In this study, we addressed the gap between health research and policymaking in Latin America and the Caribbean (LAC), focusing on health education/health literacy. Despite growing research, translating findings into effective policies needs to be improved. We explored the factors that make research on health education and health literacy to be referenced and mentioned in policy documents in LAC (and in Peru). We proposed a model based on the hypothesis that the relationship between research and policymaking depends on the research strength of scientific evidence, timing, and social media activity.
A mixed-methods approach was employed, combining quantitative and qualitative data analysis. Quantitative data sources included multidisciplinary databases, altmetric data, and citations of policy documents. For data analysis, we obtained descriptive statistics to identify patterns and then verified the association between variables using χ2. The negative binomial regression was used to test the empirical model introduced above. Quantitative analysis was complemented by analysis of responses to a set of open questions from a sample of Peruvian health policymakers.
We found that timing, strength of evidence, and social media activity were significant predictors of research cited in policy documents. Policy documents tended to rely more on qualitative evidence. A positive correlation between timing and cites in policy documents highlighted the importance of timely dissemination, whereas social media activity, while having an impact, had a relatively minor effect. Peruvian policymakers' responses emphasized the role of political context, the relevance of results, and policymakers' commitment to incorporating research into policies.
Strength of evidence, social media engagement, and publication timing are key predictors of citations for health education/literacy research in LAC policy documents. However, qualitative findings highlight challenges, including some distrust in research findings, together with limited access to relevant research. The findings offer opportunities to enhance evidence-informed health education/health literacy policy decisions.
To increase the influence on health policymakers, researchers should prioritize the timely dissemination of solid evidence, considering both traditional and digital platforms. Policymakers should focus on the quality and relevance of evidence when formulating policies.
Citation: Carlos Vílchez-Román, Alberto Paucar-Caceres, Silvia Quispe-Prieto. The impact of research on health education/health literacy on policymaking in Latin America and the Caribbean Region[J]. AIMS Public Health, 2024, 11(2): 330-348. doi: 10.3934/publichealth.2024017
[1] | Shuyue Ma, Jiawei Sun, Huimin Yu . Global existence and stability of temporal periodic solution to non-isentropic compressible Euler equations with a source term. Communications in Analysis and Mechanics, 2023, 15(2): 245-266. doi: 10.3934/cam.2023013 |
[2] | Shu Wang . Global well-posedness and viscosity vanishing limit of a new initial-boundary value problem on two/three-dimensional incompressible Navier-Stokes equations and/or Boussinesq equations. Communications in Analysis and Mechanics, 2025, 17(2): 582-605. doi: 10.3934/cam.2025023 |
[3] | Zhigang Wang . Serrin-type blowup Criterion for the degenerate compressible Navier-Stokes equations. Communications in Analysis and Mechanics, 2025, 17(1): 145-158. doi: 10.3934/cam.2025007 |
[4] | Reinhard Racke . Blow-up for hyperbolized compressible Navier-Stokes equations. Communications in Analysis and Mechanics, 2025, 17(2): 550-581. doi: 10.3934/cam.2025022 |
[5] | Hongxia Lin, Sabana, Qing Sun, Ruiqi You, Xiaochuan Guo . The stability and decay of 2D incompressible Boussinesq equation with partial vertical dissipation. Communications in Analysis and Mechanics, 2025, 17(1): 100-127. doi: 10.3934/cam.2025005 |
[6] | Yang Liu, Xiao Long, Li Zhang . Long-time dynamics for a coupled system modeling the oscillations of suspension bridges. Communications in Analysis and Mechanics, 2025, 17(1): 15-40. doi: 10.3934/cam.2025002 |
[7] | Fangyuan Dong . Multiple positive solutions for the logarithmic Schrödinger equation with a Coulomb potential. Communications in Analysis and Mechanics, 2024, 16(3): 487-508. doi: 10.3934/cam.2024023 |
[8] | Zhen Wang, Luhan Sun . The Allen-Cahn equation with a time Caputo-Hadamard derivative: Mathematical and Numerical Analysis. Communications in Analysis and Mechanics, 2023, 15(4): 611-637. doi: 10.3934/cam.2023031 |
[9] | Rui Sun, Weihua Deng . A generalized time fractional Schrödinger equation with signed potential. Communications in Analysis and Mechanics, 2024, 16(2): 262-277. doi: 10.3934/cam.2024012 |
[10] | Chunyou Sun, Junyan Tan . Attractors for a Navier–Stokes–Allen–Cahn system with unmatched densities. Communications in Analysis and Mechanics, 2025, 17(1): 237-262. doi: 10.3934/cam.2025010 |
In this study, we addressed the gap between health research and policymaking in Latin America and the Caribbean (LAC), focusing on health education/health literacy. Despite growing research, translating findings into effective policies needs to be improved. We explored the factors that make research on health education and health literacy to be referenced and mentioned in policy documents in LAC (and in Peru). We proposed a model based on the hypothesis that the relationship between research and policymaking depends on the research strength of scientific evidence, timing, and social media activity.
A mixed-methods approach was employed, combining quantitative and qualitative data analysis. Quantitative data sources included multidisciplinary databases, altmetric data, and citations of policy documents. For data analysis, we obtained descriptive statistics to identify patterns and then verified the association between variables using χ2. The negative binomial regression was used to test the empirical model introduced above. Quantitative analysis was complemented by analysis of responses to a set of open questions from a sample of Peruvian health policymakers.
We found that timing, strength of evidence, and social media activity were significant predictors of research cited in policy documents. Policy documents tended to rely more on qualitative evidence. A positive correlation between timing and cites in policy documents highlighted the importance of timely dissemination, whereas social media activity, while having an impact, had a relatively minor effect. Peruvian policymakers' responses emphasized the role of political context, the relevance of results, and policymakers' commitment to incorporating research into policies.
Strength of evidence, social media engagement, and publication timing are key predictors of citations for health education/literacy research in LAC policy documents. However, qualitative findings highlight challenges, including some distrust in research findings, together with limited access to relevant research. The findings offer opportunities to enhance evidence-informed health education/health literacy policy decisions.
To increase the influence on health policymakers, researchers should prioritize the timely dissemination of solid evidence, considering both traditional and digital platforms. Policymakers should focus on the quality and relevance of evidence when formulating policies.
In this paper, we study the 2D steady compressible Prandtl equations in {x>0,y>0}:
{u∂xu+v∂yu−1ρ∂2yu=−∂xP(ρ)ρ,∂x(ρu)+∂y(ρv)=0,u|x=0=u0(y),limy→∞u=U(x),u|y=0=v|y=0=0, | (1.1) |
where (u,v) is velocity field, ρ(x) and U(x) are the traces at the boundary {y=0} of the density and the tangential velocity of the outer Euler flow. The states ρ,U satisfy the Bernoulli law
U∂xU+∂xP(ρ)ρ=0. | (1.2) |
The pressure P(ρ) is a strictly increasing function of ρ with 0<ρ0≤ρ≤ρ1 for some positive constants ρ0 and ρ1.
In this paper, we assume that the pressure satisfies the favorable pressure gradient ∂xP≤0, which implies that
∂xρ≤0. |
The boundary layer is a very important branch in fluid mechanics. Ludwig Prandtl [14] first proposed the related theory of the boundary layer in 1904. Since then, many scholars have devoted themselves to studying the mathematical theory of the boundary layer [1,7,8,9,11,12,17,18,19,21,22,23,24,26,27]. For more complex fluids, such as compressible fluids, one can refer to [19,20,28] and the references therein for more details. Here, for our purposes, we only list some relevant works.
There are three very natural problems about the steady boundary layer: (ⅰ) Boundary layer separation, (ⅱ) whether Oleinik's solutions are smooth up to the boundary for any x>0 and (ⅲ) vanishing viscosity limit of the steady Navier-Stokes system. Next, we will introduce the relevant research progress in these three aspects. The separation of the boundary layer is one of the very important research contents in the boundary layer theory. [17]. The earliest mathematical theory in this regard was proposed by Caffarelli and E in an unpublished paper [25]. Their results show that the existence time x∗ of the solutions to the steady Prandtl equations in the sense of Oleinik is finite under the adverse pressure gradient. Moreover, the family uμ(x,y)=μ−12u(x∗−μx,μ14y) is compact in C0(R2+). Later, Dalibard and Masmoudi [4] proved the solution behaves near the separation as ∂yu(x,0)∼(x∗−x)12 for x<x∗. Shen, Wang and Zhang [18] found that the solution near the separation point behaves like ∂yu(x,y)∼(x∗−x)14 for x<x∗. The above work further illustrates that the boundary layer separation is a very complex phenomenon. Recently, there were also some results about the steady compressible boundary layer separation [28]. The authors found that if the heat transfer in the boundary layer disappeared, then the singularity would be the same as that in the incompressible case. There is still relatively little mathematical theory on the separation of unsteady boundary layers. This is because back-flow and separation no longer occur simultaneously. When the boundary layer back-flow occurs, the characteristics of the boundary layer will continue to maintain for a period of time. Therefore, it is very important to study the back-flow point for further research on separation. Recently, Wang and Zhu [21] studied the back-flow problem of the two-dimensional unsteady boundary layer, which is a important work. It is very interesting to further establish the mathematical theory of the unsteady boundary layer separation.
Due to degenerate near the boundary, the high regularity of the solution of the boundary layer equation is a very difficult and meaningful work. In a local time 0<x<x∗≪1, Guo and Iyer [6] studied the high regularity of of the Prandtl equations. Oleinik and Samokhin [13] studied the existence of solutions of steady Prandtl equations and Wang and Zhang [23] proved that Oleinik's solutions are smooth up to the boundary y=0 for any x>0. The goal of this paper is to prove the global C∞ regularity of the two-dimensional steady compressible Prandtl equations. Recently, Wang and Zhang [24] found the explicit decay for general initial data with exponential decay by using the maximum principle.
In addition, in order to better understand the relevant background knowledge, we will introduce some other related work. As the viscosity goes to zero, the solutions of the three-dimensional evolutionary Navier-Stokes equations to the solutions of the Euler equations are an interesting problem. Beirão da Veiga and Crispo [2] proved that in the presence of flat boundaries convergence holds uniformly in time with respect to the initial data's norm. For the non-stationary Navier-Stokes equations in the 2D power cusp domain, the formal asymptotic expansion of the solution near the singular point is constructed and the constructed asymptotic decomposition is justified in [15,16] by Pileckas and Raciene.
Before introducing the main theorem, we introduce some preliminary knowledge. To use the von Mises transformation, we set
˜u(x,y)=ρ(x)u(x,y),˜v(x,y)=ρ(x)v(x,y),˜u0(y)=ρ(0)u0(y), |
then we find that (˜u,˜v) satisfies:
{˜u∂x˜u+˜v∂y˜u−∂2y˜u−∂xρρ˜u2=−ρ∂xP(ρ),∂x˜u+∂y˜v=0,˜u|x=0=˜u0(y),limy→∞˜u=ρ(x)U(x),˜u|y=0=˜v|y=0=0. | (1.3) |
By the von Mises transformation
x=x,ψ(x,y)=∫y0˜u(x,z)dz,w=˜u2, | (1.4) |
∂x˜u=∂xω2√ω+∂ψω∂xψ2√ω,∂y˜u=∂ψω2,∂2y˜u=√ω∂2ψω2, | (1.5) |
and (1.3)–(1.5), we know that w(x,ψ) satisfies:
∂xw−√w∂2ψw−2∂xρρw=−2ρ∂xP(ρ), | (1.6) |
with
w(x,0)=0,w(0,ψ)=w0(ψ),limψ→+∞w=(ρ(x)U(x))2. | (1.7) |
In addition, we have
2∂y˜u=∂ψw,2∂2y˜u=√w∂2ψw. | (1.8) |
In [5], Gong, Guo and Wang studied the existence of the solutions of system (1.1) by using the von Mises transformation and the maximal principle proposed by Oleinik and Samokhin in [13]. Specifically, they proved that:
Theorem 1.1. If the initial data u0 satisfies the following conditions:
u∈C2,αb([0,+∞))(α>0),u(0)=0,∂yu(0)>0,∂yu(y)≥0fory∈[0,+∞),limy→+∞u(y)=U(0)>0,ρ−1(0)∂2yu(y)−ρ−1(0)∂xP(0)=O(y2) | (1.9) |
and ρ∈C2([0,X0]), then there exists 0<X≤X0 such that system (1.1) admits a solution u∈C1([0,X)×R+). The solution has the following properties:
(i) u is continuous and bounded in [0,X]×R+; ∂yu,∂2yu are continuous and bounded in [0,X)×R+; v,∂yv,∂xu are locally bounded in [0,X)×R+.
(ii) u(x,y)>0 in [0,X)×R+ and for any ˉx<X, there exists y0,m>0 such that for all (x,y)∈[0,ˉx]×[0,y0],
∂yu(x,y)≥m>0. |
(iii) if ∂xP≤0(∂xρ≤0), then
X=+∞. |
Remarks 1.2. u∈C2,αb([0,+∞))(α>0) means that u is Hölder continuity and bounded.
This theorem shows that under the favorable pressure gradient, the solution is global-in-x. However, if the pressure is an adverse pressure gradient, then boundary layer separation will occur. Xin and Zhang [26] studied the global existence of weak solutions of unsteady Prandtl equations under the favorable pressure gradient. For the unsteady compressible Prandtl equation, similar results are obtained in [3]. Recently, Xin, Zhang and Zhao [27] proposed a direct proof of the existence of global weak solutions of the Prandtl equation. The key content of this paper is that they have studied the uniqueness and regularity of weak solutions. This method can be applied to the compressible Prandtl equation.
Our main results are as follows:
Theorem 1.3. If u is a solution for equation (1.1) in Theorem 1.1, assume u0 satisfies the condition (1.9) and the known function ρ and ∂xP are smooth. Then, there exists a constant C>0 depending only on ε,X,u0,P(ρ),k,m such that for any (x,y)∈[ε,X]×[0,+∞),
|∂kx∂myu(x,y)|≤C, |
where X,ε are positive constants with ε<X and m,k are any positive integers.
Remarks 1.4. Our methods may be used to other related models. There are similar results for the magnetohydrodynamics boundary layer and the thermal boundary layer. This work will be more difficult due to the influence of temperature and the magnetic field.
Due to the degeneracy near the boundary ψ=0, the proof of the main result is divided into two parts, Theorem 1.5 and Theorem 1.6. This is similar to the result of the incompressible boundary layer, despite the fluid being compressible and the degeneracy near the boundary. Different from the incompressible case [23], we have no divergence-free conditions, which will bring new terms. It is one of the difficulties in this paper to deal with these terms. Now, we will briefly introduce our proof framework. First, we prove the following theorem in the domain [ε,X]×[0,Y1] for a small Y1. The key ingredients of proof is that we employ interior priori estimates and the maximum principle developed by Krylov [10].
Theorem 1.5. If u is a solution for equation (1.1) in Theorem 1.1, assume u0 satisfies the condition (1.9) and the known function ρ and ∂xP are smooth. Then, there exists a small constant Y1>0 and a large constant C>0 depending only on ε,X,Y1,u0,P(ρ),k,m such that for any (x,y)∈[ε,X]×[0,Y1],
|∂kx∂myu(x,y)|≤C, |
where X,ε are positive constants with ε<X and m,k are any positive integers.
Next, we prove the following theorem in the domain [ε,X]×[Y2,+∞) for a small positive constant Y2. The key of proof is that we prove (1.6) is a uniform parabolic equation in the domain [ε,X]×[Y2,+∞) in Section 4. Once we have (1.6) is a uniform parabolic equation, the global C∞ regularity of the solution is a direct result of interior Schauder estimates and classical parabolic regularity theory. The proof can be given similarly to the steady incompressible boundary layer. For the sake of simplicity of the paper, more details can be found in [23] and we omit it here.
Theorem 1.6. If u is a solution for equation (1.1) in Theorem 1.1, assume u0 satisfies the condition (1.9) and the known function ρ and ∂xP are smooth. Then, there exists a constant Y0>0 such that for any constant Y2∈(0,Y0), there exists a constant C>0 depending only on ε,X,Y2,u0,P(ρ),k,m such that for any (x,y)∈[ε,X]×[Y2,+∞),
|∂kx∂myu(x,y)|≤C, |
where X,ε are positive constants with ε<X and m,k are any positive integers.
Therefore, Theorem 1.3 can be directly proven by combining Theorem 1.5 with Theorem 1.6.
The organization of this paper is as follows. In Section 2, we study lower order and higher order regularity estimates. In Section 3, we prove Theorem 1.5 in the domain near y=0 by transforming back to the original coordinates (x,y). In Section 4, we prove (1.6) is a uniform parabolic equation by using the maximum principle and we also prove the Theorem 1.3.
In this subsection, we study the lower order regularity estimates using the standard interior a priori estimates developed by Krylov [10].
Lemma 2.1. If u is a solution for equation (1.1) in Theorem 1.1, assume u0 satisfies the condition (1.9)and the known function ρ and ∂xP are smooth. Assume 0<ε<X, then there exists some positive constants δ1>0 and C independent of ψ such that for any (x,ψ)∈[ε,X]×[0,δ1],
|∂xw(x,ψ)|≤Cψ. |
Proof. Due to Lemma 2.1 in [5] (or Theorem 2.1.14 in [13]), there exists δ1>0 for any (x,ψ)∈[0,X]×[0,δ1], such that for some α∈(0,12) and positive constants m,M (we assume δ1<1),
|∂xw|≤Cψ12+α,0<m<∂ψw<M,mψ<w<Mψ. | (2.1) |
By (1.6), we obtain
∂x∂xw−√w∂2ψ∂xw=(∂xw)22w+2ρ∂xP∂xw2w+∂xρρ∂xw+2∂x(∂xρρ)w−2∂x[ρ∂xP]. |
Take a smooth cutoff function 0≤ϕ(x)≤1 in [0,X] such that
ϕ(x)=1,x∈[ε,X],ϕ(x)=0,x∈[0,ε2], |
then
∂x[∂xwϕ(x)]−√w∂2ψ[∂xwϕ(x)]=(∂xw)22wϕ(x)+2ρ∂xP∂xw2wϕ(x)+∂xρρ∂xwϕ(x)+2∂x(∂xρρ)wϕ(x)−2∂x(ρ∂xP)ϕ(x)+∂xw∂xϕ(x):=W. |
Combining with (2.1), we know
|W|≤Cψ2α+Cψα−12+Cψα+12+Cψ+C≤Cψα−12. | (2.2) |
We take φ(ψ)=μ1ψ−μ2ψ1+β with constants μ1,μ2, then by (2.1) and (2.2), we get
∂x[∂xwϕ(x)−φ]−√w∂2ψ[∂xwϕ(x)−φ]≤|W|−μ2√wβ(1+β)ψβ−1≤Cψα−12−μ2√mβ(1+β)ψβ−12. |
By taking μ2 sufficiently large and α=β, for (x,ψ)∈(0,X]×(0,δ1), we have
∂x[∂xwϕ(x)−φ]−√w∂2ψ[∂xwϕ(x)−φ]<0. |
For any ψ∈[0,δ1], let μ1≥μ2, and we have
(∂xwϕ−φ)(0,ψ)≤0, |
and take μ1 large enough depending on M,δ1,μ2 such that
(∂xwϕ−φ)(x,δ1)≤Mδ12+α1−μ1δ1+μ2δ1+β1≤0. |
Since w(x,0)=0, we know that for any x∈[0,X],
(∂xwϕ−φ)(x,0)=0. |
By the maximum principle, it holds in [0,X]×[0,δ1] that
(∂xwϕ−φ)(x,ψ)≤0. |
Let δ1 be chosen suitably small, for (x,ψ)∈[ε,X]×[0,δ1], and we obtain
∂xw(x,ψ)≤μ1ψ−μ2ψ1+β≤μ12ψ. |
Considering −∂xwϕ−φ, the result −∂xw≤μ12ψ in [ε,X]×[0,δ1] can be proved similarly. This completes the proof of the lemma.
Lemma 2.2. If u is a solution for equation (1.1) in Theorem 1.1, assume u0 satisfies the condition (1.9) and the known function ρ and ∂xP are smooth. Assume 0<ε<X, then there exists some positive constants δ2>0 and C independent of ψ such that for any (x,ψ)∈[ε,X]×[0,δ2],
|∂ψ∂xw(x,ψ)|≤C,|∂2xw(x,ψ)|≤Cψ−12,|∂2ψ∂xw(x,ψ)|≤Cψ−1. |
Proof. From Lemma 2.1, there exists δ1>0 such that for any (x,ψ)∈[ε2,X]×[0,δ1],
|∂xw(x,ψ)|≤Cψ. |
Let Ψ0=min{23δ1,ε2}, for any (x0,ψ0)∈[ε,X]×(0,Ψ0], and we denote
Ω={(x,ψ)|x0−ψ320≤x≤x0,12ψ0≤ψ≤32ψ0}. |
By the definition of Ψ0, we know Ω⊆[ε2,X]×[0,δ1], then it holds in Ω that
|∂xw|≤Cψ. | (2.3) |
The following transformation f is defined:
Ω→˜Ω:=[−1,0]˜x×[−12,12]˜ψ,(x,ψ)↦(˜x,˜ψ), |
where x−x0=ψ320˜x,ψ−ψ0=ψ0˜ψ.
Since ∂˜x=ψ320∂x,∂˜ψ=ψ0∂ψ, it holds in Ω that
∂˜x(ψ−10w)−ψ−120√w∂2˜ψ(ψ−10w)−2∂˜xρρ(ψ−10w)=−2ρ∂˜xPψ−10. |
Combining with (2.1), we get 0<c≤ψ−120√w≤C,|ψ−10w|≤C, and for any ˜z1,˜z2∈˜Ω,
|ψ−120√w(˜z1)−ψ−120√w(˜z2)|=ψ−120|w(˜z1)−w(˜z2)|√w(˜z1)+√w(˜z2)≤Cψ0|˜z1−˜z2|ψ0=C|˜z1−˜z2|. |
This means that for any α∈(0,1), we have
|ψ−120√w|Cα(˜Ω)≤C. |
Since P and ρ are smooth, we have
|ρ−1∂˜xρ|C0,1([−1,0]˜x)+|ρ∂˜xPψ−10|C0,1([−1,0]˜x)≤C. |
By standard interior priori estimates (see Theorem 8.11.1 in [10] or Proposition 2.3 in [23]), we have
|wψ−10|Cα([−12,0]˜x×[−14,14]˜ψ)+|∂2˜ψwψ−10|Cα([−12,0]˜x×[−14,14]˜ψ)≤C. | (2.4) |
Let f:=∂xwψ−10, which satisfies
∂˜xf−√wψ120∂2˜ψf−∂2˜ψw2√wψ120f−2∂˜xρρf=−2∂x[ρ∂˜xP]ψ−10+2∂x(∂˜xρρ)(ψ−10w). |
By (2.3), we have |f|≤C in ˜Ω. Due to
|ψ120w−12(˜z1)−ψ120w−12(˜z2)|=ψ120|w(˜z1)−w(˜z2)w(˜z1)w(˜z2)|w−12(˜z1)+w−12(˜z2)≤C|˜z1−˜z2|, |
we have
|ψ120w−12|Cα(˜Ω)≤C. | (2.5) |
Since
∂2˜ψw2√wψ120=∂2˜ψwψ−10ψ1202√w, |
which along with (2.4) and (2.5) gives
|∂2˜ψw2√wψ120|Cα([−12,0]˜x×[−14,14]˜ψ)≤C. |
As before, by (2.4) and the density ρ and P are smooth, via the standard interior a priori estimates, it yield that
|∂˜xf|L∞([−14,0]˜x×[−18,18]˜ψ)+|∂˜ψf|L∞([−14,0]˜x×[−18,18]˜ψ)+|∂2˜ψf|L∞([−14,0]˜x×[−18,18]˜ψ)≤C. |
Therefore, we obtain
|∂2xw(x0,ψ0)|≤Cψ−120,|∂ψ∂xw(x0,ψ0)|≤C,|∂2ψ∂xw(x0,ψ0)|≤Cψ−10. |
This completes the proof of the lemma.
In this subsection, we study the higher order regularity estimates using the maximum principle. The two main results of this subsection are Lemma 2.3 and Lemma 2.7.
Lemma 2.3. If u is a solution for equation (1.1) in Theorem 1.1, assume u0 satisfies the condition (1.9) and the known function ρ and ∂xP are smooth. Assume 0<ε<X and k≥2, then there exists some positive constants δ>0 and C independent of ψ such that for any (x,ψ)∈[ε,X]×[0,δ],
|∂kxw|≤Cψ,|∂ψ∂kxw|≤C,|∂2ψ∂kxw|≤Cψ−1. |
Proof. By Lemma 2.1 and Lemma 2.2, we may inductively assume that for 0≤j≤k−1, there holds that in [ε2,X]×[0,δ3] (assume δ3≪1),
|∂ψ∂jxw|≤C,|∂2ψ∂jxw|≤Cψ−1,|∂jxw|≤Cψ,|∂jx√w|≤Cψ12,|∂kxw|≤Cψ−12. | (2.6) |
We will prove that there exists δ4<δ3 so that in [ε,X]×[0,δ4],
|∂ψ∂kxw|≤C,|∂2ψ∂kxw|≤Cψ−1,|∂kxw|≤Cψ,|∂kx√w|≤Cψ12,|∂k+1xw|≤Cψ−12. | (2.7) |
The above results are deduced from the following Lemma 2.4, Lemma 2.5 and Lemma 2.6.
Lemma 2.4. If u is a solution for equation (1.1) in Theorem 1.1, assume u0 satisfies the condition (1.9) and the known function ρ and ∂xP are smooth. Assume that (2.6) holds, then there is a positive constant M1 for any (x,ψ)∈[7ε8,X]×[0,δ3] and 0<β≪1,
|∂kxw|<M1ψ1−β,|∂kx√w|≤M1ψ12−β. |
Proof. Take a smooth cutoff function 0≤ϕ(x)≤1 in [0,X] such that
ϕ(x)=1,x∈[7ε8,X],ϕ(x)=0,x∈[0,5ε8]. |
As in [23], fix any h<ε8. Set
Ω={(x,ψ)|0<x≤X,0<ψ<δ3}, |
and let
(ⅰ) f=∂k−1xw(x−h,ψ)−∂k−1xw(x,ψ)−hϕ+Mψlnψ, (x,ψ)∈[5ε8,X]×[0,+∞),
(ⅱ) f=Mψlnψ, (x,ψ)∈[0,5ε8)×[ψ,+∞),
so we get f(x,0)=0, f(0,ψ)≤0. We know
f(x,δ3)≤C(δ3)−12+Mδ3lnδ3≤0, |
where M is large enough. Then, by choosing the appropriate M, we know that the positive maximum of f cannot be achieved in the interior. Finally, the lemma can be proven by the arbitrariness of h.
Assume that there exists a point
p0=(x0,ψ0)∈Ω, |
such that
f(p0)=maxˉΩf>0. |
It is easy to know that
x0>5ε8,∂k−1xw(x0−h,ψ0)<∂k−1xw(x0,ψ0). |
By (2.1), denote ξ=√m, we have
−√w∂2ψ(Mψlnψ)=−M√wψ−1≤−ξMψ−12. | (2.8) |
By (1.6), a direct calculation gives
∂x∂k−1xw−√w∂2ψ∂k−1xw=−2∂k−1x(ρ∂xP)+k−2∑m=1Cmk−1(∂k−1−mx√w)∂2ψ∂mxw+(∂k−1x√w)∂2ψw+2k−1∑m=0Cmk−1∂k−1−mx(∂xρρ)∂mxw=−2∂k−1x(ρ∂xP)+k−2∑m=1Cmk−1(∂k−1−mx√w)∂2ψ∂mxw+∂k−1xw2√w∂xw√w+(∂k−1xw2√w)2ρ∂xP√w−(∂k−1xw2√w)2∂xρρw√w+2k−1∑m=0Cmk−1∂k−1−mx(∂xρρ)∂mxw+k−2∑m=0Cmk−2∂2ψw∂m+1xw∂k−2−mx12√w:=4∑i=1Ii |
and
I1=−2∂k−1x(ρ∂xP)+k−2∑m=1Cmk−1(∂k−1−mx√w)∂2ψ∂mxw+∂k−1xw2√w∂xw√w,I2=ρ∂xPw∂k−1xw,I3=−∂xρρ∂k−1xw+2k−1∑m=0Cmk−1∂k−1−mx(∂xρρ)∂mxw,I4=k−2∑m=0Cmk−2∂2ψw∂m+1xw∂k−2−mx12√w. |
For x≥5ε8, we consider the following equality
∂xf1−√w(p1)∂2ψf1=√w(p1)−√w(p)−h∂2ψ∂k−1xw(p)+4∑i=11−h(Ii(p1)−Ii(p)), | (2.9) |
where
f1=1−h(∂k−1xw(p1)−∂k−1xw(p)), |
with p1=(x−h,ψ),p=(x,ψ).
For any x≥5ε8, by (2.6), it is easy to conclude that
|1−h(√w(p1)−√w(p))∂2ψ∂k−1xw(p)|≤Cψ−12,|1−h(I1(p1)−I1(p))|≤Cψ−12,|4∑i=31−h(Ii(p1)−Ii(p))|≤Cψ−12, | (2.10) |
where C is dependent on the parameter h.
Since
1−h(I2(p1)−I2(p))=f1⋅[ρ∂xPw(p1)]+∂k−1xw(p)1−h[ρ∂xPw(p1)−ρ∂xPw(p)], |
combining with (2.6), f1(p0)>0 and ∂xP≤0, it holds at p=p0 that
1−h(I2(p1)−I2(p0))≤C. | (2.11) |
Summing up (2.10) and (2.11), we conclude that at p=p0,
∂xf1−√w∂2ψf1≤C0ψ−12. |
This along with (2.8) shows that for x≥5ε8, it holds at p=p0 that
∂xf−√w∂2ψf≤Cψ−12−ξMψ−12. | (2.12) |
By taking M large enough, we have ∂xf(p0)−√w∂2ψf(p0)<0. By the definition of p0, we obtain
∂xf(p0)−√w∂2ψf(p0)≥0, |
which leads to a contradiction. Therefore, for M chosen as above and independent of h, we have
maxˉΩf≤0. |
We can similarly prove that minˉΩf≥0 by replacing Mψlnψ in f with −Mψlnψ. By the arbitrariness of h, for any (x,ψ)∈(7ε8,X]×(0,δ3] we have
|∂kxw|≤−Mψlnψ. |
Due to
2√w∂kx√w+k−1∑m=1Cmk(∂mx√w∂k−mx√w)=∂kx(√w√w)=∂kxw, | (2.13) |
which along with (2.6) shows that in (78ε,X]×(0,δ3],
|√w∂kx√w|≤−Cψlnψ. |
Lemma 2.5. If u is a solution for equation (1.1) in Theorem 1.1, assume u0 satisfies the condition (1.9) and the known function ρ and ∂xP are smooth. Assume that (2.6) holds, then for any (x,ψ)∈[1516ε,X]×[0,δ3],
|∂kxw|≤Cψ,|∂kx√w|≤Cψ12. |
Proof. Take a smooth cutoff function ϕ(x) so that
ϕ(x)=1,x∈[15ε16,X],ϕ(x)=0,x∈[0,7ε8]. |
Set
f=∂kxwϕ−μ1ψ+μ2ψ32−β |
with constants μ1,μ2. Let β be small enough in Lemma 2.4. Then it holds in [7ε8,X]×[0,δ3] that
|∂kxw|≤Cψ1−β,|∂kx√w|≤Cψ12−β. | (2.14) |
We denote
Ω={(x,ψ)|0<x≤X,0<ψ<δ3}. |
As in [23], we have f(x,0)=0, f(0,ψ)≤0 and f(x,δ3)≤0 by taking μ1 large depending on μ2. We claim that the maximum of f cannot be achieved in the interior.
By (1.6), we have
∂x∂kxw−√w∂2ψ∂kxw=−2∂kx(ρ∂xP)+k−1∑m=0Cmk(∂k−mx√w)∂2ψ∂mxw+2k∑m=0Cmk∂k−mx(∂xρρ)∂mxw, |
and
∂2ψ∂mxw=∂mx∂2ψw=∂mx(∂xw√w+2ρ∂xP√w−2∂xρρ√w). |
For any x≥7ε8, 0≤j≤k−1 and 0≤m≤k−1, from (2.6) and (2.14), we get
|∂jxw|≤Cψ,|∂kxw|≤Cψ1−β,|∂k−mx√w|≤Cψ12−β. |
Then let β≪12, for 0≤m≤k−1 and x≥7ε8, we obtain
|∂2ψ∂mxw|≤Cψ12−β+Cψ−12+Cψ12−β≤Cψ−12. |
Therefore, we conclude that for x≥7ε8,
∂x∂kxw−√w∂2ψ∂kxw≤C+Cψ−β+Cψ1−β≤Cψ−β. |
By the above inequality and (2.1), it holds at p=p0 that
∂xf−√w∂2ψf=∂x∂kxw−√w∂2ψ∂kxw+∂kxw∂xϕ−√w∂2ψ(−μ1ψ+μ2ψ32−β)≤C2ψ−β−ξμ2ψ−β, |
where ξ=(32−β)(12−β)√m>0. Then we have ∂xf−√w∂2ψf<0 in Ω by taking μ2 large depending on C2. This means that the maximum of f cannot be achieved in the interior. Therefore, we have
maxˉΩf≤0. |
In the same way, we can prove that
maxˉΩ−∂kxwϕ−μ1ψ+μ2ψ32−β≤0. |
So, for any (x,ψ)∈[1516ε,X]×[0,δ3], we have
|∂kxw|≤μ1ψ−μ2ψ32−β≤μ1ψ. |
Combining with (2.6) and (2.13), it holds in [1516ε,X]×[0,δ3] that
|∂kx√w|≤Cψ12. |
This completes the proof of the lemma.
Lemma 2.6. If u is a solution for equation (1.1) in Theorem 1.1, assume u0 satisfies the condition (1.9) and the known function ρ and ∂xP are smooth. Assume that (2.6) holds, then for any (x,ψ)∈[ε,X]×[0,δ4],
|∂ψ∂kxw|≤C,|∂2ψ∂kxw|≤Cψ−1,|∂k+1xw|≤Cψ−12. |
Proof. By Lemma 2.5 and (2.6), for any (x,ψ)∈[1516ε,X]×[0,δ3],
|∂jxw|≤Cψ,|∂jx√w|≤Cψ12,0≤j≤k. | (2.15) |
Set Ψ0=min{23δ3,ε16}, for (x0,ψ0)∈[ε,X]×(0,Ψ0], we denote
Ω={(x,ψ)|x0−ψ320≤x≤x0,12ψ0≤ψ≤32ψ0}. |
A direct calculation gives
∂x∂kxw−√w∂2ψ∂kxw=−2∂kx(ρ∂xP)+∂kx√w∂2ψw+k−2∑m=1Cmk(∂k−mx√w)∂2ψ∂mxw+Ck−1k∂xw2√w∂2ψ∂k−1xw+2k∑m=0Cmk∂k−mx(∂xρρ)∂mxw. |
By (1.6), we obtain
∂2ψ∂mxw=∂mx∂2ψw=∂mx(∂xw√w+2ρ∂xP√w−2∂xρρ√w)=∂m+1xw√w+m∑l=1Clm∂m−l+1xw∂lx1√w+∂mx(2ρ∂xP√w)−∂mx(2∂xρρ√w), |
and
∂kx√w=∂k−1x∂xw2√w=∂kxw2√w+k−1∑l=1Clk−1∂k−1−l+1xw∂lx12√w, |
then
∂x∂kxw−√w∂2ψ∂kxw=−2∂kx(ρ∂xP)+k−2∑m=1Cmk(∂k−mx√w)∂2ψ∂mxw+∂kxw2√w∂2ψw+k−1∑l=1Clk−1∂k−1−l+1xw∂lx(12√w)∂2ψw+Ck−1k∂xw∂kxw2w+2k∑m=0Cmk∂k−mx(∂xρρ)∂mxw+Ck−1k∂xw2√w[k−1∑l=1Clk−1∂k−lxw∂lx1√w+∂k−1x(2ρ∂xP√w)−∂k−1x(2∂xρρ√w)]. |
The following transformation f is defined:
Ω→˜Ω:=[−1,0]˜x×[−12,12]˜ψ,(x,ψ)↦(˜x,˜ψ), |
where x−x0=ψ320˜x,ψ−ψ0=ψ0˜ψ.
Let f=∂kxwψ−10, we get
∂˜xf−√wψ120∂2˜ψf−12√w∂2ψwψ320f−∂xw2wψ320f=−2ψ120∂kx(ρ∂xP)+ψ120k−2∑m=1Cmk(∂k−mx√w)∂2ψ∂mxw+ψ120k−1∑l=1Clk−1∂k−lxw(∂lx12√w)∂2ψw+2ψ120k∑m=0Cmk∂k−mx(∂xρρ)∂mxw+ψ120∂xw2√w[k−1∑l=1Clk−1∂k−lxw∂lx1√w+∂k−1x(2ρ∂xP√w)−∂k−1x(2∂xρρ√w)]:=F. |
From the proof of Lemma 2.2 and Lemma 2.6, we know that in ˜Ω for α∈(0,1),
|f|≤C,0<c≤ψ−120√w≤C,|ψ−120√w|Cα(˜Ω)≤C. |
By (2.6), (2.15) and the equality
∂ψ(∂2ψ∂mxw)=∂ψ∂m+1xw√w−∂ψw∂m+1xw2(√w)3+m∑l=1Clm∂m−l+1x∂ψw∂lx1√w+m∑l=1Clm∂m−l+1xw∂lx∂ψw−2(√w)3+∂mx(ρ∂xP∂ψw−(√w)3)−∂mx(∂xρρ∂ψw√w), |
we can conclude that for j≤k−1 and m≤k−2,
|∇˜x,˜ψ∂jx√w|≤Cψ120,|∇˜x,˜ψ∂jx(1√w)|≤Cψ−120,|∇˜x,˜ψ∂2ψ∂mxw|≤Cψ−120. |
Combining (2.4) with (2.5), we can obtain
|12√w∂2ψwψ320+∂xw2wψ320|Cα(˜Ω)+|F|Cα(˜Ω)≤C. |
By the standard interior priori estimates, we obtain
|∂˜xf|L∞([−14,0]˜x×[−18,18]˜ψ)+|∂˜ψf|L∞([−14,0]˜x×[−18,18]˜ψ)+|∂2˜ψf|L∞([−14,0]˜x×[−18,18]˜ψ)≤C. |
Therefore, this means that
|∂k+1xw(x0,ψ0)|≤Cψ−120,|∂ψ∂kxw(x0,ψ0)|≤C,|∂2ψ∂kxw(x0,ψ0)|≤Cψ−10. |
Since (x0,ψ0) is arbitrary, this completes the proof of the lemma.
Lemma 2.7. If u is a solution for equation (1.1) in Theorem 1.1, assume u0 satisfies the condition (1.9) and the known function ρ and ∂xP are smooth. Assume 0<ε<X and integer m,k≥0, then there exists a positive constant δ>0 such that for any (x,ψ)∈[ε,X]×[0,δ],
|∂mψ∂kxw|≤Cψ1−m. | (2.16) |
Proof. From Lemma 2.1, (2.1), Lemma 2.2 and Lemma 2.3, a direct calculation can prove that
|∂kx1√w|≤Cψ−12,|∂kx∂ψ1√w|≤Cψ−32,|∂kx∂2ψ1√w|≤Cψ−52, |
and (2.16) holds for m=0,1,2. Then for 0≤m≤j with j≥1, we inductively assume that
|∂mψ∂kxw|≤Cψ1−m,|∂kx∂mψ1√w|≤Cψ−12−m. | (2.17) |
In the next part, we will prove that (2.17) still holds for m=j+1.
By (1.6), we obtain
∂j+1ψ∂kxw=∂j−1ψ∂kx∂2ψw=∂kx∂j−1ψ(∂xw√w+2ρ∂xP√w−2∂xρρw√w)=∂kx(j−1∑i=0Cij−1∂j−1−iψ∂xw∂iψ1√w+2ρ∂xP∂j−1ψ1√w−2∂xρρj−1∑i=0Cij−1∂j−1−iψw∂iψ1√w). |
Combining with (2.17), we get
|∂j+1ψ∂kxw|≤Cψ32−j+Cψ12−j+Cψ32−j≤Cψ12−j. | (2.18) |
By straight calculations, we get
0=∂kx∂j+1ψ(1√w1√ww)=∂kx[2√w∂j+1ψ1√w+j∑i=1j+1−i∑l=0Cij+1Clj+1−i(∂iψ1√w)(∂lψ1√w)∂j+1−l−iψw+j∑l=0Clj+11√w(∂lψ1√w)∂j+1−lψw]. |
Combining the above equality with (2.17), we can conclude that
|∂kx∂j+1ψ1√w|≤Cψ−32−j. |
This completes the proof of the lemma.
In this section, we will prove the regularity of the solution u in the domain
{(x,ψ)|ε≤x≤X,0≤y≤Y1}. |
Proof of Theorem 1.5:
Proof. For the convenience of proof, we denote
(˜x,ψ)=(x,∫y0˜udy). |
A direct calculation gives (see P13 in [23])
∂y=√w∂ψ,∂x=∂˜x+∂xψ(x,y)∂ψ,∂xψ=12√w∫ψ0w−32∂˜xwdψ. |
By (2.1) and Lemma 2.3, we have |∂xψ|≤Cψ. Due to ∂y=√w∂ψ, we obtain
∂kx2∂y˜u=(∂˜x+∂xψ∂ψ)k∂ψw,∂kx2∂2y˜u=(∂˜x+∂xψ∂ψ)k(∂˜xw+2ρ∂xP−2∂xρρw)=(∂˜x+∂xψ∂ψ)k(∂˜xw)+2∂k˜x(ρ∂xP)−2(∂xρρ)(∂˜x+∂xψ∂ψ)kw−2∂k˜x(∂xρρ)w. |
By |∂xψ|≤Cψ and Lemma 2.7, we obtain that Theorem 1.5 holds for m=0,1,2,
|∂kx∂y˜u|+|∂kx∂2y˜u|≤C. | (3.1) |
We inductively assume that for any integer k and m≥1,
|∂kx∂jy˜u|≤C,j≤m. | (3.2) |
A direct calculation gives
∂kx∂m+1y˜u=∂kx∂m−1y∂2y˜u=∂kx∂m−1y(˜u∂x˜u−∂y˜u∫y0∂x˜udy−∂xρρ˜u2)=∂kx(m−1∑i=0Cim−1∂m−1−iy˜u∂iy∂x˜u−m−2∑i=0Ci+1m−1∂m−1−iy˜u∂iy∂x˜u−∂my˜u∫y0∂x˜udy−∂xρρ∂m−1y˜u2), |
and we can deduce from (3.1) and (3.2) that
|∂kx∂jy˜u|≤C,j≤m+1.⇒|∂kx∂jyu|≤C,j≤m+1. |
This completes the proof of the theorem.
In this section, we prove our main theorem. The key point is to prove that (1.6) is a uniform parabolic equation. The proof is based on the classical parabolic maximum principle. The specific proof details are as follows.
Proof. By (1.2) and ∂xP≤0, we obtain
C≥U2(x)=U2(0)−2∫x0∂xP(ρ)ρdx≥U2(0). |
By (1.7) and w increasing in ψ (see below), we know that there exists some positive constants Ψ and C0 such that for any (x,ψ)∈[0,X]×[Ψ,+∞),
w≥C0U2(0). | (4.1) |
From Theorem 1.1, we know that there exists positive constants y0,M,m such that for any (x,ψ)∈[0,X]×[0,y0] (we can take y0 to be small enough),
M≥∂y˜u(x,y)≥m. | (4.2) |
The fact that ψ∼y2 is near the boundary y=0 (see Remark 4.1 in [23]), for some small positive constant 0<κ<1, we get
κ2y20≤ψ≤κy20⇒σy0≤y≤y02, | (4.3) |
for some constant σ>0 depends on κ,m,M.
We denote
Ω={(x,ψ)|0≤x≤X,κ2y20≤ψ≤+∞}. |
By (4.2) and (4.3), we get ˜u(x,σy0)≥mσy0, then for any x∈[0,X], we have
w(x,κ2y20)≥m2σ2y20. | (4.4) |
Since the initial data u0 satisfies the condition (1.9) and w=˜u2, we know w(0,ψ)>0 for ψ>0 and there exists a positive constant ζ, such that for ψ∈[κ2y20,Ψ],
w(0,ψ)>ζ. | (4.5) |
Then, we only consider
Ω1={(x,ψ)|0≤x≤X,κ2y20≤ψ≤Ψ}. |
We denote H(x,ψ):=e−λx∂ψw(x,ψ), which satisfies the following system in the region Ω0={(x,ψ)|0≤x<X,0<ψ<+∞}:
{∂xH−∂ψw2√w∂ψH−√w∂2ψH+(λ−2∂xρρ)H=0,H|x=0=∂ψw0(ψ),H|ψ=0=2e−λx∂y˜u|y=0,H|ψ=+∞=0. | (4.6) |
Then, we choose λ properly large such that λ−2∂xρρ≥0. Due to
H|x=0=∂ψw0(ψ)≥0,H|ψ=0=2e−λx∂y˜u|y=0>0,H|ψ=+∞=0, |
it follows that
H(x,ψ)=e−λxF(x,ψ)=e−λx∂ψw≥0,(x,ψ)∈[0,X∗)×R+, |
which means ∂ψw≥0 in [0,X)×R+. Hence, w is increasing in ψ. Therefore, we know that there exists a positive constant λ≥m2σ2y20 such that for any x∈[0,X],
w(x,Ψ)≥λ. | (4.7) |
By (1.6), for any ε>0, we know W:=w+εx satisfies the following system in Ω1:
{∂xW−√w∂2ψW−2∂xρρW=F,W|x=0=W0>ζ,W|ψ=κ2y20=W1≥m2σ2y20,W|ψ=Ψ=W2≥λ, |
where
F=−2ρ∂xP+ε−2εx∂xρρ. |
Since ∂xP≤0, we know the diffusive term F>0. Therefore, the minimum cannot be reached inside Ω1. Set
η0=min{W0,W1,W2}, |
then by the maximum principle, we obtain W=w+εx≥η0. Let ε→0, we have w≥η0 in Ω1. Then we denote
η=min{η0,C0U2(0)}>0, |
combining with (4.1), we have w≥η in Ω. Therefore, there exists some positive constant c such that c≤w in Ω. From Theorem 1.1, we have w≤C in Ω. In sum, there exists positive constants c,C such that c≤w≤C in Ω. This further means that
0<√c≤√w≤√C, | (4.8) |
where C depends on X. Therefore, we prove (1.6) is a uniform parabolic equation. Furthermore, by Theorem 1.1, we know ∂y˜u,∂2y˜u are continuous and bounded in [0,X)×R+. Combining ρ, ∂xP are smooth, (4.8) with
2∂y˜u=∂ψw,2∂2y˜u=√w∂2ψw=∂xw−2∂xρρw+2ρ∂xP(ρ), |
we obtain
‖√w‖Cα(Ω)≤C. |
Once we have the above conclusion, the proof of Theorem 1.6 can be given in a similar fashion to [23]. Here, we provide a brief explanation for the reader's convenience. More details can be found in [23].
Step 1: For any (x1,ψ1)∈[ε,X]×[κy20,+∞), we denote
Ωx1,ψ1={(x,ψ)|x1−ε2≤x≤x1,ψ1−κ2y20≤ψ≤ψ1+κ2y20}. |
Step 2: Note that the known function ρ, ∂xP is smooth, we can repeat interior Schauder estimates in Ωx1,ψ1 to achieve uniform estimates independent of choice of (x1,ψ1) for any order derivatives of w. Since the width and the length of Ωx1,ψ1 are constants and the estimates employed are independent of (x1,ψ1), restricting the estimates to the point (x1,ψ1), we can get for any m<+∞,|∇mw(x1,ψ)|≤CX,m,y0,ε.
Step 3: Since (x1,ψ1) is arbitrary, we have for any m<+∞,|∇mw(x1,ψ)|≤CX,m,y0,ε in [ε,X]×[κy20,+∞). Then, as in Section 3, we can prove Theorem 1.6.
Finally, Theorem 1.3 is proven by combining Theorem 1.5 and Theorem 1.6.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The research of Zou was supported by the Fundamental Research Funds for the Central Universities (Grant No. 202261101).
The authors declare there is no conflict of interest.
[1] |
Fretheim A, Munabi-Babigumira S, Oxman A, et al. (2009) SUPPORT tools for evidence-informed policymaking in Health 6: Using research evidence to address how an option will be implemented. Health Res Policy Syst 7: S6. https://doi.org/10.1186/1478-4505-7-S1-S6 ![]() |
[2] |
Etienne LV, Becerrill MV, Young T, et al. (2016) Enhancing evidence-informed policymaking in complex health systems: Lessons from multi-site collaborative approaches. Health Res Policy Syst 14: 20. https://doi.org/10.1186/s12961-016-0089-0 ![]() |
[3] |
Trezona A, Dodson S, Mech P, et al. (2018a) Development and testing of a framework for analyzing health literacy in public policy documents. Glob Health Promot 25: 24-33. https://doi.org/10.1177/1757975918769616 ![]() |
[4] |
Sato Y, Suzuki R, Shigihara M, et al. (2023) The effect of guardians' health literacy on the child's spending time at home: A cross-sectional study among Japanese schoolchildren. AIMS Public Health 10: 52-62. https://10.3934/publichealth.2023005 ![]() |
[5] |
Wittich AR, Aubree SL, Flores B, et al. (2019) Colorectal cancer screening: Understanding the health literacy needs of Hispanic rural residents. AIMS Public Health 6: 107-120. https://doi.org/10.3934/publichealth.2019.2.107 ![]() |
[6] |
Vamos SD, Okan O, Sentell T, et al. (2020) Making a case for “education for health literacy”: An international perspective. Intl J Env Res Public Health 17: 1436. https://doi.org/10.3390/ijerph17041436 ![]() |
[7] |
Trezona A, Rowlands G, Nutbeam D (2018b) Progress in implementing national policies and strategies for health literacy- What have we learned so far?. Intl J Env Res Public Health 15: 1554. https://doi.org/10.3390/ijerph15071554 ![]() |
[8] |
Liu C, Wang D, Liu C, et al. (2020) What is the meaning of health literacy? A systematic review and qualitative synthesis. Fam Med Community Health 8: e000351. https://doi.org/10.1136/fmch-2020-000351 ![]() |
[9] |
Innvær S, Vist G, Trommald M, et al. (2002) Health policy-makers' perceptions of their use of evidence: a systematic review. J Health Serv Res Policy 7: 239-244. https://doi.org/10.1258/13558190232043277 ![]() |
[10] |
Albert MA, Fretheim A (2007) Factors influencing the utilization of research findings by health policy-makers in a developing country: the selection of Mali's essential medicines. Health Res Policy Syst 5: 2. https://doi.org/10.1186/1478-4505-5-2 ![]() |
[11] |
Oliver K, Innvær S, Lorenc T, et al. (2014) A systematic review of barriers to and facilitators of the use of evidence by policymakers. BMC Health Serv Res 14: 2. https://doi.org/10.1186/1472-6963-14-2 ![]() |
[12] | Akerlof K, Lemos MC, Cloyd E, et al. Barriers in Communicating Science for Policy in Congress, Association for Education in Journalism and Mass Communication, 2018 Annual Conference Washington, DC (2018). |
[13] |
Pulido-Salgado M, Castaneda Mena FA (2021) Bringing policymakers to science through communication: A perspective from Latin America. Front Res Metr Analyt 6: 654191. https://doi.org/10.3389/frma.2021.654191 ![]() |
[14] |
Vanyoro KP, Hawkins K, Greenall M, et al. (2019) Local ownership of health policy and systems research in low-income and middle-income countries: a missing element in the uptake debate. BMJ Glob Health 4: e001523. https://doi.org/10.1136/bmjgh-2019-001523 ![]() |
[15] |
Vargas I, Eguiguren P, Mogollón-Pérez AS, et al. (2020) Understanding the factors influencing the implementation of participatory interventions to improve care coordination. An analytical framework based on an evaluation in Latin America. Health Pol Plann 35: 962-972. https://doi.org/10.1093/heapol/czaa066 ![]() |
[16] |
Wu S, Khan M, Legido-Quigley H (2020) What steps can researchers take to increase research uptake by policymakers? A case study in China. Health Pol Plann 35: 665-675. https://doi.org/10.1093/heapol/czaa025 ![]() |
[17] |
Shafaghat T, Bastani P, Nasab MHI, et al. (2022) A framework of evidence-based decision-making in health system management: a best-fit framework synthesis. Arch Public Health 80: 96. https://doi.org/10.1186/s13690-022-00843-0 ![]() |
[18] |
El-Jardali F, Lavis JN, Ataya N, et al. (2012) Use of health systems evidence by policymakers in Eastern Mediterranean countries: Views, practices, and contextual influences. BMC Health Serv Res 12: 200. https://doi.org/10.1186/1472-6963-12-200 ![]() |
[19] |
Mapulanga P, Raju J, Matingwina T (2020) Research-evidence-based health policy formulation in Malawi: An assessment of policymakers' and researchers' perspectives. Intl J Health Gov 25: 161-176. https://doi.org/10.1108/IJHG-05-2019-0029 ![]() |
[20] |
Supplee LH, Kane MC (2020) The realities of scaling within evidence-based policy. Behav Public Pol 5: 90-102. https://doi.org/10.1017/bpp.2020.25 ![]() |
[21] |
Verdugo-Paiva F, Bonfill X, Ortuño D, et al. (2023) Policymakers' perceived barriers and facilitators in the use of research evidence in oral health policies and guidelines: A qualitative study protocol. BMJ Open 13: e066048. https://doi.org/10.1136/bmjopen-2022-066048 ![]() |
[22] |
Grande D, Gollust SE, Pany M, et al. (2014) Translating research for health policy: Researchers' perceptions and use of social media. Health Aff 33: 1278-1285. https://doi.org/10.1377/hlthaff.2014.0300 ![]() |
[23] | Rathore AK, Maurya D, Srivastava AK (2021) Do policymakers use social media for policy design? A Twitter analytics approach. Austral J Inform Syst 25: 2965. https://doi.org/10.3127/ajis.v25i0.2965 |
[24] | Nurmandi A, Wahyuni H, Guillamon MD, et al. (2023) Social media use for public policymaking cycle: A meta-analysis. Electron Gov 19: 123-145. https://doi.org/10.1504/EG.2023.129428 |
[25] |
Kothari A, MacLean L, Edwards N, et al. (2011) Indicators at the interface: Managing policymaker-researcher collaboration. Knowl Manag Res Pract 9: 203-214. https://doi.org/10.1057/kmrp.2011.16 ![]() |
[26] |
Corluka A, Hyder AA, Winch PJ, et al. (2014) Exploring health researchers' perceptions of policymaking in Argentina: A qualitative study. Health Policy Plann 29: ii40-ii49. https://doi.org/10.1093/heapol/czu071 ![]() |
[27] |
Corluka A, Hyder AA, Segura E, et al. (2015) Survey of Argentine health researchers on the use of evidence in policymaking. PLoS One 10: e0125711. https://doi.org/10.1371/journal.pone.0125711 ![]() |
[28] |
Hyder AA, Corluka A, Winch PJ, et al. (2010) National policy-makers speak out: Are researchers giving them what they need?. Health Policy Plann 26: 73-82. https://doi.org/10.1093/heapol/czq020 ![]() |
[29] |
Stellefson M, Black DR, Chaney BH, et al. (2020) Evolving role of social media in health promotion: Updated responsibilities for health education specialists. Int J Env Res Public Health 17: 1153. https://doi.org/10.3390/ijerph17041153 ![]() |
[30] | Creswell JW, Plano Clark VL (2017) Designing and conducting mixed methods research. Sage. |
[31] |
Mahmood Z, Kouser R, Ali W, et al. (2018) Does corporate governance affect sustainability disclosure? A mixed methods study. Sustain 10: 207. https://doi.org/10.3390/su10010207 ![]() |
[32] |
Bornmann L, Haunschild R, Thor A (2016) Policy documents as sources for measuring societal impact: How often is climate change research mentioned in policy-related documents?. Scientometrics 109: 1477-1495. https://doi.org/10.1007/s11192-016-2115-y ![]() |
[33] | Haunschild R, Williams K, Bornmann L (2023) How relevant is public policy and administration research for the policy sector? An empirical analysis based on Overton data. 27th International Conference on Science, Technology and Innovation Indicators (STI 2023) . Available from: https://dapp.orvium.io/deposits/6440f44400950d7e328907b2/view |
[34] | Wagoner B, Mellish M, Hyman C, et al. (1997) Guide to research methods: The evidence pyramid. SUNY Downstate Medical Center . Available from: http://www.servers.medlib.hscbklyn.edu/ebm/2100.htm |
[35] | Glover J, Izzo D, Odato K, et al. EBM Pyramid and EBM Page Generator (2005). Available from: https://www.pinterest.com/pin/856458054116360730/ |
[36] | Melnyk BM, Fineout-Overholt E (2005) Evidence-based practice in nursing and healthcare: A guide to best practice. Philadelphia: Lippincott, Williams & Wilkins. |
[37] |
Tomlin G, Borgetto B (2011) Research pyramid: A new evidence-based practice model for occupational therapy. Am J Occup Ther 65: 189-196. https://doi.org/10.5014/ajot.2011.000828 ![]() |
[38] |
Alaniz AJ, Perez-Quezada JF, Galleguillos M, et al. (2019) Operationalizing the IUCN Red List of Ecosystems in public policy. Conserv Lett 12: e12665. https://doi.org/10.1111/conl.12665 ![]() |
[39] |
Martín-Martín A, Orduna-Malea E, Thelwall M, et al. (2018) Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. J Informetr 12: 1160-1177. https://doi.org/10.1016/j.joi.2018.09.002 ![]() |
[40] |
Sing VK, Sing P, Karmakar M, et al. (2021) The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis. Scientometrics 126: 5113-5142. https://doi.org/10.1007/s11192-021-03948-5 ![]() |
[41] |
Kumpulainen M, Seppänen M (2022) Combining Web of Science and Scopus datasets in citation-based literature study. Scientometrics 127: 5613-5631. https://doi.org/10.1007/s11192-022-04475-7 ![]() |
[42] |
Fang Z, Costas R (2020) Studying the accumulation velocity of altmetric data tracked by Altmetric.com. Scientometrics 123: 1077-1101. https://doi.org/10.1007/s11192-020-03405-9 ![]() |
[43] |
Karmakar M, Banshal SK, Sing VK (2021) A large scale comparison of coverage and mentions captured by the two altmetric aggregators: Altmetric.com and PlumX. Scientometrics 126: 4465-4489. https://doi.org/10.1007/s11192-021-03941-y ![]() |
[44] | Pinheiro H, Vignola-Gagné E, Campbell D (2021) A large-scale validation of the relationship between cross-disciplinary research and its uptake in policy-related documents, using the novel Overton altmetrics database. Quant Sci Stud 2: 616-642. https://doi.org/10.1162/qss_a_00137 |
[45] |
Szomszor M, Adie E (2022) Overton: A bibliometric database of policy document citations. Quant Sci Stud 3: 624-650. https://doi.org/10.1162/qss_a_00204 ![]() |
[46] |
Banshal SK, Verma MK, Yuvaraj M (2022) Quantifying global digital journalism research: A bibliometric landscape. Lib Hi Tech 40: 1337-1358. https://doi.org/10.1108/lht-01-2022-0083 ![]() |
[47] |
Agresti A Categorical data analysis, Wiley-Interscience (2002). ![]() |
[48] |
Cameron AC, Trivedi PK (2013) Regression analysis of count data. Cambridge University Press. ![]() |
[49] | Agresti A Foundations of linear and generalized linear models, Wiley (2015). |
[50] |
Cox TF, Ferry G (1993) Discriminant analysis using non-metric multidimensional scaling. Ptrn Recognit 26: 145-153. https://doi.org/10.1016/0031-3203(93)90096-F ![]() |
[51] | Agarwal S, Lanckriet G, Wills J, et al. (2007) Generalized non-metric multidimensional scaling. J Mach Learn 2: 11-18. 11th International Conference on Artificial Intelligence and Statistics, AISTATS 2007 |
[52] |
Ratti M, Milicia O, Rescinito R, et al. (2023) The determinants of expert opinion in the development of care pathways: Insights from an exploratory cluster analysis. BMC Health Serv 23: 211. https://doi.org/10.1186/s12913-023-09139-7 ![]() |
[53] | Aronson J (1994) A pragmatic view of thematic analysis. Qual Rep 2: 1-3. Available from: https://nsuworks.nova.edu/tqr/vol2/iss1/3/ |
[54] | Hayes N (1997) Theory-led thematic analysis: Social identification in small companies. Doing qualitative analysis in psychology . Hove, England: Psychology Press 93-114. |
[55] |
Braun V, Clarke V (2006) Thematic analysis: Using thematic analysis in psychology. Qual Res Psych 3: 77-101. https://doi.org/10.1191/1478088706qp063oa ![]() |
[56] | Haskins R, Baron J (2011) Building the connection between policy and evidence: The Obama evidence-based initiatives. NESTA, United Kingdom . Available from: http://coalition4evidence.org/wp-content/uploads/2011/09/Haskins-Baron-paper-on-fed-evid-based-initiatives-2011.pdf |
[57] | Patiño D, Lavis JN, Moat K (2013) The role of research-based evidence in health system policy decision-making. Rev Salud Publica 15: 684-693. |
[58] | Cardozo Brum M (2020) Evidence: concepts and uses in the evaluation of public policies and programs. Iztapalapa Rev Cienc Soc Humanid 42: 205-232. https://doi.org/10.28928/ri/902021/aot3/cardozobrumm |
[59] |
Martínez N (2012) Barreras en aplicación de los resultados de las investigaciones en sistemas y servicios de salud por los profesionales de enfermería. Hor Enferm 23: 23-31. Available from: https://ojs.uc.cl/index.php/RHE/article/view/12092 ![]() |
[60] | Díaz-Valdés A (2023) Políticas públicas: una mirada desde el enfoque basado en evidencia en trabajo social. Crit Prop Soc Work 5: 131-150. https://doi.org/10.5354/2735-6620.2023.68725 |
[61] |
Camacho L, Montenegro G (2023) The implementation of public health policies: narrative review of models for analysis. Uninorte Health 39: 1153-1175. https://doi.org/10.14482/sun.39.03.258.963 ![]() |
[62] | CEPLANGuía de políticas nacionales 2018 (2018). Available from: https://cdn.www.gob.pe/uploads/document/file/1904157/GUIA-DE-POLITICAS-NACIONALES-CEPLAN-vNov2018.pdf |
[63] |
Jain N, Kourampi I, Umar TP, et al. (2023) Global population surpasses eight billion: Are we ready for the next billion?. AIMS Public Health 10: 849-866. https://doi.org/10.3934/publichealth.2023056 ![]() |
1. | Yakui Wu, Qiong Wu, Yue Zhang, Time decay estimates of solutions to a two-phase flow model in the whole space, 2024, 13, 2191-950X, 10.1515/anona-2024-0037 |