Research article

The new Topp-Leone exponentied exponential model for modeling financial data

  • Received: 11 July 2023 Revised: 11 October 2023 Accepted: 30 November 2023 Published: 21 March 2024
  • We proposed in this article a new three-parameter distribution, which is referred as the Topp-Leone exponentiated exponential model is proposed. It is used in modeling claim and risk data applied in actuarial and insurance studies. The probability density function of the suggested distribution can be unimodel and positively skewed. Different distributional and mathematical properties of the TL-EE model were provided. Furthermore, we established a maximum likelihood estimation method for estimating the unknown parameters involved in the model, and some actuarial measures were calculated. Also, the potential of these actuarial statistics were provided via numerical simulation experiments. Finally, two real datasets of insurance losses were analyzed to prove the performance and superiority of the suggested model among all its competitors distributions.

    Citation: Hassan Alsuhabi. The new Topp-Leone exponentied exponential model for modeling financial data[J]. Mathematical Modelling and Control, 2024, 4(1): 44-63. doi: 10.3934/mmc.2024005

    Related Papers:

    [1] Mustafa Mudhesh, Aftab Hussain, Muhammad Arshad, Hamed AL-Sulami, Amjad Ali . New techniques on fixed point theorems for symmetric contraction mappings with its application. AIMS Mathematics, 2023, 8(4): 9118-9145. doi: 10.3934/math.2023457
    [2] Pragati Gautam, Vishnu Narayan Mishra, Rifaqat Ali, Swapnil Verma . Interpolative Chatterjea and cyclic Chatterjea contraction on quasi-partial b-metric space. AIMS Mathematics, 2021, 6(2): 1727-1742. doi: 10.3934/math.2021103
    [3] Tahair Rasham, Muhammad Nazam, Hassen Aydi, Abdullah Shoaib, Choonkil Park, Jung Rye Lee . Hybrid pair of multivalued mappings in modular-like metric spaces and applications. AIMS Mathematics, 2022, 7(6): 10582-10595. doi: 10.3934/math.2022590
    [4] Muhammad Tariq, Mujahid Abbas, Aftab Hussain, Muhammad Arshad, Amjad Ali, Hamid Al-Sulami . Fixed points of non-linear set-valued (α,ϕM)-contraction mappings and related applications. AIMS Mathematics, 2022, 7(5): 8861-8878. doi: 10.3934/math.2022494
    [5] Haitham Qawaqneh, Mohd Salmi Md Noorani, Hassen Aydi . Some new characterizations and results for fuzzy contractions in fuzzy b-metric spaces and applications. AIMS Mathematics, 2023, 8(3): 6682-6696. doi: 10.3934/math.2023338
    [6] Afrah Ahmad Noman Abdou . Chatterjea type theorems for complex valued extended b-metric spaces with applications. AIMS Mathematics, 2023, 8(8): 19142-19160. doi: 10.3934/math.2023977
    [7] Monairah Alansari, Mohammed Shehu Shagari, Akbar Azam, Nawab Hussain . Admissible multivalued hybrid Z-contractions with applications. AIMS Mathematics, 2021, 6(1): 420-441. doi: 10.3934/math.2021026
    [8] Tahair Rasham, Abdullah Shoaib, Shaif Alshoraify, Choonkil Park, Jung Rye Lee . Study of multivalued fixed point problems for generalized contractions in double controlled dislocated quasi metric type spaces. AIMS Mathematics, 2022, 7(1): 1058-1073. doi: 10.3934/math.2022063
    [9] Muhammad Tariq, Muhammad Arshad, Mujahid Abbas, Eskandar Ameer, Saber Mansour, Hassen Aydi . A relation theoretic m-metric fixed point algorithm and related applications. AIMS Mathematics, 2023, 8(8): 19504-19525. doi: 10.3934/math.2023995
    [10] Hanadi Zahed, Zhenhua Ma, Jamshaid Ahmad . On fixed point results in F-metric spaces with applications. AIMS Mathematics, 2023, 8(7): 16887-16905. doi: 10.3934/math.2023863
  • We proposed in this article a new three-parameter distribution, which is referred as the Topp-Leone exponentiated exponential model is proposed. It is used in modeling claim and risk data applied in actuarial and insurance studies. The probability density function of the suggested distribution can be unimodel and positively skewed. Different distributional and mathematical properties of the TL-EE model were provided. Furthermore, we established a maximum likelihood estimation method for estimating the unknown parameters involved in the model, and some actuarial measures were calculated. Also, the potential of these actuarial statistics were provided via numerical simulation experiments. Finally, two real datasets of insurance losses were analyzed to prove the performance and superiority of the suggested model among all its competitors distributions.



    Simon and Volkmann considered in [1] the following two equations which are connected with the absolute values of some additive function γ:GR, that is,

    η(x)+η(y)=max{η(xy),η(x+y)},x,yG, (1.1)
    |η(x)η(y)|=min{η(xy),η(x+y)},x,yG, (1.2)

    for a real function η:GR defined on an abelian group (G,+) and both functional equations are satisfied by η(x)=|γ(x)| where γ(x+y)=γ(x)+γ(y). Moreover, solution of the equation

    η(x)η(y)=max{η(x+y),η(xy)}, (1.3)

    with supposition about G to be an abelian group was presented in the following theorem as:

    Theorem 1. [1, Theorem 2] Let η:GR, where every element of an abelian group G is divisible by 2 and 3. Then, η fulfills Eq (1.3) if and only if η(x)=0 or η(x)=e|γ(x)|, xG, where γ:GR is an additive function.

    The solutions of Eqs (1.1) and (1.2) presented by Jarczyk et al. [2] and are demonstrated as:

    Theorem 2. Let η:GR, where η is defined on an abelian group G. Then η fulfills Eq (1.1) if and only if functional Eq (1.2) holds and also satisfies η(2x)=2η(x) for xG.

    Furthermore, the most comprehensive study of the equation

    η(x)+η(y)=max{η(xy1),η(xy)}x,yG, (1.4)

    on groups has been presented in [3,4]. Volkmann has given the solution of Eq (1.4) with supposition that η fulfills the renowned condition called Kannappan condition [5], that is defined as, η(xgy)=η(xyg) for x,y,gG. Following that, Toborg [3] gave the characterization of such mappings exhibited in Eq (1.4) without taking into account the Kannappan condition and abelian group G. Their key findings are as follows:

    Theorem 3 (For the special case, see [3,4] for the general case). Let η:GR, where η is acting on any group G. Then, η fulfills Eq (1.4) if and only if η(x)=|γ(x)| for every xG, where γ:GR is an additive function.

    We suggest the readers consult the articles [2,6] and related cited references to get some inclusive results and solutions about the functional Eq (1.4). In addition, some stability results of Eqs (1.2) and (1.4) can be found in [7] and [6] respectively.

    Recently, in [8], Eq (1.3) presented in a generalized form as

    max{η(xy1),η(xy)}=η(x)η(y),x,yG, (1.5)

    with the exception of additional suppositions that every element of the abelian group is divisible by 2 and 3. Their main result is demonstrated as:

    Theorem 4 (see [8]). Let η:GR, where G is any group. Then a mapping η:GR fulfills the Eq (1.5) if and only if η0 or there exists a normal subgroup Nη such that

    Nη={xGη(x)=1}

    and

    xyNηorxy1Nη,x,yG  and  x,yNη;

    or η(x)=e|γ(x)|, xG, where γ:GR is an additive function.

    The main objective of this research article is to determine the solution to the generalized minimum functional equation

    χ(x)χ(y)=min{χ(xy1),χ(xy)},x,yG. (1.6)

    With the exception of additional suppositions, we derive some results concerning Eq (1.6) that are appropriate for arbitrary group G rather than abelian group (G,+).

    Redheffer and Volkmann [9] determined the solution of the Pexider functional equation

    max{h(x+y),h(xy)}=f(x)+g(x),x,yG, (1.7)

    for three unknown functions h, f and g acting on abelian group (G,+), which is a generalization of Eq (1.1).

    We will also examine the general solutions of the generalized Pexider-type functional equation

    max{η(xy),η(xy1)}=χ(x)η(y)+ψ(x),x,yG, (1.8)

    where real functions η, χ, and ψ are defined on any group G. This Pexider functional Eq (1.8) is a common generalization of two previous Eqs (1.4) and (1.5). Readers can see renowned papers [10,11] and associated references cited therein to obtain comprehensive results and discussions concerning the Pexider version of some functional equations.

    In this research paper, our group G will in general (G,) not be abelian (G,+), therefore, the group operation will be described multiplicatively as xy for x,yG. Symbol e will be acknowledged as the neutral element.

    Definition 1. Assume that G is any group. A mapping η:GR fulfills the Kannappan condition [5] if

    η(xzg)=η(xgz)for  every  g,x,zG.

    Remark 1. For every abelian group G, a mapping η:GR fulfills the Kannappan condition but converse may not be true.

    Lemma 1. Suppose that η:GR, where G is an arbitrary group. Let η is a strictly positive solution of the functional Eq (1.6), then η(x)=e|β(x)|, xG, where β:GR is an additive function.

    Proof. By given assumption, η(x)>0 for every xG. Since η satisfies Eq (1.6), as a result, 1η also satisfies the functional Eq (1.3), then by well-known theorem from [6], we can get that η(x)=e|β(x)|, xG, where β:GR is an additive function.

    First, we are going to prove the following important lemma which will be utilized several times during computations especially to prove Theorem 5.

    Lemma 2. Let η:GR, where G is an arbitrary group and η is a non-zero solution of Eq (1.6), then the following results hold:

    (1) η(e)=1;

    (2) η(x1)=η(x);

    (3) η(x1yx)=η(y);

    (4) η is central.

    Proof. (1). Putting y=e in (1.6), we can obtain that η(x)η(e)=η(x). By given condition, η is non-zero, therefore, we obtain η(e)=1.

    (2). Using x=e in functional Eq (1.6), we can deduce

    η(e)η(y1)=min{η(e.y1),η(e.y)}η(y1)=min{η(y1),η(y)}, (2.1)

    replacing y1 with y in Eq (2.1) provides that

    η(y)=min{η(y),η(y1)}. (2.2)

    Eqs (2.1) and (2.2) give that η(y1)=η(y). Since y is arbitrary, therefore, we have η(x1)=η(x) for any xG.

    (3). From functional Eq (1.6), the proof of property (3) can be obtained from the following simple calculation:

    η(x)η(x1yx)=min{η(x(x1yx)),η(x(x1yx)1)}=min{η(yx),η(xx1y1x)}=min{η((yx)1),η(y1x)}=min{η(x1y1),η((y1x)1)}(by Lemma 2(2))=min{η(x1y1),η(x1y)}η(x)η(x1yx)=η(x1)η(y)η(x)η(x1yx)=η(x)η(y)η(x1yx)=η(y).

    (4). By Lemma 2(3) and replacing y with xy, we can see that η(x1(xy)x)=η(xy), which gives η(xy)=η(yx), therefore, η is central.

    In addition, we concentrate on the main theorem of Section 2 to describe the solutions η of Eq (1.6).

    Theorem 5. Let η:GR, where G is an arbitrary group. A mapping η is a solution of Eq (1.6) if and only if η0 or there exists a normal subgroup Hη of G defined as

    Hη={xGη(x)=1}

    and fulfills the condition that

    xy1HηxyHηfor  every  x,yGHη; (2.3)

    or there exists a normal subgroup Hη of G fulfills the condition that

    xy1HηxyHηfor  every  x,yGHη; (2.4)

    or η(x)=e|β(x)|, xG, where β:GR is some additive function.

    Proof. The 'if' part obviously demonstrates that every mapping η determined in the statement of the theorem is a solution of Eq (1.6). Conversely, suppose that a function η:GR is a solution of (1.6), then putting x=y=e in Eq (1.6), we get η(e)=η(e)η(e), which gives that either η(e)=1 or η(e)=0. First, let η(e)=0, and then put y=e in (1.6) to get η(x)=0 for every xG. Suppose that η(e)=1, then there are the following different cases.

    Suppose that there exists zG such that η(z)0. Putting x=y in (1.6), we have min{η(x2),η(e)}=η(x)2, which gives that η(x)21, so 1η(x)1 but η(z)0, therefore, 1η(z)0. Let 1<η(z)<0, then we can compute

    min{η(z2),η(e)}=η(z)2min{η(z2),1}=η(z)2<1,

    which implies that η(z2)=η(z)2. Moreover,

    η(z)min{η(z3),η(z)}=η(z2)η(z)=η(z)2η(z)=η(z)3η(z)>η(z),

    which gives a contradiction, consequently, either η(z)=0 or η(z)=1. Additionally, it is not possible that η(x)=0 and η(y)=1 for some x,yG. Since η(e)=1, therefore, either η(x){0,1} or η(x){1,1}. Moreover, define Hη={xGη(x)=1}.

    It is obvious that eHη for the reason that η(e)=1. Suppose that hHη; then from Lemma 2(2) we obtain η(h1)=η(h)=1; therefore, h1Hη. Let h1,h2Hη; then, η(h1)=η(h2)=1, and we can deduce from Eq (1.6) that

    η(h1h2)=η(h1h2)η(h2)=min{η(h1h22),η(h1)}η(h1)η(h1h2)η(h1)η(h2). (2.5)
    η(h1)η(h2)=min{η(h1h2),η(h1h12)}η(h1h2)η(h1)η(h2)η(h1h2). (2.6)

    By (2.5) and (2.6) we can get that η(h1h2)=η(h1)η(h2)=1, therefore, we have h1h2Hη. Consequently, Hη is a subgroup of G. Assume that hHη; then Lemma 2(3) yields that η(x1hx)=η(h) for any xG and hHη; accordingly, Hη is a normal subgroup of G.

    First, suppose that η(x){0,1} and x,yGHη; therefore, η(x)=η(y)=0, then, by functional Eq (1.6), we have min{η(xy),η(xy1)}=η(x)η(y)=0. In a consequence, we can determine that xy1HηxyHη for any x,yGHη.

    In addition, considering the second case, let η(x){1,1} and let x,yGHη; thus, η(x)1 and η(y)1; then η(x)=η(y)=1. Consequently, Eq (1.6) gives that min{η(xy),η(xy1)}=η(x)η(y)=1. In either case, we can conclude that η(xy)=1 and η(xy1)=1, which infers that xy1HηxyHη for all x,yGHη.

    Furthermore, let η(x)>0 for all xG, then from Lemma 1, we can conclude that η(x)=e|β(x)|, xG.

    Corollary 1. Let η:GR, where G is an arbitrary group. Assume that η is a non-zero solution of the functional Eq (1.6); then the commutator subgroup G is a normal subgroup of Hη.

    Proof. Since η is a non-zero, then by the main theorem, we can derive the following cases:

    Case 1. According to the main theorem, there exists a normal subgroup Hη defined as η(x)=1 for every xHη and also satisfies the condition (2.4); consequently, by Lemma 2, we can compute that

    (xy)1Hη(xy1)1Hηy1x1Hηyx1Hηx1y1Hηx1yHηxyx1y1Hηxy1x1yHη[x,y]Hη(xy1x1y)1Hη[x,y]Hηy1xyx1Hη[x,y]Hηxyx1y1Hη,

    which indicates that η([x,y])=1.

    Case 2. There exists a normal subgroup Hη which satisfies the condition (2.3), that is xy1HηxyHη for all x,yGHη; accordingly, applying Lemma 2 and Case 1, we can deduce that η([x,y])=1.

    Case 3. Assume that η(x)>0 for any xG; consequently by Theorem 5, we have η(x)=e|β(x)| for any xG, where β:GR is an additive function, thus, η([x,y])=1 for the reason that β([x,y])=0 for any x,yG.

    Hence, in either case, the required proof is completed.

    Corollary 2. Any solution η:GR of Eq (1.6) on any group G fulfills the Kannappan condition.

    Proof. The proof relies on the following cases:

    Case 1. Assume that η0 on group G, then it is obvious that η fulfills the Kannappan condition.

    Case 2. Let η(x)0 for all xG. Then from Theorem 5 and Corollary 1, there exists normal subgroup Hη such that GHη, consequently, η(xyg)=1 if and only if xygHη if and only if [y1,x1]xyg=xgyHη if and only if η(xgy)=1. It is sufficient to prove the Kannappan condition because η only takes the values 1, 0, and -1.

    Case 3. Suppose that η(x)>0, xG, then η(x)=e|β(x)|, therefore η(xyg)=η(xgy) for any x,g,yG because β is an additive function.

    Corollary 3. If η is a strictly positive solution of (1.6), then max{η(xy1),η(xy)}(0,1].

    Theorem 6. Let η:GR and η is a non-zero solution of (1.6), then:

    (1) Assume that gG and η(gx1)=η(gx) for some elements xG with the restriction that η(x2)1. Then η(g2)=1.

    (2) Suppose that Gη={gGη(g2)=1}, then Gη is a normal subgroup of G.

    (3) If η is strictly positive, then Gη=Hη.

    Proof. Assume that x,yG, then by Eq (1.6) and Corollary 2, we have

    η(gx)η(gx1)=min{η(gxgx1),η(gx(gx1)1)}=min{η(gxgx1),η(gxxg1)}=min{η(g2),η(gx2g1)}η(gx)η(gx1)=min{η(g2),η(x2)}. (2.7)

    (1). By given condition η(gx)=η(gx1) for some xG and by Eq (2.7), we can see that either η(x2)=1 or η(g2)=1, therefore, given condition η(x2)1 implies that η(g2)=1.

    (2). Since η(e)=1, therefore eGη. Let gGη; then η(g2)=1. Moreover, η(x1)=η(x) gives that η(g2)=η(g2)=1, therefore g1Gη. Let g,yGη; then, η(y2)=1 and η(g2)=1, therefore, a simple calculation yields

    η(y2g2)=η(y2g2)η(g2)=min{η(y2g4),η(y2)}η(y2)η(y2g2)η(y2)η(g2). (2.8)
    η(y2)η(g2)=min{η(y2g2),η(y2g2)}η(y2g2)η(y2)η(g2)η(y2g2), (2.9)

    So, inequalities (2.8) and (2.9) implies that η(y2g2)=η(y2)η(g2)=1, which yields that ygGη, consequently, Gη is a subgroup of G. Additionally, Lemma 2 provides that η(xg)=η(gx) for every xG and gGη. As a result, Gη is a normal subgroup of a group G.

    (3). As η(x)>0 for every xG, then the proof can be seen easily from Lemma 1 and Theorem 6 (2).

    Definition 2. Suppose that group G is abelian. Then a mapping η:GR is called a discrete norm if η(x)>γ, where γ>0 and xG{e}. Then (G,η,e) is said to be a discretely normed abelian group [12].

    Theorem 7. Assume that (G,η,e) is a discretely normed abelian group. A mapping η:GR is a solution of (1.6) if and only if η(x)=e|β(x)|, xG{e}, where β:GR is some additive function.

    Proof. Since (G,η,e) is a discretely normed, then there exists a mapping η:GR such that η(x)>γ, where γ>0 and xG{e}. Setting η(x)=logη(x), and using Lemma 1, we get

    min{η(xy1),η(xy)}=η(x)η(y)

    if and only if η(x)=e|β(x)|, xG{e}, where β:GR is some additive function.

    Corollary 4. For free abelian group G, a mapping η is a solution of Eq (1.6) if and only if η(x)=e|β(x)|, xG{e}, where β:GR is some additive function.

    Theorem 8. Let η:GR fulfills the Kannappan condition, where G is an arbitrary group. Then η,χ,ψ are solutions of the functional Eq (1.8) if and only if

    {η(x)=λ1,xG,λ1R,ψ  is  an  arbitrary  function,χ(x)=1λ11ψ(x);

    or

    {η(x)=ξ(x)+λ1,xG,λ1R,χ(x)=1,ψ(x)=ξ(x),

    where ξ:GR is a solution of Eq (1.4);

    or

    {η(x)=λ2ξ(x)+λ1,xG,λ1,λ2R,λ2>0,χ(x)=ξ(x),ψ(x)=λ1(1ξ(x)),

    where ξ:GR is a solution of Eq (1.5);

    or

    {η(x)=λ2ξ(x)+λ1,xG,λ1,λ2R,λ2<0,χ(x)=ξ(x),ψ(x)=λ1(1ξ(x)),

    where ξ:GR is a solution of Eq (1.6).

    Proof. The 'if' part of the theorem can easily be seen that every function η, χ, and ξ presented in the statement is a solution of Eq (1.8). Conversely, suppose that η,χ,ψ are solutions of Eq (1.8), then we have the following cases:

    (1). η is constant.

    Assuming that η(x)=λ1 for xG and λ1R, we may deduce from Eq (1.8) that χ(x)=1λ11ψ(x) when ψ is an arbitrary function, which is required result described in the statement.

    (2). η is not constant.

    Setting y=e in Eq (1.8) gives that

    max{η(x),η(x)}=χ(x)η(e)+ψ(x)η(x)=χ(x)η(e)+ψ(x)ψ(x)=η(x)χ(x)η(e). (3.1)

    Using Eq (3.1) in (1.8), we conclude that

    max{η(xy),η(xy1)}=χ(x)η(y)+η(x)χ(x)η(e). (3.2)

    Setting x=e, we can obtain

    max{η(y),η(y1)}=χ(e)η(y)+η(e)χ(e)η(e). (3.3)

    We are going to show that χ(e)=1, but on the contrary, assume that χ(e)1. Setting

    H:={yG:η(y1)η(y)},H:=GH.

    If yH then y1H. Also, if yH, then from Eq (3.3), we have

    η(y)=χ(e)η(y)+η(e)χ(e)η(e)(χ(e)1)(η(e)η(y))=0,

    which implies that η(y)=η(e) for all yH. Moreover, H because η is not constant. Assume that yH then η(y)<η(y1)=η(e), which implies that

    η(y)η(e)<0. (3.4)

    Writing y instead of y in Eq (3.3) and using (3.4) we can get that

    η(e)=η(y1)=χ(e)η(y)+η(e)χ(e)η(e),

    which implies that (η(y)η(e))χ(e)=0, so χ(e)=0. Setting x=y and y=y1 in (3.2) we have

    η(e)max{η(e),η(y2)}=χ(y)η(y1)+η(y)χ(y)η(e)=χ(y)η(e)+η(y)χ(y)η(e)η(e)η(y)<η(e),

    which is a contradiction, thus, we have χ(e)=1. Moreover, from Eq (3.3), we can see that

    max{η(y),η(y1)}=η(y), (3.5)

    writting y1 instead of y in (3.5) we have

    max{η(y1),η(y)}=η(y1), (3.6)

    from (3.5) and (3.6) we can get that η(y1)=η(y).

    Since η(x1)=η(x) for every xG, then from Eq (3.2) and Kannappan condition we have

    χ(x)η(y)+η(x)χ(x)η(e)=max{η(xy),η(xy1)}=max{η(y1x1),η(yx1)}=max{η(ey1x1),η(eyx1)}=max{η(x1y1),η(x1y)}χ(x)η(y)+η(x)χ(x)η(e)=χ(x1)η(y)+η(x1)χ(x1)η(e)(η(y)η(e))(χ(x)χ(x1))=0,

    which infers that χ(x1)χ(x)=0 because η is not constant. Moreover, when η is not constant then η(x1)=η(x) and χ(x1)=χ(x) for every xG, consequently, by Eq (3.1) we can get that ψ(x1)=ψ(x). Also, by Eq (3.2) and Kannappan condition we can see that

    χ(x)η(y)+η(x)χ(x)η(e)=max{η(xy),η(xy1)}=max{η(exy),η(yx1)}=max{η(yx),η(yx1)}χ(x)η(y)+η(x)χ(x)η(e)=χ(y)η(x)+η(y)χ(y)η(e)χ(x)(η(y)η(e))+η(x)=χ(y)(η(x)η(e))+η(y)χ(x)(η(y)η(e))(η(y)η(e))=χ(y)(η(x)η(e))(η(y)η(e))(η(y)η(e))(χ(x)1)=(η(x)η(e))(χ(y)1).

    Suppose that η(y)η(e) for yG, then we can obtain that

    χ(x)1=χ(y)1η(y)η(e)(η(x)η(e)).

    Moreover, assume that β:=χ(y)1η(y)η(e), then χ(x)1=β(η(x)η(e)), so we can write as χ1(x)=βη1(x), where

    χ1(x):=χ(x)1,xG, (3.7)
    η1(x):=η(x)η(e),xG. (3.8)

    Also η1(e)=0. By functional Eq (3.2) and definition of η1, we have

    max{η1(xy),η1(xy1)}=max{η(xy),η(xy1)}η(e)=χ(x)η(y)+η(x)χ(x)η(e)η(e)=χ(x)(η(y)η(e))+η(x)η(e)=χ(x)η1(y)+η1(x)=(βη1(x)+1)η1(y)+η1(x)max{η1(xy),η1(xy1)}=βη1(x)η1(y)+η1(x)+η1(y). (3.9)

    According to the different values of β, we can discuss the following three different cases.

    Case 1. β=0.

    By Eq (3.7), we see that χ(x)=1, xG. Furthermore, by functional Eq (3.9), we have

    max{η1(xy),η1(xy1)}=η1(x)+η1(y),

    for all x,yG and also η1 satisfies the functional Eq (1.4), then from well-known theorem of Toborg [3], there exists some additive function g:GR such that η1(x)=|g(x)| for all xG, then from Eqs (3.1), (3.7) and (3.8), we can deduce

    {η(x)=λ1+ξ(x),χ(x)=1,ψ(x)=ξ(x),

    where λ1=η(e) and ξ:GR is a solution of Eq (1.4) such that ξ(x)=|g(x)|.

    Case 2. β>0.

    Let η2:=βη1(x) for all xG, then multiplying functional Eq (3.9) by β, we conclude that

    max{βη1(xy),βη1(xy1)}=(βη1(x))(βη1(y))+βη1(x)+βη1(y)max{η2(xy),η2(xy1)}=η2(x)η2(y)+η2(x)+η2(y)=(η2(x)+1)(η2(y)+1)1max{η2(xy),η2(xy1)}+1=(η2(x)+1)(η2(y)+1),

    then by setting ξ(x):=η2(x)+1 for xG, we get

    max{ξ(xy),ξ(xy1)}=ξ(x)ξ(y),x,yG.

    It is clear that ξ:GR satisfies Eq (1.5), then from Eq (3.8) we get

    ξ(x)=η2(x)+1=βη1(x)+1=β(η(x)η(e))+1,

    which gives that η(x)=λ2ξ(x)+λ1 where λ2=β1,λ1=η(e)β1.

    Also, from Eqs (3.1), (3.7) and (3.8), we can see that

    {η(x)=λ2ξ(x)+λ1,xG,λ2>0,χ(x)=ξ(x),ψ(x)=λ1(1ξ(x)),

    where ξ:GR is a solution of (1.5).

    Case 3. β<0.

    Assume that η2:=βη1(x) for every xG, then multiplying functional Eq (3.9) by β, we have

    max{βη1(xy),βη1(xy1)}=(βη1(x))(βη1(y))βη1(x)βη1(y)max{η2(xy),η2(xy1)}=η2(x)η2(y)+η2(x)+η2(y)=(η2(x)1)(η2(y)1)+1max{η2(xy),η2(xy1)}1=(η2(x)1)(η2(y)1),

    for any x,yG, then by setting ξ1(x):=η2(x)1 for xG, we have

    max{ξ1(xy),ξ1(xy1)}=ξ1(x)ξ1(y),x,yG,

    then by setting ξ(x):=ξ1(x), xG, we can see that ξ:GR satisfies the Eq (1.6), then from Eqs (3.1), (3.7) and (3.8), we have

    {η(x)=λ2ξ(x)+λ1,xG,λ2<0,χ(x)=ξ(x),ψ(x)=λ1(1ξ(x)),

    which completes the proof.

    The authors are grateful to the referees and the editors for valuable comments and suggestions, which have improved the original manuscript greatly. This work was supported by the National Natural Science Foundation of P. R. China (Grant number 11971493 and 12071491).

    All authors declare no conflict of interest in this paper.



    [1] M. A. Meraou, M. Z. Raqab, Statistical properties and different estimation procedures of poisson-Lindley distribution, J. Stat. Theory Appl., 20 (2021), 33–45. https://doi.org/10.2991/jsta.d.210105.001 doi: 10.2991/jsta.d.210105.001
    [2] F. Hashemi, M. Naderi, A. Jamalizadeh, Normal mean-variance Lindley Birnbaum-Saunders distribution, Stat. Interface, 12 (2019), 585–597. https://doi.org/10.4310/SII.2019.V12.N4.A8 doi: 10.4310/SII.2019.V12.N4.A8
    [3] R. J. Abdelghani, M. A. Meraou, M. Z. Raqab, Bivariate compound distribution based on Poisson maxima of gamma variates and related applications, Int. J. Appl. Math., 34 (2021), 957. https://doi.org/10.12732/ijam.v34i5.6 doi: 10.12732/ijam.v34i5.6
    [4] M. Naderi, F. Hashemi, A. Bekker, A. Jamalizadeh, Modeling right-skewed fnancial data streams: a likelihood inference based on the generalized Birnbaum-Saunders mixture model, Appl. Math. Comput., 376 (2021), 125109. https://doi.org/10.1016/j.amc.2020.125109 doi: 10.1016/j.amc.2020.125109
    [5] S. Nadarajah, The skew logistic distribution, AStA Adv. Stat. Anal., 93 (2009), 187–203. https://doi.org/10.1007/s10182-009-0105-6 doi: 10.1007/s10182-009-0105-6
    [6] S. Chakraborty, P. J. Hazarika, M. M. Ali, A new skew logistic distribution and its properties, Pak. J. Stat., 28 (2012), 513–524.
    [7] Z. Ahmad, E. Mahmoudi, M. Alizadeh, Modelling insurance losses using a new beta power transformed family of distributions, Commun. Stat., 51 (2022), 4470–4491. https://doi.org/10.1080/03610918.2020.1743859 doi: 10.1080/03610918.2020.1743859
    [8] A. W. Marshall, I. A. Olkin, New method for adding a parameter to a family of distributions with application to the exponential and Weibull families, Biometrika, 84 (1997), 641–652. https://doi.org/10.1093/biomet/84.3.641 doi: 10.1093/biomet/84.3.641
    [9] A. Mahdavi, D. Kundu, A new method for generating distributions with an application to exponential distribution, Commun. Stat., 46 (2017), 6543–6557. https://doi.org/10.1080/03610926.2015.1130839 doi: 10.1080/03610926.2015.1130839
    [10] Z. Ahmad, M. Ilyas, G. G. Hamedani, The extended alpha power transformed family of distributions: properties and applications, J. Data Sci., 17 (2019), 726–741. https://doi.org/10.6339/JDS.201910_17(4).0006 doi: 10.6339/JDS.201910_17(4).0006
    [11] M. Alizadeh, M. H. Tahir, M. C. Gauss, M. Mansoor, M. Zubair, G. G. Hamedani, The Kumaraswamy Marshal-Olkin family of distributions, J. Egypt. Math. Soc., 23 (2015), 546–557. https://doi.org/10.1016/j.joems.2014.12.002 doi: 10.1016/j.joems.2014.12.002
    [12] A. Fayomi, E. M. Almetwally, M. E. Qura, Exploring new horizons: advancing data analysis in kidney patient infection rates and UEFA champions league scores using bivariate Kavya-Manoharan transformation family of distributions, Mathematics, 11 (2023), 2986. https://doi.org/10.3390/math11132986 doi: 10.3390/math11132986
    [13] A. Ahmad, N. Alsadat, M. N. Atchade, S. Q. ul Ain, A. M. Gemeay, M. A, Meraou, et al., New hyperbolic sine-generator with an example of Rayleigh distribution: simulation and data analysis in industry, Alex. Eng. J., 73 (2023), 415–426. https://doi.org/10.1016/j.aej.2023.04.048 doi: 10.1016/j.aej.2023.04.048
    [14] I. Elbatal, S. M. Alghamdi, F. Jamal, S. Khan, E. M. Almetwally, M. Elgarhy, Kavya-Manoharan Weibull-g family of distributions: statistical inference under progressive type-Ⅱ censoring scheme, Adv. Appl. Stat., 87 (2023), 191–223. https://doi.org/10.17654/0972361723034 doi: 10.17654/0972361723034
    [15] A. A. M. Teamah, A. A. Elbanna, A. M. Gemeay, Heavy-tailed log-logistic distribution: properties, risk measures and applications, Stat. Optim. Inf. Comput., 9 (2021), 910–941. https://doi.org/10.19139/soic-2310-5070-1220 doi: 10.19139/soic-2310-5070-1220
    [16] J. Zhao, Z. Ahmad, E. Mahmoudi, E. H. Hafez, M. M. M. El-Din, A new class of heavy-tailed distributions: modeling and simulating actuarial measures, Complexity, 2021 (2021), 5580228. https://doi.org/10.1155/2021/5580228 doi: 10.1155/2021/5580228
    [17] P. M. Chiroque-Solano, F. A. da S. Moura, A heavy-tailed and overdispersed collective risk model, arXiv, 2021. https://doi.org/10.48550/arXiv.2101.09022
    [18] A. M. Basheer, Alpha power inverse weibull distribution with reliability application, J. Taibah Univ. Sci., 13 (2019), 423–432. https://doi.org/10.1080/16583655.2019.1588488 doi: 10.1080/16583655.2019.1588488
    [19] E. Yildirim, E. S. Ilıkkan, A. M. Gemeay, N. Makumi, M. E. Bakr, O. S. Balogun, Power unit Burr-XII distribution: statistical inference with applications, AIP Adv., 13 (2023), 105107. https://doi.org/10.1063/5.0171077 doi: 10.1063/5.0171077
    [20] M. Shakil, M. Munir, N. Kausar, M. Ahsanullah, A. Khadim, M. Sirajo, et al., Some inferences on three parameters Birnbaum-Saunders distribution: statistical properties, characterizations and applications, Comput. J. Math. Stat. Sci., 2 (2023), 197–222. https://doi.org/10.21608/cjmss.2023.224583.1011 doi: 10.21608/cjmss.2023.224583.1011
    [21] L. P. Sapkota, V. Kumar, A. M. Gemeay, M. E. Bakr, O. S. Balogun, A. H. Muse, New Lomax-G family of distributions: statistical properties and applications, AIP Adv., 13 (2023), 095128. https://doi.org/10.1063/5.0171949 doi: 10.1063/5.0171949
    [22] A. Z. Afify, A. M. Gemeay, N. A. Ibrahim, The heavy-tailed exponential distribution: risk measures, estimation, and application to actuarial data, Mathematics, 8 (2020), 1276. https://doi.org/10.3390/math8081276 doi: 10.3390/math8081276
    [23] A. A. M. Teamah, M. A. Elbanna, A. M. Gemeay, Heavy-tailed log-logistic distribution: properties, risk measures and applications, Stat. Optim. Inf. Comput., 9 (2021), 910–941. https://doi.org/10.19139/soic-2310-5070-1220 doi: 10.19139/soic-2310-5070-1220
    [24] A. M. Gemeay, K. Karakaya, M. E. Bakr, O. S. Balogun, M. N. Atchadé, E. Hussam, Power Lambert uniform distribution: statistical properties, actuarial measures, regression analysis, and applications, AIP Adv., 13 (2023), 095318. https://doi.org/10.1063/5.0170964 doi: 10.1063/5.0170964
    [25] M. Kamal, M. N. Atchadé, Y. M. Sokadjo, Nayabuddin, E. Hussam, A. M. Gemeay, et al., Statistical study for Covid-19 spread during the armed crisis faced by Ukrainians, Alex. Eng. J., 78 (2023), 419–425. https://doi.org/10.1016/j.aej.2023.07.040 doi: 10.1016/j.aej.2023.07.040
    [26] S. D. Tomarchio, A. Punzo, Dichotomous unimodal compound models: application to the distribution of insurance losses, J. Appl. Stat., 47 (2020), 2328–2353. https://doi.org/10.1080/02664763.2020.1789076 doi: 10.1080/02664763.2020.1789076
    [27] A. Al-Shomrani, O. Arif, A. Shawky, S. Hanif, M. Q. Shahbaz, Topp-Leone family of distributions: some properties and application, Pak. J. Stat. Oper. Res., 12 (2016), 443–451. https://doi.org/10.18187/pjsor.v12i3.1458 doi: 10.18187/pjsor.v12i3.1458
    [28] D. O. Tuoyo, F. C. Opone, N. Ekhosuehi, Topp-Leone Weibull distribution: its properties and applications, Earthline J. Math. Sci., 7 (2021), 381–401. https://doi.org/10.34198/ejms.7221.381401 doi: 10.34198/ejms.7221.381401
    [29] G. M. Ibrahim, A. S. Hassan, E. M. Almetwally, H. M. Almongy, Parameter estimation of alpha power inverted Topp-Leone distribution with applications, Intell. Autom. Soft Comput., 29 (2021), 353–371. https://doi.org/10.32604/iasc.2021.017586 doi: 10.32604/iasc.2021.017586
    [30] L. P. Sapkota, Topp-Leone Fréchet distribution with theory and application, Janapriya J. Interdiscip. Stud., (2021), 65–80.
    [31] A. S. Alyami, E. Ibrahim, N. Alotaibi, E. M. Almetwally, M. H. Okasha, M. Elgarhy, Topp-Leone modified Weibull model: theory and applications to medical and engineering data, Appl. Sci., 12 (2022), 10431. https://doi.org/10.3390/app122010431 doi: 10.3390/app122010431
    [32] A. A. Ogunde, O. E. Adenijia, Type Ⅱ Topp-Leone Bur Ⅻ distribution: properties and applications to failure time data, Sci. Afr., 16 (2022), e01200. https://doi.org/10.1016/j.sciaf.2022.e01200 doi: 10.1016/j.sciaf.2022.e01200
    [33] A. E. Teamah, A. A. Elbanna, A. M. Gemeay, Right truncated fréchet-weibull distribution: statistical properties and application, Delta J. Sci., 41 (2019), 20–29. https://doi.org/10.21608/djs.2020.139880 doi: 10.21608/djs.2020.139880
    [34] M. M. Ristić, N. Balakrishnan, The gamma-exponentiated exponential distribution, J. Stat. Comput. Simul., 82 (2012), 1191–1206. https://doi.org/10.1080/00949655.2011.574633 doi: 10.1080/00949655.2011.574633
    [35] M. Nagy, E. M. Almetwally, A. M. Gemeay, H. S. Mohammed, T. M. Jawa, N. Sayed-Ahmed, et al., The new novel discrete distribution with application on COVID-19 mortality numbers in Kingdom of Saudi Arabia and Latvia, Complexity, 2021 (2021), 7192833. https://doi.org/10.1155/2021/7192833 doi: 10.1155/2021/7192833
    [36] T. A. de Andrade, M. Bourguignon, G. M. Cordeiro, The exponentiated generalized extended exponential distribution, J. Data Sci., 14 (2016), 393–413. https://doi.org/10.6339/JDS.201607_14(3).0001 doi: 10.6339/JDS.201607_14(3).0001
    [37] M. A. Almuqrin, A. M. Gemeay, M. A. El-Raouf, M. Kilai, R. Aldallal, E. Hussam, A flexible extension of reduced kies distribution: properties, inference, and applications in biology, Complexity, 2022 (2022), 6078567. https://doi.org/10.1155/2022/6078567 doi: 10.1155/2022/6078567
    [38] M. M. Salama, E. S. A. El-Sherpieny, A. E. A. Abd-Elaziz, The length-biased weighted exponentiated inverted exponential distribution: properties and estimation, Comput. J. Math. Stat. Sci., 2 (2023), 181–196.
    [39] M. M. Raqab, M. Ahsanullah, Estimation of the location and scale parameters of generalized exponential distribution based on order statistics, J. Stat. Comput. Simul., 69 (2021), 109–123. https://doi.org/10.1080/00949650108812085 doi: 10.1080/00949650108812085
    [40] G. Mustafa, M. Ijaz, F. Jamal, Order statistics of inverse pareto distribution, Comput. J. Math. Stat. Sci., 1 (2022), 51–62. https://doi.org/10.21608/cjmss.2022.272724 doi: 10.21608/cjmss.2022.272724
    [41] S. Nadarajah, The exponentiated exponential distribution: a survey, AStA Adv. Stat. Anal., 95 (2011), 219–251. https://doi.org/10.1007/s10182-011-0154-5 doi: 10.1007/s10182-011-0154-5
    [42] S. E. Abu-Youssef, B. I. Mohammed, M. G. Sief, An extended exponentiated exponential distribution and its properties, Int. J. Comput. Appl., 121 (2015), 1–6. https://doi.org/10.5120/21533-4518 doi: 10.5120/21533-4518
    [43] E. S. A. El-Sherpieny, E. M. Almetwally, A. H. Muse, E. Hussam, Data analysis for COVID-19 deaths using a novel statistical model: simulation and fuzzy application, Plos One, 18 (2023), e0283618. https://doi.org/10.1371/journal.pone.0283618 doi: 10.1371/journal.pone.0283618
    [44] E. Hussam, M. A. Sabry, M. M. A. El-Raouf, E. M. Almetwally, Fuzzy vs. traditional reliability model for inverse Weibull distribution, Axioms, 12 (2023), 582. https://doi.org/10.3390/axioms12060582 doi: 10.3390/axioms12060582
    [45] C. Chesneau, V. Kumar, M. Khetan, M. Arshad, On a modified weighted exponential distribution with applications, Math Comput. Appl., 27 (2022), 17. https://doi.org/10.3390/mca27010017 doi: 10.3390/mca27010017
    [46] R. D. Gupta, D. Kundu, Generalized exponential distribution: existing results and some recent developments, J. Stat. Plan. Infer., 137 (2007), 3537–3547. https://doi.org/10.1016/j.jspi.2007.03.030 doi: 10.1016/j.jspi.2007.03.030
    [47] M. A. Meraou, N. M. Al-Kandari, M. Z. Raqab, D. Kundu, Analysis of skewed data by using compound poisson exponential distribution with applications to insurance claims, J. Stat. Comput. Simul., 92 (2022), 928–956. https://doi.org/10.1080/00949655.2021.1981324 doi: 10.1080/00949655.2021.1981324
    [48] M. A. Meraou, N. M. Al-Kandari, M. Z. Raqab, Univariate and bivariate compound models based on random sum of variates with application to the insurance losses data, J. Stat. Theory Pract., 16 (2022), 56. https://doi.org/10.1007/s42519-022-00282-8 doi: 10.1007/s42519-022-00282-8
    [49] N. M. Alfaer, A. M. Gemeay, H. M. Aljohani, A. Z. Afify, The extended log-logistic distribution: inference and actuarial applications, Mathematics, 9 (2021), 1386. https://doi.org/10.3390/math9121386 doi: 10.3390/math9121386
    [50] C. Dutang, A. Charpentier, CASdatasets: insurance datasets, 2019. Available from: http://dutangc.free.fr/pub/RRepos/web/CASdatasets-index.html.
    [51] V. Brazauskas, A. Kleefeld, Modeling severity and measuring tail risk of Norwegian fire claims, N. Amer. Actuar. J., 20 (2016), 1–16. https://doi.org/10.1080/10920277.2015.1062784 doi: 10.1080/10920277.2015.1062784
    [52] A. Bander, S. Hanaa, The Poisson-Lomax distribution, Rev. Colomb. Estad., 37 (2014), 223–243. https://doi.org/10.15446/rce.v37n1.44369 doi: 10.15446/rce.v37n1.44369
    [53] V. G. Cancho, F. Louzada-Neto, G. D. Barriga, Poisson-exponential lifetime distribution, Comput. Stat. Data Anal., 55 (2011), 677–686. https://doi.org/10.1016/j.csda.2010.05.033 doi: 10.1016/j.csda.2010.05.033
    [54] M. E. Ghitany, D. K. Al-Mutairi, N. Balakrishnan, L. J. Al-Enezi, Power lindley distribution and associated inference, Comput. Stat. Data Anal., 64 (2013), 20–33. https://doi.org/10.1016/j.csda.2013.02.026 doi: 10.1016/j.csda.2013.02.026
    [55] K. Adamidis, T. Dimitrakopoulou, S. Loukas, On an extension of the exponential-geometric distribution, Stat. Probab. Lett., 73 (2005), 259–269. https://doi.org/10.1016/j.spl.2005.03.013 doi: 10.1016/j.spl.2005.03.013
    [56] S. Sen, S. K. Ghosh, H. Al-Mofleh, The mirra distribution for modeling time-to-event data sets, Springer, 2021, 59–73. https://doi.org/10.1007/978-981-16-13685
    [57] N. Alsadat, A. S. Hassan, A. M. Gemeay, C. Chesneau, M. Elgarhy, Different estimation methods for the generalized unit half-logistic geometric distribution: using ranked set sampling, AIP Adv., 13 (2023), 085230. https://doi.org/10.1063/5.0169140 doi: 10.1063/5.0169140
  • This article has been cited by:

    1. Muhammad Tariq, Eskandar Ameer, Amjad Ali, Hasanen A. Hammad, Fahd Jarad, Applying fixed point techniques for obtaining a positive definite solution to nonlinear matrix equations, 2023, 8, 2473-6988, 3842, 10.3934/math.2023191
    2. Mustafa Mudhesh, Aftab Hussain, Muhammad Arshad, Hamed AL-Sulami, Amjad Ali, New techniques on fixed point theorems for symmetric contraction mappings with its application, 2023, 8, 2473-6988, 9118, 10.3934/math.2023457
    3. Mustafa Mudhesh, Muhammad Arshad, Aftab Hussain, Amer Hassan Albargi, Eskandar Ameer, Seppo Hassi, The Solvability of Fourth‐Order Differential Equations under Almost Hardy–Rogers (ψ, ϕ)‐Type Multivalued Contractions in M℘‐Metric Space, 2024, 2024, 0161-1712, 10.1155/2024/6620429
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1488) PDF downloads(128) Cited by(3)

Figures and Tables

Figures(13)  /  Tables(16)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog