Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article Special Issues

New techniques on fixed point theorems for symmetric contraction mappings with its application

  • The target of this manuscript is to introduce new symmetric fractional α-β-η-Υ-contractions and prove some new fixed point results for such contractions in the setting of Mb-metric space. Moreover, we derive some results for said contractions on closed ball of mentioned space. The existence of the solution to a fractional-order differential equation with one boundary stipulation will be discussed.

    Citation: Mustafa Mudhesh, Aftab Hussain, Muhammad Arshad, Hamed AL-Sulami, Amjad Ali. New techniques on fixed point theorems for symmetric contraction mappings with its application[J]. AIMS Mathematics, 2023, 8(4): 9118-9145. doi: 10.3934/math.2023457

    Related Papers:

    [1] Mustafa Mudhesh, Hasanen A. Hammad, Eskandar Ameer, Muhammad Arshad, Fahd Jarad . Novel results on fixed-point methodologies for hybrid contraction mappings in $ M_{b} $-metric spaces with an application. AIMS Mathematics, 2023, 8(1): 1530-1549. doi: 10.3934/math.2023077
    [2] Nehad Abduallah Alhajaji, Afrah Ahmad Noman Abdou, Jamshaid Ahmad . Application of fixed point theory to synaptic delay differential equations in neural networks. AIMS Mathematics, 2024, 9(11): 30989-31009. doi: 10.3934/math.20241495
    [3] Hasanen A. Hammad, Hüseyin Işık, Hassen Aydi, Manuel De la Sen . Fixed point approach to the Mittag-Leffler kernel-related fractional differential equations. AIMS Mathematics, 2023, 8(4): 8633-8649. doi: 10.3934/math.2023433
    [4] Afrah A. N. Abdou, Maryam F. S. Alasmari . Fixed point theorems for generalized $ \alpha $-$ \psi $-contractive mappings in extended $ b $-metric spaces with applications. AIMS Mathematics, 2021, 6(6): 5465-5478. doi: 10.3934/math.2021323
    [5] Pragati Gautam, Vishnu Narayan Mishra, Rifaqat Ali, Swapnil Verma . Interpolative Chatterjea and cyclic Chatterjea contraction on quasi-partial $b$-metric space. AIMS Mathematics, 2021, 6(2): 1727-1742. doi: 10.3934/math.2021103
    [6] Haitham Qawaqneh, Hasanen A. Hammad, Hassen Aydi . Exploring new geometric contraction mappings and their applications in fractional metric spaces. AIMS Mathematics, 2024, 9(1): 521-541. doi: 10.3934/math.2024028
    [7] Aftab Hussain . Fractional convex type contraction with solution of fractional differential equation. AIMS Mathematics, 2020, 5(5): 5364-5380. doi: 10.3934/math.2020344
    [8] Monairah Alansari, Mohammed Shehu Shagari, Akbar Azam, Nawab Hussain . Admissible multivalued hybrid $\mathcal{Z}$-contractions with applications. AIMS Mathematics, 2021, 6(1): 420-441. doi: 10.3934/math.2021026
    [9] Yunpeng Zhao, Fei He, Shumin Lu . Several fixed-point theorems for generalized Ćirić-type contraction in $ G_{b} $-metric spaces. AIMS Mathematics, 2024, 9(8): 22393-22413. doi: 10.3934/math.20241089
    [10] Badshah-e-Rome, Muhammad Sarwar, Thabet Abdeljawad . µ-extended fuzzy b-metric spaces and related fixed point results. AIMS Mathematics, 2020, 5(5): 5184-5192. doi: 10.3934/math.2020333
  • The target of this manuscript is to introduce new symmetric fractional α-β-η-Υ-contractions and prove some new fixed point results for such contractions in the setting of Mb-metric space. Moreover, we derive some results for said contractions on closed ball of mentioned space. The existence of the solution to a fractional-order differential equation with one boundary stipulation will be discussed.



    The fixed point (FP) theory popularize in different ways by many image authentications which are proposed in the literature. Recently, new approach based on the FP theory is given in the literature. It has become an essential stanchion of nonlinear analysis, where it is used to study the existence and uniqueness of the solutions for many differential and nonlinear integral equations [1,2,3,4,5,6,7,8,9]. There were many generalizations of metric space (MS), for instance the first extension of MS was to partial metric space (PMS) [10] which was done by defining the self distance, another extension was to b-metric space (bMS) [11] by changing the triangle inequality. In [12] Asadi et al. introduced and extended PMS to M-metric space (MMS). Also, he showed that every PMS is an M-MS, but inverse is not true. In 2016, Mlaiki et al. [13] introduced the concept of Mb-metric space (MbMS) which is an extension of MMS and they gave an example of an MbMS which is not an MMS with proving some FP results. BCP [14] was appeared in 1922, to be the base of functional analysis and plays a main role in several branches of mathematics and applied sciences, which asserts that every contraction mapping defined in complete MS has an FP. In many directions this principle has been extended and generalized either by relaxing the contractive stipulations or imposing some more stipulations on space. One of these generalizations and interesting approaches is interpolative Kannan type contraction which was introduced by Karapinar [15] and established new FP results on complete MS. In [16] Karapinar et al., discussed the interpolative Reich-Rus-Ciric type contractions in complete PMSs and deduced new FPs results. In 2020, Hussain [17] gave a proper extension of [15,16] by presenting the notion of fractional convex Reich-type and Kannan type α-η-contractions and established some FP theorems in the setting of F-complete F-MS. Newly, the notion of fractional symmetric α-η-contraction was introduced in [18,19,20] with discussing of applications for solving fractional-order differential equations, they studied four types of said contraction and obtained FP results in the setting of F-complete F-MS. In 2022, Nazam et al. [29] introduced (Ψ,Φ)-orthogonal interpolative contractions with showing the existence of FPs of set-valued (Ψ,Φ)-orthogonal interpolative contractions. In this research article, we are going to give a splendid generalization of Hussain et al. [19] by introducing four new types of symmetric fractional α-β-η-Υ-contractions and prove some new FP results in the complete MbMS. As addition of our main results, we will show existence of FPs for such contractions on closed ball of mentioned space. As an application, we will investigate existence of solving of fractional-order differential equations.

    In this portion, some elementary discussions about MbMSs will be given. It should be noted that Mlaiki et al. [13] introduced the notion of MbMS and inaugurated the advanced Banach Contraction Principle on MbMS. So, the notion of mbξ,μ and Mbξ,μ are defined as follows:

    mbξ,μ=min{mb(ξ,ξ),mb(μ,μ)},

    and

    Mbξ,μ=max{mb(ξ,ξ),mb(μ,μ)}.

    Definition 2.1. An MbMS on a non-empty set Δ is a function mb:Δ2R+ that fulfills the assumptions below, for all ξ,μ,κΔ,

    (Mb1)mb(ξ,ξ)=mb(μ,μ)=mb(ξ,μ) iff ξ=μ;

    (Mb2)mbξ,μmb(ξ,μ);

    (Mb3)mb(ξ,μ)=mb(μ,ξ);

    (Mb4) There is a coefficient s1 so that for all ξ,μ,κΔ, we have

    mb(ξ,μ)mbξ,μs[(mb(ξ,κ)mbξ,κ)+(mb(κ,μ)mbκ,μ)]mb(κ,κ).

    Then the pair (Δ,mb) is called an MbMS.

    Example 2.2. Let Δ=[0,) and p>1 be a constant. Define mb:Δ2[0,) by

    mb(ξ,μ)=(max{ξ,μ})p+|ξμ|p, ξ,μΔ.

    Then (Δ,mb) is an MbMS (with coefficient s=2p) and not MMS.

    Definition 2.3. Let (Δ,mb) be an MbMS. Then

    ● A sequence {ξn} in Δ converges to a point ξ if and only if

    limn(mb(ξn,ξ)mbξn,ξ)=0.

    ● A sequence {ξn} in Δ is called mb-Cauchy sequence iff

    limn,m(mb(ξn,ξm)mbξn,ξm) and limn,m(Mbξn,ξmmbξn,ξm)

    exist and finite.

    ● An MbMS is called mb-complete if every mb-Cauchy sequence {ξn} converges to a point ξ so that

    limn(mb(ξn,ξ)mbξn,ξ)=0 and limn(Mbξn,ξmbξn,ξ)=0.

    Theorem 2.4. Let (Δ,mb) be an MbMS with coefficient s1 and Γ be a self-mapping on Δ. If there is k[0,1) so that

    mb(Γξ,Γμ)kmb(ξ,μ),ξ,μΔ.

    Then Γ has a unique FP ς in Δ.

    Example 2.5. [22] Let Δ=[0,1] and mb:Δ×Δ[0,) be defined by

    mb(ξ,μ)=(ξ+μ2)2, ξ,μΔ.

    Then (Δ,mb) is an MbMS (with coefficient s=2) which is not an MMS.

    The concept of cyclic (α,β)-admissible mapping is showed in the work of [22] as follows:

    Definition 2.6. Let Δ, α,β:Δ[0,) be two functions. A mapping Γ:ΔΔ is called cyclic (α,β)-admissible if for some ξΔ,

    α(ξ)1β(Γξ)1,

    and

    β(ξ)1α(Γξ)1.

    Mudhesh et al. [23] extended this work to η-cyclic (α,β)-admissible mappings as following:

    Definition 2.7. Let Δ, α,β,η:Δ[0,) be given functions. The mapping Γ:ΔΔ is called η-cyclic (α,β)-admissible if for some ξΔ,

    α(ξ)η(ξ)β(Γξ)η(Γξ),

    and

    β(ξ)η(ξ)α(Γξ)η(Γξ).

    Definition 2.8. [24] Assume that Γ is a self-mapping on a nonempty set Δ,AΔ and let α,η:Δ×Δ[0,) be given functions. We say that Γ is semi α-admissible with respect to (wrt) η; if for some ξ,μAΔ, we have

    α(ξ,μ)η(ξ,μ)α(Γξ,Γμ)η(Γξ,Γμ).

    It should be noted that if A=Δ, then Γ is called α-admissible wrt η.

    The following results are well known in the literature:

    Let Ψs, where s1; denotes the family of all nondecreasing functions ψ:[0,)[0,) such that

    (ψ1)n=1snψn(t)<+ for all t>0;

    (ψ2)sψ(t)<t for all t>0;

    (ψ3)sn+1ψn+1(t)<snsψnψ(t)<snψn(t),where ψn is the nth iterate of ψ.

    Let Ψ, denotes the family of all nondecreasing functions ψ:[0,)[0,) such thatn=1ψn(t)<+ for all t>0, where ψn stands for the nth iterate of ψ.

    Lemma 2.9. Let ψΨ, then the following hold:

    (i) (ψn(t))nN converges to 0 as nt(0,);

    (ii) ψ(t)<t for each t>0;

    (iii) ψ(t)=0 iff t=0.

    The coming results are very useful in our study which are taken and proved as in [27,28].

    Let (Δ,mb) be an MbMS. For all ξΔ and ε>0, the open ball with the center ξ and the radius ε is

    B(ξ,ε)={μΔ:mb(ξ,μ)mbξ,μ<ε}.

    Notice that we have ξB(ξ,ε) for all ε>0. Indeed, we get

    mb(ξ,ξ)mbξ,ξ=mb(ξ,ξ)mb(ξ,ξ)=0<ε.

    Similarly, the closed ball with the center ξ and the radius ε is

    B[ξ,ε]={μΔ:mb(ξ,μ)mbξ,με}.

    Lemma 2.10. Let (Δ,mb) be an MbMS,ξΔ and ε>0. The collection of all open balls on Δ,βmb={B(ξ,ε)}ε>0ξΔ forms a basis on Δ.

    Lemma 2.11. The following inequality holds for all ξ,μ2 and r1,

    (ξ+μ)r(ξμ)r.

    In this portion, we reset FP results for symmetric fractional α-β-η-Υ-contraction of pattern-I in complete MbMS.

    Definition 3.1. Let Γ:ΔΔ be a mapping on an MbMS (Δ,mb),α,β,η:Δ[0,) be three functions and ΥΨ. We say that Γ is a symmetric fractional α-β-η-Υ-contraction of pattern-I, if there exist constants s1,a,b,c(0,1) and λ=(smbξ,μ)1(ca)(cb)[0,) such that ξ,μΔ Fix (Γ), whenever α(ξ)β(μ)η(ξ)η(μ), we have

    s2mb(Γξ,Γμ)Υ[λ(R1(ξ,μ))], (3.1)

    where

    R1(ξ,μ)=mb(ξ,μ).[mb(ξ,Γξ)]1(ab)(ac).[mb(μ,Γμ)]1(ab)(ac).[mb(ξ,Γξ)+mb(μ,Γμ)]1(ba)(bc).[mb(ξ,Γμ)+mb(μ,Γξ)]1(ca)(cb).

    Example 3.2. Let Δ={0,13,12,23,1} and mb:Δ×ΔR be defined by mb(ξ,μ)=(ξ+μ2)2. Then (Δ,mb) is a complete MbMS with s=2. Define Γ:ΔΔ by

    Γ0=Γ13=Γ23=Γ1=0, Γ12=12,

    and α,β,η:Δ[0,) by

    α(ξ)=β(ξ)={1if ξΔ,0otherwiseand η(ξ)={12,if ξΔ,0,otherwise.

    Let Υ(t)=34t. If ξ,μΔ. Clearly α(ξ)β(μ)η(ξ)η(μ), such that

    s2mb(Γ13,Γ23)=0Υ[λmb(13,23).mb(13,Γ13)1(ab)(ac).mb(23,Γ23)1(ab)(ac).[mb(13,Γ13)+mb(23,Γ23)]1(ba)(bc).[mb(13,Γ23)+mb(23,Γ13)]1(ca)(cb)]=Υ[λ4(136)1(ab)(ac).(19)1(ab)(ac).[(136)+(19)]1(ba)(bc).[(136)+(19)]1(ca)(cb)]=Υ[λ4(136×436)1(ab)(ac).(536)1(ba)(bc).(536)1(ca)(cb)]Υ[λ4(136+436)1(ab)(ac).(536)1(ba)(bc).(536)1(ca)(cb)]=Υ[λ4(536)1(ab)(ac)+1(ba)(bc)+1(ca)(cb)]=3λ16[0,).

    By taking any value of constants λ[0,) and a,b,c(0,1). Clearly, (3.1) holds for all ξ,μΔ Fix (Γ). Thus Γ has two FPs of 0 and 12.

    Now we state and prove our main theorem.

    Theorem 3.3. Let (Δ,mb) be a complete MbMS with coifficient s1 and Γ is a symmetric fractional α-β-η-Υ-contraction pattern-I satisfies the following statements:

    (i) Γ is an η-cyclic (α,β)-admissible mapping;

    (ii) either there is ξ0Δ so that α(ξ0)η(ξ0) or there is μ0Δ so that β(μ0)η(μ0);

    (iii) Γ is continuous.

    Then Γ has an FP ξΔ.

    Proof. Let ξ0Δ such that α(ξ0)η(ξ0), and β(ξ0)η(ξ0). Define a sequence {ξn} in Δ by ξn=Γξn1nN. If some n0N for which Γξn0=ξn0, then ξn0 is an FP of Γ and the proof is done. Asume that mb(ξn0,Γξn0)>0, by (i)ξ1Δ such that

    α(ξ0)η(ξ0)β(ξ1)=β(Γξ0)η(ξ1)=η(Γξ0),

    and

    β(ξ0)η(ξ0)α(ξ1)=α(Γξ0)η(ξ1)=η(Γξ0).

    Continuing in this way, we get

    α(ξn)η(ξn)β(ξn+1)η(ξn+1).

    Similarlly

    β(ξn)η(ξn)α(ξn+1)η(ξn+1).

    And hence, For all nN

    α(ξn)β(ξn+1)η(ξn)η(ξn+1). (3.2)

    If ξn+1=ξn for sone nN, then ξn=ξ, and the proof is done. So, we assume that for all nN,ξn+1ξn accompanied by

    mb(Γξn1,Γξn)=mb(ξn,Γξn)>0.

    From (3.1) and for all nN, we have

    mb(ξn,ξn+1)s2mb(Γξn1,Γξn)Υ[λ(R1(ξn1,ξn))]. (3.3)

    Where

    R1(ξn1,ξn)=[mb(ξn1,ξn).mb(ξn1,Γξn1)1(ab)(ac).mb(ξn,Γξn)1(ab)(ac).[mb(ξn1,Γξn1)+mb(ξn,Γξn)]1(ba)(bc).[mb(ξn1,Γξn)+mb(ξn,Γξn1)]1(ca)(cb)]=[mb(ξn1,ξn).mb(ξn1,ξn)1(ab)(ac).mb(ξn,ξn+1)1(ab)(ac).[mb(ξn1,ξn)+mb(ξn,ξn+1)]1(ba)(bc).[mb(ξn1,ξn+1)+mb(ξn,ξn)]1(ca)(cb)][mb(ξn1,ξn)1+1(ab)(ac).mb(ξn,ξn+1)1(ab)(ac).[mb(ξn1,ξn)+mb(ξn,ξn+1)]1(ba)(bc).[s(mb(ξn1,ξn)mbξn1,ξn+mb(ξn,ξn+1)mbξn,ξn+1)+mbξn1,ξn+1]1(ca)(cb)][mb(ξn1,ξn)1+1(ab)(ac).mb(ξn,ξn+1)1(ab)(ac).[mb(ξn1,ξn)+mb(ξn,ξn+1)]1(ba)(bc).[s(mb(ξn1,ξn)+mb(ξn,ξn+1))+mbξn1,ξn+1]1(ca)(cb)][mb(ξn1,ξn)1+1(ab)(ac).mb(ξn,ξn+1)1(ab)(ac).[mb(ξn1,ξn).mb(ξn,ξn+1)]1(ba)(bc).[s(mb(ξn1,ξn).mb(ξn,ξn+1)).mbξn1,ξn+1]1(ca)(cb)]=[s1(ca)(cb)mb(ξn1,ξn)1(ab)(ac)+1(ba)(bc)+1(ca)(cb).mb(ξn,ξn+1)1(ab)(ac)+1(ba)(bc)+1(ca)(cb).(mbξn1,ξn+1)1(ca)(cb)]mb(ξn1,ξn)=(smbξn1,ξn+1)1(ca)(cb)mb(ξn1,ξn). (3.4)

    Now fron (3.3) and (3.4), we obtain that

    mb(ξn,ξn+1)s2mb(Γξn1,Γξn)Υ(λ[smbξn1,ξn+1]1(ca)(cb)mb(ξn1,ξn))=Υ(mb(ξn1,ξn))<mb(ξn1,ξn). (3.5)

    From (3.5), we conclude that mb(ξn1,ξn) is a decreasing sequence with non-negative terms. Thus, there is a constant ϱ0 such that limnmb(ξn1,ξn)=ϱ. Presume that ϱ>0. From (3.5), we can write

    mb(ξn,ξn+1)s2mb(Γξn1,Γξn)Υ[mb(ξn1,ξn)]Υ2[mb(ξn2,ξn1)]Υ3[mb(ξn3,ξn2)]...Υn[mb(ξ0,ξ1)]. (3.6)

    Taking limit as n in (3.6), and from properties of Υ, we obtain

    0limn+mb(ξn,ξn+1)limn+Υn[mb(ξ0,ξ1)]=0.

    Which yield that

    limn+mb(ξn,ξn+1)=0. (3.7)

    Now, we prove that {ξn} is an Mb-Cauchy sequence in (Δ,mb). Recall that from (Mb2) and for all nN, we have

    0mbξn,ξn+1mb(ξn,ξn+1).

    Since from (3.7), we have

    limnmbξn,ξn+1=0, (3.8)

    which denotes that

    limnmb(ξn,ξn)=0,orlimnmb(ξn+1,ξn+1)=0. (3.9)

    Therefore,

    limm,nmbξn,ξm=limm,nmin{mb(ξn,ξn),mb(ξm,ξm)}=0. (3.10)

    Hence,

    limm,n(Mbξm,ξnmbξm,ξn)=limm,nmb(ξn,ξn)mb(ξm,ξm)∣=0.

    Next, we shall prove that limm,n(mb(ξm,ξn)mbξm,ξn)=0. Suppose on the contrary that

    limm,n(mb(ξm,ξn)mbξm,ξn)0,

    then there exist ε>0 and subsequence {ςk}N such that

    mb(ξςk,ξnk)mbξςk,ξnkε. (3.11)

    Suppose that ςk is the smallest integer which satisfies (3.11) such that

    mb(ξςk1,ξnk)mbξςk1,ξnk<ε. (3.12)

    By (Mb4) in (3.11) and using (3.12), we get

    εmb(ξςk,ξnk)mbξςk,ξnks[(mb(ξςk,ξςk1)mbξςk,ξςk1)+(mb(ξςk1,ξnk)mbξςk1,ξnk)]mb(ξςk1,ξςk1)sε+s[mb(ξςk,ξςk1)mbξςk,ξςk1]mb(ξςk1,ξςk1). (3.13)

    Letting k in (3.13), using (3.7)–(3.9), then

    εlimk(mb(ξςk,ξnk)mbξςk,ξnk)sε. (3.14)

    Utilizing (3.10) and from (3.14), we have

    εlimkmb(ξςk,ξnk)sε. (3.15)

    Similarly from (Mb4) and (3.11), we obtain

    εmb(ξςk,ξnk)mbξςk,ξnks[(mb(ξςk,ξςk+1)mbξςk,ξςk+1)+(mb(ξςk+1,ξnk)mbξςk+1,ξnk)]mb(ξςk+1,ξςk+1)s[(mb(ξςk,ξςk+1)mbξςk,ξςk+1)+s[(mb(ξςk+1,ξnk+1)mbξςk+1,ξnk+1)+(mb(ξnk+1,ξnk)mbξnk+1,ξnk)]mb(ξnk+1,ξnk+1)]mb(ξςk+1,ξςk+1)=[s(mb(ξςk,ξςk+1)mbξςk,ξςk+1)+s2(mb(ξςk+1,ξnk+1)mbξςk+1,ξnk+1)+s2(mb(ξnk+1,ξnk)mbξnk+1,ξnk)smb(ξnk+1,ξnk+1)mb(ξςk+1,ξςk+1)]. (3.16)

    Similar to (3.13), we find that

    εmb(ξςk+1,ξnk+1)mbξςk+1,ξnk+1[s(mb(ξςk+1,ξςk)mbξςk+1,ξςk)+s2(mb(ξςk,ξnk)mbξςk,ξnk)+s2(mb(ξnk,ξnk+1)mbξnk,ξnk+1)smb(ξnk+1,ξnk+1)mb(ξςk,ξςk)]. (3.17)

    Utilizing (3.16) and (3.17), then

    εmb(ξςk,ξnk)mbξςk,ξnk[s(mb(ξςk,ξςk+1)mbξςk,ξςk+1)+s2(mb(ξςk+1,ξnk+1)mbξςk+1,ξnk+1)+s2(mb(ξnk+1,ξnk)mbξnk+1,ξnk)smb(ξnk+1,ξnk+1)mb(ξςk+1,ξςk+1)][s(mb(ξςk,ξςk+1)mbξςk,ξςk+1)+s2(s[mb(ξςk+1,ξςk)mbξςk+1,ξςk]+s2[mb(ξςk,ξnk)mbξςk,ξnk]+s2[mb(ξnk,ξnk+1)mbξnk,ξnk+1]smb(ξnk+1,ξnk+1)mb(ξςk,ξςk))+s2(mb(ξnk+1,ξnk)mbξnk+1,ξnk)smb(ξnk+1,ξnk+1)mb(ξςk+1,ξςk+1)]. (3.18)

    Taking limit as k in (3.18), and using (3.7)–(3.9) and (3.14), we get

    εlimks2(mb(ξςk+1,ξnk+1)mbξςk+1,ξnk+1)s5ε.

    Therefore

    εs2limk(mb(ξςk+1,ξnk+1)mbξςk+1,ξnk+1)s3ε. (3.19)

    From (3.10), we have

    εs2limkmb(ξςk+1,ξnk+1)s3ε. (3.20)

    Now, from (3.1), we obtain

    s2mb(ξςk+1,ξnk+1)=s2mb(Γξςk,Γξnk)Υ[λ(R1(ξςk,ξnk))],

    where

    R1(ξςk,ξnk)=mb(ξςk,ξnk).mb(ξςk,Γξςk)1(ab)(ac).mb(ξnk,Γξnk)1(ab)(ac).[mb(ξςk,Γξςk)+mb(ξnk,Γξnk)]1(ba)(bc).[mb(ξςk,Γξnk)+mb(ξnk,Γξςk)]1(ca)(cb)=mb(ξςk,ξnk).mb(ξςk,ξςk+1)1(ab)(ac).mb(ξnk,ξnk+1)1(ab)(ac).[mb(ξςk,ξςk+1)+mb(ξnk,ξnk+1)]1(ba)(bc).[mb(ξςk,ξnk+1)+mb(ξnk,ξςk+1)]1(ca)(cb).

    By taking limit as k in the above equation and using (3.7) and (3.8), we obtain

    0limkR1(ξςk,ξnk)0limkR1(ξςk,ξnk)=0. (3.21)

    Thence, it follows from (3.20), (3.21) and (iii) of Lemma 2.9 that

    ε=s2(εs2)s2limkmb(ξςk+1,ξnk+1)=s2limkmb(Γξςk,Γξnk)Υ[λlimkR1(ξςk,ξnk)]<Υ[limkR1(ξςk,ξnk)]=Υ[0]=0.

    Hence, we conclude that ε<0 which is a contradiction. Thus, limm,n(mb(ξm,ξn)mbξm,ξn)=0, therefore {ξn} is an Mb-Cauchy sequence in Δ. Since Δ is complete, there exist some ξΔ such that ξnξ as n. Since Γ is continuous then limnΓξn=Γξ, therefore we have

    limn(mb(ξn+1,ξ)mbξn+1,ξ)=0.andlimn(Mbξn+1,ξmbξn+1,ξ)=0. (3.22)

    Since from (3.9) and (3.22), we get

    limn(mb(ξn+1,ξ)mbξn+1,ξ)=0=limnmb(ξn+1,ξ)=limnmb(Γξn,ξ)=mb(Γξ,ξ). (3.23)

    So, that is Γξ=ξ and ξ is an FP of Γ.

    Theorem 3.4. Let (Δ,mb) be a complete MbMS with coefficient s1 and Γ is a symmetric fractional α-β-η-Υ-contraction pattern-I fulfilling the affirmations below:

    (i) Γ is an η-cyclic (α,β)-admissible mapping;

    (ii) either there is ξ0Δ so that α(ξ0)η(ξ0) or there is μ0Δ so that β(μ0)η(μ0);

    (iii) if {ξn} is a sequence in Δ such that ξnξ as n, and β(ξn)η(ξn) for all nN, then β(ξ)η(ξ).

    Then Γ has an FP ξΔ.

    Proof. In the definitive lines of the proof of Theorem 3.3, we acquire β(ξ)η(ξ). Now we show that mb(Γξ,ξ)=0.ξnξ as n, from (Mb4), we have

    0|(mb(ξn+1,Γξ)mbξn+1,Γξ)(mb(ξ,Γξ)mbξ,Γξ)||s((mb(ξn+1,ξ)mbξn+1,ξ)(mb(ξ,Γξ)mbξ,Γξ))mb(ξ,ξ)(s((mb(ξ,ξ)mbξ,ξ)(mb(ξ,Γξ)mbξ,Γξ))mb(ξ,ξ))|. (3.24)

    So taking limit as n in (3.24) and using of (3.9) and (3.22), we get

    0limn|(mb(ξn+1,Γξ)mbξn+1,Γξ)(mb(ξ,Γξ)mbξ,Γξ)|0,

    this implies that

    limn(mb(ξn+1,Γξ)mbξn+1,Γξ)=mb(ξ,Γξ)mbξ,Γξ=mb(ξ,Γξ). (3.25)

    Now from (3.3) and (3.25), we have

    mb(ξn+1,Γξ)mbξn+1,Γξs2mb(Γξn,Γξ)mbΓξn,ΓξΥ[λ(R1(ξn,ξ))]Υ(λmb(ξn,ξ).mb(Γξ,ξ)1(ab)(ac).mb(ξn,Γξn)1(ab)(ac).[mb(Γξ,ξ)+mb(ξn,Γξn)]1(ba)(bc).[mb(Γξn,ξ)+mb(ξn,Γξ)]1(ca)(cb)). (3.26)

    By taking limit as n in (3.26) and since ΥΨ, we get

    limnmb(ξn+1,Γξ)mbξn+1,Γξ=0. (3.27)

    Therefore, from (3.25) and (3.27), we get mb(ξ,Γξ)=0 and ξ is an FP of Γ.

    The example below supports Theorems 3.3 and 3.4.

    Example 3.5. Let Δ=[0,1] and mb:Δ×Δ[0,) defined by

    mb(ξ,μ)=(ξ+μ2)2, ξ,μΔ.

    Clearly, (Δ,mb) is an MbMS with s=2. Define Γ:ΔΔ by

    Γξ={ξ29,if ξ(0,1],0,otherwise.

    Describe the functions α,β,η:Δ[0,) as,

    α(ξ)=β(ξ)={2,if ξ(0,1],0,otherwise, η(ξ)={1,if ξ(0,1],0,otherwise.

    Clearly for all ξ,μ(0,1], α(ξ)=21=η(ξ)β(Γξ)=21=η(Γξ), and β(ξ)=21=η(ξ)α(Γξ)η(Γξ). So, Γ is η-cyclic (α,β)-admissible mapping. Now if {ξn} is a sequence in Δ such that ξnξ as n and β(ξn)η(ξn). Then β(ξ)η(ξ) whenever, α(ξ)β(μ)η(ξ)η(μ), such that

    s2mb(Γξ,Γμ)=4mb(ξ29,μ29)=4(ξ2+μ218)2(ξ+μ18)2=49[19(ξ+μ2)2]49[19((ξ+μ2)2.(3ξ4)21(ab)(ac).(3μ4)21(ab)(ac).((3ξ4)2+(3μ4)2)1(ba)(bc).((2ξ+μ4)2+(ξ+2μ4)2)1(ca)(cb))]=Υ[λ(R1(ξ,μ))].

    That is achieved when we take Υ(t)=4t9 and constants λ=19[0,), a,b,c(0,1), for all ξ,μΔFix(Γ). Otherwise, for ξ=μ=0, we obtain that Γ is η-cyclic (α,β)-admissible mapping, whenever α(ξ)β(μ)η(ξ)η(μ), and

    s2mb(Γξ,Γμ)=0Υ[λ(R1(ξ,μ))].

    Therefore, all affirmations of Theorems 3.3 and 3.4 are satisfied. Hence Γ has an FP ξ=0Δ. (Note that 9 is an another FP of Γ, but it does not belong to Δ.

    In this portion, we devote our efforts to introduce the notion of symmetric fractional α-β-η-Υ-contraction pattern-II and some FP results are obtained via a complete MbMS.

    Definition 4.1. Let Γ:ΔΔ be a mapping on an MbMS (Δ,mb),α,β,η:Δ[0,) be three functions and ΥΨ. We say that Γ is a symmetric fractional α-β-η-Υ-contraction of pattern-II provided that there are constants s1,a,b,c(0,1) and λ=(smbξ,μ)c(ca)(cb)[0,) such that ξ,μΔ Fix (Γ), whenever α(ξ)β(μ)η(ξ)η(μ), we have

    s2mb(Γξ,Γμ)Υ[λ(R2(ξ,μ))], (4.1)

    where

    R2(ξ,μ)=mb(ξ,μ).[mb(ξ,Γξ)]a(ab)(ac).[mb(μ,Γμ)]a(ab)(ac).[mb(ξ,Γξ)+mb(μ,Γμ)]b(ba)(bc).[mb(ξ,Γμ)+mb(μ,Γξ)]c(ca)(cb).

    Now we show and demonstrate our next theorem.

    Theorem 4.2. Let (Δ,mb) be a complete MbMS and Γ be a symmetric fractional α-β-η-Υ-contraction of pattern-II fulfilling the same affirmations of Theorem 3.3:

    Then Γ has an FP in Δ.

    Proof. By the same steps as in proof of Theorem 3.3, we deduce that Γ has an FP ξΔ.

    Theorem 4.3. Let (Δ,mb) be a complete MbMS and Γ be a symmetric fractional α-β-η-Υ-contraction of pattern-II fulfilling the same affirmations of Theorem 3.4:

    Then Γ has an FP in Δ.

    Proof. Similar to the same steps as in proof of Theorem 3.4, we conclude that ξ is an FP of Γ.

    In this segment, the notion of symmetric fractional α-β-η-Υ-contraction pattern-III and some FP results are established via a complete MbMS:

    Definition 5.1. Let (Δ,mb) be an MbMS with a self-map Γ:ΔΔ,α,β,η:Δ[0,) be three functions and ΥΨ. We say that Γ is a symmetric fractional α-β-η-Υ-contraction pattern-III along with constants s1,a,b,c(0,1) and λ=(smbξ,μ)c2(ca)(cb)[0,) such that ξ,μΔ Fix (Γ), whenever α(ξ)β(μ)η(ξ)η(μ), we have

    s2mb(Γξ,Γμ)Υ[λ(R3(ξ,μ))], (5.1)

    where

    R3(ξ,μ)=max{mb(ξ,μ),mb(ξ,Γξ)a2(ab)(ac).mb(μ,Γμ)a2(ab)(ac).[mb(ξ,Γξ)+mb(μ,Γμ)]b2(ba)(bc).[mb(ξ,Γμ)+mb(μ,Γξ)]c2(ca)(cb)}.

    Now, we declare and demonstrate our next theorem.

    Theorem 5.2. Let (Δ,mb) be a complete MbMS and Γ be a symmetric fractional α-β-η-Υ-contraction of pattern-III that satisfies the same assertions of Theorem 3.3:

    Then Γ has an FP in Δ.

    Proof. Let ξ0Δ such that α(ξ0)η(ξ0) and β(ξ0)η(ξ0). For all nN, we build an iteration {ξn}n=1 such that ξ1=Γξ0,ξ2=Γξ1=Γ2ξ0. By proceeding in this manner, we obtain ξn+1=Γξn=Γn+1ξ0. Now from (i), we can conclude that for all nN,

    α(ξn)β(ξn+1)η(ξn)η(ξn+1). (5.2)

    If ξn+1=ξn for some nN, then ξn=ξ is an FP of Γ. So, we assume that ξnξn+1 accompanied by mb(Γξn1,Γξn)=mb(ξn,Γξn) for every nN.

    From (5.1), we own

    mb(ξn,ξn+1)s2mb(Γξn1,Γξn)Υ[λ(R3(ξn1,ξn))], (5.3)

    where by the same steps in (3.4), we deduce that

    R3(ξn1,ξn)=max{mb(ξn1,ξn),[smbξn1,ξn+1]c2(ca)(cb).mb(ξn,ξn+1)}.

    Now if

    R3(ξn1,ξn)=[smbξn1,ξn+1]c2(ca)(cb).mb(ξn,ξn+1). (5.4)

    Then, from (5.3) and (5.4), we get

    mb(ξn,ξn+1)s2mb(Γξn1,Γξn)Υ(λ[smbξn1,ξn+1]c2(ca)(cb).mb(ξn,ξn+1))=Υ(mb(ξn,ξn+1))<mb(ξn,ξn+1),

    which gives a contradiction, thus

    R3(ξn1,ξn)=mb(ξn1,ξn). (5.5)

    Now, from (5.3) and (5.5), we conclude that

    mb(ξn,ξn+1)s2mb(Γξn1,Γξn)Υ[λ(R3(ξn1,ξn))]<mb(ξn1,ξn), (5.6)

    The rest of the proof follows along the same lines as the proof of Theorem 3.3. So, we find that Γ has an FP ξΔ.

    Theorem 5.3. Let (Δ,mb) be a complete MbMS and Γ be a symmetric fractional α-β-η-Υ-contraction of pattern-III fulfilling the same affirmations of Theorem 3.4:

    Then Γ has an FP in Δ.

    Proof. In the same style of the proof of Theorem 3.4, we obtain that ξ is an FP of Γ.

    The example below supports Theorems 5.2 and 5.3.

    Example 5.4. Let Δ=[0,1] and mb:Δ×Δ[0,) defined by

    mb(ξ,μ)=(ξ+μ2)2, ξ,μΔ.

    Clearly, (Δ,mb) is an MbMS with s=2. Define Γ:ΔΔ by

    Γξ={115,if ξ[0,1),1,if ξ=1.

    Describe the functions α,β,η:Δ[0,) as,

    α(ξ)=β(ξ)={2,if ξ[0,1),0,otherwise,, η(ξ)={1,if ξ[0,1),0,otherwise.

    Clearly Γ is an η-cyclic (α,β)-admissible mapping. Now if {ξn} is a sequence in Δ such that ξnξ as n and β(ξn)η(ξn). Then β(ξ)η(ξ) whenever, α(ξ)β(μ)η(ξ)η(μ), and for ξ[0,1),μ=1, we have

    s2mb(Γξ,Γμ)=22mb(Γξ,Γ1)=4(115+12)2=4(815)2=4(83×5)2=45[645(13)2]Υ[λ(R3(ξ,1))].

    That is satisfied when we define Υ:[0,)[0,) by Υ(t)=4t5. and we choose the constants λ=645[0,),a,b,c(0,1). Therefore, all affirmations of Theorems 5.2 and 5.3 are satisfied. Hence Γ has two FPs 115 and 1Δ.

    This portion is consecrated to presenting a symmetric fractional α-β-η-Υ-contraction of pattern-IV in the framework of complete MbMS. Furthermore, new fixed point results are obtained in the said space.

    Definition 6.1. Let (Δ,mb) be an MbMS with a self-map Γ:ΔΔ,α,β,η:Δ[0,) be three functions and ΥΨ. We say that Γ is a symmetric fractional α-β-η-Υ-contraction pattern-IV along with constants s1,a,b,c(0,1) and λ=(smbξ,μ)c3(ca)(cb)[0,) with a+b+c<1 such that ξ,μΔ Fix (Γ), whenever α(ξ)β(μ)η(ξ)η(μ), we have

    s2mb(Γξ,Γμ)Υ[λ(R4(ξ,μ))], (6.1)

    where

    R4(ξ,μ)=[mb(ξ,μ)]a3(ab)(ac).[mb(ξ,Γξ)]a3(ab)(ac).[mb(ξ,Γξ)+mb(μ,Γμ)]b3(ba)(bc).[mb(ξ,Γμ)+mb(μ,Γξ)]c3(ca)(cb).

    Now, we declare and demonstrate our next theorem.

    Theorem 6.2. Let (Δ,mb) be a complete MbMS and Γ be a symmetric fractional α-β-η-Υ-contraction of pattern-IV that satisfies the same assertions of Theorem 3.3:

    Then Γ has an FP in Δ.

    Proof. Take any ξ0Δ such that α(ξ0)η(ξ0) and β(ξ0)η(ξ0). For all nN, we build an iteration {ξn}n=1 such that ξ1=Γξ0,ξ2=Γξ1=Γ2ξ0. By proceeding in this manner, we obtain ξn+1=Γξn=Γn+1ξ0. Now from (i), we can conclude that for all nN,

    α(ξn)β(ξn+1)η(ξn)η(ξn+1). (6.2)

    If ξn+1=ξn for some nN, then ξn=ξ is an FP of Γ. So, we assume that ξnξn+1 accompanied by mb(Γξn1,Γξn)=mb(ξn,Γξn) for every nN. Now, from (6.1), we have

    mb(ξn,ξn+1)s2mb(Γξn1,Γξn)Υ[λR4(ξn1,ξn)],

    where by the same steps in (3.4), we deduce that

    R4(ξn1,ξn)(mb(ξn1,ξn).mb(ξn,ξn+1))a+b+cmax{mb(ξn1,ξn),mb(ξn,ξn+1)}.

    If max{mb(ξn1,ξn),mb(ξn,ξn+1)}=mb(ξn,ξn+1), then

    mb(ξn,ξn+1)Υ[mb(ξn,ξn+1)]mb(ξn,ξn+1),

    which is a contradiction, thus

    mb(ξn,ξn+1)Υ[mb(ξn1,ξn)]mb(ξn1,ξn), (6.3)

    The rest of the proof follows along the same lines as the proof of Theorem 3.3. So, we find that Γ has an FP ξΔ.

    Theorem 6.3. Consider a complete MbMS (Δ,mb) and let Γ be a symmetric fractional α-β-η-Υ-contraction of pattern-IV fulfilling the same affirmations of Theorem 3.4:

    Then Γ has an FP in Δ.

    Proof. By the same way of the proof of Theorem 3.4, we canclud that Γ has an FP in Δ.

    The example below supports Theorem 6.2.

    Example 6.4. Let Δ=[0,), p>1 and mb:Δ×Δ[0,) defined by

    mb(ξ,μ)=max{ξ,μ}p+|ξμ|p, ξ,μΔ.

    Clearly, (Δ,mb) is an MbMS with s=2p. Define Γ:ΔΔ by

    Γξ={ξ+0.5128,if ξ(0,1],0,otherwise.

    Describe the functions α,β,η:Δ[0,) as,

    α(ξ)=β(ξ)={2,if ξ(0,1],0,otherwise,, η(ξ)={1,if ξ(0,1],0,otherwise.

    Clearly for all ξ,μ(0,1], Γ is an η-cyclic (α,β)-admissible mapping, whenever α(ξ)β(μ)η(ξ)η(μ), we have

    s2mb(Γξ,Γμ)=22pmb(ξ+0.5128,μ+0.5128)22pmb(ξ64,μ64)=22p(max{ξ64,μ64}p+|ξ64μ64|p)=22p64p(max{ξ,μ}p+|ξμ|p)=22p26pmb(ξ,μ)=124pmb(ξ,μ)122p[12p(R3(ξ,μ))]=Υ[λ(R3(ξ,μ))].

    That is achieved when we take Υ(t)=t22p and constants λ=12p[0,), a,b,c(0,1), for all ξ,μΔFix(Γ). Otherwise, we can obtain that Γ is η-cyclic (α,β)-admissible mapping, whenever α(ξ)β(μ)η(ξ)η(μ), and

    s2mb(Γξ,Γμ)=0Υ[λ(R1(ξ,μ))].

    Therefore, all affirmations of Theorem 6.2 are satisfied. Hence Γ has two FPs 0 and 1254Δ.

    By taking η(ξ)=η(μ)=1, in Theorems 3.3, 3.4, 4.2 and 4.3, we derive the following corollaries.

    Corollary 6.5. Let (Δ,mb) be a complete MbMS and Γ be a symmetric fractional α-β-Υ-contraction of pattern-I fulfilling the accompanying affirmations:

    (i) Γ is a cyclic (α,β)-admissible mapping;

    (ii) there is an ξ0Δ so that α(ξ0)1 or there is a μ0Δ so that β(μ0)1;

    (iii) Γ is continuous.

    Then Γ has an FP in Δ.

    Corollary 6.6. Let (Δ,mb) be a complete MbMS and Γ be a symmetric fractional α-β-Υ-contraction of pattern-I fulfilling the accompanying affirmations:

    (i) Γ is a cyclic (α,β)-admissible mapping;

    (ii) there is an ξ0Δ so that α(ξ0)1 or there is a μ0Δ so that β(μ0)1;

    (iii) if {ξn} is a sequence in Δ such that ξnξ as n, and β(ξn)1nN, then β(ξ)1.

    Hence, Γ has an FP in Δ.

    Corollary 6.7. Let (Δ,mb) be a complete MbMS, and Γ be a symmetric fractional α-β-Υ-contraction of pattern-II fulfilling the same affirmations in Corollary 6.5.

    Then Γ has an FP in Δ.

    Corollary 6.8. Let (Δ,mb) be a complete MbMS, and Γ be a symmetric fractional α-β-Υ-contraction of pattern-II fulfilling the same affirmations in Corollary 6.6.

    Then Γ has an FP in Δ.

    Note. In a similar action, we can deduce the Corollaries 6.5–6.8 for symmetric fractional α-β-Υ-contractions of pattern III and IV respectively.

    In this portion, we derive some fixed point results for symmetric fractional contraction mappings on a closed ball of MbMS.

    Theorem 7.1. Let (Δ,mb) be a complete MbMS, ξ0 be an arbitrary point in a closed ball B[ξ0,ε],α,η:Δ×Δ[0,) be semi α-admissible mappings wrt η on B[ξ0,ε] with α(ξ0,ξ1)η(ξ0,ξ1) and ΥΨ. Let Γ:ΔΔ be a continuous semi α-admissible mapping satisfying (3.1) for all ξ,μB[ξ0,ε]ΔFix(Γ),α(ξ,μ)η(ξ,μ). Moreover, for all ε>0

    mb(ξ0,ξ1)mbξ0,ξ1ni=0si+1Υi[mb(ξ0,ξ1)]ε. (7.1)

    Then Γ has an FP in B[ξ0,ε]Δ.

    Proof. Since ξ0B[ξ0,ε] there exists ξ1Δ such that ξ1=Γξ0 and ξ2Δ such that ξ2=Γξ1. Continuing in this process, we construct a sequence {ξn} of points in Δ such that, ξn=Γξn. As α(ξ0,ξ1)η(ξ0,ξ1) and it is semi α-admissible mapping wrt η, we have α(Γξ0,Γξ1)η(Γξ0,Γξ1) from which we deduce that α(ξ1,ξ2)η(ξ1,ξ2) which also implies that α(Γξ1,Γξ2)η(Γξ1,Γξ2). Continuing in this way, we obtain α(Γξn1,Γξn)η(Γξn1,Γξn). which leads to α(ξn,ξn+1)η(ξn,ξn+1). for all nN. Now, we show that ξnB[ξ0,ε] for all nN. Utilizing inequality (7.1), we have

    mb(ξ0,ξ1)mbξ0,ξ1ni=0si+1Υi[mb(ξ0,ξ1)]ε,ε>0.

    That is ξ1B[ξ0,ε]. Let ξ2,ξ3,...,ξjB[ξ0,ε] for some jN. Now, we can write

    mb(ξj,ξj+1)s2mb(Γξj1,Γξj)Υ[λ(R1(ξj1,ξj))], (7.2)

    where, by the same steps in (3.4), we deduce that

    R1(ξj1,ξj)(smbξj1,ξj+1)1(ca)(cb)mb(ξj1,ξj). (7.3)

    Therefore, from (7.2), (7.3) and similar to (3.3) and (3.4), we conclude that

    mb(ξj,ξj+1)<Υj[mb(ξ0,ξ1)],jN. (7.4)

    Using (Mb4) and (7.4), we have

    mb(ξ0,ξj+1)mbξ0,ξj+1s[(mb(ξ0,ξ1)mbξ0,ξ1)+(mb(ξ1,ξj+1)mbξ0,ξj+1)]mb(ξ1,ξ1)s[mb(ξ0,ξ1)+smb(ξ1,ξ2)+s2mb(ξ2,ξ3)+...+sjmb(ξj,ξj+1)]=smb(ξ0,ξ1)+s2mb(ξ1,ξ2)+s3mb(ξ2,ξ3)+...+sj+1mb(ξj,ξj+1)<smb(ξ0,ξ1)+s2Υ(mb(ξ0,ξ1))+s3Υ(mb(ξ0,ξ1))+...+sj+1Υjmb(ξ0,ξ1)<ji=0si+1Υi(mb(ξ0,ξ1))<ε.

    Thus ξj+1B[ξ0,ε]. Hence by induction, we get ξnB[ξ0,ε]nN, therefore {ξn} is a sequence in B[ξ0,ε]. As Γ is simi α-admissible wrt η on B[ξ0,ε], so α(ξn,ξn+1)η(ξn,ξn+1). Also inequality (7.4) can be written as

    mb(ξn,ξn+1)<Υn[mb(ξ0,ξ1)]nN. (7.5)

    As i=1siΥi(t)<, then for some kN the series i=1siΥi[Υk1(mb(ξ0,ξ1)], converges. Fix ε>0, then there exists k(ε)N, such that

    i=1siΥi[Υn1(mb(ξ0,ξ1)]<ε. (7.6)

    Let n,mN with n>m>k(ε) and from (Mb4), (7.5), (7.6) and (Υ3), we get

    mb(ξn,ξm)mbξn,ξmm1i=nsin+1mb(ξi,ξi+1)m1i=nsin+1Υi[mb(ξi,ξi+1)]<mni=nsinΥin[Υn1(mb(ξ0,ξ1))]<mni=nsiΥi[Υk(ε)1(mb(ξ0,ξ1))]<ε.

    The convergence of the series mni=nsiΥi[Υk1(mb(ξ0,ξ1))] leads to

    limn,m(mb(ξn,ξm)mbξn,ξm)=0.

    By the same way, we can show that limn,m(Mbξn,ξmmbξn,ξm)=0. Therefore, {ξn} is an mb-Cauchy sequence in B[ξ0,ε]. Since every closed set in a complete MbMS is complete. So, there exists ξB[ξ0,ε] such that ξnξ as n. Since Γ is continuous then limnΓξn=Γξ and

    limn(mb(ξn,ξ)mbξn,ξ)=0. (7.7)

    We will show that Γξ=ξ. Suppose that mb(ξ,Γξ)mbξ,Γξ>0. So, by (Mb4), we have

    mb(ξ,Γξ)mbξ,Γξs[(mb(ξ,ξn+1)mbξ,ξn+1)+(mb(ξn+1,Γξ)mbξn+1,Γξ)] (7.8)
    mb(ξn+1,ξn+1)s(mb(ξ,ξn+1)mbξ,ξn+1)+s(mb(Γξn,Γξ)mbξn+1,Γξ)=s(mb(ξ,ξn+1)mbξ,ξn+1)+1s(s2mb(Γξn,Γξ))smbξn+1,Γξs(mb(ξ,ξn+1)mbξ,ξn+1)+1sΥ[λR1(ξn,ξ))smbξn+1,Γξ=s(mb(ξ,ξn+1)mbξ,ξn+1)+1sΥ[λmb(ξn,ξ).mb(ξn,Γξn)1(ab)(ac).mb(ξ,Γξ)1(ab)(ac).[mb(ξn,Γξn)+mb(ξ,Γξ)]1(ba)(bc).[mb(ξn,Γξ)+mb(ξ,Γξn)]1(ca)(cb)]smbξn+1,Γξ. (7.9)

    Taking limit as n in (7.8) and utilizing (7.7), we get

    mb(ξ,Γξ)mbξ,Γξ1sΥ[λmb(ξ,Γξ).mb(ξ,ξ)1(ab)(ac).mb(ξ,Γξ)1(ab)(ac).[mb(ξ,ξ)+mb(ξ,Γξ)]1(ba)(bc).[mb(ξ,Γξ)+smb(ξ,ξ)+mbξ,Γξn]1(ca)(cb)]smbξ,Γξ1s2sΥ[λmb(ξ,Γξ).mb(ξ,ξ)1(ab)(ac)+1(ba)(bc)+1(ca)(cb).[mb(ξ,Γξ)]1(ab)(ac)+1(ba)(bc)+1(ca)(cb).[smbξ,Γξ]1(ca)(cb)]smbξ,Γξ<1s2mb(ξ,Γξ)smbξ,Γξby(Υ3)<mb(ξ,Γξ)mbξ,Γξ.

    Which is a contradiction. Therefore mb(ξ,Γξ)mbξ,Γξ=0 implies that mb(ξ,Γξ)=mbξ,Γξ. So, that is Γξ=ξ and ξB[ξ0,ε] is an FP of Γ.

    In a similar conductance, we can state and prove the same Theorems fulfill symmetric fractional α-β-Υ-contraction mappings (4.1), (5.1) and (6.1) on closed ball.

    The example below supports Theorem 7.1.

    Example 7.2. Let Δ=[0,), p>1 and mb:Δ×Δ[0,) is defined by

    mb(ξ,μ)=max{ξ,μ}p+|ξμ|p, ξ,μΔ.

    Clearly, (Δ,mb) is an MbMS with s=2p. Define Γ:ΔΔ by

    Γξ={ξe5,if ξ[0,10],4ξ45,if ξ(10,).

    Describe the functions α,η:Δ×Δ[0,) as,

    α(ξ,μ)={2,if ξ,μ[0,10],1,if ξ,μ(10,),, η(ξ,μ)={1,if ξ,μ[0,10],0,if ξ,μ[0,].

    Considering ξ0=1,ε=180, then B[ξ0,ε]=[0,10] and mb(ξ0,Γξ0)=mb(1,Γ1)=mb(1,1e5)=1+(11e5)p. Therefore, α(1,Γ1)=2η(1,Γ1)=1. Now for all ξ,μ[0,10], Γ is a continuous semi α-admissible mapping wrt η, whenever α(ξ,μ)η(ξ,μ), we have

    s2mb(Γξ,Γμ)=22pmb(ξe5,μe5)=22p(max{ξe5,μe5}p+|ξe5μe5|p)=22pe5p(max{ξ,μ}p+|ξμ|p)2pe5p[22pmb(ξ,μ)]Υ[λ(R1(ξ,μ))].

    That is achieved when we choose Υ(t)=2pte5p and constants λ=22p[0,), a,b,c(0,1), for all ξ,μΔFix(Γ). Also, for all n0 and p>1, we obtain

    mb(ξ0,ξ1)ni=0si+1Υi[mb(ξ0,ξ1)]ni=0si+1Υi[1+(11e5)p]=22[1+(11e5)p]ni=0(22pe5p)i180=ε.

    Note that for 20, 21 Δ and for p=2, we have α(20,21)η(20,21) and we can calculate

    s2mb(Γ20,Γ21)>Υ[λR1(20,21)].

    So that condition (3.1) does not hold. Therefore, all affirmations of Theorem 7.1 are satisfied. Hence Γ has an FP ξ=0B[ξ0,ε]. (Note that 15 is an another FP of Γ, which belongs to Δ but it does not belong to B[ξ0,ε].

    In this portion, we shall apply Theorem 4.2 to discuss the existence and uniqueness of the bounded solution to fractional order differential equations (FODE), which have recently proved to be significant tools in the modeling of many phenomena in numerious fields of science and building. Consider a function f:(0,1)R. The conformable fractional derivative of order α of f at t>0 is defined in [26] as follows:

    Dαf(t)=limε0f(t+εt1α)f(t)ε. (8.1)

    The conformable fractional integral associated with (8.1) is defined in [25,26] as following:

    Iα0f(t)=t0sα1f(s)ds. (8.2)

    We consider the following boundary value problem (BVP) of a fractional order differential equation:

    {Dαtξ(t)=λ(t,ξ(t),Dα1tξ(t),t,α(0,1)ξ(0)=0,ξ(1)=10ξ(s)ds. (8.3)

    The BVP (8.3) can be expressed as the integral equation as follows:

    ξ(t)=λ10G(t,s)f(s,ξ(s))ds. (8.4)

    Where G(t,s) is defined as the Green function under the assumption of (8.1), which is given by

    G(s,t)={2tsα+sα1,0st12tsα,0ts1 (8.5)

    and 10ξ(s)ds denotes the Riemann integrable of ξ with respect to s and f:[0,1]×RR is a continuous function. Consider

    ξ(t)=c0+c1t+λ10sα1f(s,ξ(s))ds, (8.6)

    when ξ(0)=0, then c0=0,ξ(1)=c1+λ10sα1f(s,ξ(s))ds, and from the condition ξ(1)=10ξ(s)ds, we have

    10ξ(s)ds=10c1sds+λ10s0vα1f(v,ξ(v))dvds=12c1+λ101vvα1f(v,ξ(v))dvds=12c1+λ10(1v)vα1f(v,ξ(v))dvds=12c1+λ10(sα1sα)f(s,ξ(s))ds,

    this implies that

    12c1=λ10sα1f(s,ξ(s))ds+λ10(sα1sα)f(s,ξ(s))ds=λ10sαf(s,ξ(s))ds

    hence,

    c1=2λ10sαf(s,ξ(s))ds.

    It follows from (8.6), c0 and c1 that

    ξ(t)=2λt10sαf(s,ξ(s))ds+λt0sα1f(s,ξ(s))ds=2λtt0sαf(s,ξ(s))ds2λt1tsαf(s,ξ(s))ds+λt0sα1f(s,ξ(s))ds=λt0(2tsα+sα1)f(s,ξ(s))ds+λ1t(2tsα)f(s,ξ(s))ds=λt0G(t,s)f(s,ξ(s))ds.

    Let Cα(I) be the space of all continuous functions de…ned on I, where I=[0,1],α>0 and let mb(ξ,μ)= for all \xi, \mu\in C^{\alpha}(I). Then \left(C^{\alpha}(I), m_{b}\right) is a complete MbMS with a constant \delta = 2.

    Now we consider the BVP (8.3) under the following stipulations:

    (1) there exist a function \omega:\mathbb{R}\rightarrow (0, 1), \; \delta\geq 1 and \rho, \sigma, \varrho:\mathbb{R}\rightarrow \mathbb{R} are three functions such that for all t\in I and \xi, \mu\in\mathbb{R} with \rho(\xi)\sigma(\mu)\geq\varrho(\xi)\varrho(\mu), then

    \begin{eqnarray*} \vert f(s,\xi(s))+f(s,\mu(s))\vert\leq\sqrt{\dfrac{4\omega(t)}{10\delta^{2}}\aleph(\xi(s),\mu(s))}, \end{eqnarray*}

    where, For all a, b, c\in(0, 1)

    \begin{eqnarray*} \aleph(\xi(s),\mu(s))& = &\vert\dfrac{\xi(s)+\mu(s)}{2}\vert^{2}.\vert\dfrac{\xi(s)+\Gamma\xi(s)}{2}\vert^{\dfrac{2a}{(a-b)(a-c)}}.\vert\dfrac{\mu(s)+\Gamma\mu(s)}{2}\vert^{\dfrac{2a}{(a-b)(a-c)}}\\ &&.\left[\vert\dfrac{\xi(s)+\Gamma\xi(s)}{2}\vert+\vert\dfrac{\mu(s)+\Gamma\mu(s)}{2}\vert^{2}\right]^{\dfrac{b}{(b-a)(b-c)}}\\ &&.\left[\vert\dfrac{\xi(s)+\Gamma\mu(s)}{2}\vert+\vert\dfrac{\mu(s)+\Gamma\xi(s)}{2}\vert^{2}\right]^{\dfrac{c}{(c-a)(c-b)}}, \end{eqnarray*}

    (2) there exists \xi_{1}\in C^{\alpha}(I) such that for all t \in I,

    \begin{eqnarray*} \rho\left(\xi_{1}(t)\right)\sigma\left(\int_{0}^{1}G(t,s)f(s,\xi_{1}(s))ds\right)\geq\varrho\left(\xi_{1}(t)\right)\varrho\left(\int_{0}^{1}G(t,s)f(s,\xi_{1}(s))ds\right), \end{eqnarray*}

    (3) for all t \in I and for all \xi, \mu\in C^{\alpha}(I), there are \xi_{1}, \mu_{1} \in C^{\alpha}(I), such that

    \rho(\xi(t))\geq\varrho(\xi(t))

    implies

    \sigma\left(\int_{0}^{1}G(t,s)f(s,\xi_{1}(s))ds\right)\geq\varrho\left(\int_{0}^{1}G(t,s)f(s,\xi_{1}(s))ds\right)

    and

    \sigma(\mu(t))\geq\varrho(\mu(t))

    implies

    \rho\left(\int_{0}^{1}G(t,s)f(s,\mu_{1}(s))ds\right)\geq\varrho\left(\int_{0}^{1}G(t,s)f(s,\mu_{1}(s))ds\right),

    (4) for any cluster point \xi of a sequence \lbrace\xi_{n}\rbrace of points in C^{\alpha}(I) with \rho(\xi_{n})\sigma(\xi_{n+1})\geq\varrho(\xi_{n})\varrho(\xi_{n+1}), such that

    \lim\limits_{n\rightarrow \infty}\inf\rho(\xi_{n})\sigma(\xi)\geq\lim\limits_{n\rightarrow \infty}\varrho(\xi_{n})\varrho(\xi) .

    Now, we present our main theorem in this part.

    Theorem 8.1. Under the postulates (1)–(4), the BVP (8.3) has at least one solution \xi ^{\ast }\in C^{\alpha}(I).

    Proof. We known that \xi^{*}\in C^{\alpha}(I) is a solution of (8.3) if and only if \xi^{*}\in C^{\alpha}(I) is a solution of the fractional order integral equation:

    \xi(t) = \lambda\int_{0}^{1}G(t,s)f(s,\xi(s))ds, \forall \lambda, t \in I.

    We define a map \Gamma:C^{\alpha}(I) \rightarrow C^{\alpha}(I) by

    \Gamma\xi(t) = \lambda\int_{0}^{1}G(t,s)f(s,\xi(s))ds, \forall \lambda, t \in I.

    Then, problem (8.3) is equivalent to find \xi^{*}\in C^{\alpha}(I) that is a fixed point of \Gamma. Let \xi, \mu\in C^{\alpha}(I), such that \rho(\xi(t))\sigma(\xi(t))\geq 0, for all t\in I. Using stipulation (1), we get

    \begin{eqnarray*} \left[\mid\Gamma\xi(t)+\Gamma\mu(t)\mid\right]^{2}& = &\left[\mid\lambda\mid\mid\int_{0}^{1}G(t,s)f(s,\xi(s))ds+\int_{0}^{1}G(t,s)f(s,\mu(s))ds\mid\right]^{2}\\ &\leq&\left[\mid\lambda\mid\int_{0}^{1}G(t,s) \mid(s,\xi(s))+f(s,\mu(s))\mid ds\right]^{2}\\ &\leq&\left[\mid\lambda\mid\int_{0}^{1}G(t,s)ds\sqrt{\dfrac{4\omega(t)}{10\delta^{2}}\aleph(\xi(s),\mu(s))}\right]^{2}\\ & = &\left[\mid\lambda\mid\int_{0}^{1}G(t,s)ds\right]^{2}\dfrac{4\omega(t)}{10\delta^{2}}\aleph(\xi(s),\mu(s))\\ &\leq&\left[\mid\lambda\mid\int_{0}^{1}G(t,s)ds\right]^{2}\dfrac{4\omega(t)}{10\delta^{2}} \vert\dfrac{\xi(s)+\mu(s)}{2}\vert^{2}\\ &&.\vert\dfrac{\xi(s)+\Gamma\xi(s)}{2}\vert^{\frac{2a}{(a-b)(a-c)}}.\vert\dfrac{\mu(s)+\Gamma\mu(s)}{2}\vert^{\frac{2a}{(a-b)(a-c)}}\\ &&.\left[\vert\dfrac{\xi(s)+\Gamma\xi(s)}{2}\vert+\vert\dfrac{\mu(s)+\Gamma\mu(s)}{2}\vert^{2}\right]^{\frac{b}{(b-a)(b-c)}}\\ &&.\left[\vert\dfrac{\xi(s)+\Gamma\mu(s)}{2}\vert+\vert\dfrac{\mu(s)+\Gamma\xi(s)}{2}\vert^{2}\right]^{\frac{c}{(c-a)(c-b)}} \end{eqnarray*}
    \begin{eqnarray*} &\leq&\max\limits_{t\in I}\left[\int_{0}^{1}G(t,s)ds\right]^{2}\dfrac{4\omega(t)}{10\delta^{2}} \vert\vert\dfrac{\xi(s)+\mu(s)}{2}\vert\vert_{\infty}^{2}\\ &&.\vert\vert\dfrac{\xi(s)+\Gamma\xi(s)}{2}\vert\vert_{\infty}^{\frac{2a}{(a-b)(a-c)}}.\vert\vert\dfrac{\mu(s)+\Gamma\mu(s)}{2}\vert\vert_{\infty}^{\frac{2a}{(a-b)(a-c)}}\\ &&.\left[\vert\vert\dfrac{\xi(s)+\Gamma\xi(s)}{2}\vert\vert_{\infty}^{2}+\vert\vert\dfrac{\mu(s)+\Gamma\mu(s)}{2}\vert\vert_{\infty}^{2}\right]^{\frac{b}{(b-a)(b-c)}}\\ &&.\left[\vert\vert\dfrac{\xi(s)+\Gamma\mu(s)}{2}\vert\vert_{\infty}^{2}+\vert\vert\dfrac{\mu(s)+\Gamma\xi(s)}{2}\vert\vert_{\infty}^{2}\right]^{\frac{c}{(c-a)(c-b)}}\\ &\leq& \dfrac{4\omega(t)}{10\delta^{2}}\vert\vert\dfrac{\xi(s)+\mu(s)}{2}\vert\vert_{\infty}^{2}\\ &&.\vert\vert\dfrac{\xi(s)+\Gamma\xi(s)}{2}\vert\vert_{\infty}^{\frac{2a}{(a-b)(a-c)}}.\vert\vert\dfrac{\mu(s)+\Gamma\mu(s)}{2}\vert\vert_{\infty}^{\frac{2a}{(a-b)(a-c)}}\\ &&.\left[\vert\vert\dfrac{\xi(s)+\Gamma\xi(s)}{2}\vert\vert_{\infty}^{2}+\vert\vert\dfrac{\mu(s)+\Gamma\mu(s)}{2}\vert\vert_{\infty}^{2}\right]^{\frac{b}{(b-a)(b-c)}}\\ &&.\left[\vert\vert\dfrac{\xi(s)+\Gamma\mu(s)}{2}\vert\vert_{\infty}^{2}+\vert\vert\dfrac{\mu(s)+\Gamma\xi(s)}{2}\vert\vert_{\infty}^{2}\right]^{\frac{c}{(c-a)(c-b)}}. \end{eqnarray*}

    Thus,

    \delta^{2}m_{b}\left(\Gamma\xi,\Gamma\mu\right)\leq \Upsilon\left[\lambda R_{2}(\xi,\mu)\right] ,

    where, \Upsilon(t) = \dfrac{\omega(t)}{5}t, \; \lambda = \dfrac{1}{2} and

    \begin{eqnarray*} R_{2}(\xi ,\mu ) = \left\lbrace\begin{array}{c} m_{b}(\xi ,\mu ).\left[m_{b}(\xi ,\Gamma\xi )\right]^{\frac{a}{(a-b)(a-c)}}. [m_{b}(\mu,\Gamma \mu )]^{\frac{a}{(a-b)(a-c)}}\\ .[m_{b}(\xi ,\Gamma \xi )+m_{b}(\mu ,\Gamma \mu )]^{\frac{b}{(b-a)(b-c)}}\\ .[m_{b}(\xi ,\Gamma \mu )+m_{b}(\mu ,\Gamma \xi )]^{\frac{c}{(c-a)(c-b)}} \end{array} \right\rbrace. \end{eqnarray*}

    For each \xi, \mu\in C^{\alpha}(I) such that \rho(\xi(t))\sigma(\mu(t))\geq \varrho(\xi(t))\varrho(\mu(t)) for all t\in I. We define \alpha, \beta, \eta:C^{\alpha}(I)\rightarrow [0, \infty) by

    \alpha(\xi) = \beta(\xi) = \left\{ \begin{array}{cc} 2 , & \text{if }\rho(\xi(t))\sigma(\mu(t))\geq0, t\in I \\ 0 , & \text{otherwise,} \end{array} \right. \text{ and }\eta(\xi) = \left\{ \begin{array}{cc} \frac{1 }{4} , & \text{if }\rho(\xi(t))\sigma(\mu(t))\geq0, t\in I \\ 0, & \text{otherwise.} \end{array} \right.

    Then, for all \xi, \mu\in C^{\alpha}(I) , & \alpha(\xi) \geq\eta(\xi) and \beta(\mu)\geq\eta(\mu). If \alpha(\xi)\geq\eta(\xi) and \beta(\mu)\geq\eta(\mu). for each \xi, \mu \in C(I), then \rho(\xi(t))\geq\varrho(\xi(t)) and \sigma(\mu(t))\geq\varrho(\mu(t)). From stipulation (3), we have \rho(\Gamma\xi(t))\geq\varrho(\Gamma\xi(t)) and \sigma(\Gamma\mu(t))\geq\varrho(\Gamma\mu(t)), and so \alpha(\Gamma\xi)\geq\eta(\Gamma\xi) and \beta(\Gamma\mu)\geq\eta(\Gamma\mu). Thus, \Gamma is \eta -cyclic \alpha -admissible mapping. From stipulation (2) there subsist \xi_{1}\in C^{\alpha}(I) parallel to \alpha(\xi)\beta(\mu)\geq\eta(\xi)\eta(\mu). By stipulation (4), we have that for any cluster point \xi of a sequence \lbrace \xi_{n}\rbrace of points in C^{\alpha}(I) with \rho(\xi_{n})\sigma(\mu_{n+1})\geq \varrho(\xi_{n})\varrho(\mu_{n+1}) implies that \alpha(\xi_{n})\beta(\mu_{n+1})\geq \eta(\xi_{n})\eta(\mu_{n+1}) and \lim_{n\rightarrow \infty}\inf\alpha(\xi_{n})\beta(\mu_{n+1})\geq \lim_{n\rightarrow \infty}\inf\eta(\xi_{n})\eta(\mu_{n+1}). So, all affirmations of Theorem 4.2 are satisfied and then \Gamma has an FP \xi^{*} \in C^{\xi}(I), which is a solution of the BVP (8.3).

    Four classes of symmetric fractional contractions are produced in this paper. The focus was on a new idea of symmetric fractional \alpha - \beta - \eta - \Upsilon -contraction pattern-I, pattern-II, pattern-III and pattern-IV in the setting of MbMS and the fifth class studied the same results on closed ball of the said space. The main results were suported by two nontrivial examples and an application for the existence and uniqueness of the bounded solution to (FODE). This paper generalized many results in the litrature.

    The authors acknowledge with thank to Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia, for technical and financial support.

    The authors declare no conflict of interest.



    [1] E. Karapinar, T. Abdeljawad, F. Jarad, Applying new fixed point theorems on fractional and ordinary differential equations, Adv. Differ. Equ., 421 (2019), 1–25. https://doi.org/10.1186/s13662-019-2354-3 doi: 10.1186/s13662-019-2354-3
    [2] H. A. Hammad, M. De la Sen, A solution of Fredholm integral equation by using the cyclic \eta_{s}^{q}-rational contractive mappings technique in b-metric-like spaces, Symmetry, 11 (2019), 1–22. http://doi.org/10.3390/sym11091184 doi: 10.3390/sym11091184
    [3] H. A. Hammad, M. De la Sen, Solution of nonlinear integral equation via fixed-point of cyclic \alpha_{s}^{q}-Rational contraction mappings in metric-like spaces, Bull. Braz. Math. Soc. New Ser., 51 (2020), 81–105. https://doi.org/10.1007/s00574-019-00144-1 doi: 10.1007/s00574-019-00144-1
    [4] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, A Wiley-Interscience Publication, New York, 1993, 1–376.
    [5] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier, Amsterdam, 204 (2006), 1–523.
    [6] F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Cont. Dyn.-S, 13 (2020), 709–722. https://doi.org/10.1007/s00574-019-00144-1 doi: 10.1007/s00574-019-00144-1
    [7] D. Baleanu, R. P. Agarwal, H. Mohammadi, S. Rezapour, Some existence results for a nonlinear fractional differential equation on partially ordered Banach spaces, Bound. Value Probl., 2013 (2013), 1–8. https://doi.org/10.1186/1687-2770-2013-112 doi: 10.1186/1687-2770-2013-112
    [8] A. Ali, A. Hussain, M. Arshad, H. A. Sulami, M. Tariq, Certain new development to the orthogonal binary relations, Symmetry, 14 (2022), 1–21. https://doi.org/10.3390/sym14101954 doi: 10.3390/sym14101954
    [9] A. Ali, A. Muhammad, A. Hussain, N. Hussain, S. M. Alsulami, On new generalized \theta_{b}-contractions and related fixed point theorems, J. Inequal. Appl., 2022 (2022), 1–19. https://doi.org/10.1186/s13660-022-02770-8 doi: 10.1186/s13660-022-02770-8
    [10] S. G. Matthews, Partial metric topology, Ann. N. Y. Acad. Sci., 728 (1994), 183–197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x
    [11] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1993), 5–11.
    [12] M. Asadi, E. Karapinar, P. Salimi, New extension of p-metric spaces with some fixed-point results on M-metric spaces, J. Inequal. Appl., 2014 (2014), 1–9. https://doi.org/10.1186/1029-242X-2014-18 doi: 10.1186/1029-242X-2014-18
    [13] N. Mlaiki, A. Zarrad, N. Souayah, A. Mukheimer, T. Abdeljawed, Fixed point theorem in M_{b}-metric spaces, J. Math. Anal., 7 (2016), 1–9.
    [14] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations itegrals, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181
    [15] E. Karapinar, Revisiting the Kannan type contractions via interpolation, Adv. Theor. Nonlinear Anal. Appl., 2 (2018), 85–87. https://doi.org/10.31197/atnaa.431135 doi: 10.31197/atnaa.431135
    [16] E. Karapinar, R. Agarwal, H. Aydi, Interpolative Reich-Rus-´Ciric´ type contractions on partial metric spaces, Mathematics, 6 (2018), 1–7. http://doi.org/10.3390/math6110256 doi: 10.3390/math6110256
    [17] A. Hussain, Fractional convex type contraction with solution of fractional differential equation, AIMS Math., 5 (2020), 5364–5380. http://doi.org/10.3934/math.2020344 doi: 10.3934/math.2020344
    [18] A. Hussain, Solution of fractional differential equations utilizing symmetric contraction, J. Math., 2021 (2021), 1–17. https://doi.org/10.1155/2021/5510971 doi: 10.1155/2021/5510971
    [19] A. Hussain, F. Jarad, E. Karapinar, A study of symmetric contractions with an application to generalized fractional differential equations, Adv. Differ. Equ., 2021 (2021), 1–27. https://doi.org/10.1186/s13662-021-03456-z doi: 10.1186/s13662-021-03456-z
    [20] H. A. Hammad, P. Agarwal, S. Momani, F. Alsharari, Solving a fractional-order differential equation using rational symmetric contraction mappings, Fractal Fract., 2021 (2021), 1–21. https://doi.org/10.3390/fractalfract5040159 doi: 10.3390/fractalfract5040159
    [21] B. Rodjanadid, J. Tanthanuch, Some fixed point results on M_{b}-metric space via simulation functions, Thai J. Math., 18 (2020), 113–125.
    [22] S. Alizadeh, F. Moradlou, P. Salimi, Some fixed point results for \left(\alpha, \beta\right)-\left(\psi, \phi\right)-contractive mappings, Filomat, 28 (2014), 635–647. https://doi.org/10.2298/FIL1403635A doi: 10.2298/FIL1403635A
    [23] M. Mudhesh, H. A. Hammad, E. Ameer, M. Arshad, F. Jarad, Novel results on fixed-point methodologies for hybrid contraction mappings in M_{b}-metric spaces with an application, AIMS Math., 8 (2023), 1530–1549. http://doi.org/10.3934/math.2023077 doi: 10.3934/math.2023077
    [24] M. Mudhesh, H. A. Hammad, E. Ameer, A. Ali, Fixed point results under new contractive conditions on closed balls, Appl. Math. Inf. Sci., 16 (2022), 555–564. https://doi.org/10.18576/amis/160408 doi: 10.18576/amis/160408
    [25] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new deffnition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [26] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
    [27] N. Y. Özgür, N. Mlaiki, N. Tas, N. Souayah, A new generalization of metric spaces: Rectangular M-metric spaces, Math. Sci., 12 (2018), 223–233. https://doi.org/10.1007/s40096-018-0262-4 doi: 10.1007/s40096-018-0262-4
    [28] Z. Mustafa, J. R. Roshan, V. Parvaneh, Z. Kadelburg, Some common fixed point results in ordered partial b-metric spaces, J. Inequal. Appl., 2013 (2013), 1–26. https://doi.org/10.1186/1029-242X-2013-562 doi: 10.1186/1029-242X-2013-562
    [29] M. Nazam, H. Aydi, A. Hussain, Existence theorems for \left(\Psi, \Phi\right)-orthogonal interpolative contractions and an application to fractional differential equations, Optimization, 2022, 1–32. http://doi.org/10.1080/02331934.2022.2043858
    [30] A. Torres-Hernandez, F. Brambila-Paz, R. Montufar-Chaveznava, Acceleration of the order of convergence of a family of fractional fixed-point methods and its implementation in the solution of a nonlinear algebraic system related to hybrid solar receivers, Appl. Math. Comput., 429 (2022), 1–12. https://doi.org/10.1016/j.amc.2022.127231 doi: 10.1016/j.amc.2022.127231
  • This article has been cited by:

    1. Mustafa Mudhesh, Aftab Hussain, Muhammad Arshad, Hamed Alsulami, A Contemporary Approach of Integral Khan-Type Multivalued Contractions with Generalized Dynamic Process and an Application, 2023, 11, 2227-7390, 4318, 10.3390/math11204318
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1706) PDF downloads(60) Cited by(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog