}_k\star \rho_{\frac{1}{2k}} , where \rho_\epsilon denotes a standard mollifier in \mathbb{R} and \tilde{\xi}_k\colon \mathbb{R}\to \mathbb{R} is defined as follows

    \tilde{\xi}_k(\sigma): = \begin{cases} 0, &\text{if }\sigma\leq \frac{1}{k}, \\ \frac{k}{k-2}\left(\sigma-\frac{1}{k}\right), &\text{if }\frac{1}{k}\leq \sigma\leq 1-\frac{1}{k}, \\ 1, &\text{if }\sigma\geq 1-\frac{1}{k}. \end{cases}

    It is clear that \xi_k\in C^\infty(\mathbb{R}) and that

    \xi_k(\sigma)\to \min\{ \sigma^+, 1 \}, \quad\text{uniformly as }k\to\infty.

    Moreover, if we let w_k: = \xi_k\circ w_T , one can see that w_k\in\mathcal{D}^{s, 2}(\mathbb{R}^n) and, thanks to the continuity of w_T , that w_k = 1 in an open \Omega_k\supseteq \Omega_T , thus implying that w_k-\eta_{\Omega_T}\in\mathcal{D}^{s, 2}(\mathbb{R}^n\setminus\Omega_T) , being \eta_{\Omega_T}\in C_c^\infty(\mathbb{R}^n) such that \eta_{\Omega_T} = 1 in a neighbourhood of \Omega_T . Finally, it is easy to check that w_k\to w_T in \mathcal{D}^{s, 2}(\mathbb{R}^n) as k\to \infty , which means that w_T-\eta_{\Omega_T}\in\mathcal{D}^{s, 2}(\mathbb{R}^n\setminus\Omega_T) . Therefore, we have

    \begin{equation*} {{{\rm{cap}}}_s}(\Omega_T)\le [w_T]^2_s\le \frac{1}{T^2} [u_{\Omega}]^2_s = \frac{1}{T^2}{{{\rm{cap}}}_s}(\Omega). \end{equation*}

    From the previous inequality, the isocapacitary inequality (1.7) and (3.4) we obtain that

    \begin{equation} {{{\rm{cap}}}_s}(\Omega)\ge T^2{{{\rm{cap}}}_s}(B)|\Omega_T|^{\frac{n-2s}{n}}\geq T^2{{{\rm{cap}}}_s}(B)\left(1+\gamma\mathcal A(\Omega)\right)^{\frac{n-2s}{n}}. \end{equation} (3.14)

    By convexity, we know that

    \begin{equation} T^2\geq 1-2(1-T)\geq 1-2\kappa\mathcal{A}(\Omega) \end{equation} (3.15)

    and that

    \begin{equation} (1+\gamma{\mathcal A}(\Omega))^{\frac{n-2s}{n}}\geq 1+\lambda {\mathcal A}(\Omega), \end{equation} (3.16)

    with \lambda as in (3.9). By the definition of \lambda and \kappa , as in (3.9), we derive that

    \begin{equation} (1-2\kappa {\mathcal A}(\Omega))(1+\lambda{\mathcal A}(\Omega))\geq 1+\frac{\lambda}{2}{\mathcal A}(\Omega)\geq (1+C_5{\mathcal A}(\Omega)^{\frac{3}{s}}), \end{equation} (3.17)

    with

    C_5: = 2^{-\frac{3}{s}}\lambda

    Putting together (3.14) with (3.15), (3.16) and (3.17), we obtain (3.8) with C = C_5 , thus concluding the proof.

    Remark 3.5. By carefully scanning the proof of Theorem 1.1, one can explicitly find the constant C_{n, s} appearing in (1.8), which amounts to

    \begin{equation*} C_{n, s} = \max\left\{ 2^{-\frac{3}{s}}, \frac{\kappa^{\frac{2}{s}}C_3}{\alpha_{n, s}}\left(\frac{C_4}{c_{n, s}}\right)^{\frac{1}{s}-1}\frac{1}{(1-s){{{\rm{cap}}}_s}(B)^{\frac{1}{s}}} \right\}, \end{equation*}

    where \kappa is as in (3.9), and C_3, C_4 depend only on n (indeed their dependence on \gamma stated in the proof of Theorem 1.1 is actually pointless, being \gamma universally fixed in (0, 1/9) , see (3.13) for the explicit value of C_3 ). The constants \alpha_{n, s} and c_{n, s} are as in (2.10) and (2.7), respectively, and they are uniformly bounded away from 0 and +\infty as s\to 1^- , see [3,Remark 2.7]. Moreover, it can be easily checked that this fact holds true for the constant \kappa as well, by its definition, when n\geq 3 .

    In this section we prove Thereom 1.2. We recall the definition of the standard (Newtonian) capacity of a closed \Omega \subseteq \mathbb R^n for n\geq3 , which is equivalent to (1.2) when \Omega is a compact set

    \begin{equation} {{{\rm{cap}}}}(\Omega) = \inf\left\{\int_{ \mathbb R^n} \left| {\nabla u} \right|^2\, dx\colon u\in \mathcal{D}^{1, 2}( \mathbb R^n)\; \text{and }u-\eta_\Omega\in \mathcal{D}^{1, 2}( \mathbb R^n\setminus \Omega) \right\}, \end{equation} (4.1)

    where \eta_\Omega\in C_c^\infty(\mathbb R^n) is such that \eta_\Omega = 1 in an open neighbourhood of \Omega and, for any open \mathcal{O} \subseteq \mathbb R^n , the space \mathcal{D}^{1, 2}(\mathcal{O}) is defined as the completion of C_c^\infty(\mathcal{O}) with respect to the norm

    u\mapsto \left(\int_{\mathcal{O}}\left| {\nabla u} \right|^2\, dx \right)^{1/2}.

    We also recall that, when \mathcal{O} is bounded, then the space \mathcal{D}^{1, 2}(\mathcal{O}) coincides with the usual Sobolev space W_0^{1, 2}(\mathcal{O}) , thanks to the validity of the Poincaré inequality.

    Proof of Proposition 1.2. Proof of (1.9). The first part of the statement follows easily by a celebrated result by Bourgain-Brezis-Mironescu stating that

    \lim\limits_{s\nearrow 1}(1-s)\, [\varphi]^2_{s} = \frac{\omega_n}{2}\, \int_{ \mathbb R^n} |\nabla \varphi|^2\, dx, \qquad \mbox{ for every } \varphi\in C^\infty_c( \mathbb R^n).

    Indeed, by taking a function \varphi\in C_c^\infty(\mathbb R^n) satisfying \varphi\ge \chi_\Omega , we deduce that

    \limsup\limits_{s\nearrow 1}(1-s)\, {\rm cap}_s(\Omega)\le \lim\limits_{s\nearrow 1}(1-s)\, [\varphi]^2_{s} = \frac{\omega_n}{2}\, \int_{ \mathbb R^n} |\nabla \varphi|^2\, dx.

    Finally, (1.9) follows by taking the infimum over all admissible \varphi .

    Proof of (1.10). Let us fix s_0\in(0, 1) and let us denote by u_{s, \Omega} the s -capacitary potential of the set \Omega . Since \Omega is compact, there exists a ball B_{R_0} which contains \Omega . Hence, we have that

    u_{s, \Omega} \le u_{s, B_{R_0}}\;\; \mbox{a.e. in } \mathbb R^n.

    This can be easily proved by taking the Kelvin transform of the above functions and applying the maximum principle as in [9,Theorem 3.3.2]. We can now take advantage of the following precise decay rate of u_{s, B_{R_0}} , established in [6,Proposition 3.6]:

    \begin{equation} u_{s, \Omega}(x) \le u_{s, B_{R_0}}(x)\le \frac{2{R_0^{n-2s}}}{|x|^{n-2s}}, \quad \mbox{for } |x| > R_0. \end{equation} (4.2)

    Let us define an almost optimal function, given by a suitable truncation of u_{s, \Omega} . For any fixed \varepsilon > 0 , we set

    u_{s, \Omega}^{\varepsilon}: = \frac{(u_{s, \Omega}-\varepsilon)^+}{1-\varepsilon}.

    We claim that u_{s, \Omega}^{\varepsilon}\in \mathcal{D}^{s, 2}(\mathbb R^n) and u_{s, \Omega}^{\varepsilon}-\eta_\Omega\in \mathcal{D}^{s, 2}(\mathbb R^n\setminus\Omega) , with \eta_\Omega\in C_c^\infty(\mathbb R^n) being such that \eta_\Omega = 1 in an open neighbourhood of \Omega . Indeed, since u_{s, \Omega}-\eta_\Omega\in \mathcal{D}^{s, 2}(\mathbb R^n\setminus\Omega) , there exists a sequence \{v_k\}_k \subseteq C_c^\infty(\mathbb R^n\setminus\Omega) such that v_k\to u_{s, \Omega}-\eta_\Omega in \mathcal{D}^{s, 2}(\mathbb R^n) as k\to\infty . If we now let u_k: = v_k+\eta_\Omega we have that u_k\in C_c^\infty(\mathbb R^n) and u_k = 1 in an open \Omega_k\supseteq\Omega . Now, if we consider the function

    u_k^{\varepsilon}: = \frac{(u_k-{\varepsilon})^+}{1-{\varepsilon}}

    we have that u_k^{\varepsilon}\in \mathcal{D}^{s, 2}(\mathbb R^n) and u_k^{\varepsilon}-\eta_\Omega\in \mathcal{D}^{s, 2}(\mathbb R^n\setminus\Omega) . Moreover, u_k^{\varepsilon}\to u_{s, \Omega}^\varepsilon in \mathcal{D}^{s, 2}(\mathbb R^n) as k\to\infty , thus proving the claim. We also observe that the family \{u_{s, \Omega}^{\varepsilon}\}_{s\in (s_0, 1)} satisfies the following properties:

    1). there exists \bar R = \bar R(\varepsilon) > 0 , depending only on \varepsilon , such that

    \mbox{supp }u_{s, \Omega}^\varepsilon \subset B_{\bar R}\, \, \mbox{for any } s\in(s_0, 1).

    This follows by the upper bound (4.2): we choose \bar R > \left(\frac{2{R_0^{n-2s}}}{\varepsilon}\right)^{\frac{1}{n-2}} with R_0 being such that \Omega \subseteq B_{R_0} .

    In particular, this implies that u_{s, \Omega}^\varepsilon\in \widetilde{W}_0^{s, 2}(B_{\bar{R}}) , where, for any open \mathcal{O} \subseteq \mathbb R^n we denote

    \begin{equation*} \widetilde{W}_0^{s, 2}(\mathcal{O}): = \left\{ u\in L^1_{ \rm{loc}}( \mathbb R^n)\colon [u]_s < \infty\; \text{and }u = 0\; \text{in } \mathbb R^n\setminus\mathcal{O} \right\}, \end{equation*}

    which, in case \mathcal{O} is bounded and has Lipschitz boundary, coincides with the space \mathcal{D}^{s, 2}(\mathcal{O}) , see [7,Proposition B.1];

    2). there holds

    \begin{equation} (1-s)[u_{s, \Omega}^{\varepsilon}]_s^2 \leq (1-s)\frac{[u_{s, \Omega}]_s^2}{(1-\varepsilon)^2}\le C_1, \end{equation} (4.3)

    for any \varepsilon > 0 and s\in (s_0, 1) , with C_1 > 0 independent of \varepsilon and s . This is a direct consequence of (1.9).

    Hence we can apply [7,Proposition 3.6] to the family \{u_{s, \Omega}^{\varepsilon}\}_{s\in(s_0, 1)} to deduce that there exists an increasing sequence s_k \in (s_0, 1) converging to 1 and a function u_{\Omega}^\varepsilon\in W^{1, 2}_0(B_{\bar R}) such that

    \lim\limits_{k\rightarrow \infty} \|u_{s_k, \Omega}^{\varepsilon}-u_{\Omega}^\varepsilon\|_{L^2(B_{\bar R})} = 0.

    Analogously, being \Omega a Lipschitz domain, we know that u_{s, \Omega}^{\varepsilon}-\eta_\Omega\in \widetilde{W}_0^{s, 2}(B_{\bar{R}}\setminus\Omega) and that

    (1-s)[u_{s, \Omega}^{\varepsilon}-\eta_\Omega]_s^2\leq C_2

    for all \varepsilon > 0 and s\in (s_0, 1) , with C_2 > 0 independent of \varepsilon and s . Therefore, we can apply [7,Proposition 3.6] to the family \{u_{s, \Omega}^{\varepsilon}-\eta_\Omega\}_{s\in(s_0, 1)} as well, and this entails the existence of a (not relabeled) subsequence s_k\in(s_0, 1) and of a function v_{\Omega}^{\varepsilon}\in W_0^{1, 2}(B_{\bar{R}}\setminus\Omega) such that

    \lim\limits_{k\rightarrow \infty} \|u_{s_k, \Omega}^{\varepsilon}-\eta_\Omega-v_{\Omega}^\varepsilon\|_{L^2(B_{\bar R})} = 0,

    where the functions are trivially extended in \Omega . As a consequence, we obtain that

    u_\Omega^{\varepsilon}-\eta_\Omega = v_\Omega^{\varepsilon}\in W_0^{1, 2}(B_{\bar{R}}\setminus \Omega),

    which, in turn, implies that the trivial extension of u_\Omega^{\varepsilon} to the whole \mathbb R^n is an admissible competitor for {\mathrm{cap}}(\Omega) . Hence we have

    \begin{align*} \frac{\omega_n}{2}{\rm{cap}}(\Omega) \leq \frac{\omega_n}{2}\int_{ \mathbb R^n}|\nabla u^\varepsilon_{\Omega}|^2\, dx &\leq \liminf\limits_{s\nearrow 1}(1-s)[u^\varepsilon_{s, \Omega}]_s^2\\ &\leq \frac{1}{(1-\varepsilon)^2}\liminf\limits_{s\nearrow 1}(1-s)[u_{s, \Omega}]_s^2, \end{align*}

    where in the second inequality we have used the \Gamma -convergence result by Brasco, Parini, Squassina (more precisely, Proposition 3.11 in [7]) and in the last one (4.3). Finally, we conclude by letting \varepsilon \rightarrow 0 .

    Remark 4.1. Thanks to Theorem 1.2 it is possible to explicitly compute the limit as s\to 1^- of the constant C_{n, s} as in Theorem 1.1, which coincides with the constant C_n appearing in Corollary 1.3. Indeed, from the definitions of \alpha_{n, s} and c_{n, s} , given in (2.10) and (2.7) respectively, and the property of the Gamma function, it is easy to see that

    \lim\limits_{s\to 1^-}\alpha_{n, s} = \lim\limits_{s\to 1^-}c_{n, s} = \pi^{-\frac{n}{2}}\Gamma\left(\frac{n+2}{2}\right).

    Moreover, if B denotes the unitary ball in \mathbb R^n , in view of Theorem 1.2 we have that

    \lim\limits_{s\to 1^-}(1-s){{{\rm{cap}}}_s}(B) = \frac{\omega_n}{2}{{{\rm{cap}}}}(B) = \frac{n(n-2)}{2}\omega_n^2,

    see e.g., [27,Theorem 2.8,point (i) ] for the explicit value of {{{\rm{cap}}}}(B) . Thanks to these facts, Remark 3.5 and basic calculus, it is easy to see that

    C_n = \lim\limits_{s\to 1^-}C_{n, s} = \max\left\{ 2^{-3}, \frac{\kappa_1^2 C_3\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n+2}{2}\right)}\frac{2}{n(n-2)\omega_n^2} \right\},

    where

    \kappa_1: = \frac{\lambda_1}{4(1+2\lambda_1)}, \quad\text{with}\quad\lambda_1: = \frac{n-2}{10n},

    and C_3 as in (3.13).

    E. Cinti is partially supported by MINECO grant MTM2017-84214-C2-1-P, by Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM), and is part of the Catalan research group 2017 SGR 1392. B. Ruffini acknowledges partial support from the ANR-18-CE40-0013 SHAPO financed by the French Agence Nationale de la Recherche (ANR). R. Ognibene acknowledges support from the MIUR-PRIN project No. 2017TEXA3H. A special thank goes to L. Brasco for several fruitful discussions and suggestions. Eventually, the authors thank Italy national football team for providing a joyful atmosphere during the last stages of the drafting process of this work.

    The authors declare no conflict of interest.



    [1] M. N. Ali, K. Mahmoud, M. Lehtonen, M. M. F. Darwish, Promising MPPT methods combining metaheuristic, fuzzy-logic and ANN techniques for grid-connected photovoltaic, Sensors, 21 (2021), 1244. https://doi.org/10.3390/s21041244 doi: 10.3390/s21041244
    [2] D. S. AbdElminaam, E. H. Houssein, M. Said, D. Oliva, A. Nabil, An efficient heap-based optimizer for parameters identification of modified photovoltaic models, Ain Shams Eng. J., 13 (2022), 101728. https://doi.org/10.1016/j.asej.2022.101728 doi: 10.1016/j.asej.2022.101728
    [3] A. A. K. Ismaeel, E. H. Houssein, D. Oliva, M. Said, Gradient-based optimizer for parameter extraction in photovoltaic models, IEEE Access, 9 (2021), 13403–13416. https://doi.org/10.1109/ACCESS.2021.3052153 doi: 10.1109/ACCESS.2021.3052153
    [4] E. H. Houssein, S. Deb, D. Oliva, H. Rezk, H. Alhumade, M. Said, Performance of gradient-based optimizer on charging station placement problem, Mathematics, 9 (2021), 2821. https://doi.org/10.3390/math9212821 doi: 10.3390/math9212821
    [5] D. S. Abdelminaam, M. Said, E. H. Houssein, Turbulent flow of water-based optimization using new objective function for parameter extraction of six photovoltaic models., IEEE Access, 9 (2021), 35382–35398. https://doi.org/10.1109/ACCESS.2021.3061529 doi: 10.1109/ACCESS.2021.3061529
    [6] M. Said, E. H. Houssein, S. Deb, A. A. Alhussan, R. M. Ghoniem, A novel gradient-based optimizer for solving unit commitment problem, IEEE Access, 10 (2022), 18081–18092. https://doi.org/10.1109/ACCESS.2022.3150857 doi: 10.1109/ACCESS.2022.3150857
    [7] E. H. Houssein, D. Oliva, N. A. Samee, N. F. Mahmoud, M. M. Emam, Liver cancer algorithm: A novel bio-inspired optimizer, Comput. Biol. Med., 165 (2023), 107389. https://doi.org/10.1016/j.compbiomed.2023.107389 doi: 10.1016/j.compbiomed.2023.107389
    [8] S. Li, H. Chen, M. Wang, A. A. Heidari, S. Mirjalili, Slime mould algorithm: A new method for stochastic optimization, Future Gener. Comp. Syst., 111 (2020), 300–323. https://doi.org/10.1016/j.future.2020.03.055 doi: 10.1016/j.future.2020.03.055
    [9] Y. Yang, H. Chena, A. A. Heidari, A. H. Gandomi, Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts, Expert Syst. Appl., 177 (2021), 114864. https://doi.org/10.1016/j.eswa.2021.114864 doi: 10.1016/j.eswa.2021.114864
    [10] I. Ahmadianfar, A. A. Heidari, A. H. Gandomi, X. Chu, H. Chen, RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method, Expert Syst. Appl., 181 (2021), 115079. https://doi.org/10.1016/j.eswa.2021.115079 doi: 10.1016/j.eswa.2021.115079
    [11] I. Ahmadianfar, A. A. Heidari, S. Noshadian, H. Chen, A. H. Gandomi, INFO: An efficient optimization algorithm based on weighted mean of vectors, Expert Syst. Appl., 195 (2022), 116516. https://doi.org/10.1016/j.eswa.2022.116516 doi: 10.1016/j.eswa.2022.116516
    [12] X. Yuan, Y. Liu, R. Bucknall, A novel design of a solid oxide fuel cell-based combined cooling, heat and power residential system in the U. K., IEEE T. Ind. Appl., 57 (2021), 805–813. https://doi.org/10.1109/TIA.2020.3034073 doi: 10.1109/TIA.2020.3034073
    [13] J. Ihonen, P. Koski, V. Pulkkinen, T. Keränen, H. Karimäki, S. Auvinen, et al., Operational experiences of PEMFC pilot plant using low grade hydrogen from sodium chlorate production process. Int. J. Hydrogen Energ., 42 (2017), 27269–27283. https://doi.org/10.1016/j.ijhydene.2017.09.056 doi: 10.1016/j.ijhydene.2017.09.056
    [14] Y. Qiu, P. Wu, T. Miao, J. Liang, K. Jiao, T. Li, et al., An intelligent approach for contact pressure optimization of PEM fuel cell gas diffusion layers, Appl. Sci., 10 (2020), 4194. https://doi.org/10.3390/app10124194 doi: 10.3390/app10124194
    [15] K. Ahmed, O. Farrok, M. M. Rahman, M. S. Ali, M. M. Haque, A. K. Azad, Proton exchange membrane hydrogen fuel cell as the grid connected power generator, Energies, 13 (2020), 6679. https://doi.org/10.3390/en13246679 doi: 10.3390/en13246679
    [16] K. Nikiforow, J. Pennanen, J. Ihonen, S. Uski, P. Koski, Power ramp rate capabilities of a 5 kW proton exchange membrane fuel cell system with discrete ejector control. J. Power Sources, 381 (2018), 30–37. https://doi.org/10.1016/j.jpowsour.2018.01.090 doi: 10.1016/j.jpowsour.2018.01.090
    [17] A. S. Menesy, H. M. Sultan, A. Korashy, F. A. Banakhr, M. G. Ashmawy, S. Kamel, Effective parameter extraction of different polymer electrolyte membrane fuel cell stack models using a modified artificial ecosystem optimization algorithm, IEEE Access, 8 (2020), 31892–31909. https://doi.org/10.1109/ACCESS.2020.2973351 doi: 10.1109/ACCESS.2020.2973351
    [18] B. Sundén, Fuel cell types—Overview. In: Hydrogen, batteries and fuel cells, Cambridge, MA, USA: Academic Press, 2019,123–144. https://doi.org/10.1016/B978-0-12-816950-6.00008-7
    [19] A. Fathy, H. Rezk, Multi-verse optimizer for identifying the optimal parameters of PEMFC model, Energy, 143 (2018), 634–644. https://doi.org/10.1016/j.energy.2017.11.014 doi: 10.1016/j.energy.2017.11.014
    [20] H. Ashraf, S. O. Abdellatif, M. M. Elkholy, A. A. El-Fergany, Computational techniques based on artificial intelligence for extracting optimal parameters of PEMFCs: Survey and insights, Arch. Comput. Methods Eng., 29 (2022), 3943–3972. https://doi.org/10.1007/s11831-022-09721-y doi: 10.1007/s11831-022-09721-y
    [21] H. Rezk, A. G. Olabi, E. Sayed, T. Wilberforce, Role of metaheuristics in optimizing microgrids operating and management issues: A comprehensive review, Sustainability, 15 (2023), 4982. https://doi.org/10.3390/su15064982 doi: 10.3390/su15064982
    [22] Y. Zhu, N. Yousefi, Optimal parameter identification of PEMFC stacks using adaptive sparrow search algorithm, Int. J. Hydrogen Energ., 46 (2021), 9541–9552. https://doi.org/10.1016/j.ijhydene.2020.12.107 doi: 10.1016/j.ijhydene.2020.12.107
    [23] D. Yousri, S. Mirjalili, J. A. T. Machado, S. B. Thanikanti, O. Elbaksawi, A. Fathy, Efficient fractional-order modified Harris hawks optimizer for proton exchange membrane fuel cell modeling, Eng. Appl. Artif. Intel., 100 (2021), 104193. https://doi.org/10.1016/j.engappai.2021.104193 doi: 10.1016/j.engappai.2021.104193
    [24] Z. Yuan, W. Wang, H. Wang, A. Yildizbasi, Developed coyote optimization algorithm and its application to optimal parameters estimation of PEMFC model, Energy Rep., 6 (2020), 1106–1117. https://doi.org/10.1016/j.egyr.2020.04.032 doi: 10.1016/j.egyr.2020.04.032
    [25] S. Bao, A. Ebadi, M. Toughani, J. Dalle, A. Maseleno, Baharuddin, et al., A new method for optimal parameters identification of a PEMFC using an improved version of monarch butterfly optimization algorithm, Int. J. Hydrogen Energ., 45 (2020), 17882–17892. https://doi.org/10.1016/j.ijhydene.2020.04.256 doi: 10.1016/j.ijhydene.2020.04.256
    [26] T. Wilberforce, H. Rezk, A. G. Olabi, E. I. Epelle, M. A. Abdelkareem, Comparative analysis on parametric estimation of a PEM fuel cell using metaheuristics algorithms, Energy, 262 (2023), 125530. https://doi.org/10.1016/j.energy.2022.125530 doi: 10.1016/j.energy.2022.125530
    [27] A. Fathy, M. A. Elaziz, A. G. Alharbi, A novel approach based on hybrid vortex search algorithm and differential evolution for identifying the optimal parameters of PEM fuel cell, Renew. Energ., 146 (2020), 1833–1845. https://doi.org/10.1016/j.renene.2019.08.046 doi: 10.1016/j.renene.2019.08.046
    [28] Z. Yuan, W. Wang, H. Wang, Optimal parameter estimation for PEMFC using modified monarch butterfly optimization, Int. J. Energ. Res., 44 (2020), 8427–8441. https://doi.org/10.1002/er.5527 doi: 10.1002/er.5527
    [29] Z. Yuan, W. Wang, H. Wang, N. Razmjooy, A new technique for optimal estimation of the circuit-based PEMFCs using developed Sunflower Optimization Algorithm, Energy Rep., 6 (2020), 662–671. https://doi.org/10.1016/j.egyr.2020.03.010 doi: 10.1016/j.egyr.2020.03.010
    [30] S. Sun, Y. Su, C. Yin, K. Jermsittiparsert, Optimal parameters estimation of PEMFCs model using converged moth search algorithm, Energy Rep., 6 (2020), 1501–1509. https://doi.org/10.1016/j.egyr.2020.06.002 doi: 10.1016/j.egyr.2020.06.002
    [31] R. Syah, L. A. Isola, J. W. G. Guerrero, W. Suksatan, D. Sunarsi, M. Elveny, et al., Optimal parameters estimation of the PEMFC using a balanced version of Water Strider Algorithm, Energy Rep., 7 (2021), 6876–6886. https://doi.org/10.1016/j.egyr.2021.10.057 doi: 10.1016/j.egyr.2021.10.057
    [32] H. Guo, H. Tao, S. Q. Salih, Z. M. Yaseen, Optimized parameter estimation of a PEMFC model based on improved Grass Fibrous Root Optimization Algorithm, Energy Rep., 6 (2020), 1510–1519. https://doi.org/10.1016/j.egyr.2020.06.001 doi: 10.1016/j.egyr.2020.06.001
    [33] M. A. Mossa, O. M. Kamel, H. M. Sultan, A. A. Z. Diab, Parameter estimation of PEMFC model based on Harris Hawks' optimization and atom search optimization algorithms, Neural Comput. Appl., 33 (2021), 5555–5570. https://doi.org/10.1007/s00521-020-05333-4 doi: 10.1007/s00521-020-05333-4
    [34] H. Rezk, S. Ferahtia, A. Djeroui, A. Chouder, A. Houari, M. Machmoum, et al., Optimal parameter estimation strategy of PEM fuel cell using gradient-based optimizer, Energy, 239 (2022), 122096. https://doi.org/10.1016/j.energy.2021.122096 doi: 10.1016/j.energy.2021.122096
    [35] G. Zhang, C. Xiao, N. Razmjooy, Optimal parameter extraction of PEM fuel cells by meta-heuristics, Int. J. Ambient Energy, 43 (2020), 2510–2519. https://doi.org/10.1080/01430750.2020.1745276 doi: 10.1080/01430750.2020.1745276
    [36] W. Han, D. Li, D. Yu, H. Ebrahimian, Optimal parameters of PEM fuel cells using chaotic binary shark smell optimizer, Energy Sources Part A, 45 (2019), 7770–7784. https://doi.org/10.1080/15567036.2019.1676845 doi: 10.1080/15567036.2019.1676845
    [37] A. Fathy, T. S. Babu, M. A. Abdelkareem, H. Rezk, D. Yousri, Recent approach based heterogeneous comprehensive learning archimedes optimization algorithm for identifying the optimal parameters of different fuel cells, Energy, 248 (2022), 123587. https://doi.org/10.1016/j.energy.2022.123587 doi: 10.1016/j.energy.2022.123587
    [38] L. Blanco-Cocom, S. Botello-Rionda, L. Ordoñez, S. I. Valdez, Robust parameter estimation of a PEMFC via optimization based on probabilistic model building, Math. Comput. Simulat., 185 (2021), 218–237. https://doi.org/10.1016/j.matcom.2020.12.021 doi: 10.1016/j.matcom.2020.12.021
    [39] X. Lu, D. Kanghong, L. Guo, P. Wang, A. Yildizbasi, Optimal estimation of the proton exchange membrane fuel cell model parameters based on extended version of crow search algorithm, J. Clean. Prod., 272 (2020), 122640. https://doi.org/10.1016/j.jclepro.2020.122640 doi: 10.1016/j.jclepro.2020.122640
    [40] A. S. Menesy, H. M. Sultan, S. Kamel, Extracting model parameters of proton exchange membrane fuel cell using equilibrium optimizer algorithm, In: 2020 International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), 2020. https://doi.org/10.1109/REEPE49198.2020.9059219
    [41] B. Duan, Q. Cao, N. Afshar, Optimal parameter identification for the proton exchange membrane fuel cell using satin bowerbird optimizer, Int. J. Energ. Res., 43 (2019), 8623–8632. https://doi.org/10.1002/er.4859 doi: 10.1002/er.4859
    [42] A. Fathy, S. H. E. A. Aleem, H. Rezk, A novel approach for PEM fuel cell parameter estimation using LSHADE-EpSin optimization algorithm, Int. J. Energ. Res., 45 (2021), 6922–6942. https://doi.org/10.1002/er.6282 doi: 10.1002/er.6282
    [43] Z. M. Isa, N. M. Nayan, M. H. Arshad, N. A. M. Kajaan, Optimizing PEMFC model parameters using ant lion optimizer and dragonfly algorithm: A comparative study, Int. J. Electr. Comput. Eng., 9 (2019), 5312–5320. http://dx.doi.org/10.11591/ijece.v9i6.pp5295-5303
    [44] Y. Song, X. Tan, S. Mizzi, Optimal parameter extraction of the proton exchange membrane fuel cells based on a new Harris Hawks optimization algorithm, Energy Sources Part A, 2020, 1–18. https://doi.org/10.1080/15567036.2020.1769230 doi: 10.1080/15567036.2020.1769230
    [45] Z. Yang, Q. Liu, L. Zhang, J. Dai, N. Razmjooy, Model parameter estimation of the PEMFCs using improved Barnacles Mating Optimization Algorithm, Energy, 212 (2020), 118738. https://doi.org/10.1016/j.energy.2020.118738 doi: 10.1016/j.energy.2020.118738
    [46] X. Sun, G. Wang, L. Xu, H. Yuan, N. Yousefi, Optimal estimation of the PEM fuel cells applying deep belief network optimized by improved Archimedes optimization algorithm, Energy, 237 (2021), 121532. https://doi.org/10.1016/j.energy.2021.121532 doi: 10.1016/j.energy.2021.121532
    [47] H. M. Hasanien, M. A. M. Shaheen, R. A. Turky, M. H. Qais, S. Alghuwainem, S. Kamel, et al., Precise modeling of PEM fuel cell using a novel enhanced transient search optimization algorithm, Energy, 247 (2022), 123530. https://doi.org/10.1016/j.energy.2022.123530 doi: 10.1016/j.energy.2022.123530
    [48] M. Calasan, S. H. E. A. Aleem, H. M. Hasanien, Z. M. Alaas, Z. M. Ali, An innovative approach for mathematical modeling and parameter estimation of PEM fuel cells based on iterative Lambert W function, Energy, 264 (2023), 126165. https://doi.org/10.1016/j.energy.2022.126165 doi: 10.1016/j.energy.2022.126165
    [49] T. Wilberforce, A. G. Olabi, H. Rezk, A. Y. Abdelaziz, M. A. Abdelkareem, E. T. Sayed, Boosting the output power of PEM fuel cells by identifying best-operating conditions, Energ. Convers. Manage., 270 (2022), 116205. https://doi.org/10.1016/j.enconman.2022.116205 doi: 10.1016/j.enconman.2022.116205
    [50] H. Rezk, T. Wilberforce, E. T. Sayed, A. N. M. Alahmadi, A. G. Olabi, Finding best operational conditions of PEM fuel cell using adaptive neuro-fuzzy inference system and metaheuristics, Energy Rep., 8 (2022), 6181–6190. https://doi.org/10.1016/j.egyr.2022.04.061 doi: 10.1016/j.egyr.2022.04.061
    [51] T. Wilberforce, A. G. Olabi, D. Monopoli, M. Dassisti, E. T. Sayed, M. A. Abdelkareem, Design optimization of proton exchange membrane fuel cell bipolar plate, Energ. Convers. Manage., 277 (2023), 116586. https://doi.org/10.1016/j.enconman.2022.116586 doi: 10.1016/j.enconman.2022.116586
    [52] H. Ashraf, S. O. Abdellatif, M. M. Elkholy, A. A. El-Fergany, Honey badger optimizer for extracting the ungiven parameters of PEMFC model: Steady-state assessment, Energ. Convers. Manage., 258 (2022), 115521. https://doi.org/10.1016/j.enconman.2022.115521 doi: 10.1016/j.enconman.2022.115521
    [53] S. K. Eelsayed, A. Agwa, E. E. Elattar, A. El-Fergany, Steady-state modelling of pem fuel cells using gradientbased optimizer, Dyna, 96 (2021), 520–527. http://doi.org/10.6036/10099 doi: 10.6036/10099
    [54] M. Han, Z. Du, K. F. Yuen, H. Zhu, Y. Li, Q. Yuan, Walrus optimizer: A novel nature-inspired metaheuristic algorithm, Expert Syst. Appl., 239 (2024), 122413. https://doi.org/10.1016/j.eswa.2023.122413 doi: 10.1016/j.eswa.2023.122413
    [55] S. Kaur, L. K. Awasthi, A. L. Sangal, G. Dhiman, Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization, Eng. Appl. Artif. Intel., 90 (2020), 103541. https://doi.org/10.1016/j.engappai.2020.103541 doi: 10.1016/j.engappai.2020.103541
    [56] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris hawks optimization: Algorithm and applications, Future Gener. Comput. Syst., 97 (2019), 849–872. https://doi.org/10.1016/j.future.2019.02.028 doi: 10.1016/j.future.2019.02.028
    [57] Q. Askari, M. Saeed, I. Younas, Heap-based optimizer inspired by corporate rank hierarchy for global optimization, Expert Syst. Appl., 161 (2020), 113702. https://doi.org/10.1016/j.eswa.2020.113702 doi: 10.1016/j.eswa.2020.113702
    [58] M. Khishe, M. R. Mosavi, Chimp optimization algorithm, Expert Syst. Appl., 149 (2020), 113338. https://doi.org/10.1016/j.eswa.2020.113338 doi: 10.1016/j.eswa.2020.113338
    [59] M. Dehghani, P. Trojovský, Osprey optimization algorithm: A new bioinspired metaheuristic algorithm for solving engineering optimization problems, Front. Mech. Eng., 8 (2023), 1126450. https://doi.org/10.3389/fmech.2022.1126450 doi: 10.3389/fmech.2022.1126450
    [60] S. I. Seleem, H. M. Hasanie, A. A. El-Fergany, Equilibrium optimizer for parameter extraction of a fuel cell dynamic model, Renew. Energ., 169 (2021), 117–128. https://doi.org/10.1016/j.renene.2020.12.131 doi: 10.1016/j.renene.2020.12.131
  • This article has been cited by:

    1. Ahmed Refaie Ali, Daniyal Ur Rehman, Najeeb Alam Khan, Muhammad Ayaz, Asmat Ara, M. Ijaz Khan, Integrating fractional-order SEI1I2I3QCR model with awareness and non-pharmaceutical interventions for optimal COVID-19 pandemic, 2025, 25, 1471-2288, 10.1186/s12874-024-02452-7
    2. Mohamad Chakroun, Samir Haddad, Wafaa M.R. Shakir, Jinane Sayah, Chadi Kallab, Salah Falou, 2024, Recent Monte Carlo-Based Simulations for Modeling Disease Spread, 979-8-3503-6756-0, 1, 10.1109/ICCA62237.2024.10927993
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1399) PDF downloads(77) Cited by(2)

Figures and Tables

Figures(5)  /  Tables(11)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog