The target of this manuscript is to introduce new symmetric fractional α-β-η-Υ-contractions and prove some new fixed point results for such contractions in the setting of Mb-metric space. Moreover, we derive some results for said contractions on closed ball of mentioned space. The existence of the solution to a fractional-order differential equation with one boundary stipulation will be discussed.
Citation: Mustafa Mudhesh, Aftab Hussain, Muhammad Arshad, Hamed AL-Sulami, Amjad Ali. New techniques on fixed point theorems for symmetric contraction mappings with its application[J]. AIMS Mathematics, 2023, 8(4): 9118-9145. doi: 10.3934/math.2023457
[1] | Mustafa Mudhesh, Hasanen A. Hammad, Eskandar Ameer, Muhammad Arshad, Fahd Jarad . Novel results on fixed-point methodologies for hybrid contraction mappings in $ M_{b} $-metric spaces with an application. AIMS Mathematics, 2023, 8(1): 1530-1549. doi: 10.3934/math.2023077 |
[2] | Nehad Abduallah Alhajaji, Afrah Ahmad Noman Abdou, Jamshaid Ahmad . Application of fixed point theory to synaptic delay differential equations in neural networks. AIMS Mathematics, 2024, 9(11): 30989-31009. doi: 10.3934/math.20241495 |
[3] | Hasanen A. Hammad, Hüseyin Işık, Hassen Aydi, Manuel De la Sen . Fixed point approach to the Mittag-Leffler kernel-related fractional differential equations. AIMS Mathematics, 2023, 8(4): 8633-8649. doi: 10.3934/math.2023433 |
[4] | Afrah A. N. Abdou, Maryam F. S. Alasmari . Fixed point theorems for generalized $ \alpha $-$ \psi $-contractive mappings in extended $ b $-metric spaces with applications. AIMS Mathematics, 2021, 6(6): 5465-5478. doi: 10.3934/math.2021323 |
[5] | Pragati Gautam, Vishnu Narayan Mishra, Rifaqat Ali, Swapnil Verma . Interpolative Chatterjea and cyclic Chatterjea contraction on quasi-partial $b$-metric space. AIMS Mathematics, 2021, 6(2): 1727-1742. doi: 10.3934/math.2021103 |
[6] | Haitham Qawaqneh, Hasanen A. Hammad, Hassen Aydi . Exploring new geometric contraction mappings and their applications in fractional metric spaces. AIMS Mathematics, 2024, 9(1): 521-541. doi: 10.3934/math.2024028 |
[7] | Aftab Hussain . Fractional convex type contraction with solution of fractional differential equation. AIMS Mathematics, 2020, 5(5): 5364-5380. doi: 10.3934/math.2020344 |
[8] | Monairah Alansari, Mohammed Shehu Shagari, Akbar Azam, Nawab Hussain . Admissible multivalued hybrid $\mathcal{Z}$-contractions with applications. AIMS Mathematics, 2021, 6(1): 420-441. doi: 10.3934/math.2021026 |
[9] | Yunpeng Zhao, Fei He, Shumin Lu . Several fixed-point theorems for generalized Ćirić-type contraction in $ G_{b} $-metric spaces. AIMS Mathematics, 2024, 9(8): 22393-22413. doi: 10.3934/math.20241089 |
[10] | Badshah-e-Rome, Muhammad Sarwar, Thabet Abdeljawad . µ-extended fuzzy b-metric spaces and related fixed point results. AIMS Mathematics, 2020, 5(5): 5184-5192. doi: 10.3934/math.2020333 |
The target of this manuscript is to introduce new symmetric fractional α-β-η-Υ-contractions and prove some new fixed point results for such contractions in the setting of Mb-metric space. Moreover, we derive some results for said contractions on closed ball of mentioned space. The existence of the solution to a fractional-order differential equation with one boundary stipulation will be discussed.
The fixed point (FP) theory popularize in different ways by many image authentications which are proposed in the literature. Recently, new approach based on the FP theory is given in the literature. It has become an essential stanchion of nonlinear analysis, where it is used to study the existence and uniqueness of the solutions for many differential and nonlinear integral equations [1,2,3,4,5,6,7,8,9]. There were many generalizations of metric space (MS), for instance the first extension of MS was to partial metric space (PMS) [10] which was done by defining the self distance, another extension was to b-metric space (bMS) [11] by changing the triangle inequality. In [12] Asadi et al. introduced and extended PMS to M-metric space (MMS). Also, he showed that every PMS is an M-MS, but inverse is not true. In 2016, Mlaiki et al. [13] introduced the concept of Mb-metric space (MbMS) which is an extension of MMS and they gave an example of an MbMS which is not an MMS with proving some FP results. BCP [14] was appeared in 1922, to be the base of functional analysis and plays a main role in several branches of mathematics and applied sciences, which asserts that every contraction mapping defined in complete MS has an FP. In many directions this principle has been extended and generalized either by relaxing the contractive stipulations or imposing some more stipulations on space. One of these generalizations and interesting approaches is interpolative Kannan type contraction which was introduced by Karapinar [15] and established new FP results on complete MS. In [16] Karapinar et al., discussed the interpolative Reich-Rus-Ciric type contractions in complete PMSs and deduced new FPs results. In 2020, Hussain [17] gave a proper extension of [15,16] by presenting the notion of fractional convex Reich-type and Kannan type α-η-contractions and established some FP theorems in the setting of F-complete F-MS. Newly, the notion of fractional symmetric α-η-contraction was introduced in [18,19,20] with discussing of applications for solving fractional-order differential equations, they studied four types of said contraction and obtained FP results in the setting of F-complete F-MS. In 2022, Nazam et al. [29] introduced (Ψ,Φ)-orthogonal interpolative contractions with showing the existence of FPs of set-valued (Ψ,Φ)-orthogonal interpolative contractions. In this research article, we are going to give a splendid generalization of Hussain et al. [19] by introducing four new types of symmetric fractional α-β-η-Υ-contractions and prove some new FP results in the complete MbMS. As addition of our main results, we will show existence of FPs for such contractions on closed ball of mentioned space. As an application, we will investigate existence of solving of fractional-order differential equations.
In this portion, some elementary discussions about MbMSs will be given. It should be noted that Mlaiki et al. [13] introduced the notion of MbMS and inaugurated the advanced Banach Contraction Principle on MbMS. So, the notion of mbξ,μ and Mbξ,μ are defined as follows:
mbξ,μ=min{mb(ξ,ξ),mb(μ,μ)}, |
and
Mbξ,μ=max{mb(ξ,ξ),mb(μ,μ)}. |
Definition 2.1. An MbMS on a non-empty set Δ is a function mb:Δ2→R+ that fulfills the assumptions below, for all ξ,μ,κ∈Δ,
(Mb1)mb(ξ,ξ)=mb(μ,μ)=mb(ξ,μ) iff ξ=μ;
(Mb2)mbξ,μ≤mb(ξ,μ);
(Mb3)mb(ξ,μ)=mb(μ,ξ);
(Mb4) There is a coefficient s≥1 so that for all ξ,μ,κ∈Δ, we have
mb(ξ,μ)−mbξ,μ≤s[(mb(ξ,κ)−mbξ,κ)+(mb(κ,μ)−mbκ,μ)]−mb(κ,κ). |
Then the pair (Δ,mb) is called an MbMS.
Example 2.2. Let Δ=[0,∞) and p>1 be a constant. Define mb:Δ2⟶[0,∞) by
mb(ξ,μ)=(max{ξ,μ})p+|ξ−μ|p, ∀ξ,μ∈Δ. |
Then (Δ,mb) is an MbMS (with coefficient s=2p) and not MMS.
Definition 2.3. Let (Δ,mb) be an MbMS. Then
● A sequence {ξn} in Δ converges to a point ξ if and only if
limn→∞(mb(ξn,ξ)−mbξn,ξ)=0. |
● A sequence {ξn} in Δ is called mb-Cauchy sequence iff
limn,m→∞(mb(ξn,ξm)−mbξn,ξm) and limn,m→∞(Mbξn,ξm−mbξn,ξm) |
exist and finite.
● An MbMS is called mb-complete if every mb-Cauchy sequence {ξn} converges to a point ξ so that
limn→∞(mb(ξn,ξ)−mbξn,ξ)=0 and limn→∞(Mbξn,ξ−mbξn,ξ)=0. |
Theorem 2.4. Let (Δ,mb) be an MbMS with coefficient s≥1 and Γ be a self-mapping on Δ. If there is k∈[0,1) so that
mb(Γξ,Γμ)≤kmb(ξ,μ),∀ξ,μ∈Δ. |
Then Γ has a unique FP ς in Δ.
Example 2.5. [22] Let Δ=[0,1] and mb:Δ×Δ⟶[0,∞) be defined by
mb(ξ,μ)=(ξ+μ2)2, ∀ξ,μ∈Δ. |
Then (Δ,mb) is an MbMS (with coefficient s=2) which is not an MMS.
The concept of cyclic (α,β)-admissible mapping is showed in the work of [22] as follows:
Definition 2.6. Let Δ≠∅, α,β:Δ→[0,∞) be two functions. A mapping Γ:Δ→Δ is called cyclic (α,β)-admissible if for some ξ∈Δ,
α(ξ)≥1⇒β(Γξ)≥1, |
and
β(ξ)≥1⇒α(Γξ)≥1. |
Mudhesh et al. [23] extended this work to η-cyclic (α,β)-admissible mappings as following:
Definition 2.7. Let Δ≠∅, α,β,η:Δ→[0,∞) be given functions. The mapping Γ:Δ→Δ is called η-cyclic (α,β)-admissible if for some ξ∈Δ,
α(ξ)≥η(ξ)⇒β(Γξ)≥η(Γξ), |
and
β(ξ)≥η(ξ)⇒α(Γξ)≥η(Γξ). |
Definition 2.8. [24] Assume that Γ is a self-mapping on a nonempty set Δ,A⊆Δ and let α,η:Δ×Δ→[0,∞) be given functions. We say that Γ is semi α-admissible with respect to (wrt) η; if for some ξ,μ∈A⊆Δ, we have
α(ξ,μ)≥η(ξ,μ)⇒α(Γξ,Γμ)≥η(Γξ,Γμ). |
It should be noted that if A=Δ, then Γ is called α-admissible wrt η.
The following results are well known in the literature:
Let Ψs, where s≥1; denotes the family of all nondecreasing functions ψ:[0,∞)→[0,∞) such that
● (ψ1)∑∞n=1snψn(t)<+∞ for all t>0;
● (ψ2)sψ(t)<t for all t>0;
● (ψ3)sn+1ψn+1(t)<snsψnψ(t)<snψn(t),where ψn is the nth iterate of ψ.
Let Ψ, denotes the family of all nondecreasing functions ψ:[0,∞)→[0,∞) such that∑∞n=1ψn(t)<+∞ for all t>0, where ψn stands for the nth iterate of ψ.
Lemma 2.9. Let ψ∈Ψ, then the following hold:
(i) (ψn(t))n∈N converges to 0 as n→∞∀t∈(0,∞);
(ii) ψ(t)<t for each t>0;
(iii) ψ(t)=0 iff t=0.
The coming results are very useful in our study which are taken and proved as in [27,28].
Let (Δ,mb) be an MbMS. For all ξ∈Δ and ε>0, the open ball with the center ξ and the radius ε is
B(ξ,ε)={μ∈Δ:mb(ξ,μ)−mbξ,μ<ε}. |
Notice that we have ξ∈B(ξ,ε) for all ε>0. Indeed, we get
mb(ξ,ξ)−mbξ,ξ=mb(ξ,ξ)−mb(ξ,ξ)=0<ε. |
Similarly, the closed ball with the center ξ and the radius ε is
B[ξ,ε]={μ∈Δ:mb(ξ,μ)−mbξ,μ≤ε}. |
Lemma 2.10. Let (Δ,mb) be an MbMS,ξ∈Δ and ε>0. The collection of all open balls on Δ,βmb={B(ξ,ε)}ε>0ξ∈Δ forms a basis on Δ.
Lemma 2.11. The following inequality holds for all ξ,μ≥2 and r≥1,
(ξ+μ)r≤(ξμ)r. |
In this portion, we reset FP results for symmetric fractional α-β-η-Υ-contraction of pattern-I in complete MbMS.
Definition 3.1. Let Γ:Δ→Δ be a mapping on an MbMS (Δ,mb),α,β,η:Δ→[0,∞) be three functions and Υ∈Ψ. We say that Γ is a symmetric fractional α-β-η-Υ-contraction of pattern-I, if there exist constants s≥1,a,b,c∈(0,1) and λ=(smbξ,μ)−1(c−a)(c−b)∈[0,∞) such that ∀ξ,μ∈Δ╲ Fix (Γ), whenever α(ξ)β(μ)≥η(ξ)η(μ), we have
s2mb(Γξ,Γμ)≤Υ[λ(R1(ξ,μ))], | (3.1) |
where
R1(ξ,μ)=mb(ξ,μ).[mb(ξ,Γξ)]1(a−b)(a−c).[mb(μ,Γμ)]1(a−b)(a−c).[mb(ξ,Γξ)+mb(μ,Γμ)]1(b−a)(b−c).[mb(ξ,Γμ)+mb(μ,Γξ)]1(c−a)(c−b). |
Example 3.2. Let Δ={0,13,12,23,1} and mb:Δ×Δ→R be defined by mb(ξ,μ)=(ξ+μ2)2. Then (Δ,mb) is a complete MbMS with s=2. Define Γ:Δ→Δ by
Γ0=Γ13=Γ23=Γ1=0, Γ12=12, |
and α,β,η:Δ→[0,∞) by
α(ξ)=β(ξ)={1if ξ∈Δ,0otherwiseand η(ξ)={12,if ξ∈Δ,0,otherwise. |
Let Υ(t)=34t. If ξ,μ∈Δ. Clearly α(ξ)β(μ)≥η(ξ)η(μ), such that
s2mb(Γ13,Γ23)=0≤Υ[λmb(13,23).mb(13,Γ13)1(a−b)(a−c).mb(23,Γ23)1(a−b)(a−c).[mb(13,Γ13)+mb(23,Γ23)]1(b−a)(b−c).[mb(13,Γ23)+mb(23,Γ13)]1(c−a)(c−b)]=Υ[λ4(136)1(a−b)(a−c).(19)1(a−b)(a−c).[(136)+(19)]1(b−a)(b−c).[(136)+(19)]1(c−a)(c−b)]=Υ[λ4(136×436)1(a−b)(a−c).(536)1(b−a)(b−c).(536)1(c−a)(c−b)]≤Υ[λ4(136+436)1(a−b)(a−c).(536)1(b−a)(b−c).(536)1(c−a)(c−b)]=Υ[λ4(536)1(a−b)(a−c)+1(b−a)(b−c)+1(c−a)(c−b)]=3λ16∈[0,∞). |
By taking any value of constants λ∈[0,∞) and a,b,c∈(0,1). Clearly, (3.1) holds for all ξ,μ∈Δ╲ Fix (Γ). Thus Γ has two FPs of 0 and 12.
Now we state and prove our main theorem.
Theorem 3.3. Let (Δ,mb) be a complete MbMS with coifficient s≥1 and Γ is a symmetric fractional α-β-η-Υ-contraction pattern-I satisfies the following statements:
(i) Γ is an η-cyclic (α,β)-admissible mapping;
(ii) either there is ξ0∈Δ so that α(ξ0)≥η(ξ0) or there is μ0∈Δ so that β(μ0)≥η(μ0);
(iii) Γ is continuous.
Then Γ has an FP ξ∗∈Δ.
Proof. Let ξ0∈Δ such that α(ξ0)≥η(ξ0), and β(ξ0)≥η(ξ0). Define a sequence {ξn} in Δ by ξn=Γξn−1∀n∈N. If ∃ some n0∈N for which Γξn0=ξn0, then ξn0 is an FP of Γ and the proof is done. Asume that mb(ξn0,Γξn0)>0, by (i)∃ξ1∈Δ such that
α(ξ0)≥η(ξ0)⇒β(ξ1)=β(Γξ0)≥η(ξ1)=η(Γξ0), |
and
β(ξ0)≥η(ξ0)⇒α(ξ1)=α(Γξ0)≥η(ξ1)=η(Γξ0). |
Continuing in this way, we get
α(ξn)≥η(ξn)⇒β(ξn+1)≥η(ξn+1). |
Similarlly
β(ξn)≥η(ξn)⇒α(ξn+1)≥η(ξn+1). |
And hence, For all n∈N
α(ξn)β(ξn+1)≥η(ξn)η(ξn+1). | (3.2) |
If ξn+1=ξn for sone n∈N, then ξn=ξ∗, and the proof is done. So, we assume that for all n∈N,ξn+1≠ξn accompanied by
mb(Γξn−1,Γξn)=mb(ξn,Γξn)>0. |
From (3.1) and for all n∈N, we have
mb(ξn,ξn+1)≤s2mb(Γξn−1,Γξn)≤Υ[λ(R1(ξn−1,ξn))]. | (3.3) |
Where
R1(ξn−1,ξn)=[mb(ξn−1,ξn).mb(ξn−1,Γξn−1)1(a−b)(a−c).mb(ξn,Γξn)1(a−b)(a−c).[mb(ξn−1,Γξn−1)+mb(ξn,Γξn)]1(b−a)(b−c).[mb(ξn−1,Γξn)+mb(ξn,Γξn−1)]1(c−a)(c−b)]=[mb(ξn−1,ξn).mb(ξn−1,ξn)1(a−b)(a−c).mb(ξn,ξn+1)1(a−b)(a−c).[mb(ξn−1,ξn)+mb(ξn,ξn+1)]1(b−a)(b−c).[mb(ξn−1,ξn+1)+mb(ξn,ξn)]1(c−a)(c−b)]≤[mb(ξn−1,ξn)1+1(a−b)(a−c).mb(ξn,ξn+1)1(a−b)(a−c).[mb(ξn−1,ξn)+mb(ξn,ξn+1)]1(b−a)(b−c).[s(mb(ξn−1,ξn)−mbξn−1,ξn+mb(ξn,ξn+1)−mbξn,ξn+1)+mbξn−1,ξn+1]1(c−a)(c−b)]≤[mb(ξn−1,ξn)1+1(a−b)(a−c).mb(ξn,ξn+1)1(a−b)(a−c).[mb(ξn−1,ξn)+mb(ξn,ξn+1)]1(b−a)(b−c).[s(mb(ξn−1,ξn)+mb(ξn,ξn+1))+mbξn−1,ξn+1]1(c−a)(c−b)]≤[mb(ξn−1,ξn)1+1(a−b)(a−c).mb(ξn,ξn+1)1(a−b)(a−c).[mb(ξn−1,ξn).mb(ξn,ξn+1)]1(b−a)(b−c).[s(mb(ξn−1,ξn).mb(ξn,ξn+1)).mbξn−1,ξn+1]1(c−a)(c−b)]=[s1(c−a)(c−b)mb(ξn−1,ξn)1(a−b)(a−c)+1(b−a)(b−c)+1(c−a)(c−b).mb(ξn,ξn+1)1(a−b)(a−c)+1(b−a)(b−c)+1(c−a)(c−b).(mbξn−1,ξn+1)1(c−a)(c−b)]mb(ξn−1,ξn)=(smbξn−1,ξn+1)1(c−a)(c−b)mb(ξn−1,ξn). | (3.4) |
Now fron (3.3) and (3.4), we obtain that
mb(ξn,ξn+1)≤s2mb(Γξn−1,Γξn)≤Υ(λ[smbξn−1,ξn+1]1(c−a)(c−b)mb(ξn−1,ξn))=Υ(mb(ξn−1,ξn))<mb(ξn−1,ξn). | (3.5) |
From (3.5), we conclude that mb(ξn−1,ξn) is a decreasing sequence with non-negative terms. Thus, there is a constant ϱ≥0 such that limn→∞mb(ξn−1,ξn)=ϱ. Presume that ϱ>0. From (3.5), we can write
mb(ξn,ξn+1)≤s2mb(Γξn−1,Γξn)≤Υ[mb(ξn−1,ξn)]≤Υ2[mb(ξn−2,ξn−1)]≤Υ3[mb(ξn−3,ξn−2)]...≤Υn[mb(ξ0,ξ1)]. | (3.6) |
Taking limit as n→∞ in (3.6), and from properties of Υ, we obtain
0≤limn→+∞mb(ξn,ξn+1)≤limn→+∞Υn[mb(ξ0,ξ1)]=0. |
Which yield that
limn→+∞mb(ξn,ξn+1)=0. | (3.7) |
Now, we prove that {ξn} is an Mb-Cauchy sequence in (Δ,mb). Recall that from (Mb2) and for all n∈N, we have
0≤mbξn,ξn+1≤mb(ξn,ξn+1). |
Since from (3.7), we have
limn→∞mbξn,ξn+1=0, | (3.8) |
which denotes that
limn→∞mb(ξn,ξn)=0,orlimn→∞mb(ξn+1,ξn+1)=0. | (3.9) |
Therefore,
limm,n→∞mbξn,ξm=limm,n→∞min{mb(ξn,ξn),mb(ξm,ξm)}=0. | (3.10) |
Hence,
limm,n→∞(Mbξm,ξn−mbξm,ξn)=limm,n→∞∣mb(ξn,ξn)−mb(ξm,ξm)∣=0. |
Next, we shall prove that limm,n→∞(mb(ξm,ξn)−mbξm,ξn)=0. Suppose on the contrary that
limm,n→∞(mb(ξm,ξn)−mbξm,ξn)≠0, |
then there exist ε>0 and subsequence {ςk}⊂N such that
mb(ξςk,ξnk)−mbξςk,ξnk≥ε. | (3.11) |
Suppose that ςk is the smallest integer which satisfies (3.11) such that
mb(ξςk−1,ξnk)−mbξςk−1,ξnk<ε. | (3.12) |
By (Mb4) in (3.11) and using (3.12), we get
ε≤mb(ξςk,ξnk)−mbξςk,ξnk≤s[(mb(ξςk,ξςk−1)−mbξςk,ξςk−1)+(mb(ξςk−1,ξnk)−mbξςk−1,ξnk)]−mb(ξςk−1,ξςk−1)≤sε+s[mb(ξςk,ξςk−1)−mbξςk,ξςk−1]−mb(ξςk−1,ξςk−1). | (3.13) |
Letting k→∞ in (3.13), using (3.7)–(3.9), then
ε≤limk→∞(mb(ξςk,ξnk)−mbξςk,ξnk)≤sε. | (3.14) |
Utilizing (3.10) and from (3.14), we have
ε≤limk→∞mb(ξςk,ξnk)≤sε. | (3.15) |
Similarly from (Mb4) and (3.11), we obtain
ε≤mb(ξςk,ξnk)−mbξςk,ξnk≤s[(mb(ξςk,ξςk+1)−mbξςk,ξςk+1)+(mb(ξςk+1,ξnk)−mbξςk+1,ξnk)]−mb(ξςk+1,ξςk+1)≤s[(mb(ξςk,ξςk+1)−mbξςk,ξςk+1)+s[(mb(ξςk+1,ξnk+1)−mbξςk+1,ξnk+1)+(mb(ξnk+1,ξnk)−mbξnk+1,ξnk)]−mb(ξnk+1,ξnk+1)]−mb(ξςk+1,ξςk+1)=[s(mb(ξςk,ξςk+1)−mbξςk,ξςk+1)+s2(mb(ξςk+1,ξnk+1)−mbξςk+1,ξnk+1)+s2(mb(ξnk+1,ξnk)−mbξnk+1,ξnk)−smb(ξnk+1,ξnk+1)−mb(ξςk+1,ξςk+1)]. | (3.16) |
Similar to (3.13), we find that
ε≤mb(ξςk+1,ξnk+1)−mbξςk+1,ξnk+1≤[s(mb(ξςk+1,ξςk)−mbξςk+1,ξςk)+s2(mb(ξςk,ξnk)−mbξςk,ξnk)+s2(mb(ξnk,ξnk+1)−mbξnk,ξnk+1)−smb(ξnk+1,ξnk+1)−mb(ξςk,ξςk)]. | (3.17) |
Utilizing (3.16) and (3.17), then
ε≤mb(ξςk,ξnk)−mbξςk,ξnk≤[s(mb(ξςk,ξςk+1)−mbξςk,ξςk+1)+s2(mb(ξςk+1,ξnk+1)−mbξςk+1,ξnk+1)+s2(mb(ξnk+1,ξnk)−mbξnk+1,ξnk)−smb(ξnk+1,ξnk+1)−mb(ξςk+1,ξςk+1)]≤[s(mb(ξςk,ξςk+1)−mbξςk,ξςk+1)+s2(s[mb(ξςk+1,ξςk)−mbξςk+1,ξςk]+s2[mb(ξςk,ξnk)−mbξςk,ξnk]+s2[mb(ξnk,ξnk+1)−mbξnk,ξnk+1]−smb(ξnk+1,ξnk+1)−mb(ξςk,ξςk))+s2(mb(ξnk+1,ξnk)−mbξnk+1,ξnk)−smb(ξnk+1,ξnk+1)−mb(ξςk+1,ξςk+1)]. | (3.18) |
Taking limit as k→∞ in (3.18), and using (3.7)–(3.9) and (3.14), we get
ε≤limk→∞s2(mb(ξςk+1,ξnk+1)−mbξςk+1,ξnk+1)≤s5ε. |
Therefore
εs2≤limk→∞(mb(ξςk+1,ξnk+1)−mbξςk+1,ξnk+1)≤s3ε. | (3.19) |
From (3.10), we have
εs2≤limk→∞mb(ξςk+1,ξnk+1)≤s3ε. | (3.20) |
Now, from (3.1), we obtain
s2mb(ξςk+1,ξnk+1)=s2mb(Γξςk,Γξnk)≤Υ[λ(R1(ξςk,ξnk))], |
where
R1(ξςk,ξnk)=mb(ξςk,ξnk).mb(ξςk,Γξςk)1(a−b)(a−c).mb(ξnk,Γξnk)1(a−b)(a−c).[mb(ξςk,Γξςk)+mb(ξnk,Γξnk)]1(b−a)(b−c).[mb(ξςk,Γξnk)+mb(ξnk,Γξςk)]1(c−a)(c−b)=mb(ξςk,ξnk).mb(ξςk,ξςk+1)1(a−b)(a−c).mb(ξnk,ξnk+1)1(a−b)(a−c).[mb(ξςk,ξςk+1)+mb(ξnk,ξnk+1)]1(b−a)(b−c).[mb(ξςk,ξnk+1)+mb(ξnk,ξςk+1)]1(c−a)(c−b). |
By taking limit as k→∞ in the above equation and using (3.7) and (3.8), we obtain
0≤limk→∞R1(ξςk,ξnk)≤0⇒limk→∞R1(ξςk,ξnk)=0. | (3.21) |
Thence, it follows from (3.20), (3.21) and (iii) of Lemma 2.9 that
ε=s2(εs2)≤s2limk→∞mb(ξςk+1,ξnk+1)=s2limk→∞mb(Γξςk,Γξnk)≤Υ[λlimk→∞R1(ξςk,ξnk)]<Υ[limk→∞R1(ξςk,ξnk)]=Υ[0]=0. |
Hence, we conclude that ε<0 which is a contradiction. Thus, limm,n→∞(mb(ξm,ξn)−mbξm,ξn)=0, therefore {ξn} is an Mb-Cauchy sequence in Δ. Since Δ is complete, there exist some ξ∗∈Δ such that ξn→ξ∗ as n→∞. Since Γ is continuous then limn→∞Γξn=Γξ∗, therefore we have
limn→∞(mb(ξn+1,ξ∗)−mbξn+1,ξ∗)=0.andlimn→∞(Mbξn+1,ξ∗−mbξn+1,ξ∗)=0. | (3.22) |
Since from (3.9) and (3.22), we get
limn→∞(mb(ξn+1,ξ∗)−mbξn+1,ξ∗)=0=limn→∞mb(ξn+1,ξ∗)=limn→∞mb(Γξn,ξ∗)=mb(Γξ∗,ξ∗). | (3.23) |
So, that is Γξ∗=ξ∗ and ξ∗ is an FP of Γ.
Theorem 3.4. Let (Δ,mb) be a complete MbMS with coefficient s≥1 and Γ is a symmetric fractional α-β-η-Υ-contraction pattern-I fulfilling the affirmations below:
(i) Γ is an η-cyclic (α,β)-admissible mapping;
(ii) either there is ξ0∈Δ so that α(ξ0)≥η(ξ0) or there is μ0∈Δ so that β(μ0)≥η(μ0);
(iii) if {ξn} is a sequence in Δ such that ξn→ξ∗ as n→∞, and β(ξn)≥η(ξn) for all n∈N, then β(ξ∗)≥η(ξ∗).
Then Γ has an FP ξ∗∈Δ.
Proof. In the definitive lines of the proof of Theorem 3.3, we acquire β(ξ∗)≥η(ξ∗). Now we show that mb(Γξ∗,ξ∗)=0.ξn→ξ∗ as n→∞, from (Mb4), we have
0≤|(mb(ξn+1,Γξ∗)−mbξn+1,Γξ∗)−(mb(ξ∗,Γξ∗)−mbξ∗,Γξ∗)|≤|s((mb(ξn+1,ξ∗)−mbξn+1,ξ∗)−(mb(ξ∗,Γξ∗)−mbξ∗,Γξ∗))−mb(ξ∗,ξ∗)−(s((mb(ξ∗,ξ∗)−mbξ∗,ξ∗)−(mb(ξ∗,Γξ∗)−mbξ∗,Γξ∗))−mb(ξ∗,ξ∗))|. | (3.24) |
So taking limit as n→∞ in (3.24) and using of (3.9) and (3.22), we get
0≤limn→∞|(mb(ξn+1,Γξ∗)−mbξn+1,Γξ∗)−(mb(ξ∗,Γξ∗)−mbξ∗,Γξ∗)|≤0, |
this implies that
limn→∞(mb(ξn+1,Γξ∗)−mbξn+1,Γξ∗)=mb(ξ∗,Γξ∗)−mbξ∗,Γξ∗=mb(ξ∗,Γξ∗). | (3.25) |
Now from (3.3) and (3.25), we have
mb(ξn+1,Γξ∗)−mbξn+1,Γξ∗≤s2mb(Γξn,Γξ∗)−mbΓξn,Γξ∗≤Υ[λ(R1(ξn,ξ∗))]≤Υ(λmb(ξn,ξ∗).mb(Γξ∗,ξ∗)1(a−b)(a−c).mb(ξn,Γξn)1(a−b)(a−c).[mb(Γξ∗,ξ∗)+mb(ξn,Γξn)]1(b−a)(b−c).[mb(Γξn,ξ∗)+mb(ξn,Γξ∗)]1(c−a)(c−b)). | (3.26) |
By taking limit as n→∞ in (3.26) and since Υ∈Ψ, we get
limn→∞mb(ξn+1,Γξ∗)−mbξn+1,Γξ∗=0. | (3.27) |
Therefore, from (3.25) and (3.27), we get mb(ξ∗,Γξ∗)=0 and ξ∗ is an FP of Γ.
The example below supports Theorems 3.3 and 3.4.
Example 3.5. Let Δ=[0,1] and mb:Δ×Δ⟶[0,∞) defined by
mb(ξ,μ)=(ξ+μ2)2, ∀ξ,μ∈Δ. |
Clearly, (Δ,mb) is an MbMS with s=2. Define Γ:Δ→Δ by
Γξ={ξ29,if ξ∈(0,1],0,otherwise. |
Describe the functions α,β,η:Δ→[0,∞) as,
α(ξ)=β(ξ)={2,if ξ∈(0,1],0,otherwise, η(ξ)={1,if ξ∈(0,1],0,otherwise. |
Clearly for all ξ,μ∈(0,1], α(ξ)=2≥1=η(ξ)⇒β(Γξ)=2≥1=η(Γξ), and β(ξ)=2≥1=η(ξ)⇒α(Γξ)≥η(Γξ). So, Γ is η-cyclic (α,β)-admissible mapping. Now if {ξn} is a sequence in Δ such that ξn→ξ∗ as n→∞ and β(ξn)≥η(ξn). Then β(ξ∗)≥η(ξ∗) whenever, α(ξ)β(μ)≥η(ξ)η(μ), such that
s2mb(Γξ,Γμ)=4mb(ξ29,μ29)=4(ξ2+μ218)2≤(ξ+μ18)2=49[19(ξ+μ2)2]≤49[19((ξ+μ2)2.(3ξ4)21(a−b)(a−c).(3μ4)21(a−b)(a−c).((3ξ4)2+(3μ4)2)1(b−a)(b−c).((2ξ+μ4)2+(ξ+2μ4)2)1(c−a)(c−b))]=Υ[λ(R1(ξ,μ))]. |
That is achieved when we take Υ(t)=4t9 and constants λ=19∈[0,∞), a,b,c∈(0,1), for all ξ,μ∈Δ∖Fix(Γ). Otherwise, for ξ=μ=0, we obtain that Γ is η-cyclic (α,β)-admissible mapping, whenever α(ξ)β(μ)≥η(ξ)η(μ), and
s2mb(Γξ,Γμ)=0≤Υ[λ(R1(ξ,μ))]. |
Therefore, all affirmations of Theorems 3.3 and 3.4 are satisfied. Hence Γ has an FP ξ∗=0∈Δ. (Note that 9 is an another FP of Γ, but it does not belong to Δ.
In this portion, we devote our efforts to introduce the notion of symmetric fractional α-β-η-Υ-contraction pattern-II and some FP results are obtained via a complete MbMS.
Definition 4.1. Let Γ:Δ→Δ be a mapping on an MbMS (Δ,mb),α,β,η:Δ→[0,∞) be three functions and Υ∈Ψ. We say that Γ is a symmetric fractional α-β-η-Υ-contraction of pattern-II provided that there are constants s≥1,a,b,c∈(0,1) and λ=(smbξ,μ)−c(c−a)(c−b)∈[0,∞) such that ∀ξ,μ∈Δ╲ Fix (Γ), whenever α(ξ)β(μ)≥η(ξ)η(μ), we have
s2mb(Γξ,Γμ)≤Υ[λ(R2(ξ,μ))], | (4.1) |
where
R2(ξ,μ)=mb(ξ,μ).[mb(ξ,Γξ)]a(a−b)(a−c).[mb(μ,Γμ)]a(a−b)(a−c).[mb(ξ,Γξ)+mb(μ,Γμ)]b(b−a)(b−c).[mb(ξ,Γμ)+mb(μ,Γξ)]c(c−a)(c−b). |
Now we show and demonstrate our next theorem.
Theorem 4.2. Let (Δ,mb) be a complete MbMS and Γ be a symmetric fractional α-β-η-Υ-contraction of pattern-II fulfilling the same affirmations of Theorem 3.3:
Then Γ has an FP in Δ.
Proof. By the same steps as in proof of Theorem 3.3, we deduce that Γ has an FP ξ∗∈Δ.
Theorem 4.3. Let (Δ,mb) be a complete MbMS and Γ be a symmetric fractional α-β-η-Υ-contraction of pattern-II fulfilling the same affirmations of Theorem 3.4:
Then Γ has an FP in Δ.
Proof. Similar to the same steps as in proof of Theorem 3.4, we conclude that ξ∗ is an FP of Γ.
In this segment, the notion of symmetric fractional α-β-η-Υ-contraction pattern-III and some FP results are established via a complete MbMS:
Definition 5.1. Let (Δ,mb) be an MbMS with a self-map Γ:Δ→Δ,α,β,η:Δ→[0,∞) be three functions and Υ∈Ψ. We say that Γ is a symmetric fractional α-β-η-Υ-contraction pattern-III along with constants s≥1,a,b,c∈(0,1) and λ=(smbξ,μ)−c2(c−a)(c−b)∈[0,∞) such that ∀ξ,μ∈Δ╲ Fix (Γ), whenever α(ξ)β(μ)≥η(ξ)η(μ), we have
s2mb(Γξ,Γμ)≤Υ[λ(R3(ξ,μ))], | (5.1) |
where
R3(ξ,μ)=max{mb(ξ,μ),mb(ξ,Γξ)a2(a−b)(a−c).mb(μ,Γμ)a2(a−b)(a−c).[mb(ξ,Γξ)+mb(μ,Γμ)]b2(b−a)(b−c).[mb(ξ,Γμ)+mb(μ,Γξ)]c2(c−a)(c−b)}. |
Now, we declare and demonstrate our next theorem.
Theorem 5.2. Let (Δ,mb) be a complete MbMS and Γ be a symmetric fractional α-β-η-Υ-contraction of pattern-III that satisfies the same assertions of Theorem 3.3:
Then Γ has an FP in Δ.
Proof. Let ξ0∈Δ such that α(ξ0)≥η(ξ0) and β(ξ0)≥η(ξ0). For all n∈N, we build an iteration {ξn}∞n=1 such that ξ1=Γξ0,ξ2=Γξ1=Γ2ξ0. By proceeding in this manner, we obtain ξn+1=Γξn=Γn+1ξ0. Now from (i), we can conclude that for all n∈N,
α(ξn)β(ξn+1)≥η(ξn)η(ξn+1). | (5.2) |
If ξn+1=ξn for some n∈N, then ξn=ξ∗ is an FP of Γ. So, we assume that ξn≠ξn+1 accompanied by mb(Γξn−1,Γξn)=mb(ξn,Γξn) for every n∈N.
From (5.1), we own
mb(ξn,ξn+1)≤s2mb(Γξn−1,Γξn)≤Υ[λ(R3(ξn−1,ξn))], | (5.3) |
where by the same steps in (3.4), we deduce that
R3(ξn−1,ξn)=max{mb(ξn−1,ξn),[smbξn−1,ξn+1]c2(c−a)(c−b).mb(ξn,ξn+1)}. |
Now if
R3(ξn−1,ξn)=[smbξn−1,ξn+1]c2(c−a)(c−b).mb(ξn,ξn+1). | (5.4) |
Then, from (5.3) and (5.4), we get
mb(ξn,ξn+1)≤s2mb(Γξn−1,Γξn)≤Υ(λ[smbξn−1,ξn+1]c2(c−a)(c−b).mb(ξn,ξn+1))=Υ(mb(ξn,ξn+1))<mb(ξn,ξn+1), |
which gives a contradiction, thus
R3(ξn−1,ξn)=mb(ξn−1,ξn). | (5.5) |
Now, from (5.3) and (5.5), we conclude that
mb(ξn,ξn+1)≤s2mb(Γξn−1,Γξn)≤Υ[λ(R3(ξn−1,ξn))]<mb(ξn−1,ξn), | (5.6) |
The rest of the proof follows along the same lines as the proof of Theorem 3.3. So, we find that Γ has an FP ξ∗∈Δ.
Theorem 5.3. Let (Δ,mb) be a complete MbMS and Γ be a symmetric fractional α-β-η-Υ-contraction of pattern-III fulfilling the same affirmations of Theorem 3.4:
Then Γ has an FP in Δ.
Proof. In the same style of the proof of Theorem 3.4, we obtain that ξ∗ is an FP of Γ.
The example below supports Theorems 5.2 and 5.3.
Example 5.4. Let Δ=[0,1] and mb:Δ×Δ⟶[0,∞) defined by
mb(ξ,μ)=(ξ+μ2)2, ∀ξ,μ∈Δ. |
Clearly, (Δ,mb) is an MbMS with s=2. Define Γ:Δ→Δ by
Γξ={115,if ξ∈[0,1),1,if ξ=1. |
Describe the functions α,β,η:Δ→[0,∞) as,
α(ξ)=β(ξ)={2,if ξ∈[0,1),0,otherwise,, η(ξ)={1,if ξ∈[0,1),0,otherwise. |
Clearly Γ is an η-cyclic (α,β)-admissible mapping. Now if {ξn} is a sequence in Δ such that ξn→ξ∗ as n→∞ and β(ξn)≥η(ξn). Then β(ξ∗)≥η(ξ∗) whenever, α(ξ)β(μ)≥η(ξ)η(μ), and for ξ∈[0,1),μ=1, we have
s2mb(Γξ,Γμ)=22mb(Γξ,Γ1)=4(115+12)2=4(815)2=4(83×5)2=45[645(13)2]≤Υ[λ(R3(ξ,1))]. |
That is satisfied when we define Υ:[0,∞)→[0,∞) by Υ(t)=4t5. and we choose the constants λ=645∈[0,∞),a,b,c∈(0,1). Therefore, all affirmations of Theorems 5.2 and 5.3 are satisfied. Hence Γ has two FPs 115 and 1∈Δ.
This portion is consecrated to presenting a symmetric fractional α-β-η-Υ-contraction of pattern-IV in the framework of complete MbMS. Furthermore, new fixed point results are obtained in the said space.
Definition 6.1. Let (Δ,mb) be an MbMS with a self-map Γ:Δ→Δ,α,β,η:Δ→[0,∞) be three functions and Υ∈Ψ. We say that Γ is a symmetric fractional α-β-η-Υ-contraction pattern-IV along with constants s≥1,a,b,c∈(0,1) and λ=(smbξ,μ)−c3(c−a)(c−b)∈[0,∞) with a+b+c<1 such that ∀ξ,μ∈Δ╲ Fix (Γ), whenever α(ξ)β(μ)≥η(ξ)η(μ), we have
s2mb(Γξ,Γμ)≤Υ[λ(R4(ξ,μ))], | (6.1) |
where
R4(ξ,μ)=[mb(ξ,μ)]a3(a−b)(a−c).[mb(ξ,Γξ)]a3(a−b)(a−c).[mb(ξ,Γξ)+mb(μ,Γμ)]b3(b−a)(b−c).[mb(ξ,Γμ)+mb(μ,Γξ)]c3(c−a)(c−b). |
Now, we declare and demonstrate our next theorem.
Theorem 6.2. Let (Δ,mb) be a complete MbMS and Γ be a symmetric fractional α-β-η-Υ-contraction of pattern-IV that satisfies the same assertions of Theorem 3.3:
Then Γ has an FP in Δ.
Proof. Take any ξ0∈Δ such that α(ξ0)≥η(ξ0) and β(ξ0)≥η(ξ0). For all n∈N, we build an iteration {ξn}∞n=1 such that ξ1=Γξ0,ξ2=Γξ1=Γ2ξ0. By proceeding in this manner, we obtain ξn+1=Γξn=Γn+1ξ0. Now from (i), we can conclude that for all n∈N,
α(ξn)β(ξn+1)≥η(ξn)η(ξn+1). | (6.2) |
If ξn+1=ξn for some n∈N, then ξn=ξ∗ is an FP of Γ. So, we assume that ξn≠ξn+1 accompanied by mb(Γξn−1,Γξn)=mb(ξn,Γξn) for every n∈N. Now, from (6.1), we have
mb(ξn,ξn+1)≤s2mb(Γξn−1,Γξn)≤Υ[λR4(ξn−1,ξn)], |
where by the same steps in (3.4), we deduce that
R4(ξn−1,ξn)≤(mb(ξn−1,ξn).mb(ξn,ξn+1))a+b+c≤max{mb(ξn−1,ξn),mb(ξn,ξn+1)}. |
If max{mb(ξn−1,ξn),mb(ξn,ξn+1)}=mb(ξn,ξn+1), then
mb(ξn,ξn+1)≤Υ[mb(ξn,ξn+1)]≤mb(ξn,ξn+1), |
which is a contradiction, thus
mb(ξn,ξn+1)≤Υ[mb(ξn−1,ξn)]≤mb(ξn−1,ξn), | (6.3) |
The rest of the proof follows along the same lines as the proof of Theorem 3.3. So, we find that Γ has an FP ξ∗∈Δ.
Theorem 6.3. Consider a complete MbMS (Δ,mb) and let Γ be a symmetric fractional α-β-η-Υ-contraction of pattern-IV fulfilling the same affirmations of Theorem 3.4:
Then Γ has an FP in Δ.
Proof. By the same way of the proof of Theorem 3.4, we canclud that Γ has an FP in Δ.
The example below supports Theorem 6.2.
Example 6.4. Let Δ=[0,∞), p>1 and mb:Δ×Δ⟶[0,∞) defined by
mb(ξ,μ)=max{ξ,μ}p+|ξ−μ|p, ∀ξ,μ∈Δ. |
Clearly, (Δ,mb) is an MbMS with s=2p. Define Γ:Δ→Δ by
Γξ={ξ+0.5128,if ξ∈(0,1],0,otherwise. |
Describe the functions α,β,η:Δ→[0,∞) as,
α(ξ)=β(ξ)={2,if ξ∈(0,1],0,otherwise,, η(ξ)={1,if ξ∈(0,1],0,otherwise. |
Clearly for all ξ,μ∈(0,1], Γ is an η-cyclic (α,β)-admissible mapping, whenever α(ξ)β(μ)≥η(ξ)η(μ), we have
s2mb(Γξ,Γμ)=22pmb(ξ+0.5128,μ+0.5128)≤22pmb(ξ64,μ64)=22p(max{ξ64,μ64}p+|ξ64−μ64|p)=22p64p(max{ξ,μ}p+|ξ−μ|p)=22p26pmb(ξ,μ)=124pmb(ξ,μ)≤122p[12p(R3(ξ,μ))]=Υ[λ(R3(ξ,μ))]. |
That is achieved when we take Υ(t)=t22p and constants λ=12p∈[0,∞), a,b,c∈(0,1), for all ξ,μ∈Δ∖Fix(Γ). Otherwise, we can obtain that Γ is η-cyclic (α,β)-admissible mapping, whenever α(ξ)β(μ)≥η(ξ)η(μ), and
s2mb(Γξ,Γμ)=0≤Υ[λ(R1(ξ,μ))]. |
Therefore, all affirmations of Theorem 6.2 are satisfied. Hence Γ has two FPs 0 and 1254∈Δ.
By taking η(ξ)=η(μ)=1, in Theorems 3.3, 3.4, 4.2 and 4.3, we derive the following corollaries.
Corollary 6.5. Let (Δ,mb) be a complete MbMS and Γ be a symmetric fractional α-β-Υ-contraction of pattern-I fulfilling the accompanying affirmations:
(i) Γ is a cyclic (α,β)-admissible mapping;
(ii) there is an ξ0∈Δ so that α(ξ0)≥1 or there is a μ0∈Δ so that β(μ0)≥1;
(iii) Γ is continuous.
Then Γ has an FP in Δ.
Corollary 6.6. Let (Δ,mb) be a complete MbMS and Γ be a symmetric fractional α-β-Υ-contraction of pattern-I fulfilling the accompanying affirmations:
(i) Γ is a cyclic (α,β)-admissible mapping;
(ii) there is an ξ0∈Δ so that α(ξ0)≥1 or there is a μ0∈Δ so that β(μ0)≥1;
(iii) if {ξn} is a sequence in Δ such that ξn→ξ∗ as n→∞, and β(ξn)≥1∀n∈N, then β(ξ∗)≥1.
Hence, Γ has an FP in Δ.
Corollary 6.7. Let (Δ,mb) be a complete MbMS, and Γ be a symmetric fractional α-β-Υ-contraction of pattern-II fulfilling the same affirmations in Corollary 6.5.
Then Γ has an FP in Δ.
Corollary 6.8. Let (Δ,mb) be a complete MbMS, and Γ be a symmetric fractional α-β-Υ-contraction of pattern-II fulfilling the same affirmations in Corollary 6.6.
Then Γ has an FP in Δ.
Note. In a similar action, we can deduce the Corollaries 6.5–6.8 for symmetric fractional α-β-Υ-contractions of pattern III and IV respectively.
In this portion, we derive some fixed point results for symmetric fractional contraction mappings on a closed ball of MbMS.
Theorem 7.1. Let (Δ,mb) be a complete MbMS, ξ0 be an arbitrary point in a closed ball B[ξ0,ε],α,η:Δ×Δ→[0,∞) be semi α-admissible mappings wrt η on B[ξ0,ε] with α(ξ0,ξ1)≥η(ξ0,ξ1) and Υ∈Ψ. Let Γ:Δ→Δ be a continuous semi α-admissible mapping satisfying (3.1) for all ξ,μ∈B[ξ0,ε]⊆Δ∖Fix(Γ),α(ξ,μ)≥η(ξ,μ). Moreover, for all ε>0
mb(ξ0,ξ1)−mbξ0,ξ1≤n∑i=0si+1Υi[mb(ξ0,ξ1)]≤ε. | (7.1) |
Then Γ has an FP in B[ξ0,ε]⊆Δ.
Proof. Since ξ0∈B[ξ0,ε] there exists ξ1∈Δ such that ξ1=Γξ0 and ξ2∈Δ such that ξ2=Γξ1. Continuing in this process, we construct a sequence {ξn} of points in Δ such that, ξn=Γξn. As α(ξ0,ξ1)≥η(ξ0,ξ1) and it is semi α-admissible mapping wrt η, we have α(Γξ0,Γξ1)≥η(Γξ0,Γξ1) from which we deduce that α(ξ1,ξ2)≥η(ξ1,ξ2) which also implies that α(Γξ1,Γξ2)≥η(Γξ1,Γξ2). Continuing in this way, we obtain α(Γξn−1,Γξn)≥η(Γξn−1,Γξn). which leads to α(ξn,ξn+1)≥η(ξn,ξn+1). for all n∈N. Now, we show that ξn∈B[ξ0,ε] for all n∈N. Utilizing inequality (7.1), we have
mb(ξ0,ξ1)−mbξ0,ξ1≤n∑i=0si+1Υi[mb(ξ0,ξ1)]≤ε,∀ε>0. |
That is ξ1∈B[ξ0,ε]. Let ξ2,ξ3,...,ξj∈B[ξ0,ε] for some j∈N. Now, we can write
mb(ξj,ξj+1)≤s2mb(Γξj−1,Γξj)≤Υ[λ(R1(ξj−1,ξj))], | (7.2) |
where, by the same steps in (3.4), we deduce that
R1(ξj−1,ξj)≤(smbξj−1,ξj+1)1(c−a)(c−b)mb(ξj−1,ξj). | (7.3) |
Therefore, from (7.2), (7.3) and similar to (3.3) and (3.4), we conclude that
mb(ξj,ξj+1)<Υj[mb(ξ0,ξ1)],∀j∈N. | (7.4) |
Using (Mb4) and (7.4), we have
mb(ξ0,ξj+1)−mbξ0,ξj+1≤s[(mb(ξ0,ξ1)−mbξ0,ξ1)+(mb(ξ1,ξj+1)−mbξ0,ξj+1)]−mb(ξ1,ξ1)≤s[mb(ξ0,ξ1)+smb(ξ1,ξ2)+s2mb(ξ2,ξ3)+...+sjmb(ξj,ξj+1)]=smb(ξ0,ξ1)+s2mb(ξ1,ξ2)+s3mb(ξ2,ξ3)+...+sj+1mb(ξj,ξj+1)<smb(ξ0,ξ1)+s2Υ(mb(ξ0,ξ1))+s3Υ(mb(ξ0,ξ1))+...+sj+1Υjmb(ξ0,ξ1)<j∑i=0si+1Υi(mb(ξ0,ξ1))<ε. |
Thus ξj+1∈B[ξ0,ε]. Hence by induction, we get ξn∈B[ξ0,ε]∀n∈N, therefore {ξn} is a sequence in B[ξ0,ε]. As Γ is simi α-admissible wrt η on B[ξ0,ε], so α(ξn,ξn+1)≥η(ξn,ξn+1). Also inequality (7.4) can be written as
mb(ξn,ξn+1)<Υn[mb(ξ0,ξ1)]∀n∈N. | (7.5) |
As ∑∞i=1siΥi(t)<∞, then for some k∈N the series ∑∞i=1siΥi[Υk−1(mb(ξ0,ξ1)], converges. Fix ε>0, then there exists k(ε)∈N, such that
∞∑i=1siΥi[Υn−1(mb(ξ0,ξ1)]<ε. | (7.6) |
Let n,m∈N with n>m>k(ε) and from (Mb4), (7.5), (7.6) and (Υ3), we get
mb(ξn,ξm)−mbξn,ξm≤m−1∑i=nsi−n+1mb(ξi,ξi+1)≤m−1∑i=nsi−n+1Υi[mb(ξi,ξi+1)]<m−n∑i=nsi−nΥi−n[Υn−1(mb(ξ0,ξ1))]<m−n∑i=nsiΥi[Υk(ε)−1(mb(ξ0,ξ1))]<ε. |
The convergence of the series ∑m−ni=nsiΥi[Υk−1(mb(ξ0,ξ1))] leads to
limn,m→∞(mb(ξn,ξm)−mbξn,ξm)=0. |
By the same way, we can show that limn,m→∞(Mbξn,ξm−mbξn,ξm)=0. Therefore, {ξn} is an mb-Cauchy sequence in B[ξ0,ε]. Since every closed set in a complete MbMS is complete. So, there exists ξ∗∈B[ξ0,ε] such that ξn→ξ∗ as n→∞. Since Γ is continuous then limn→∞Γξn=Γξ∗ and
limn→∞(mb(ξn,ξ∗)−mbξn,ξ∗)=0. | (7.7) |
We will show that Γξ∗=ξ∗. Suppose that mb(ξ∗,Γξ∗)−mbξ∗,Γξ∗>0. So, by (Mb4), we have
mb(ξ∗,Γξ∗)−mbξ∗,Γξ∗≤s[(mb(ξ∗,ξn+1)−mbξ∗,ξn+1)+(mb(ξn+1,Γξ∗)−mbξn+1,Γξ∗)] | (7.8) |
−mb(ξn+1,ξn+1)≤s(mb(ξ∗,ξn+1)−mbξ∗,ξn+1)+s(mb(Γξn,Γξ∗)−mbξn+1,Γξ∗)=s(mb(ξ∗,ξn+1)−mbξ∗,ξn+1)+1s(s2mb(Γξn,Γξ∗))−smbξn+1,Γξ∗≤s(mb(ξ∗,ξn+1)−mbξ∗,ξn+1)+1sΥ[λR1(ξn,ξ∗))−smbξn+1,Γξ∗=s(mb(ξ∗,ξn+1)−mbξ∗,ξn+1)+1sΥ[λmb(ξn,ξ∗).mb(ξn,Γξn)1(a−b)(a−c).mb(ξ∗,Γξ∗)1(a−b)(a−c).[mb(ξn,Γξn)+mb(ξ∗,Γξ∗)]1(b−a)(b−c).[mb(ξn,Γξ∗)+mb(ξ∗,Γξn)]1(c−a)(c−b)]−smbξn+1,Γξ∗. | (7.9) |
Taking limit as n→∞ in (7.8) and utilizing (7.7), we get
mb(ξ∗,Γξ∗)−mbξ∗,Γξ∗≤1sΥ[λmb(ξ∗,Γξ∗).mb(ξ∗,ξ∗)1(a−b)(a−c).mb(ξ∗,Γξ∗)1(a−b)(a−c).[mb(ξ∗,ξ∗)+mb(ξ∗,Γξ∗)]1(b−a)(b−c).[mb(ξ∗,Γξ∗)+smb(ξ∗,ξ∗)+mbξ∗,Γξn]1(c−a)(c−b)]−smbξ∗,Γξ∗≤1s2sΥ[λmb(ξ∗,Γξ∗).mb(ξ∗,ξ∗)1(a−b)(a−c)+1(b−a)(b−c)+1(c−a)(c−b).[mb(ξ∗,Γξ∗)]1(a−b)(a−c)+1(b−a)(b−c)+1(c−a)(c−b).[smbξ∗,Γξ∗]1(c−a)(c−b)]−smbξ∗,Γξ∗<1s2mb(ξ∗,Γξ∗)−smbξ∗,Γξ∗by(Υ3)<mb(ξ∗,Γξ∗)−mbξ∗,Γξ∗. |
Which is a contradiction. Therefore mb(ξ∗,Γξ∗)−mbξ∗,Γξ∗=0 implies that mb(ξ∗,Γξ∗)=mbξ∗,Γξ∗. So, that is Γξ∗=ξ∗ and ξ∗∈B[ξ0,ε] is an FP of Γ.
In a similar conductance, we can state and prove the same Theorems fulfill symmetric fractional α-β-Υ-contraction mappings (4.1), (5.1) and (6.1) on closed ball.
The example below supports Theorem 7.1.
Example 7.2. Let Δ=[0,∞), p>1 and mb:Δ×Δ⟶[0,∞) is defined by
mb(ξ,μ)=max{ξ,μ}p+|ξ−μ|p, ∀ξ,μ∈Δ. |
Clearly, (Δ,mb) is an MbMS with s=2p. Define Γ:Δ→Δ by
Γξ={ξe5,if ξ∈[0,10],4ξ−45,if ξ∈(10,∞). |
Describe the functions α,η:Δ×Δ→[0,∞) as,
α(ξ,μ)={2,if ξ,μ∈[0,10],1,if ξ,μ∈(10,∞),, η(ξ,μ)={1,if ξ,μ∈[0,10],0,if ξ,μ∈[0,∞]. |
Considering ξ0=1,ε=180, then B[ξ0,ε]=[0,10] and mb(ξ0,Γξ0)=mb(1,Γ1)=mb(1,1e5)=1+(1−1e5)p. Therefore, α(1,Γ1)=2≥η(1,Γ1)=1. Now for all ξ,μ∈[0,10], Γ is a continuous semi α-admissible mapping wrt η, whenever α(ξ,μ)≥η(ξ,μ), we have
s2mb(Γξ,Γμ)=22pmb(ξe5,μe5)=22p(max{ξe5,μe5}p+|ξe5−μe5|p)=22pe5p(max{ξ,μ}p+|ξ−μ|p)≤2pe5p[22pmb(ξ,μ)]≤Υ[λ(R1(ξ,μ))]. |
That is achieved when we choose Υ(t)=2pte5p and constants λ=22p∈[0,∞), a,b,c∈(0,1), for all ξ,μ∈Δ∖Fix(Γ). Also, for all n≥0 and p>1, we obtain
mb(ξ0,ξ1)≤n∑i=0si+1Υi[mb(ξ0,ξ1)]≤n∑i=0si+1Υi[1+(1−1e5)p]=22[1+(1−1e5)p]n∑i=0(22pe5p)i≤180=ε. |
Note that for 20, 21 ∈Δ and for p=2, we have α(20,21)≥η(20,21) and we can calculate
s2mb(Γ20,Γ21)>Υ[λR1(20,21)]. |
So that condition (3.1) does not hold. Therefore, all affirmations of Theorem 7.1 are satisfied. Hence Γ has an FP ξ∗=0∈B[ξ0,ε]. (Note that 15 is an another FP of Γ, which belongs to Δ but it does not belong to B[ξ0,ε].
In this portion, we shall apply Theorem 4.2 to discuss the existence and uniqueness of the bounded solution to fractional order differential equations (FODE), which have recently proved to be significant tools in the modeling of many phenomena in numerious fields of science and building. Consider a function f:(0,1)→R. The conformable fractional derivative of order α of f at t>0 is defined in [26] as follows:
Dαf(t)=limε→0f(t+εt1−α)−f(t)ε. | (8.1) |
The conformable fractional integral associated with (8.1) is defined in [25,26] as following:
Iα0f(t)=∫t0sα−1f(s)ds. | (8.2) |
We consider the following boundary value problem (BVP) of a fractional order differential equation:
{Dαtξ(t)=λ(t,ξ(t),Dα−1tξ(t),t,α∈(0,1)ξ(0)=0,ξ(1)=∫10ξ(s)ds. | (8.3) |
The BVP (8.3) can be expressed as the integral equation as follows:
ξ(t)=λ∫10G(t,s)f(s,ξ(s))ds. | (8.4) |
Where G(t,s) is defined as the Green function under the assumption of (8.1), which is given by
G(s,t)={−2tsα+sα−1,0≤s≤t≤1−2tsα,0≤t≤s≤1 | (8.5) |
and ∫10ξ(s)ds denotes the Riemann integrable of ξ with respect to s and f:[0,1]×R→R is a continuous function. Consider
ξ(t)=c0+c1t+λ∫10sα−1f(s,ξ(s))ds, | (8.6) |
when ξ(0)=0, then c0=0,ξ(1)=c1+λ∫10sα−1f(s,ξ(s))ds, and from the condition ξ(1)=∫10ξ(s)ds, we have
∫10ξ(s)ds=∫10c1sds+λ∫10∫s0vα−1f(v,ξ(v))dvds=12c1+λ∫10∫1vvα−1f(v,ξ(v))dvds=12c1+λ∫10(1−v)vα−1f(v,ξ(v))dvds=12c1+λ∫10(sα−1−sα)f(s,ξ(s))ds, |
this implies that
12c1=λ∫10sα−1f(s,ξ(s))ds+λ∫10(sα−1−sα)f(s,ξ(s))ds=−λ∫10sαf(s,ξ(s))ds |
hence,
c1=−2λ∫10sαf(s,ξ(s))ds. |
It follows from (8.6), c0 and c1 that
ξ(t)=−2λt∫10sαf(s,ξ(s))ds+λ∫t0sα−1f(s,ξ(s))ds=−2λt∫t0sαf(s,ξ(s))ds−2λt∫1tsαf(s,ξ(s))ds+λ∫t0sα−1f(s,ξ(s))ds=λ∫t0(−2tsα+sα−1)f(s,ξ(s))ds+λ∫1t(−2tsα)f(s,ξ(s))ds=λ∫t0G(t,s)f(s,ξ(s))ds. |
Let Cα(I) be the space of all continuous functions de…ned on I, where I=[0,1],α>0 and let mb(ξ,μ)=‖ for all \xi, \mu\in C^{\alpha}(I). Then \left(C^{\alpha}(I), m_{b}\right) is a complete MbMS with a constant \delta = 2.
Now we consider the BVP (8.3) under the following stipulations:
(1) there exist a function \omega:\mathbb{R}\rightarrow (0, 1), \; \delta\geq 1 and \rho, \sigma, \varrho:\mathbb{R}\rightarrow \mathbb{R} are three functions such that for all t\in I and \xi, \mu\in\mathbb{R} with \rho(\xi)\sigma(\mu)\geq\varrho(\xi)\varrho(\mu), then
\begin{eqnarray*} \vert f(s,\xi(s))+f(s,\mu(s))\vert\leq\sqrt{\dfrac{4\omega(t)}{10\delta^{2}}\aleph(\xi(s),\mu(s))}, \end{eqnarray*} |
where, For all a, b, c\in(0, 1)
\begin{eqnarray*} \aleph(\xi(s),\mu(s))& = &\vert\dfrac{\xi(s)+\mu(s)}{2}\vert^{2}.\vert\dfrac{\xi(s)+\Gamma\xi(s)}{2}\vert^{\dfrac{2a}{(a-b)(a-c)}}.\vert\dfrac{\mu(s)+\Gamma\mu(s)}{2}\vert^{\dfrac{2a}{(a-b)(a-c)}}\\ &&.\left[\vert\dfrac{\xi(s)+\Gamma\xi(s)}{2}\vert+\vert\dfrac{\mu(s)+\Gamma\mu(s)}{2}\vert^{2}\right]^{\dfrac{b}{(b-a)(b-c)}}\\ &&.\left[\vert\dfrac{\xi(s)+\Gamma\mu(s)}{2}\vert+\vert\dfrac{\mu(s)+\Gamma\xi(s)}{2}\vert^{2}\right]^{\dfrac{c}{(c-a)(c-b)}}, \end{eqnarray*} |
(2) there exists \xi_{1}\in C^{\alpha}(I) such that for all t \in I,
\begin{eqnarray*} \rho\left(\xi_{1}(t)\right)\sigma\left(\int_{0}^{1}G(t,s)f(s,\xi_{1}(s))ds\right)\geq\varrho\left(\xi_{1}(t)\right)\varrho\left(\int_{0}^{1}G(t,s)f(s,\xi_{1}(s))ds\right), \end{eqnarray*} |
(3) for all t \in I and for all \xi, \mu\in C^{\alpha}(I), there are \xi_{1}, \mu_{1} \in C^{\alpha}(I), such that
\rho(\xi(t))\geq\varrho(\xi(t)) |
implies
\sigma\left(\int_{0}^{1}G(t,s)f(s,\xi_{1}(s))ds\right)\geq\varrho\left(\int_{0}^{1}G(t,s)f(s,\xi_{1}(s))ds\right) |
and
\sigma(\mu(t))\geq\varrho(\mu(t)) |
implies
\rho\left(\int_{0}^{1}G(t,s)f(s,\mu_{1}(s))ds\right)\geq\varrho\left(\int_{0}^{1}G(t,s)f(s,\mu_{1}(s))ds\right), |
(4) for any cluster point \xi of a sequence \lbrace\xi_{n}\rbrace of points in C^{\alpha}(I) with \rho(\xi_{n})\sigma(\xi_{n+1})\geq\varrho(\xi_{n})\varrho(\xi_{n+1}), such that
\lim\limits_{n\rightarrow \infty}\inf\rho(\xi_{n})\sigma(\xi)\geq\lim\limits_{n\rightarrow \infty}\varrho(\xi_{n})\varrho(\xi) . |
Now, we present our main theorem in this part.
Theorem 8.1. Under the postulates (1)–(4), the BVP (8.3) has at least one solution \xi ^{\ast }\in C^{\alpha}(I).
Proof. We known that \xi^{*}\in C^{\alpha}(I) is a solution of (8.3) if and only if \xi^{*}\in C^{\alpha}(I) is a solution of the fractional order integral equation:
\xi(t) = \lambda\int_{0}^{1}G(t,s)f(s,\xi(s))ds, \forall \lambda, t \in I. |
We define a map \Gamma:C^{\alpha}(I) \rightarrow C^{\alpha}(I) by
\Gamma\xi(t) = \lambda\int_{0}^{1}G(t,s)f(s,\xi(s))ds, \forall \lambda, t \in I. |
Then, problem (8.3) is equivalent to find \xi^{*}\in C^{\alpha}(I) that is a fixed point of \Gamma. Let \xi, \mu\in C^{\alpha}(I), such that \rho(\xi(t))\sigma(\xi(t))\geq 0, for all t\in I. Using stipulation (1), we get
\begin{eqnarray*} \left[\mid\Gamma\xi(t)+\Gamma\mu(t)\mid\right]^{2}& = &\left[\mid\lambda\mid\mid\int_{0}^{1}G(t,s)f(s,\xi(s))ds+\int_{0}^{1}G(t,s)f(s,\mu(s))ds\mid\right]^{2}\\ &\leq&\left[\mid\lambda\mid\int_{0}^{1}G(t,s) \mid(s,\xi(s))+f(s,\mu(s))\mid ds\right]^{2}\\ &\leq&\left[\mid\lambda\mid\int_{0}^{1}G(t,s)ds\sqrt{\dfrac{4\omega(t)}{10\delta^{2}}\aleph(\xi(s),\mu(s))}\right]^{2}\\ & = &\left[\mid\lambda\mid\int_{0}^{1}G(t,s)ds\right]^{2}\dfrac{4\omega(t)}{10\delta^{2}}\aleph(\xi(s),\mu(s))\\ &\leq&\left[\mid\lambda\mid\int_{0}^{1}G(t,s)ds\right]^{2}\dfrac{4\omega(t)}{10\delta^{2}} \vert\dfrac{\xi(s)+\mu(s)}{2}\vert^{2}\\ &&.\vert\dfrac{\xi(s)+\Gamma\xi(s)}{2}\vert^{\frac{2a}{(a-b)(a-c)}}.\vert\dfrac{\mu(s)+\Gamma\mu(s)}{2}\vert^{\frac{2a}{(a-b)(a-c)}}\\ &&.\left[\vert\dfrac{\xi(s)+\Gamma\xi(s)}{2}\vert+\vert\dfrac{\mu(s)+\Gamma\mu(s)}{2}\vert^{2}\right]^{\frac{b}{(b-a)(b-c)}}\\ &&.\left[\vert\dfrac{\xi(s)+\Gamma\mu(s)}{2}\vert+\vert\dfrac{\mu(s)+\Gamma\xi(s)}{2}\vert^{2}\right]^{\frac{c}{(c-a)(c-b)}} \end{eqnarray*} |
\begin{eqnarray*} &\leq&\max\limits_{t\in I}\left[\int_{0}^{1}G(t,s)ds\right]^{2}\dfrac{4\omega(t)}{10\delta^{2}} \vert\vert\dfrac{\xi(s)+\mu(s)}{2}\vert\vert_{\infty}^{2}\\ &&.\vert\vert\dfrac{\xi(s)+\Gamma\xi(s)}{2}\vert\vert_{\infty}^{\frac{2a}{(a-b)(a-c)}}.\vert\vert\dfrac{\mu(s)+\Gamma\mu(s)}{2}\vert\vert_{\infty}^{\frac{2a}{(a-b)(a-c)}}\\ &&.\left[\vert\vert\dfrac{\xi(s)+\Gamma\xi(s)}{2}\vert\vert_{\infty}^{2}+\vert\vert\dfrac{\mu(s)+\Gamma\mu(s)}{2}\vert\vert_{\infty}^{2}\right]^{\frac{b}{(b-a)(b-c)}}\\ &&.\left[\vert\vert\dfrac{\xi(s)+\Gamma\mu(s)}{2}\vert\vert_{\infty}^{2}+\vert\vert\dfrac{\mu(s)+\Gamma\xi(s)}{2}\vert\vert_{\infty}^{2}\right]^{\frac{c}{(c-a)(c-b)}}\\ &\leq& \dfrac{4\omega(t)}{10\delta^{2}}\vert\vert\dfrac{\xi(s)+\mu(s)}{2}\vert\vert_{\infty}^{2}\\ &&.\vert\vert\dfrac{\xi(s)+\Gamma\xi(s)}{2}\vert\vert_{\infty}^{\frac{2a}{(a-b)(a-c)}}.\vert\vert\dfrac{\mu(s)+\Gamma\mu(s)}{2}\vert\vert_{\infty}^{\frac{2a}{(a-b)(a-c)}}\\ &&.\left[\vert\vert\dfrac{\xi(s)+\Gamma\xi(s)}{2}\vert\vert_{\infty}^{2}+\vert\vert\dfrac{\mu(s)+\Gamma\mu(s)}{2}\vert\vert_{\infty}^{2}\right]^{\frac{b}{(b-a)(b-c)}}\\ &&.\left[\vert\vert\dfrac{\xi(s)+\Gamma\mu(s)}{2}\vert\vert_{\infty}^{2}+\vert\vert\dfrac{\mu(s)+\Gamma\xi(s)}{2}\vert\vert_{\infty}^{2}\right]^{\frac{c}{(c-a)(c-b)}}. \end{eqnarray*} |
Thus,
\delta^{2}m_{b}\left(\Gamma\xi,\Gamma\mu\right)\leq \Upsilon\left[\lambda R_{2}(\xi,\mu)\right] , |
where, \Upsilon(t) = \dfrac{\omega(t)}{5}t, \; \lambda = \dfrac{1}{2} and
\begin{eqnarray*} R_{2}(\xi ,\mu ) = \left\lbrace\begin{array}{c} m_{b}(\xi ,\mu ).\left[m_{b}(\xi ,\Gamma\xi )\right]^{\frac{a}{(a-b)(a-c)}}. [m_{b}(\mu,\Gamma \mu )]^{\frac{a}{(a-b)(a-c)}}\\ .[m_{b}(\xi ,\Gamma \xi )+m_{b}(\mu ,\Gamma \mu )]^{\frac{b}{(b-a)(b-c)}}\\ .[m_{b}(\xi ,\Gamma \mu )+m_{b}(\mu ,\Gamma \xi )]^{\frac{c}{(c-a)(c-b)}} \end{array} \right\rbrace. \end{eqnarray*} |
For each \xi, \mu\in C^{\alpha}(I) such that \rho(\xi(t))\sigma(\mu(t))\geq \varrho(\xi(t))\varrho(\mu(t)) for all t\in I. We define \alpha, \beta, \eta:C^{\alpha}(I)\rightarrow [0, \infty) by
\alpha(\xi) = \beta(\xi) = \left\{ \begin{array}{cc} 2 , & \text{if }\rho(\xi(t))\sigma(\mu(t))\geq0, t\in I \\ 0 , & \text{otherwise,} \end{array} \right. \text{ and }\eta(\xi) = \left\{ \begin{array}{cc} \frac{1 }{4} , & \text{if }\rho(\xi(t))\sigma(\mu(t))\geq0, t\in I \\ 0, & \text{otherwise.} \end{array} \right. |
Then, for all \xi, \mu\in C^{\alpha}(I) , & \alpha(\xi) \geq\eta(\xi) and \beta(\mu)\geq\eta(\mu). If \alpha(\xi)\geq\eta(\xi) and \beta(\mu)\geq\eta(\mu). for each \xi, \mu \in C(I), then \rho(\xi(t))\geq\varrho(\xi(t)) and \sigma(\mu(t))\geq\varrho(\mu(t)). From stipulation (3), we have \rho(\Gamma\xi(t))\geq\varrho(\Gamma\xi(t)) and \sigma(\Gamma\mu(t))\geq\varrho(\Gamma\mu(t)), and so \alpha(\Gamma\xi)\geq\eta(\Gamma\xi) and \beta(\Gamma\mu)\geq\eta(\Gamma\mu). Thus, \Gamma is \eta -cyclic \alpha -admissible mapping. From stipulation (2) there subsist \xi_{1}\in C^{\alpha}(I) parallel to \alpha(\xi)\beta(\mu)\geq\eta(\xi)\eta(\mu). By stipulation (4), we have that for any cluster point \xi of a sequence \lbrace \xi_{n}\rbrace of points in C^{\alpha}(I) with \rho(\xi_{n})\sigma(\mu_{n+1})\geq \varrho(\xi_{n})\varrho(\mu_{n+1}) implies that \alpha(\xi_{n})\beta(\mu_{n+1})\geq \eta(\xi_{n})\eta(\mu_{n+1}) and \lim_{n\rightarrow \infty}\inf\alpha(\xi_{n})\beta(\mu_{n+1})\geq \lim_{n\rightarrow \infty}\inf\eta(\xi_{n})\eta(\mu_{n+1}). So, all affirmations of Theorem 4.2 are satisfied and then \Gamma has an FP \xi^{*} \in C^{\xi}(I), which is a solution of the BVP (8.3).
Four classes of symmetric fractional contractions are produced in this paper. The focus was on a new idea of symmetric fractional \alpha - \beta - \eta - \Upsilon -contraction pattern-I, pattern-II, pattern-III and pattern-IV in the setting of MbMS and the fifth class studied the same results on closed ball of the said space. The main results were suported by two nontrivial examples and an application for the existence and uniqueness of the bounded solution to (FODE). This paper generalized many results in the litrature.
The authors acknowledge with thank to Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia, for technical and financial support.
The authors declare no conflict of interest.
[1] |
E. Karapinar, T. Abdeljawad, F. Jarad, Applying new fixed point theorems on fractional and ordinary differential equations, Adv. Differ. Equ., 421 (2019), 1–25. https://doi.org/10.1186/s13662-019-2354-3 doi: 10.1186/s13662-019-2354-3
![]() |
[2] |
H. A. Hammad, M. De la Sen, A solution of Fredholm integral equation by using the cyclic \eta_{s}^{q}-rational contractive mappings technique in b-metric-like spaces, Symmetry, 11 (2019), 1–22. http://doi.org/10.3390/sym11091184 doi: 10.3390/sym11091184
![]() |
[3] |
H. A. Hammad, M. De la Sen, Solution of nonlinear integral equation via fixed-point of cyclic \alpha_{s}^{q}-Rational contraction mappings in metric-like spaces, Bull. Braz. Math. Soc. New Ser., 51 (2020), 81–105. https://doi.org/10.1007/s00574-019-00144-1 doi: 10.1007/s00574-019-00144-1
![]() |
[4] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, A Wiley-Interscience Publication, New York, 1993, 1–376. |
[5] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier, Amsterdam, 204 (2006), 1–523. |
[6] |
F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Cont. Dyn.-S, 13 (2020), 709–722. https://doi.org/10.1007/s00574-019-00144-1 doi: 10.1007/s00574-019-00144-1
![]() |
[7] |
D. Baleanu, R. P. Agarwal, H. Mohammadi, S. Rezapour, Some existence results for a nonlinear fractional differential equation on partially ordered Banach spaces, Bound. Value Probl., 2013 (2013), 1–8. https://doi.org/10.1186/1687-2770-2013-112 doi: 10.1186/1687-2770-2013-112
![]() |
[8] |
A. Ali, A. Hussain, M. Arshad, H. A. Sulami, M. Tariq, Certain new development to the orthogonal binary relations, Symmetry, 14 (2022), 1–21. https://doi.org/10.3390/sym14101954 doi: 10.3390/sym14101954
![]() |
[9] |
A. Ali, A. Muhammad, A. Hussain, N. Hussain, S. M. Alsulami, On new generalized \theta_{b}-contractions and related fixed point theorems, J. Inequal. Appl., 2022 (2022), 1–19. https://doi.org/10.1186/s13660-022-02770-8 doi: 10.1186/s13660-022-02770-8
![]() |
[10] | S. G. Matthews, Partial metric topology, Ann. N. Y. Acad. Sci., 728 (1994), 183–197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x |
[11] | S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1993), 5–11. |
[12] |
M. Asadi, E. Karapinar, P. Salimi, New extension of p-metric spaces with some fixed-point results on M-metric spaces, J. Inequal. Appl., 2014 (2014), 1–9. https://doi.org/10.1186/1029-242X-2014-18 doi: 10.1186/1029-242X-2014-18
![]() |
[13] | N. Mlaiki, A. Zarrad, N. Souayah, A. Mukheimer, T. Abdeljawed, Fixed point theorem in M_{b}-metric spaces, J. Math. Anal., 7 (2016), 1–9. |
[14] |
S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations itegrals, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181
![]() |
[15] |
E. Karapinar, Revisiting the Kannan type contractions via interpolation, Adv. Theor. Nonlinear Anal. Appl., 2 (2018), 85–87. https://doi.org/10.31197/atnaa.431135 doi: 10.31197/atnaa.431135
![]() |
[16] |
E. Karapinar, R. Agarwal, H. Aydi, Interpolative Reich-Rus-´Ciric´ type contractions on partial metric spaces, Mathematics, 6 (2018), 1–7. http://doi.org/10.3390/math6110256 doi: 10.3390/math6110256
![]() |
[17] |
A. Hussain, Fractional convex type contraction with solution of fractional differential equation, AIMS Math., 5 (2020), 5364–5380. http://doi.org/10.3934/math.2020344 doi: 10.3934/math.2020344
![]() |
[18] |
A. Hussain, Solution of fractional differential equations utilizing symmetric contraction, J. Math., 2021 (2021), 1–17. https://doi.org/10.1155/2021/5510971 doi: 10.1155/2021/5510971
![]() |
[19] |
A. Hussain, F. Jarad, E. Karapinar, A study of symmetric contractions with an application to generalized fractional differential equations, Adv. Differ. Equ., 2021 (2021), 1–27. https://doi.org/10.1186/s13662-021-03456-z doi: 10.1186/s13662-021-03456-z
![]() |
[20] |
H. A. Hammad, P. Agarwal, S. Momani, F. Alsharari, Solving a fractional-order differential equation using rational symmetric contraction mappings, Fractal Fract., 2021 (2021), 1–21. https://doi.org/10.3390/fractalfract5040159 doi: 10.3390/fractalfract5040159
![]() |
[21] | B. Rodjanadid, J. Tanthanuch, Some fixed point results on M_{b}-metric space via simulation functions, Thai J. Math., 18 (2020), 113–125. |
[22] |
S. Alizadeh, F. Moradlou, P. Salimi, Some fixed point results for \left(\alpha, \beta\right)-\left(\psi, \phi\right)-contractive mappings, Filomat, 28 (2014), 635–647. https://doi.org/10.2298/FIL1403635A doi: 10.2298/FIL1403635A
![]() |
[23] |
M. Mudhesh, H. A. Hammad, E. Ameer, M. Arshad, F. Jarad, Novel results on fixed-point methodologies for hybrid contraction mappings in M_{b}-metric spaces with an application, AIMS Math., 8 (2023), 1530–1549. http://doi.org/10.3934/math.2023077 doi: 10.3934/math.2023077
![]() |
[24] |
M. Mudhesh, H. A. Hammad, E. Ameer, A. Ali, Fixed point results under new contractive conditions on closed balls, Appl. Math. Inf. Sci., 16 (2022), 555–564. https://doi.org/10.18576/amis/160408 doi: 10.18576/amis/160408
![]() |
[25] |
R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new deffnition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
![]() |
[26] |
T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
![]() |
[27] |
N. Y. Özgür, N. Mlaiki, N. Tas, N. Souayah, A new generalization of metric spaces: Rectangular M-metric spaces, Math. Sci., 12 (2018), 223–233. https://doi.org/10.1007/s40096-018-0262-4 doi: 10.1007/s40096-018-0262-4
![]() |
[28] |
Z. Mustafa, J. R. Roshan, V. Parvaneh, Z. Kadelburg, Some common fixed point results in ordered partial b-metric spaces, J. Inequal. Appl., 2013 (2013), 1–26. https://doi.org/10.1186/1029-242X-2013-562 doi: 10.1186/1029-242X-2013-562
![]() |
[29] | M. Nazam, H. Aydi, A. Hussain, Existence theorems for \left(\Psi, \Phi\right)-orthogonal interpolative contractions and an application to fractional differential equations, Optimization, 2022, 1–32. http://doi.org/10.1080/02331934.2022.2043858 |
[30] |
A. Torres-Hernandez, F. Brambila-Paz, R. Montufar-Chaveznava, Acceleration of the order of convergence of a family of fractional fixed-point methods and its implementation in the solution of a nonlinear algebraic system related to hybrid solar receivers, Appl. Math. Comput., 429 (2022), 1–12. https://doi.org/10.1016/j.amc.2022.127231 doi: 10.1016/j.amc.2022.127231
![]() |
1. | Mustafa Mudhesh, Aftab Hussain, Muhammad Arshad, Hamed Alsulami, A Contemporary Approach of Integral Khan-Type Multivalued Contractions with Generalized Dynamic Process and an Application, 2023, 11, 2227-7390, 4318, 10.3390/math11204318 |