Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Review Special Issues

Deep CNNs for glioma grading on conventional MRIs: Performance analysis, challenges, and future directions

  • The increasing global incidence of glioma tumors has raised significant healthcare concerns due to their high mortality rates. Traditionally, tumor diagnosis relies on visual analysis of medical imaging and invasive biopsies for precise grading. As an alternative, computer-assisted methods, particularly deep convolutional neural networks (DCNNs), have gained traction. This research paper explores the recent advancements in DCNNs for glioma grading using brain magnetic resonance images (MRIs) from 2015 to 2023. The study evaluated various DCNN architectures and their performance, revealing remarkable results with models such as hybrid and ensemble based DCNNs achieving accuracy levels of up to 98.91%. However, challenges persisted in the form of limited datasets, lack of external validation, and variations in grading formulations across diverse literature sources. Addressing these challenges through expanding datasets, conducting external validation, and standardizing grading formulations can enhance the performance and reliability of DCNNs in glioma grading, thereby advancing brain tumor classification and extending its applications to other neurological disorders.

    Citation: Sonam Saluja, Munesh Chandra Trivedi, Ashim Saha. Deep CNNs for glioma grading on conventional MRIs: Performance analysis, challenges, and future directions[J]. Mathematical Biosciences and Engineering, 2024, 21(4): 5250-5282. doi: 10.3934/mbe.2024232

    Related Papers:

    [1] Jin Wang . Least squares solutions of matrix equation AXB=C under semi-tensor product. Electronic Research Archive, 2024, 32(5): 2976-2993. doi: 10.3934/era.2024136
    [2] Keru Wen, Jiaqi Qi, Yaqiang Wang . SDD2 tensors and B2-tensors. Electronic Research Archive, 2025, 33(4): 2433-2451. doi: 10.3934/era.2025108
    [3] Xiang Xu . Recent analytic development of the dynamic Q-tensor theory for nematic liquid crystals. Electronic Research Archive, 2022, 30(6): 2220-2246. doi: 10.3934/era.2022113
    [4] Xin Liu, Guang-Xin Huang . New error bounds for the tensor complementarity problem. Electronic Research Archive, 2022, 30(6): 2196-2204. doi: 10.3934/era.2022111
    [5] Wen Teng, Xiansheng Dai . Nonabelian embedding tensors on 3-Lie algebras and 3-Leibniz-Lie algebras. Electronic Research Archive, 2025, 33(3): 1367-1383. doi: 10.3934/era.2025063
    [6] Gongwei Liu, Mengru Wang, Pengyan Ding . Long-time dynamical behavior for a piezoelectric system with magnetic effect and nonlinear dampings. Electronic Research Archive, 2022, 30(9): 3397-3421. doi: 10.3934/era.2022173
    [7] Xiuwen Zheng, Jingjing Cui, Zhengge Huang . New preconditioned Gauss-Seidel type methods for solving multi-linear systems with M-tensors. Electronic Research Archive, 2025, 33(6): 3450-3481. doi: 10.3934/era.2025153
    [8] Lot-Kei Chou, Siu-Long Lei . High dimensional Riesz space distributed-order advection-dispersion equations with ADI scheme in compression format. Electronic Research Archive, 2022, 30(4): 1463-1476. doi: 10.3934/era.2022077
    [9] R. F. Snider . Eigenvalues and eigenvectors for a hermitian gaussian operator: Role of the Schrödinger-Robertson uncertainty relation. Electronic Research Archive, 2023, 31(9): 5541-5558. doi: 10.3934/era.2023281
    [10] Zhengmao Chen . A priori bounds and existence of smooth solutions to a Lp Aleksandrov problem for Codazzi tensor with log-convex measure. Electronic Research Archive, 2023, 31(2): 840-859. doi: 10.3934/era.2023042
  • The increasing global incidence of glioma tumors has raised significant healthcare concerns due to their high mortality rates. Traditionally, tumor diagnosis relies on visual analysis of medical imaging and invasive biopsies for precise grading. As an alternative, computer-assisted methods, particularly deep convolutional neural networks (DCNNs), have gained traction. This research paper explores the recent advancements in DCNNs for glioma grading using brain magnetic resonance images (MRIs) from 2015 to 2023. The study evaluated various DCNN architectures and their performance, revealing remarkable results with models such as hybrid and ensemble based DCNNs achieving accuracy levels of up to 98.91%. However, challenges persisted in the form of limited datasets, lack of external validation, and variations in grading formulations across diverse literature sources. Addressing these challenges through expanding datasets, conducting external validation, and standardizing grading formulations can enhance the performance and reliability of DCNNs in glioma grading, thereby advancing brain tumor classification and extending its applications to other neurological disorders.



    A piezoelectric-type tensor is a third-order tensor, which plays an important role in physics [1,2,3,4,5,6] and engineering [7,8,9,10,11]. In particular, the largest C-eigenvalue of a piezoelectric tensor and its associated left and right C-eigenvectors play an important role in the piezoelectric effect and the converse piezoelectric effect in the solid crystal [12,13]. Moreover, in the process of manufacturing and developing micro/nano-electromechanical devices, the development of new multifunctional intelligent structures needs consideration piezoelectric effect [14,15]. In order to explore more information about piezoelectric-type tensors, Chen et al. [12] introduced piezoelectric-type tensors and their C-eigentriples.

    Definition 1.1. [12,Definition 2.1] Let A=(aijk)Rn×n×n be a third-order n-dimensional tensor. If the latter two indices of A are symmetric, i.e., aijk=aikj, where i,j,k[n]:={1,2,,n}, then A is called a piezoelectric-type tensor. When n=3, A is called a piezoelectric tensor.

    Definition 1.2. [12,Definition 2.2] Let A=(aijk)Rn×n×n be a piezoelectric-type tensor. If there is a real number λR, two vectors x:=(x1,x2,,xn)Rn{0} and y:=(y1,y2,,yn)Rn{0} such that

    {Ayy=λx,(1.1)xAy=λy,(1.2)xx=1,(1.3)yy=1,(1.4)

    where

    (Ayy)i:=j,k[n]aijkyjyk,(xAy)k:=i,j[n]aijkxiyj,

    then λ is called a C-eigenvalue of A, and x and y are its associated left and right C-eigenvectors, respectively. Then, (λ,x,y) is called a C-eigentriple of A and σ(A) is used to denote the spectrum of A, which is a set of all C-eigenvalues of A.

    Chen et al. provided the following results for the C-eigenvalues and C-eigenvectors of a piezoelectric-type tensor.

    Property 1.1. [12,Theorem 2.3] Let A=(aijk)Rn×n×n be a piezoelectric-type tensor.

    (a) The C-eigenvalues of A and their associated left and right C-eigenvectors always exist.

    (b) Let λ be a C-eigenvalue and (x,y) be its associated left and right C-eigenvectors. Then

    λ=xAyy:=i,j,k[n]aijkxiyjyk.

    Furthermore, (λ,x,y), (λ,x,y) and (λ,x,y) are also C-eigentriples of A.

    (c) Let λ be the largest C-eigenvalue of A. Then

    λ=max{xAyy:xx=1,yy=1}.

    As we all know, the largest C-eigenvalue of a piezoelectric-type tensor and its associated C-eigenvectors constitute the best rank-one piezoelectric-type approximation. In view of this, Liang and Yang [16,17] designed two methods to calculate the largest C-eigenvalue of a piezoelectric-type tensor. Later, Zhao and Luo [18] provided a method to calculate all C-eigentriples of a piezoelectric-type tensor by converting the C-eigenvalue problem to the Z-eigenvalue problem of tensors. Moreover, many researchers considered the C-eigenvalue localization problem and provided many C-eigenvalue localization sets [19,20,21,22,23,24]. For instance, Che et al. [25] presented the following Geršgorin-type C-eigenvalue localization set.

    Theorem 1.1. [25,Theorem 2.1] Let A=(aijk)Rn×n×n be a piezoelectric-type tensor. Then

    σ(A)Γ(A):=j[n]Γj(A),

    where

    Γj(A):={zR:|z|Rj(A)}andRj(A):=l,k[n]|alkj|.

    Definition 1.2 and Property 1.1 indicate that a C-eigenvalue λ is real and both λ and λ are C-eigenvalues, which implies that a C-eigenvalue localization set is always symmetric with respect to the origin. Therefore, the result of Theorem 1.1 is equivalent to σ(A)[ρΓ,ρΓ], where ρΓ=maxj[n]{Rj(A)}.

    The remainder of the paper is organized as follows. In Section 2, we construct a new C-eigenvalue localization set and prove that it is sharper than some existing sets. In Section 3, we provide a direct method to find all C-eigentriples when n=3. In Section 4, we reviewed the practical application of C-eigentriples of a piezoelectric-type tensor to the piezoelectric effect and converse piezoelectric effect. In Section 5, we verify the effectiveness of obtained results by numerical examples. In Section 6, we give a summary of this paper.

    In this section, we provide a new C-eigenvalue localization set and prove that it is sharper than the set in Theorem 1.1. Before that, the following lemma is needed.

    Lemma 2.1. [26,pp. 10, Cauchy-Schwarz inequality] Let x=(x1,x2,,xn)Rn and y=(y1,y2,,yn)Rn. Then

    (i[n]xiyi)2i[n]x2ii[n]y2i.

    Theorem 2.1. Let A=(aijk)Rn×n×n be a piezoelectric-type tensor. Then

    σ(A)Ω(A):=(i[n]ˆΩi(A))(i,j[n],ij(˜Ωi,j(A)Ki(A))),

    where

    ˆΩi(A):={zR:|z|¯rii(A)},˜Ωi,j(A):={zR:(|z|¯rii(A))(|z|˜rij(A))˜rii(A)¯rij(A)},Ki(A):={zR:|z|ri(A)},

    and

    ¯rij(A):=l[n]a2lij,˜rij(A):=l[n](k[n],ki|alkj|)2,ri(A):=l[n](k[n]|alki|)2,i,j[n].

    Proof. Let (λ,x,y) be a C-eigentriple of A. Let |yt||ys|maxk[n],kt,ks{|yk|}. Then 0|yt|1. From (1.2), we have

    λyt=l,k[n]alktxlyk=l[n]alttxlyt+l,k[n],ktalktxlyk.

    Taking the modulus in above equation and using the triangle inequality and Lemma 2.1, we have

    |λ||yt|l,k[n]|alkt||xl||yt|=|yt|l[n](|xl|k[n]|alkt|)|yt|l[n]|xl|2l[n](k[n]|alkt|)2=|yt|l[n](k[n]|alkt|)2,

    i.e.,

    |λ|l[n](k[n]|alkt|)2=rt(A),

    which implies that λKt(A), and

    |λ||yt|l[n]|altt||xl||yt|+l,k[n],kt|alkt||xl||yk|l[n]|altt||xl||yt|+l,k[n],kt|alkt||xl||ys|=|yt|l[n]|altt||xl|+|ys|l[n](|xl|k[n],kt|alkt|)|yt|l[n]a2lttl[n]x2l+|ys|l[n]x2ll[n](k[n],kt|alkt|)2=|yt|l[n]a2ltt+|ys|l[n](k[n],kt|alkt|)2=¯rtt(A)|yt|+˜rtt(A)|ys|,

    i.e.,

    (|λ|¯rtt(A))|yt|˜rtt(A)|ys|. (2.1)

    If |ys|=0 in (2.1), we have |λ|¯rtt(A), which implies that λˆΩt(A)Ω(A).

    If |ys|>0 in (2.1), then |λ|¯rtt(A)+˜rtt(A)rt(A), which implies that λKt(A). Now, suppose that λˆΩt(A), i.e., |λ|>¯rtt(A). The s-th equation of (1.2) is

    λys=l,k[n]alksxlyk=l[n]altsxlyt+l,k[n],ktalksxlyk,

    which implies that

    |λ||ys|l[n]|alts||xl||yt|+l,k[n],kt|alks||xl||yk|l[n]|alts||xl||yt|+l,k[n],kt|alks||xl||ys|=|yt|l[n]|alts||xl|+|ys|l[n](|xl|k[n],kt|alks|)|yt|l[n]a2ltsl[n]x2l+|ys|l[n]x2ll[n](k[n],kt|alks|)2=|yt|l[n]a2lts+|ys|l[n](k[n],kt|alks|)2=¯rts(A)|yt|+˜rts(A)|ys|,

    i.e.,

    (|λ|˜rts(A))|ys|¯rts(A)|yt|. (2.2)

    By multiplying (2.1) and (2.2) and eliminating |ys||yt|>0, we have

    (|λ|¯rtt(A))(|λ|˜rts(A))˜rtt(A)¯rts(A),

    which implies that λ(˜Ωt,s(A)Kt(A))Ω(A), and consequently, σ(A)Ω(A) by the arbitrariness of λ.

    Next, we discuss the relationship between the set Ω(A) in Theorem 2.1 and the set Γ(A) in Theorem 1.1.

    Theorem 2.2. Let A=(aijk)Rn×n×n be a piezoelectric-type tensor. Then

    Ω(A)Γ(A).

    Proof. Let zΩ(A). By Theorem 2.1, there exists i,j[n] such that zˆΩi(A) or z(˜Ωi,j(A)Ki(A)).

    Case Ⅰ. If zˆΩi(A), then

    |z|¯rii(A)Ri(A),

    which implies that zΓ(A).

    Case Ⅱ. If z(˜Ωi,j(A)Ki(A)), then z˜Ωi,j(A) and zKi(A). If z˜Ωi,j(A), then

    (|z|¯rii(A))(|z|˜rij(A))˜rii(A)¯rij(A).

    If ˜rii(A)¯rij(A)=0, then

    |z|¯rii(A)Ri(A)or|z|˜rij(A)Rj(A),

    which implies that zΓ(A).

    If ˜rii(A)¯rij(A)>0, then

    |z|¯rii(A)˜rii(A)|z|˜rij(A)¯rij(A)1.

    Therefore,

    |z|¯rii(A)˜rii(A)1or|z|˜rij(A)¯rij(A)1,

    i.e.,

    |z|¯rii(A)+˜rii(A)Ri(A)or|z|˜rij(A)+¯rij(A)Rj(A),

    and consequently zΓ(A).

    When zKi(A), we have

    |z|ri(A)Ri(A),

    then zΓ(A). Hence, Ω(A)Γ(A).

    Similarly, we can write the set Ω(A) as [ρΩ,ρΩ], where

    ρΩ:=max{maxi[n]{¯rii(A)},maxi,j[n],ijmin{12νi,j(A),ri(A)}}, (2.3)

    and

    νi,j(A):=˜rij(A)+¯rii(A)+(˜rij(A)¯rii(A))2+4˜rii(A)¯rij(A).

    Theorem 2.2 indicates that ρΩρΓ and [ρΩ,ρΩ][ρΓ,ρΓ].

    By the idea to find all M-eigenpairs of a fourth-order tensor in Theorem 7 of [27], we in this section present a direct method to find all C-eigenpair when n=3.

    Theorem 3.1. Let A=(aijk)Rn×n×n be a piezoelectric-type tensor.Then all C-eigentriples are given as follows:

    (a) If a211=a311=a112=a113=0, then (a111,(1,0,0),(±1,0,0)) and (a111,(1,0,0),(±1,0,0)) are four C-eigentriples of A.

    (b) (λ,x,y) is a C-eigentriple of A, where

    λ=a111x1+a211x2+a311x3,

    and

    x=(x1,x2,x3),y=(±1,0,0),

    x1, x2 and x3 are the real roots of the following equations:

    {a211x1a111x2=0,(3.1)a311x1a111x3=0,(3.2)a112x1+a212x2+a312x3=0,a113x1+a213x2+a313x3=0,x21+x22+x23=1.

    (c) (λ,x,y) and (λ,x,y) are two C-eigentriples of A, where

    λ=a111y21+a122y22+a133y23+2a112y1y2+2a113y1y3+2a123y2y3,

    and

    x=(1,0,0),y=(y1,y2,y3),

    y1, y2 and y3 are the real roots of the following equations:

    {a222y22+a211y21+a233y23+2a221y2y1+2a232y3y2+2a231y3y1=0,a333y23+a311y21+a322y22+2a331y3y1+2a323y2y3+2a321y2y1=0,a112y21+(a122a111)y1y2+a132y1y3a121y22a131y2y3=0,(3.3)a113y21+(a133a111)y1y3+a123y1y2a121y2y3a131y23=0,(3.4)y21+y22+y23=1.

    (d) (λ,x,y) is a C-eigentriple of A, where

    λ=a112x1t+a122x1+a222x2+a212x2t+a322x3+a312x3t,

    and

    x=(x1,x2,x3),y=±(t,1,0)t2+1,

    x1, x2 and x3 and t are the real roots of the following equations:

    {a222x1+a211x1t2+2a221x1ta111x2t2a122x22a112tx2=0,(3.5)a311t2x1+a322x1+2a321x1ta111x3t2a122x32a112x3t=0,(3.6)a112x1t2+(a122a111)x1t+(a222a211)x2t+(a322a311)x3t+a212x2t2+a312x3t2a321x3a221x2a121x1=0,(3.7)a113x1t+a123x1+a223x2+a213x2t+a313x3t+a323x3=0,x21+x22+x23=1.

    (e) (λ,x,y) and (λ,x,y) are two C-eigentriples of A, where

    λ=t2+1(a222y22+a211y22+a233y23+2a221y1y2+2a232y2y3+2a231y1y3), (3.8)

    and

    x=(t,1,0)t2+1,y=(y1,y2,y3),

    y1, y2, y3 and t are the real roots of the following equations:

    {a222y22t+a211y21t+a233y23t+2a221y2y1t+2a232y3y2t+2a231y3y1ta111y21a122y22a133y232a112y1y22a113y1y32a123y2y3=0,(3.9)a333y23+a311y21+a322y22+2a331y3y1+2a323y2y3+2a321y2y1=0,a112ty21+(a122a111)ty1y2+a132ty1y3+(a222a211)y2y1+a212y21+a232y1y3a121ty22a131y2ty3a221y22a231y2y3=0,(3.10)a113ty21+(a133a111)ty1y3+a123ty1y2+a223y1y2+a213y21+(a233a211)y1y3a121ty2y3a131ty23a221y2y3a231y23=0,(3.11)y21+y22+y23=1.

    (f) (λ,x,y) is a C-eigentriple of A, where

    λ=±(a113u1v1+a123u1v2+a133u1+a213u2v1+a223u2v2+a233u2+a313v1+a323v2+a333)/u21+u22+1, (3.12)

    and

    x=±(u1,u2,1)u21+u22+1,y=±(v1,v2,1)v21+v22+1, (3.13)

    u1, u2, v1 and v2 are the real roots of the following equations:

    {a222u1v22+a211v21u1+a233u1+2a221v1u1v2+2a232u1v2+2a231v1u1a111u2v21a122u2v22a133u22a112u2v1v22a113u2v12a123u2v2=0,(3.14)a333u1+a311u1v21+a322u1v22+2a331u1v1+2a323u1v2+2a321u1v1v2a111v21a122v22a1332a112v1v22a113v12a123v2=0,(3.15)a112u1v21+(a122a111)u1v1v2+a132v1u1+(a222a211)u2v1v2+a212u2v21+a232v1u2+a332v1+(a322a311)v1v2+a312v21a121u1v22a131u1v2a221u2v22a231v2u2a331v2a321v22=0,(3.16)a113u1v21+(a133a111)u1v1+a123v1u1v2+a223v1u2v2+a323v1v2+(a233a211)u2v1+a213u2v21+(a333a311)v1+a313v21a121u1v2a131u1a221u2v2a231u2a331a321v2=0.(3.17)

    Proof. When n=3, the specific form of (1.1)–(1.4) is

    {a111y21+a122y22+a133y23+2a112y1y2+2a113y1y3+2a123y2y3=λx1,(3.18)a222y22+a211y21+a233y23+2a221y2y1+2a232y3y2+2a231y3y1=λx2,(3.19)a333y23+a311y21+a322y22+2a331y3y1+2a323y2y3+2a321y2y1=λx3,(3.20)a111x1y1+a121x1y2+a131x1y3+a221x2y2+a211x2y1+a231x2y3+a331x3y3+a311x3y1+a321x3y2=λy1,(3.21)a112x1y1+a122x1y2+a132x1y3+a222x2y2+a212x2y1+a232x2y3+a332x3y3+a322x3y2+a312x3y1=λy2,(3.22)a113x1y1+a133x1y3+a123x1y2+a223x2y2+a233x2y3+a213x2y1+a333x3y3+a313x3y1+a323x3y2=λy3,(3.23)x21+x22+x23=1,(3.24)y21+y22+y23=1.(3.25)

    To proceed, we break the arguments into six Cases.

    (a) Assume that x=(1,0,0) and y=(±1,0,0). Then (3.18)–(3.25) becomes λ=a111 and a211=a311=a112=a113=0.

    Assume that x=(1,0,0) and y=(±1,0,0). Then (3.18)–(3.25) becomes λ=a111 and a211=a311=a112=a113=0.

    Hence, if a211=a311=a112=a113=0, then (a111,(1,0,0),(±1,0,0)) and (a111,(1,0,0),(±1,0,0)) are four C-eigentriples of A.

    (b) Assume that y=(±1,0,0). Then (3.18)–(3.25) becomes

    {a111=λx1,(3.26)a211=λx2,(3.27)a311=λx3,(3.28)a111x1+a211x2+a311x3=λ,(3.29)a112x1+a212x2+a312x3=0,(3.30)a113x1+a213x2+a313x3=0,(3.31)x21+x22+x23=1.

    By (3.26) and (3.27), we have (3.1). By (3.26) and (3.28), we have (3.2). Next, solving (3.1), (3.2), (3.30), (3.31) and (3.24), we can obtain x1, x2 and x3, which implies that x=(x1,x2,x3) and y=(±1,0,0) are a pair of C-eigenvectors. Furthermore, by (3.29), we can get a C-eigenvalue λ of A.

    (c) Assume that x=(1,0,0). Then (3.18)–(3.25) becomes

    {a111y21+a122y22+a133y23+2a112y1y2+2a113y1y3+2a123y2y3=λ,(3.32)a222y22+a211y21+a233y23+2a221y2y1+2a232y3y2+2a231y3y1=0,(3.33)a333y23+a311y21+a322y22+2a331y3y1+2a323y2y3+2a321y2y1=0,(3.34)a111y1+a121y2+a131y3=λy1,(3.35)a112y1+a122y2+a132y3=λy2,(3.36)a113y1+a133y3+a123y2=λy3,(3.37)y21+y22+y23=1.

    By (3.35) and (3.36), we have (3.3). By (3.35) and (3.37), we have (3.4). Next, solving (3.3), (3.4), (3.25), (3.33) and (3.34), we can obtain y1, y2 and y3, which implies that x=(1,0,0) and y=(y1,y2,y3) are a pair of C-eigenvectors. Furthermore, by (3.32), we can get a C-eigenvalue λ of A.

    Assume that x=(1,0,0). Similarly, we have

    λ=(a111y21+a122y22+a133y23+2a112y1y2+2a113y1y3+2a123y2y3),

    with its a pair of C-eigenvectors are x=(1,0,0) and y=(y1,y2,y3), which also satisfies (3.3), (3.4), (3.25), (3.33) and (3.34).

    (d) Assume that y=(y1,y2,0), where y20. Then (3.18)–(3.25) becomes

    {a111y21+a122y22+2a112y1y2=λx1,a222y22+a211y21+2a221y2y1=λx2,a311y21+a322y22+2a321y2y1=λx3,a111x1y1+a121x1y2+a221x2y2+a211x2y1+a311x3y1+a321x3y2=λy1,a112x1y1+a122x1y2+a222x2y2+a212x2y1+a322x3y2+a312x3y1=λy2,a113x1y1+a123x1y2+a223x2y2+a213x2y1+a313x3y1+a323x3y2=0,x21+x22+x23=1,y21+y22=1.

    Let t=y1y2. Then the above equations become

    {(a111t2+a122+2a112t)y22=λx1,(3.38)(a222+a211t2+2a221t)y22=λx2,(3.39)(a311t2+a322+2a321t)y22=λx3,(3.40)a111x1t+a121x1+a221x2+a211x2t+a311x3t+a321x3=λt,(3.41)a112x1t+a122x1+a222x2+a212x2t+a322x3+a312x3t=λ,(3.42)a113x1t+a123x1+a223x2+a213x2t+a313x3t+a323x3=0,(3.43)x21+x22+x23=1.

    By (3.38) and (3.39), we have (3.5). By (3.38) and (3.40), we have (3.6). By (3.4) and (3.42), we have (3.7). Next, solving (3.5)–(3.7), (3.24) and (3.43), we can obtain x1, x2, x3 and t, which leads to its a pair of C-eigenvectors x=(x1,x2,x3) and y=±(t,1,0)t2+1. Furthermore, by (3.42), we can get a C-eigenvalue λ of A.

    (e) Assume that x=(x1,x2,0), where x20. Then (3.18)–(3.25) becomes

    {a111y21+a122y22+a133y23+2a112y1y2+2a113y1y3+2a123y2y3=λx1,a222y22+a211y21+a233y23+2a221y2y1+2a232y3y2+2a231y3y1=λx2,a333y23+a311y21+a322y22+2a331y3y1+2a323y2y3+2a321y2y1=0,a111x1y1+a121x1y2+a131x1y3+a221x2y2+a211x2y1+a231x2y3=λy1,a112x1y1+a122x1y2+a132x1y3+a222x2y2+a212x2y1+a232x2y3=λy2,a113x1y1+a133x1y3+a123x1y2+a223x2y2+a233x2y3+a213x2y1=λy3,x21+x22=1,y21+y22+y23=1.

    Let t=x1x2. Then the above equations become

    {a111y21+a122y22+a133y23+2a112y1y2+2a113y1y3+2a123y2y3=λtx2,(3.44)a222y22+a211y21+a233y23+2a221y2y1+2a232y3y2+2a231y3y1=λx2,(3.45)a333y23+a311y21+a322y22+2a331y3y1+2a323y2y3+2a321y2y1=0,(3.46)a111tx2y1+a121tx2y2+a131tx2y3+a221x2y2+a211x2y1+a231x2y3=λy1,(3.47)a112tx2y1+a122tx2y2+a132tx2y3+a222x2y2+a212x2y1+a232x2y3=λy2,(3.48)a113tx2y1+a133tx2y3+a123tx2y2+a223x2y2+a233x2y3+a213x2y1=λy3,(3.49)y21+y22+y23=1.

    By (3.44) and (3.45), we have (3.9). By (3.47) and (3.48), we have (3.10). By (3.47) and (3.49), we have (3.11). Next, solving (3.9)–(3.11), (3.25) and (3.46), we can obtain y1, y2, y3 and t. And then, by x21+x22=1, we have x2=±1t2+1. Furthermore, by (3.45), we can get a C-eigenvalue λ of A in (3.8) and its a pair of C-eigenvectors x=±(t,1,0)t2+1 and y=(y1,y2,y3).

    (f) Assume that x=(x1,x2,x3) and y=(y1,y2,y3), where x30 and y30. Let

    u1=x1x3,u2=x2x3,v1=y1y3,v2=y2y3.

    Then (3.18)–(3.25) becomes

    {a111v21y23+a122v22y23+a133y23+2a112v1v2y23+2a113v1y23+2a123v2y23=λu1x3,(3.50)a222v22y23+a211v21y23+a233y23+2a221v1v2y23+2a232v2y23+2a231v1y23=λu2x3,(3.51)a333y23+a311v21y23+a322v22y23+2a331v1y23+2a323v2y23+2a321v1v2y23=λx3,(3.52)a111u1v1x3+a121u1v2x3+a131u1x3+a221u2v2x3+a211u2v1x3+a231u2x3+a331x3+a311v1x3+a321v2x3=λv1,(3.53)a112u1v1x3+a122u1v2x3+a132u1x3+a222u2v2x3+a212u2v1x3+a232u2x3+a332x3+a322v2x3+a312v1x3=λv2,(3.54)a113u1v1x3+a133u1x3+a123u1v2x3+a223u2v2x3+a233u2x3+a213u2v1x3+a333x3+a313v1x3+a323v2x3=λ.(3.55)

    By (3.50) and (3.51), we have (3.14). By (3.50) and (3.52), we have (3.15). By (3.53) and (3.54), we have (3.16). By (3.53) and (3.55), we have (3.17). Next, solving (3.14)–(3.17), we can obtain u1, u2, v1 and v2. Furthermore, by x21+x22+x23=1 and y21+y22+y23=1, we can get x and y in (3.13); by (3.55), we can get a C-eigenvalue λ of A in (3.12).

    Remark 3.1. ⅰ) Solving the system of nonlinear equations in (b) of Theorem 3.1, we can choose any three of the first four equations to form a system of linear equations. If the determinant of the coefficient matrix of the system of linear equations is not equal to 0, then the system of linear equations has only zero solution and obviously it is not the solution of the last equation in the system of nonlinear equations, which implies that the system of nonlinear equations in (b) has no solution. If the determinant is equal to 0, then we need to verify that whether this solution satisfies the other two equations.

    ⅱ) Solving these system of nonlinear equations in (c)–(f) of Theorem 3.1, we can use the resultant method in algebraic geometry [28] to find their solutions, which has been verified and is feasible in finding all M-eigenpairs of an order 4 dimension 2 tensor in Theorem 7 of [27].

    Given two polynomials f(x) and g(x), where

    f(x)=a0xn+a1xn1++an,a00,n>0.g(x)=b0xm+b1xm1++bm,b00,m>0.

    Then the resultant of f(x) and g(x) is represented by Resx(f,g), that is, the determinant of (n+m)×(n+m) is as follows:

    Resx(f,g)=det(a0a1a0a2a1a2a0ama1ama2amncolumnsd0d1d0d2d1d2b0dnb1dnb2bn)mcolumns,

    where the blank spaces are filled with zeros. It is showed in [28,pp. 78] that over the complex field f(x) and g(x) have a common root if and only if their resultant is zero.

    Solving the systems (3.14)–(3.17) with four variables u1, u2, v1 and v2, we can obtain its solutions by successive elimination of variables as follows:

    Step 1: Mark the four equations in the systems (3.14)–(3.17) as f1(u1,u2,v1,v2), f2(u1,u2,v1,v2), f3(u1,u2,v1,v2) and f4(u1,u2,v1,v2) in turn, and regard f1, f2, f3 and f4 as functions with u1 as a variable and u2, v1 and v2 as their coefficients. If Resu1(f1,f2)=0, which is a function with u2, v1 and v2 as three variables, then f1 and f2 have a common root. Similarly, Resu1(f1,f3)=0 and Resu1(f1,f4)=0 can be obtained and they are functions with u2, v1 and v2 as three variables.

    Step 2: Let

    g1(u2,v1,v2):=Resu1(f1,f2)=0,g2(u2,v1,v2):=Resu1(f1,f3)=0,

    and

    g3(u2,v1,v2):=Resu1(f1,f4)=0,

    and g1, g2 and g3 be regarded as functions with u2 as a variable and v1 and v2 as their coefficients. If Resu2(g1,g2)=0, which is a function with v1 and v2 as two variables, then g1 and g2 have a common root. Similarly, Resu2(g1,g3)=0 can be obtained and it is a function with v1 and v2 as two variables.

    Step 3: Let

    h1(v1,v2):=Resu2(g1,g2)=0andh2(v1,v2):=Resu2(g1,g3)=0.

    and h1 and h2 be regarded as functions with v1 as a variable and v2 as a coefficient. If Resv1(h1,h2)=0, which is a function with v2 as a variable, then h1 and h2 have a common root.

    Step 4: Solving the function Resv1(h1,h2)=0 with v2 as a variable by Matlab command 'solve', its all real solutions v2 can be obtained.

    Step 5: Substituting v2 to h1(v1,v2)=0 and h2(v1,v2)=0 to find all their real solutions v1. And then, substituting v2 and v1 to g1(u2,v1,v2)=0, g2(u2,v1,v2)=0 and g3(u2,v1,v2)=0 to find all their real solutions u2. Furthermore, substituting v2, v1 and u2 to fi(u1,u2,v1,v2)=0 for i[4] to find all their real solutions u1. Then, all real roots u1, u2, v1 and v2 of (3.14)–(3.17) are obtained. Finally, by (3.12) and (3.13), we can find all C-eigentriples of A in the Case (f) in Theorem 3.1.

    It is shown in [12,29] that the largest C-eigenvalue λ of a piezoelectric tensor determines the highest piezoelectric coupling constant, and its corresponding C-eigenvector y is the corresponding direction of the stress where this appears. In this section, let's review its physical background, which is shown in [29].

    In physics, for non-centrosymmetric materials, we can write the linear piezoelectric equation as

    pi=j,k[3]aijkTjk,

    where A=(aijk)R3×3×3 is a piezoelectric tensor, T=(Tjk)R3×3 is the stress tensor, and p=(pi)R3 is the electric change density displacement.

    Now, it is worth considering, under what conditions can the maximal piezoelectricity be triggered under a unit uniaxial stress? In this case, the stress tensor T can be rewritten as T=yy with yy=1. Then, this maximal piezoelectricity problem can be formulated into an optimization model

    {max

    By a dual norm, \|p\|_2 = \max\limits_{x^{\top}x = 1}x^{\top}p = \max\limits_{x^{\top}x = 1}x\mathcal{A}yy is derived and hence the above optimization model is converted to the following optimization problem

    \begin{eqnarray*} \max\; \; \; \; x\mathcal{A}yy \qquad {\text{s.t.}}\; \; x^{\top}x = 1, \; \; y^{\top}y = 1. \end{eqnarray*}

    If (x^*, y^*) is an optimal solution of the above optimization problem, then \lambda^* = x^*\mathcal{A}y^*y^* is the largest C-eigenvalue of \mathcal{A} and y^* is the unit uniaxial direction that the maximal piezoelectric effect take place along.

    Theorem 4.1. [29,Theorem 7.12] Let \lambda^* be the largest C-eigenvalue, x^* and y^* be the associated C-eigenvectors of a piezoelectric tensor \mathcal{A} .Then, \lambda^* is the maximum value of the 2-norm of the electric polarization under a unit uniaxial stress along the optimal axial direction y^* .

    Moreover, the linear equation of the inverse piezoelectric effect is

    \begin{eqnarray*} S_{jk} = \sum\limits_{i}a_{ijk}e_{i}, \end{eqnarray*}

    where S = (S_{jk})\in\mathbb{R}^{3\times3} is the strain tensor and e = (e_i) \in \mathbb{R}^3 is the electric field strength. Next, the following maximization problem is considered:

    \left\{ {\begin{array}{*{20}{l}} { \max}&{\|S\|_2: = \max\limits_{y^{\top}y = 1}y^{\top}Sy}\\ {s.t.}&{S_{jk} = \sum\limits_{i\in [3]}e_ia_{ijk}, \forall j, k\in [3], }\\ {}&{e^{\top}e = 1.} \end{array}} \right.

    By \|S\|_2 = \max\limits_{y^{\top}y = 1}y^{\top}Sy = \max\limits_{y^{\top}y = 1}e\mathcal{A}yy , the above maximization problem is rewritten as

    \begin{eqnarray*} \max\{e\mathcal{A}yy:\quad e^{\top}e = 1, \quad y^{\top}y = 1\}. \end{eqnarray*}

    If (e^*, y^*) is an optimal solution of the above optimization problem, then \lambda^* = e^*\mathcal{A}y^*y^* is the largest C-eigenvalue of \mathcal{A} , e^* and y^* are its associated C-eigenvectors.

    Theorem 4.2. [29,Theorem 7.13] Let \lambda^* be the largest C-eigenvalue and x^* and y^* be its associated C-eigenvectors of a piezoelectric tensor \mathcal{A} .Then, \lambda^* is the largest spectral norm of a strain tensor generated by the converse piezoelectric effect under unit electric field strength \|x^*\| = 1 .

    In this section, numerical examples are given to verify the obtained theoretical results.

    Example 1. Consider the eight piezoelectric tensors in [12,Examples 1-8].

    (a) The first piezoelectric tensor is \mathcal{A}_{\rm VFeSb} with its nonzero entries

    \begin{eqnarray*} a_{123} = a_{213} = a_{312} = -3.68180667. \end{eqnarray*}

    (b) The second piezoelectric tensor \mathcal{A}_{\rm SiO_2} with its nonzero entries

    \begin{eqnarray*} a_{111} = -a_{122} = -a_{212} = -0.13685, \quad a_{123} = -a_{213} = -0.009715. \end{eqnarray*}

    (c) The third piezoelectric tensor \mathcal{A}_{\rm Cr_2AgBiO_8} with its nonzero entries

    \begin{align*} a_{123}& = a_{213} = -0.22163, \quad a_{113} = -a_{223} = 2.608665, \\ a_{311}& = -a_{322} = 0.152485, \quad a_{312} = -0.37153. \end{align*}

    (d) The fourth piezoelectric tensor \mathcal{A}_{\rm RbTaO_3} with its nonzero entries

    \begin{align*} a_{113}& = a_{223} = -8.40955, \quad a_{311} = a_{322} = -4.3031, \\ a_{222}& = -a_{212} = -a_{211} = -5.412525, \quad a_{333} = -5.14766. \end{align*}

    (e) The fifth piezoelectric tensor \mathcal{A}_{\rm NaBiS_2} with its nonzero entries

    \begin{align*} a_{113}& = -8.90808, \quad a_{223} = -0.00842, \quad a_{311} = -7.11526, \\ a_{322}& = -0.6222, \quad a_{333} = -7.93831. \end{align*}

    (f) The sixth piezoelectric tensor \mathcal{A}_{\rm LiBiB_2O_5} with its nonzero entries

    \begin{align*} a_{112}& = 0.34929, \quad a_{211} = 0.16101, \quad a_{222} = 0.12562, \quad a_{312} = 2.57812, \\ a_{123}& = 2.35682, \quad a_{213} = -0.05587, \quad a_{233} = 0.1361, \quad a_{323} = 6.91074. \end{align*}

    (g) The seventh piezoelectric tensor \mathcal{A}_{\rm KBi_2F_7} with its nonzero entries

    \begin{align*} a_{111}& = 12.64393, \quad a_{211} = 2.59187, \quad a_{311} = 1.51254, \quad a_{123} = 1.59052, \\ a_{122}& = 1.08802, \quad a_{212} = 0.10570, \quad a_{312} = 0.08381, \quad a_{233} = 0.81041, \\ a_{113}& = 1.96801, \quad a_{213} = 0.71432, \quad a_{313} = 0.39030, \quad a_{333} = -0.23019, \\ a_{112}& = 0.22465, \quad a_{222} = 0.08263, \quad a_{322} = 0.68235, \quad a_{323} = 0.19013, \\ a_{133}& = 4.14350, \quad a_{223} = 0.51165. \end{align*}

    (h) The eigth piezoelectric tensor \mathcal{A}_{\rm BaNiO_3} with its nonzero entries

    \begin{align*} a_{113} = 0.038385, \; a_{223} = 0.038385, \; a_{311} = a_{322} = 6.89822, \; a_{333} = 27.4628. \end{align*}

    Ⅰ. Localization for all C-eigenvalues of the above eight piezoelectric tensors.

    Now, we use these C-eigenvalues intervals in Theorems 2.1 and 1.1, Theorems 1 and 2 of [20], Theorem 2.1 of [13], Theorems 2.2 and 2.4 of [25], Theorem 2.1 of [24], Theorem 2.1 of [23], Theorem 5 of [19], Theorem 7 of [21], Theorems 2.3–2.5 of [18] and Theorem 2.1 of [22] to locate all Ceigenvalues of the above eight piezoelectric tensors. Numerical results are shown in Table 1. Since these intervals are symmetric about the origin, only their right boundaries are listed in Table 1.

    Table 1.  Comparison among \varrho , \varrho_{\min} , \widetilde{\varrho}_{\min} , \rho_{\Gamma} , \rho_{\mathcal{L}} , \rho_{\mathcal{M}} , \rho_{\Upsilon} , \rho_{\gamma} , \rho_{\Omega^{S}} , \rho_{C} , \rho_{G} , \rho_{B} , \rho_{\min} , \rho_{\Psi} , \rho_{\Omega} and \lambda^{*} .
    \mathcal{A}_{\rm VFeSb} \mathcal{A}_{\rm SiO_2} \mathcal{A}_{\rm Cr_2AgBiO_8} \mathcal{A}_{\rm RbTaO_3} \mathcal{A}_{\rm NaBiS_2} \mathcal{A}_{\rm LiBiB_2O_5} \mathcal{A}_{\rm KBi_2F_7} \mathcal{A}_{\rm BaNiO_3}
    \varrho 7.3636 0.2882 5.6606 30.0911 17.3288 15.2911 22.6896 33.7085
    \varrho_{\min} 7.3636 0.2834 5.6606 23.5377 16.8548 12.3206 20.2351 27.5396
    \widetilde{\varrho}_{\min} 7.3636 0.2393 4.6717 22.7163 14.5723 12.1694 18.7025 27.5396
    \rho_{\Gamma} 7.3636 0.2834 5.6606 23.5377 16.8548 12.3206 20.2351 27.5396
    \rho_{\mathcal{L}} 7.3636 0.2744 4.8058 23.5377 16.5640 11.0127 18.8793 27.5109
    \rho_{\mathcal{M}} 7.3636 0.2834 4.7861 23.5377 16.8464 11.0038 19.8830 27.5013
    \rho_{\Upsilon} 7.3636 0.2834 4.7335 23.5377 16.8464 10.9998 19.8319 27.5013
    \rho_{\gamma} 7.3636 0.2744 4.7860 23.0353 16.4488 10.2581 18.4090 27.5013
    \rho_{\Omega^{S}} 7.3636 0.2744 4.2732 23.0353 16.4486 10.2581 17.7874 27.4629
    \rho_C 6.3771 0.1943 3.7242 16.0259 11.9319 7.7540 13.5113 27.4629
    \rho_G 6.3771 0.2506 4.0455 21.5313 13.9063 9.8718 14.2574 29.1441
    \rho_B 5.2069 0.2345 4.0026 19.4558 13.4158 10.0289 15.3869 27.5396
    \rho_{\min} 6.5906 0.1942 3.5097 18.0991 11.9324 8.1373 14.3299 27.4725
    \rho_{\Psi} 6.5906 0.1942 4.2909 18.9140 11.9319 8.1501 14.0690 27.4629
    \rho_{\Omega} 5.2069 0.2005 3.5097 19.2688 11.9319 8.6469 13.6514 27.4629
    \lambda^{*} 4.2514 0.1375 2.6258 12.4234 11.6674 7.7376 13.5021 27.4628

     | Show Table
    DownLoad: CSV

    In Table 1, \lambda^{*} is the largest C-eigenvalue of a piezoelectric tensor; \varrho and \varrho_{\min} are respectively the right boundaries of the interval [-\varrho, \varrho] and [-\varrho_{\min}, \varrho_{\min}] obtained by Theorems 1 and 2 in [20]; \widetilde{\varrho}_{\min} are respectively the right boundary of the interval [-\widetilde{\varrho}_{\min}, \widetilde{\varrho}_{\min}] obtained by Theorem 2.1 of [13]; \rho_{\mathcal{L}} and \rho_{\mathcal{M}} are respectively the right boundaries of the intervals [-\rho_{\mathcal{L}}, \rho_{\mathcal{L}}] and [-\rho_{\mathcal{M}}, \rho_{\mathcal{M}}] obtained by 2.2 and 2.4 in [25]; \rho_{\Upsilon} is the right boundary of the interval [-\rho_{\Upsilon}, \rho_{\Upsilon}] obtained by Theorem 2.1 of [24]; \rho_{\gamma} is the right boundary of the interval [-\rho_{\gamma}, \rho_{\gamma}] obtained by Theorem 2.1 of [23]; \rho_{\Omega^{S}} is the right boundary of the interval [-\rho_{\Omega^{S}}, \rho_{\Omega^{S}}] obtained by Theorem 5 of [19]; \rho_{C} is the right boundary of the interval [-\rho_{C}, \rho_{C}] obtained by Theorem 7 of [21]; \rho_{G} , \rho_{B} and \rho_{\min} are respectively the right boundaries of the intervals [-\rho_{G}, \rho_{G}] , [-\rho_{B}, \rho_{B}] and [-\rho_{\min}, \rho_{\min}] obtained by Theorems 2.3–2.5 in [18]; \rho_{\Psi} is the right boundary of the interval [-\rho_{\Psi}, \rho_{\Psi}] obtained by Theorem 2.1 of [22]; \rho_{\Gamma} is the right boundary of the interval [-\rho_{\Gamma}, \rho_{\Gamma}] obtained by Theorem 1.1; \rho_{\Omega} is the right boundary of the interval [-\rho_{\Omega}, \rho_{\Omega}] obtained by Theorem 2.1.

    From Table 1, it can be seen that:

    ⅰ) \rho_{\Omega} is smaller than \varrho , \varrho_{\min} , \widetilde{\varrho}_{\min} , \rho_{\Gamma} , \rho_{\mathcal{L}} , \rho_{\mathcal{M}} , \rho_{\Upsilon} , \rho_{\gamma} for the eight piezoelectric tensors.

    ⅱ) \rho_{\Omega}\leq \rho_{\Omega^S} , \rho_{\Omega}\leq \rho_B for the eight piezoelectric tensors.

    ⅲ) For some tensors, \rho_{\Omega} is smaller than \rho_C , \rho_G , \rho_{\min} and \rho_{\Psi} .For the other tensors, \rho_{\Omega} is bigger than or equal to \rho_{C} , \rho_{G} , \rho_{\min} and \rho_{\Psi} .For examples, for \mathcal{A}_{\rm VFeSb} , \rho_{\Omega} < \rho_C , \rho_\Omega < \rho_G , \rho_\Omega < \rho_{\min} and \rho_\Omega < \rho_{\Psi} ; For \mathcal{A}_{\rm SiO_2} , \rho_{\Omega} > \rho_C , \rho_\Omega > \rho_{\min} and \rho_\Omega > \rho_{\Psi} ; For \mathcal{A}_{\rm BaNiO_3} , \rho_{\Omega} > \rho_G .

    Ⅱ. Calculation for all C-eigentriples of the seventh piezoelectric tensor \mathcal{A}_{\rm KBi_2F_7} by Theorem 3.1.

    All C-eigentriples of \mathcal{A}_{\rm KBi_2F_7} are obtained by Theorem 3.1 and are showen in Table 2. And the calculation process is shown in Appendix.

    Table 2.  All C-eigentriples of \mathcal{A}_{\rm KBi_2F_7} .
    \lambda x_{1} x_{2} x_{3} y_{1} y_{2} y_{3}
    13.50214 0.97050 0.20974 0.11890 0.97226 0.05065 0.22836
    13.50214 0.97050 0.20974 0.11890 -0.97226 -0.05065 -0.22836
    4.46957 0.98196 0.18905 -0.00362 0.22771 -0.41491 -0.88091
    4.46957 0.98196 0.18905 -0.00362 -0.22771 0.41491 0.88091
    0.54486 0.75981 -0.36879 0.53544 0.06168 0.87047 -0.48833
    0.54486 0.75981 -0.36879 0.53544 -0.06168 -0.87047 0.48833
    -0.54486 -0.75981 0.36879 -0.53544 0.06168 0.87047 -0.48833
    -0.54486 -0.75981 0.36879 -0.53544 -0.06168 -0.87047 0.48833
    -4.46957 -0.98196 -0.18905 0.00362 0.22771 -0.41491 -0.88091
    -4.46957 -0.98196 -0.18905 0.00362 -0.22771 0.41491 0.88091
    -13.50214 -0.97050 -0.20974 -0.11890 0.97226 0.05065 0.22836
    -13.50214 -0.97050 -0.20974 -0.11890 -0.97226 -0.05065 -0.22836

     | Show Table
    DownLoad: CSV

    Let \mathcal{A}\in \mathbb{R}^{n\times n\times n} be a piezoelectric-type tensor. In this paper, we in Theorem 2.1 constructed a C-eigenvalue interval \Omega(\mathcal{A}) to locate all C-eigenvalues of \mathcal{A} and proved that it is tighter than that in [25,Theorem 2.1]. Subsequently, we in Theorem 3.1 provided a direct method to find all C-eigentriples of \mathcal{A} when n = 3 . Although the method in Theorem 3.1 is divided into six Cases, it is indeed a little complicated, but it can be seen from Example 1 that this method is feasible.

    The authors are very grateful to the five anonymous referees for their insightful comments and constructive suggestions, which considerably improve our manuscript. Caili Sang's work is supported by Science and Technology Plan Project of Guizhou Province (Grant No. QKHJC-ZK[2021]YB013). Jianxing Zhao's work is supported by Science and Technology Plan Project of Guizhou Province (Grant No. QKHJC-ZK[2022]YB215).

    The author declares there is no confict of interest.

    The following is the calculation process for all C-eigentriples of \mathcal{A}_{\rm KBi_2F_7} by Theorem 3.1.

    (a) Because a_{211}\neq 0 , Case (a) in Theorem 3.1 does not holds.

    (b) The system in Case (b) of Theorem 3.1 is

    \left\{ {\begin{array}{*{20}{l}} { 2.59187x_{1}-12.64393x_{2} = 0, }&{}&{}&{\left( {{\rm{A}}{\rm{.1}}} \right)}\\ {1.51254x_{1}-12.64393x_{3} = 0, }&{}&{}&{\left( {{\rm{A}}{\rm{.2}}} \right)}\\ {1.08802x_{1}+0.10570x_{2}+0.08381x_{3} = 0, }&{}&{}&{\left( {{\rm{A}}{\rm{.3}}} \right)}\\ { 1.96801x_{1}+0.71432x_{2}+0.39030x_{3} = 0, }&{}&{}&{}\\ {x_1^2+x_2^2+x_3^2 = 1.}&{}&{}&{} \end{array}} \right.

    The three Eqs (A.1)–(A.3) yield a linear system of equation Ax = 0 , where x = (x_{1}, x_{2}, x_{3})^{\top} and

    \begin{equation*} A = \left( \begin{array}{ccc} 2.59187&-12.64393&0\\ 1.51254&0&-12.64393\\ 1.08802&0.10570&0.08381 \end{array} \right). \end{equation*}

    From \det(A) = 179.0074\neq 0 , the solution of Ax = 0 is x = (x_1, x_2, x_3)^\top = (0, 0, 0)^\top , which contradicts with x_1^2+x_2^2+x_3^2 = 1 . Hence, the system in Case (b) of Theorem 3.1 has no solution.

    (c) The system in Case (c) of Theorem 3.1 is

    \left\{ \begin{array}{l} f_1(y_1, y_2, y_3) = 0.08263y_2^2+2.59187y_1^{2}+0.81041y_3^{2}+0.2114y_1y_2\\ +1.0233y_2y_3+1.42864y_1y_3 = 0, \\ f_2(y_1, y_2, y_3) = -0.23019y_3^{2}+1.51254y_1^{2}+0.68235y_2^{2}+0.7806y_1y_3\\ + 0.38026y_2y_3+0.16762y_1y_2 = 0, \\ f_3(y_1, y_2, y_3) = 0.22465y_1^2-0.22465y_2^{2}-11.55591y_1y_2+1.59052y_1y_3\\ -1.96801y_2y_3 = 0, \\ f_4(y_1, y_2, y_3) = 1.96801y_1^{2}-1.96801y_3^{2}-8.50043y_1y_3+a_{123}y_1y_2\\ -0.22465y_2y_3 = 0, \\ f_5(y_1, y_2, y_3) = y_1^2+y_2^2+y_3^2 = 1. \end{array} \right.

    We now regard f_i(y_1, y_2, y_3) , i\in [5] as a function with y_1 as a variable and y_2 and y_3 as two coefficients and obtain their resultants as follows:

    \begin{align*} {\text{Res}}_{y_1}(f_1, f_2) = &2.68640y_2^4-1.92404y_3y_2^3-5.51122y_2^2y_3^2+2.09880y_3^3y_2+3.18879y_3^4, \\ {\text{Res}}_{y_1}(f_1, f_3) = &27.58122y_2^4+331.64703y_3y_2^3+134.75405y_3^2y_2^2-55.45236y_3^3y_2 +4.93315y_3^4. \end{align*}

    Let g_1(y_2, y_3): = {\text{Res}}_{y_1}(f_1, f_2) , g_2(y_2, y_3): = {\text{Res}}_{y_1}(f_1, f_3) , and its resultant

    \begin{align*} {\text{Res}}_{y_2}(g_1, g_2) = 95376348203.97653y_3^{16} = 0. \end{align*}

    Then y_3 = 0 . Substituting y_3 = 0 into g_1 and g_2 , we have

    \begin{align*} g_1(y_2, y_3) = 2.68640y_2^4, \quad g_2(y_2, y_3) = 27.58122y_2^4. \end{align*}

    Let g_1(y_2, y_3) = 0 and g_2(y_2, y_3) = 0 . We have y_2 = 0 . Substituting y_2 = 0 and y_3 = 0 into f_1 , we have f_1(y_1, y_2, y_3) = 2.59187y_1^2 . Solving f_1(y_1, y_2, y_3) = 0 , we have y_1 = 0 . However, y_1 = y_2 = y_3 = 0 is not solution of y_1^2+y_2^2+y_3^2 = 1 . Hence, the system in Case (c) of Theorem 3.1 has no solution.

    (d) Similar to solution for Case (c), the system in Case (d) of Theorem 3.1 has no solution.

    (e) Similar to solution for Case (c), the system in Case (e) of Theorem 3.1 has no solution.

    (f) The system in Case (f) of Theorem 3.1 is

    \left\{ \begin{array}{l} f_1(u_{1}, u_{2}, v_{1}, v_{2}): = 0.08263u_{1}v_{2}^{2}+2.59187v_{1}^{2}u_{1}+0.81041u_{1}+ 0.21140v_{1}u_{1}v_{2}\\ +1.02330u_{1}v_{2}+1.42864v_{1}u_{1}-12.64393u_{2}v_{1}^{2}-1.08802u_{2}v_{2}^{2}\\ -4.14350u_{2}-0.44930u_{2}v_{1}v_{2}-3.93602u_{2}v_{1}-3.18104u_{2}v_{2} = 0, \\ f_2(u_{1}, u_{2}, v_{1}, v_{2}): = -0.23019u_{1}+1.51254u_{1}v_{1}^{2}+0.68235u_{1}v_{2}^{2}+0.78060u_{1}v_{1}\\ +0.38026u_{1}v_{2}+0.16762u_{1}v_{1}v_{2}-12.64393v_{1}^{2}-1.08802v_{2}^{2}\\ -0.44930v_{1}v_{2}-3.93602v_{1}-3.18104v_{2}-4.14350 = 0, \\ f_3(u_{1}, u_{2}, v_{1}, v_{2}): = 0.22465u_{1}v_{1}^{2}-11.55591u_{1}v_{1}v_{2}+1.59052v_{1}u_{1}\\ -2.50924u_{2}v_{1}v_{2}+0.10570u_{2}v_{1}^{2}+0.51165v_{1}u_{2}+0.19013v_{1}\\ -0.83019v_{1}v_{2}+0.08381v_{1}^{2}-0.22465u_{1}v_{2}^{2}-1.96801u_{1}v_{2}\\ -0.10570u_{2}v_{2}^{2}-0.71432v_{2}u_{2}-0.39030v_{2}-0.08381v_{2}^{2} = 0, \\ f_4(u_{1}, u_{2}, v_{1}, v_{2}): = 1.96801u_{1}v_{1}^{2}-8.50043u_{1}v_{1}+1.59052v_{1}u_{1}v_{2}+0.51165v_{1}u_{2}v_{2}\\ +0.19013v_{1}v_{2}-1.78146u_{2}v_{1}+0.71432u_{2}v_{1}^{2}-1.742730v_{1}\\ +0.39030v_{1}^{2}-0.22465u_{1}v_{2}-1.96801u_{1}-0.10570u_{2}v_{2}\\ -0.71432u_{2}-0.08381v_{2}-0.39030 = 0. \end{array} \right.

    We now regard f_i(u_1, u_2, v_1, v_2) , i\in [4] as a function with u_1 as a variable and u_2 , v_1 and v_2 as three coefficients and obtain their resultants as follows:

    \begin{align*} {\text{Res}}_{u_1}(f_1, f_2) = &(0.84336v_{2}-0.95379+2.32838v_{1}+3.78649v_{2}^2+2.58431v_{2}^3\nonumber\\ &+0.74241v_{2}^4+6.42916v_{1}^2+15.82324v_{1}^3+19.12445v_{1}^4+10.62991v_{2}v_{1}^2\nonumber\\ &+4.23911v_{2}^2v_{1}+2.79896v_{2}v_{1}^3+ 0.48895v_{2}^3v_{1}+10.34857v_{2}^2v_{1}^2\nonumber\\ &+4.57094v_{2}v_{1})u_{2}-9.10936v_{1}-3.95976v_{2}^2v_{1}^2-6.81799v_{2}\nonumber\\ &-9.81234v_{2}v_{1}-22.65734v_{2}v_{1}^2-3.01186v_{2}^2v_{1}-3.83745v_{2}v_{1}^3\nonumber\\ &-0.26713v_{2}^3v_{1}-4.47928v_{2}^2-1.37622v_{2}^3-0.08990v_{2}^4-26.60934v_{1}^2\nonumber\\ &-28.26528v_{1}^3-32.771423v_{1}^4-3.35793 = 0, \end{align*}
    \begin{align*} {\text{Res}}_{u_1}(f_1, f_3) = &(-8.73334v_{2}+7.00497v_{1}-8.00778v_{2}^2-3.02304v_{2}^3-0.25316v_{2}^4\nonumber\\ &+8.00778v_{1}^2+22.47179v_{1}^3+3.11442v_{1}^4-74.15833v_{2}v_{1}^2-39.62519v_{2}^2v_{1}\nonumber\\ &-152.49246v_{2}v_{1}^3-12.90368v_{2}^3v_{1}-8.58379v_{2}^2v_{1}^2-53.09898v_{2}v_{1})u_{2}\nonumber\\ &+0.15408v_{1}-0.31630v_{2}-0.38580v_{2}^2v_{1}^2-1.03583v_{2}v_{1}-2.07169v_{2}v_{1}^2\nonumber\\ &-1.03607v_{2}^2v_{1}-2.13403v_{2}v_{1}^3- 0.08632v_{2}^3v_{1}-0.46731v_{2}^2-0.11801v_{2}^3\nonumber\\ &-0.00693v_{2}^4+0.33955v_{1}^2+0.61253v_{1}^3+0.21722v_{1}^4 = 0, \end{align*}

    and

    \begin{align*} {\text{Res}}_{u_1}(f_1, f_4) = &(-8.73334-8.00778v_{2}-45.43188v_{1}-3.02304v_{2}^2-0.25316v_{2}^3\nonumber\\ &-54.00439v_{1}^2-103.32952v_{1}^3+26.73481v_{1}^4+6.67230v_{2}v_{1}^2\nonumber\\ &-3.93604v_{2}^2v_{1}+22.47179v_{2}v_{1}^3+1.77280v_{2}^3v_{1}+ 3.02304v_{2}^2v_{1}^2\nonumber\\ &-23.92868v_{2}v_{1})u_{2}+0.07244v_{2}^2v_{1}^2-1.96992v_{1}-0.46731v_{2}\nonumber\\ &-1.83150v_{2}v_{1}+0.08538v_{2}v_{1}^2+0.03284v_{2}^2v_{1}+0.57530v_{2}v_{1}^3\nonumber\\ &+0.01571v_{2}^3v_{1}-0.11801v_{2}^2-0.00693v_{2}^3-3.18504v_{1}^2-3.95933v_{1}^3\\ &+1.01161v_{1}^4-0.31630 = 0. \end{align*}

    Let

    \begin{align*} &g_1(u_2, v_1, v_2): = {\text{Res}}_{u_1}(f_1, f_2), \quad g_2(u_2, v_1, v_2): = {\text{Res}}_{u_1}(f_1, f_3), \\ &g_3(u_2, v_1, v_2): = {\text{Res}}_{u_1}(f_1, f_4). \end{align*}

    Then their resultants are

    \begin{align*} {\text{Res}}_{u_{2}}(g_1, g_2) = &106.21826v_{1}^8+(-5025.64756v_{2}+839.61383)v_{1}^7+(-865.25666v_{2}^2\nonumber\\ &-6653.08038v_{2}+998.05266)v_{1}^6+(-1083.52137v_{2}^3-5229.62871v_{2}^2\nonumber\\ &-7381.37411v_{2}+1094.99786)v_{1}^5+(-137.50780v^4-1593.23550v_{2}^3\nonumber\\ &-4933.36887v_{2}^2-4733.12663v_{2}+632.08073)v_{1}^4+(-70.75506v_{2}^5\nonumber\\ &-741.31965v_{2}^4-2567.50800v_{2}^3-4243.14169v_{2}^2-2467.61827v_{2}\nonumber\\ &+335.99902)v_{1}^3+(-5.62145v_{2}^6-90.33840v_{2}^5-524.86290v_{2}^4\nonumber\\ &-1366.09759v_{2}^3-1783.36316v_{2}^2-843.25156v_{2}+90.73526)v_{1}^2\nonumber\\ &+(-1.29518v_{2}^7-23.97008v_{2}^6-135.36791v_{2}^5-405.58564v_{2}^4\nonumber\\ &-682.18237v_{2}^3-624.18604v_{2}^2-209.71678v_{2}+23.37525)v_{1}\nonumber\\ &+(-0.02790v_{2}^8-0.72569v_{2}^7-6.69240v_{2}^6-28.96790v_{2}^5\nonumber\\ &-72.02906v_{2}^4-105.34644v_{2}^3-86.25447v_{2}^2-29.02430v_{2}) = 0 \end{align*}

    and

    \begin{align*} {\text{Res}}_{u_2}(g_1, g_3) = &895.48403v_{1}^8+(852.85983v_{2}-2690.30193)v_{1}^7+(304.63154v_{2}^2\nonumber\\ &+1073.45667v_{2}-4096.10056)v_{1}^6+(172.77376v_{2}^3+134.01848v_{2}^2\nonumber\\ &-2360.05799v_{2}-5632.48044)v_{1}^5+(29.00602v_{2}^4+203.47367v_{2}^3\nonumber\\ &-304.10992v_{2}^2-2878.73753v_{2}-3926.74222)v_{1}^4+(10.47279v_{2}^5\nonumber\\ &+55.51707v_{2}^4-189.59056v_{2}^3-1392.51379v_{2}^2-3083.36023v_{2}\nonumber\\ &-2315.99105)v_{1}^3+(0.80682v_{2}^6+8.30736v_{2}^5-4.53864v_{2}^4\nonumber\\ &-259.96426v_{2}^3-927.90427v_{2}^2-1442.92349v_{2}-831.16935)v_{1}^2\nonumber\\ &+(0.17104v_{2}^7+2.07986v_{2}^6-2.49973v_{2}^5-63.10600v_{2}^4\nonumber\\ &-263.71529v_{2}^3-525.06788v_{2}^2-551.19369v_{2}-230.96997)v_{1}\nonumber\\ &+(-0.02790v_{2}^7-0.72569v_{2}^6-6.69240v_{2}^5-28.96790v_{2}^4\nonumber\\ &-72.02906v_{2}^3-105.34644v_{2}^2-86.25447v_{2}-29.02430) = 0. \end{align*}

    Let

    \begin{align*} h_1(v_1, v_2): = {\text{Res}}_{u_2}(g_1, g_2)\quad\rm{and}\quad h_2(v_1, v_2): = {\text{Res}}_{u_2}(g_1, g_3). \end{align*}

    Their results are

    \begin{align*} {\text{Res}}_{v_1}(h_1, h_2) = &-1.62711\times10^{-46}v_{2}^{64}-1.18415\times10^{-44}v_{2}^{63}-4.48673\times10^{-43}v_{2}^{62}\nonumber\\ &-1.18681\times10^{-41}v_{2}^{61}- 2.43052\times10^{-40}v_{2}^{60}-4.06317\times10^{-39}v_{2}^{59}\nonumber\\ &-5.7302\times10^{-38}v_{2}^{58}-6.93518\times10^{-37}v_{2}^{57}-7.24748\times10^{-36}v_{2}^{56}\nonumber\\ &- 6.49253\times10^{-35}v_{2}^{55}-4.87257\times10^{-34}v_{2}^{54}-2.98951\times10^{-33}v_{2}^{53}\nonumber\\ &-1.49477\times10^{-32}v_{2}^{52}-6.3372\times10^{-32}v_{2}^{51}- 2.51516\times10^{-31}v_{2}^{50}\nonumber\\ &-1.06401\times10^{-30}v_{2}^{49}-5.02246\times10^{-30}v_{2}^{48}- 2.43069\times10^{-29}v_{2}^{47}\nonumber\\ &-1.09655\times10^{-28}v_{2}^{46}- 4.44371\times10^{-28}v_{2}^{45}-1.60392\times10^{-27}v_{2}^{44}\nonumber\\ &-5.08938\times10^{-27}v_{2}^{43}- 1.39566\times10^{-26}v_{2}^{42}-3.2426\times10^{-26}v_{2}^{41}\nonumber\\ &- 6.05752\times10^{-26}v_{2}^{40}-7.48945\times10^{-26}v_{2}^{39}+1.29902\times10^{-26}v_{2}^{38}\nonumber\\ &+ 4.01056\times10^{-25}v_{2}^{37}+1.382\times10^{-24}v_{2}^{36}+3.13265\times10^{-24}v_{2}^{35}\nonumber\\ &+ 5.06222\times10^{-24}v_{2}^{34}+4.80914\times10^{-24}v_{2}^{33}-1.80398\times10^{-24}v_{2}^{32}\nonumber\\ &-1.82876\times10^{-23}v_{2}^{31}-4.38298\times10^{-23}v_{2}^{30}-7.14302\times10^{-23}v_{2}^{29}\nonumber\\ &- 8.82265\times10^{-23}v_{2}^{28}-7.81232\times10^{-23}v_{2}^{27}-3.29361\times10^{-23}v_{2}^{26}\nonumber\\ &+1.21659\times10^{-23}v_{2}^{25}-5.53171\times10^{-23}v_{2}^{24}-2.91829\times10^{-22}v_{2}^{23}\nonumber\\ &-3.73689\times10^{-22}v_{2}^{22}+1.93914\times10^{-22}v_{2}^{21}+1.01905\times10^{-21}v_{2}^{20}\nonumber\\ &+8.28494\times10^{-22}v_{2}^{19}-4.6185\times10^{-22}v_{2}^{18}-1.27125\times10^{-21}v_{2}^{17}\nonumber\\ &-9.35242\times10^{-22}v_{2}^{16}-3.19849\times10^{-22}v_{2}^{15}+7.28108\times10^{-24}v_{2}^{14}\nonumber\\ &+6.11682\times10^{-23}v_{2}^{13}+6.78336\times10^{-24}v_{2}^{12}+1.47291\times10^{-24}v_{2}^{11}\nonumber\\ &+8.0039\times10^{-24}v_{2}^{10}-2.71136\times10^{-24}v_{2}^{9}-1.27876\times10^{-24}v_{2}^{8}\nonumber\\ &+1.35623\times10^{-24}v_{2}^{7}+3.48519\times10^{-25}v_{2}^{6}+2.48651\times10^{-26}v_{2}^{5}\nonumber\\ &-2.61144\times10^{-26}v_{2}^{4}-1.87784\times10^{-27}v_{2}^{3}-6.6019\times10^{-29}v_{2}^{2}\nonumber\\ &+2.43536\times10^{-29}v_{2}- 6.98911\times10^{-31}. \label{v2} \end{align*}

    Next, we obtain the solution of the system (f) by the following steps:

    Step 1. Solving {\text{Res}}_{v_1}(h_1, h_2) = 0 , we have

    \begin{align*} v_{2} = &-0.85035, \quad 0.22179, \quad -7.79725, \quad -1.78254, \quad -11.53378, \\ &-0.75907, \quad -0.70532, \quad 0.47100. \end{align*}

    Step 2. Substituting v_2 = -0.85035 into h_1(v_1, v_2) , and letting h_1(v_1, v_2) = 0 , it all real roots are v_1 = -0.43450 or v_1 = 4.25751 . Substituting v_2 = -0.85035 into h_2(v_1, v_2) , and letting h_2(v_1, v_2) = 0 , it all real roots are v_1 = -0.48184 , -0.17296 , 0.0000000000038876, or 5.04918. It is easy to see that h_1(v_1, v_2) = 0 and h_2(v_1, v_2) = 0 have no common solution, which implies that v_2 = -0.85035 is not a solution of the system (f).

    Step 3. Substituting v_2 = 0.22179 into h_1(v_1, v_2) , and letting h_1(v_1, v_2) = 0 , it all real roots are v_1 = -0.43450 or 4.25751. substituting v_2 = 0.22179 into h_2(v_1, v_2) , and letting h_2(v_1, v_2) = 0 , it all real roots are v_1 = -0.24034 or 4.25751. It is easy to see that v_1 = 4.25751 is a common solution of h_1(v_1, v_2) = 0 and h_2(v_1, v_2) = 0 .

    Step 4. Substituting v_2 = 0.22179 and v_1 = 4.25751 into g_1(u_2, v_1, v_2) , g_2(u_2, v_1, v_2) and g_3(u_2, v_1, v_2) , and letting g_1(u_2, v_1, v_2) = 0 , its all real roots are u_2 = 1.76393 ; letting g_2(u_2, v_1, v_2) = 0 , its all real roots are u_2 = 1.76393 ; letting g_3(u_2, v_1, v_2) = 0 , its all real roots are u_2 = 1.76393 . Hence, the common solution of g_1(u_2, v_1, v_2) = 0 , g_2(u_2, v_1, v_2) = 0 and g_3(u_2, v_1, v_2) = 0 is u_2 = 1.76393 .

    Step 5. Substituting v_2 = 0.22179 , v_1 = 4.25751 and u_2 = 1.76393 into f_1 , and letting f_1(u_1, u_2, v_1, v_2) = 0 , we can get its all real roots u_1 = 8.16186 .

    Step 6. By v_2 = 0.22179 , v_1 = 4.25751 , u_2 = 1.76393 , u_1 = 8.16186 , (3.2) and (3.3), we can get the corresponding C-eigentriples as follows:

    \bullet \lambda = 13.50214 and its C-eigenvectors are

    \begin{align*} x = (0.97050, 0.20974, 0.11890)^{\top}, \quad y = \pm(0.97226, 0.05065, 0.22836)^{\top}. \end{align*}

    \bullet \lambda = -13.50214 and its C-eigenvectors are

    \begin{align*} x = (-0.97050, -0.20974, -0.11890)^{\top}, \quad y = \pm(0.97226, 0.05065, 0.22836)^{\top}. \end{align*}

    Step 7. For other values of v_2 , such as, -7.79725 , -1.78254 , -11.53378 , -0.75907 , -0.70532 , 0.47100, we can also obtain their corresponding C-eigentriples by using the method similar to Steps 3–6.

    Finally, we find all C-eigentriples, which is listed in Table 2.



    [1] M. L. Goodenberger, R. B. Jenkins, Genetics of adult glioma, Cancer Genet., 205 (2012), 613–621. https://doi.org/10.1016/j.cancergen.2012.10.009 doi: 10.1016/j.cancergen.2012.10.009
    [2] D. N. Louis, A. Perry, G. Reifenberger, A. Deimling, D. Figarella-Branger, W. K. Cavenee, et al., The 2016 World Health Organization classification of tumors of the central nervous system: a summary, Acta Neuropathol., 131 (2016), 803–820. https://doi.org/10.1007/s00401-016-1545-1 doi: 10.1007/s00401-016-1545-1
    [3] D. N. Louis, A. Perry, P. Wesseling, D. J. Brat, I. A. Cree, D. Figarella-Branger, et al., The 2021 WHO classification of tumors of the central nervous system: a summary, Neuro-oncology, 23 (2021), 1231–1251.https://doi.org/10.1093/neuonc/noab106 doi: 10.1093/neuonc/noab106
    [4] A. Munshi, Central nervous system tumors: Spotlight on India, South Asian J. Cancer, 5 (2016) 146–147. https://doi.org/10.4103/2278-330x.187588
    [5] F. Zaccagna, J. T. Grist, N. Quartuccio, F. Riemer, F. Fraioli, C. Caracò, Imaging and treatment of brain tumors through molecular targeting: Recent clinical advances, Eur. J. Radiol., 142 (2021), 109842. https://doi.org/10.1016/j.ejrad.2021.109842 doi: 10.1016/j.ejrad.2021.109842
    [6] D. Aquino, A. Gioppo, G. Finocchiaro, M. G. Bruzzone, V. Cuccarini, MRI in glioma immunotherapy: evidence, pitfalls, and perspectives, J. Immunol. Res., 2017 (2017), 5813951. https://doi.org/10.1155/2017/5813951 doi: 10.1155/2017/5813951
    [7] A. Maier, C. Syben, T. Lasser, C. Riess, A gentle introduction to deep learning in medical image processing, Z. fur Med. Phys., 29 (2019), 86–101. https://doi.org/10.1016/j.zemedi.2018.12.003 doi: 10.1016/j.zemedi.2018.12.003
    [8] K. Yasaka, H. Akai, A. Kunimatsu, S. Kiryu, O. Abe, Deep learning with convolutional neural network in radiology, Jpn. J. Radiol., 36 (2018), 257–272. https://doi.org/10.1007/s11604-018-0726-3 doi: 10.1007/s11604-018-0726-3
    [9] M. I. Razzak, S. Naz, A. Zaib, Deep learning for medical image processing: Overview, challenges and the future, Classif. BioApps: Autom. Decis. Making, 26 (2018), 323–350. https://doi.org/10.1007/978-3-319-65981-7_12
    [10] N. Tajbakhsh. J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall, M. B. Gotway, et al., Convolutional neural networks for medical image analysis: Full training or fine tuning?, IEEE Trans. Med. Imaging, 35 (2016), 1299–1312. https://doi.org/10.1109/tmi.2016.2535302 doi: 10.1109/tmi.2016.2535302
    [11] W. Jin, M. Fatehi, K. Abhishek, M. Mallya, B. Toyota, G. Hamarneh, Artificial intelligence in glioma imaging: Challenges and advances, J. Neural Eng., 17 (2020), 021002. https://doi.org/10.1088/1741-2552/ab8131 doi: 10.1088/1741-2552/ab8131
    [12] J. H. Park, N. Jung, S. J. Kang, H. S. Kim, E. Kim, H. J. Lee, et al., Survival and prognosis of patients with pilocytic astrocytoma: a single-center study, Brain Tumor Res. Treat., 7 (2019), 92–97. https://doi.org/10.14791/btrt.2019.7 doi: 10.14791/btrt.2019.7
    [13] S. G. Berntsson, R. T. Merrell, E. S. Amirian, G. N. Armstrong, D. Lachance, A. Smits, et al., Glioma-related seizures in relation to histopathological subtypes: A report from the glioma international case-control study, J. Neurol., 265 (2018), 1432–1442. https://doi.org/10.1007/s00415-018-8857-0 doi: 10.1007/s00415-018-8857-0
    [14] W. Taal, J. E. Bromberg, M. J. V. den Bent, Chemotherapy in glioma, CNS Oncol., 4 (2015), 179–192. https://doi.org/10.2217/cns.15.2 doi: 10.2217/cns.15.2
    [15] M. Glas, C. Happold, J. Rieger, D. Wiewrodt, O. Bähr, J. P. Steinbach, et al., Long-term survival of patients with glioblastoma treated with radiotherapy and lomustine plus temozolomide, J. Clin. Oncol., 27 (2009), 1257–1261. https://doi.org/10.1200/jco.2008.19.2195 doi: 10.1200/jco.2008.19.2195
    [16] N. Wijethilake, D. Meedeniya, C. Chitraranjan, I. Perera, M. Islam, H. Ren, Glioma survival analysis empowered with data engineering—a survey, IEEE Access, 9 (2021), 43168–43191. https://doi.org/0.1109/access.2021.3065965
    [17] Q. T. Ostrom, L. Bauchet, F. G. Davis, I. Deltour, J. L. Fisher, C. E. Langer, et al., The epidemiology of glioma in adults: A "state of the science" review, Neuro-Oncology, 16 (2014), 896–913. https://doi.org/10.1093/neuonc/nou087 doi: 10.1093/neuonc/nou087
    [18] D. Salles, G. Laviola, A. C. de M. Malinverni, J. N. Stávale, Pilocytic astrocytoma: A review of general, clinical, and molecular characteristics, J. Child Neurol., 35 (2020), 852–858. https://doi.org/10.1177/0883073820937225
    [19] S. Florian. S. Șuşman, Diffuse astrocytoma and oligodendroglioma: An integrated diagnosis and management, in Glioma-Contemporary Diagnostic and Therapeutic, IntechOpen, 2019. https://doi.org/10.5772/intechopen.76205
    [20] C. Balañá, M. Alonso, A. Hernandez, P. Perez-Segura, E. Pineda, A. Ramos, et al., SEOM clinical guidelines for anaplastic gliomas, Clin. Transl. Oncol., 20 (2017), 16–21. https://doi.org/10.1007/s12094-017-1762-7 doi: 10.1007/s12094-017-1762-7
    [21] O. G. Taylor, J. S. Brzozowski, K. A. Skelding, Glioblastoma multiforme: An overview of emerging therapeutic targets, Front. Oncol., 9 (2019) 963. https://doi.org/10.3389/fonc.2019.00963
    [22] M. K. Abd-Ellah, A. I. Awad, A. A. Khalaf, H. F. Hamed, A review on brain tumor diagnosis from MRI images: Practical implications, key achievements, and lessons learned, Magn. Reson. Imaging, 61 (2019), 300–318. https://doi.org/10.1016/j.mri.2019.05.028
    [23] A. Lasocki, A. Tsui, M. A. Tacey, K. J. Drummond, K. M. Field, F. Gaillard, et al., MRI grading versus histology: Predicting survival of World Health Organization Grade II-IV astrocytomas, AJNR Am. J. Neuroradiol., 36 (2015), 77–83. https://doi.org/10.3174/ajnr.a4077 doi: 10.3174/ajnr.a4077
    [24] G. Mohan, M. Subashini, MRI based medical image analysis: Survey on brain tumor grade classification, Biomed. Signal Process. Control., 39 (2018), 139–161. https://doi.org/10.1016/j.bspc.2017.07.007 doi: 10.1016/j.bspc.2017.07.007
    [25] A. Vamvakas, S. C. Williams, K. Theodorou, E. Kapsalaki, K. Fountas, C. Kappas, et al., Imaging biomarker analysis of advanced multiparametric MRI for glioma grading, Phys. Medica, 60 (2019), 188–198. https://doi.org/10.1016/j.ejmp.2019.03.014 doi: 10.1016/j.ejmp.2019.03.014
    [26] M. Rizwan, A. Shabbir, A. R. Javed, M. Shabbir, T. Baker, D. A-J. Obe, Brain tumor and glioma grade classification using Gaussian convolutional neural network, IEEE Access, 10 (2022), 29731–29740. https://doi.org/10.1109/access.2022.3153108 doi: 10.1109/access.2022.3153108
    [27] J. E. Villanueva-Meyer, M. C. Mabray, S. Cha, Current clinical brain tumor imaging, Neurosurgery, 81 (2017), 397–415. https://doi.org/10.1093/neuros/nyx103 doi: 10.1093/neuros/nyx103
    [28] CIP, The Cancer Genome Atlas (TCGA), 2012. Available from: http://cancergenome.nih.gov.
    [29] The Cancer Genome Atlas Glioblastoma Multiforme Collection, https://www.cancerimagingarchive.net/collection/tcga-gbm/
    [30] L. Scarpace, T. Mikkelsen, S. Cha, S. Rao, S, Tekchandani, D. Gutman, et al., The Cancer Genome Atlas Glioblastoma Multiforme Collection (TCGA-GBM) (Version 5)[Data set], Cancer Imaging Arch., 2016. https://doi.org/10.7937/K9/TCIA.2016.RNYFUYE9
    [31] The Cancer Genome Atlas Glioblastoma Multiforme Collection, https://wiki.cancerimagingarchive.net/display/Public/TCGA-LGG
    [32] N. Pedano, A. E. Flanders, L. Scarpace, T. Mikkelsen, J. M. Eschbacher, B. Hermes, et al., The Cancer Genome Atlas Low Grade Glioma Collection (TCGA-LGG) (Version 3)[Dataset], Cancer Imaging Arch., 2016. https://doi.org/10.7937/K9/TCIA.2016.L4LTD3TK
    [33] K. Clark, B. Vendt, K. Smith, J. Freymann, J. Kirby, P. Koppel, et al., The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository, J. Digit. Imaging, 26 (2013), 1045–1057. https://doi.org/10.1007/s10278-013-9622-7. doi: 10.1007/s10278-013-9622-7
    [34] REMBRANDT- The Cancer Imaging Archive (TCIA) Public Access, https://wiki.cancerimagingarchive.net/display/Public/REMBRANDT.
    [35] L. Scarpace, A. E. Flanders, R. Jain, T. Mikkelsen, D. W. Andrews, Data from REMBRANDT[Data set], Cancer Imaging Arch., 2019. https://doi.org/10.7937/K9/TCIA.2015.588OZUZB
    [36] MICCAI BRATS- The Multimodal Brain Tumor Segmentation, http://braintumorsegmentation.org/
    [37] S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. S. Kirby, et al., Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features, Sci. Data, 4 (2017). https://doi.org/10.1038/sdata.2017.117
    [38] B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, et al., The multimodal Brain Tumor Image Segmentation Benchmark (BRATS), IEEE Trans. Med. Imaging, 34 (2015), 1993–2024. https://doi.org/10.1109/tmi.2014.2377694 doi: 10.1109/tmi.2014.2377694
    [39] ClinicalTrials.gov., https://clinicaltrials.gov/, Accessed: Apr. 26, 2022.
    [40] Radiopaedia.org, the Wiki-based Collaborative Radiology Resource, https://radiopaedia.org/.Accessed: Jun. 26, 2022.
    [41] Q. D. Buchlak, N. Esmaili, J. C. Leveque, C. Bennett, F. Farrokhi, M. Piccardi, Machine learning applications to neuroimaging for glioma detection and classification: An artificial intelligence augmented systematic review, J. Clin. Neurosci., 89 (2021), 177–198. https://doi.org/10.1016/j.jocn.2021.04.043 doi: 10.1016/j.jocn.2021.04.043
    [42] J. Amin, M. Sharif, A. Haldorai, M. Yasmin, R. S. Nayak, Brain tumor detection and classification using machine learning: A comprehensive survey, Complex Intell. Syst., 8 (2022), 3161–3183. https://doi.org/10.1007/s40747-021-00563-y doi: 10.1007/s40747-021-00563-y
    [43] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature, 521 (2015), 436–444. https://doi.org/10.1038/nature14539 doi: 10.1038/nature14539
    [44] E. Lotan, R. Jain, N. Razavian, G. M. Fatterpekar, Y. W. Lui, State of the art: machine learning applications in glioma imaging, Am. J. Roentgenol., 212 (2019), 26–37. https://doi.org/10.2214/ajr.18.20218 doi: 10.2214/ajr.18.20218
    [45] D. Shen, G. Wu, H. I. Suk, Deep learning in medical image analysis, Annu. Rev. Biomed. Eng., 19 (2017), 221–248. https://doi.org/10.1146/annurev-bioeng-071516-044442 doi: 10.1146/annurev-bioeng-071516-044442
    [46] R. Yamashita, M. Nishio, R. K. G. Do, K. Togashi, Convolutional neural networks: An overview and application in radiology, Insights Imaging, 9 (2018), 611–629. https://doi.org/10.1007/s13244-018-0639-9 doi: 10.1007/s13244-018-0639-9
    [47] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, et al., Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions, J. Big Data, 8 (2021), 53. https://doi.org/10.1186/s40537-021-00444-8 doi: 10.1186/s40537-021-00444-8
    [48] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, et al., Backpropagation applied to handwritten zip code recognition, Neural Comput., 1 (1989), 541–551. https://doi.org/10.1162/neco.1989.1.4.541 doi: 10.1162/neco.1989.1.4.541
    [49] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R. R. Salakhutdinov, Improving neural networks by preventing co-adaptation of feature detectors, preprint, arXiv: 1207.0580.
    [50] M. D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks, preprint, arXiv: 1311.2901.
    [51] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, preprint, arXiv: 1409.1556.
    [52] C. Szegedy, W. Liu, Y. Jia, P Sermanet, S. Reed, D. Anguelov, et al., Going deeper with convolutions, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2015), 1–9. https://doi.org/10.1109/cvpr.2015.7298594
    [53] C. Szegedy, S. Ioffe, V. Vanhoucke, A. Alemi, Inception-v4, Inception-ResNet and the impact of residual, preprint, arXiv: 1602.07261.
    [54] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, preprint, arXiv: 1512.03385.
    [55] S. Xie, R. Girshick, P. Dollár, Z. Tu, K. He, Aggregated residual transformations for deep neural networks, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017), 5987–5995. https://doi.org/10.1109/cvpr.2017.634
    [56] A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, et al., Mobilenets: Efficient convolutional neural networks for mobile vision applications, preprint, arXiv: 1704.04861.
    [57] B. Zoph, V. Vasudevan, J. Shlens, Q. V. Le, Learning transferable architectures for scalable image recognition, in IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018. https://doi.org/10.1109/cvpr.2018.00907
    [58] M. Tan, Q. V. Le, Efficientnet: Rethinking model scaling for convolutional neural networks, in Proceedings of the 36th International Conference on Machine Learning, 97 (2019), 6105–6114. http://proceedings.mlr.press/v97/tan19a.html
    [59] A. Brock, S. De, S. L. Smith, K. Simonyan, High-performance large-scale image recognition without normalization, preprint, arXiv: 2102.06171
    [60] T. Ridnik, H. Lawen, A. Noy, E. Ben, B. G. Sharir, I. Friedman, Tresnet: High performance gpu-dedicated architecture, in IEEE Winter Conference on Applications of Computer Vision (WACV), 2021. https://doi.org/10.1109/wacv48630.2021.00144
    [61] R. K. Srivastava, K. Gref, J. Schmidhuber, Highway networks, preprint, arXiv: 1505.00387.
    [62] G. Huang, Z. Liu, L. Maaten, K. Q. Weinberger, Densely connected convolutional networks, preprint, arXiv: 1608.06993.
    [63] R. Hao, K. Namdar, L. Liu, F. Khalvati, A transfer learning–based active learning framework for brain tumor classification, Front. Artif. Intell., 4 (2021), 635766. https://doi.org/10.3389/frai.2021.635766 doi: 10.3389/frai.2021.635766
    [64] K. Muhammad, S. Khan, J. D. Ser, V. H. C. de Albuquerque, Deep learning for multigrade brain tumor classification in smart healthcare systems: A prospective survey, IEEE Trans. Neural Networks Learn. Syst., 32 (2021), 507–522. https://doi.org/10.1109/tnnls.2020.2995800 doi: 10.1109/tnnls.2020.2995800
    [65] R. Miotto, F. Wang, S. Wang, X. Jiang, J. T. Tudley, Deep learning for healthcare: review, opportunities and challenges, Brief. Bioinf., 19 (2018), 1236–1246. https://doi.org/10.1093/bib/bbx044 doi: 10.1093/bib/bbx044
    [66] A. H. Morad, H. M. Al-Dabbas, Classification of brain tumor area for MRI images, in Journal of Physics: Conference Series, 1660 (2020). https://doi.org/10.1088/1742-6596/1660/1/012059
    [67] Z. Huang, H. Xu, S. Su, T. Wang, Y. Luo, X. Zhao, et al., A computer-aided diagnosis system for brain magnetic resonance imaging images using a novel differential feature neural network, Comput. Biol. Med., 121 (2020), 103818. https://doi.org/10.1016/j.compbiomed.2020.103818 doi: 10.1016/j.compbiomed.2020.103818
    [68] X. Dong, Z. Yu, W. Cao, Y. Shi, Q. Ma, A survey on ensemble learning, Front. Comput. Sci., 14 (2019), 241–258. https://doi.org/10.1007/s11704-019-8208-z doi: 10.1007/s11704-019-8208-z
    [69] M. Ganaie, M. Hu, A. K. Malik, M. Tanveer, P. N. Suganthan, Ensemble deep learning: A review, Eng. Appl. Artif. Intell., 115 (2022), 105151. https://doi.org/10.1016/j.engappai.2022.105151 doi: 10.1016/j.engappai.2022.105151
    [70] Y. Yang, H. Lv, N. Chen, A Survey on ensemble learning under the era of deep learning, Artif. Intell. Rev., 56 (2022), 5545–5589. https://doi.org/10.1007/s10462-022-10283-5 doi: 10.1007/s10462-022-10283-5
    [71] A. Tharwat, Classification assessment methods, Appl. Comput. Inf., 17 (2020), 168–192. https://doi.org/10.1016/j.aci.2018.08.003 doi: 10.1016/j.aci.2018.08.003
    [72] M. Nazi, S. Shakil, K. Khurshid, Role of deep learning in brain tumor detection and classification (2015 to 2020): A review, Comput. Med. Imaging Graph, 91 (2021). https://doi.org/10.1016/j.compmedimag.2021.101940
    [73] P. Bulla, L. Anantha, S. Peram, Deep neural networks with transfer learning model for brain tumors classification, Trait. Du Signal, 37 (2020), 593–601. https://doi.org/10.18280/ts.370407 doi: 10.18280/ts.370407
    [74] M. U. Rehman, S. Cho, J. H. Kim, K. T. Chong, Bu-net: Brain tumor segmentation using modified u-net architecture, Electronics, 9 (2020), 2203. https://doi.org/10.3390/electronics9122203 doi: 10.3390/electronics9122203
    [75] M. U. Rehman, S. Cho, J. H. Kim, K. T. Chong, Brainseg-net: Brain tumor mr image segmentation via enhanced encoder–decoder network, Diagnostics, 11 (2021), 169. https://doi.org/10.3390/diagnostics11020169 doi: 10.3390/diagnostics11020169
    [76] M. U. Rehman, J. Ryu, I. F. Nizami, K. T. Chong, RAAGR2-Net: A brain tumor segmentation network using parallel processing of multiple spatial frames, Comput. Biol. Med., 152 (2023), 106426. https://doi.org/10.1016/j.compbiomed.2022.106426 doi: 10.1016/j.compbiomed.2022.106426
    [77] S. Y. Lin, C. L. Lin, Brain tumor segmentation using U-Net in conjunction with EfficientNet, PeerJ Comput. Sci., 10 (2024). https://doi.org/10.7717/peerj-cs.1754
    [78] P. Wang, Y. Liu, Z. Zhou, Supraspinatus extraction from MRI based on attention-dense spatial pyramid UNet network, J. Orthop. Surg. Res., 19 (2024). https://doi.org/10.1186/s13018-023-04509-7
    [79] H. Yin, Y. Wang, J. Wen, G. Wang, B. Lin, W. Yang, et al., DFBU-Net: Double-branch flat bottom U-Net for efficient medical image segmentation, Biomed. Signal Process. Control., 90 (2024), 105818. https://doi.org/10.1016/j.bspc.2023.105818 doi: 10.1016/j.bspc.2023.105818
    [80] S. Banerjee, S. Mitra, F. Masulli, S. Rovetta, Deep radiomics for brain tumor detection and classification from multi-sequence MRI, preprint, arXiv: 1903.09240
    [81] K. V. Muneer, V. R. Rajendran, P. K. Joseph, Glioma tumor grade identification using artificial intelligent techniques, J. Med. Syst., 43 (2019). https://doi.org/10.1007/s10916-019-1228-2
    [82] C. Ge, I. Y. H. Gu, A. S. Jakola, J. Yang, Deep learning and multi-sensor fusion for glioma classification using multistream 2D convolutional networks, in 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2018. https://doi.org/10.1109/embc.2018.8513556
    [83] Y. Yang, L. F. Yan, X. Zhang, Y. Han, H. Y. Nan, Y. C. Hu, et al., Glioma grading on conventional MR images: a deep learning study with transfer learning, Front. Neurosci., 12 (2018), 804. https://doi.org/10.3389/fnins.2018.00804 doi: 10.3389/fnins.2018.00804
    [84] S. Gutta, J. Acharya, M. Shiroishi, D. Hwang, K. Nayak, Improved glioma grading using deep convolutional neural networks, Am. J. Neuroradiol., 42 (2020), 233–239. https://doi.org/10.3174/ajnr.a6882 doi: 10.3174/ajnr.a6882
    [85] Z. Lu, Y. Bai, Y. Chen, C. Su, S. Lu, T. Zhan, et al., The classification of gliomas based on a Pyramid dilated convolution resnet model, Pattern Recognit. Lett., 133 (2020), 173–179. https://doi.org/10.1016/j.patrec.2020.03.007 doi: 10.1016/j.patrec.2020.03.007
    [86] H. Mzoughi, I. Njeh, A. Wali, M. B. Slima, A. B. Hamida, C. Mhiri, et al., Deep multi-scale 3D Convolutional Neural Network (CNN) for MRI Gliomas brain tumor classification, J. Digit. Imaging, 33 (2020), 903–915. https://doi.org/10.1007/s10278-020-00347-9 doi: 10.1007/s10278-020-00347-9
    [87] Y. Zhuge, H. Ning, P. Mathen, J. Y. Cheng, A. V. Krauze, K. Camphausen, et al., Automated glioma grading on conventional MRI images using deep convolutional neural networks, Med. Phys., 47 (2020), 3044–3053. https://doi.org/10.1002/mp.14168 doi: 10.1002/mp.14168
    [88] S. Khawaldeh, U. Pervaiz, A. Rafiq, R. Alkhawaldeh, Noninvasive grading of glioma tumor using magnetic resonance imaging with convolutional neural networks, Appl. Sci., 8 (2017), 27. https://doi.org/10.3390/app8010027
    [89] C. Ge, I. Y. H. Gu, A. S. Jakola, J. Yang, Deep semi-supervised learning for brain tumor classification, BMC Med. Imaging, 20 (2020). https://doi.org/10.1186/s12880-020-00485-0
    [90] S. Liang, R. Zhang, D. Liang, T. Song, T. Ai, C. Xia, et al., Multimodal 3D DenseNet for IDH genotype prediction in gliomas, Genes, 9 (2018), 382. https://doi.org/10.3390/genes9080382 doi: 10.3390/genes9080382
    [91] C. Ge, Q. Qu, I. Y. H. Gu, A. Jakola, 3D multi-scale convolutional networks for glioma grading using MR images, in 25th IEEE International Conference on Image Processing (ICIP), 2018. https://doi.org/10.1109/icip.2018.8451682
    [92] M. Sajjad, S. Khan, K. Muhammad, W. Wu, A. Ullah, S. W. Baik, Multi-grade brain tumor classification using deep CNN with extensive data augmentation, J. Comput. Sci., 30 (2018), 174–182. https://doi.org/10.1016/j.jocs.2018.12.003 doi: 10.1016/j.jocs.2018.12.003
    [93] H. Özcan, B. G. Emiroglu, H. Sabuncuoğlu, S. Özdoğan, A. Soyer, T. Saygı, A comparative study for glioma classification using deep convolutional neural networks, Math. Biosci. Eng., 18 (2021), 1550–1572. https://doi.org/10.3934/mbe.2021080 doi: 10.3934/mbe.2021080
    [94] H. E. Hamdaoui, A. Benfares, S. Boujraf, N. E. H. Chaoui, B. Alami, M. Maaroufi, et al., High precision brain tumor classification model based on deep transfer learning and stacking concepts, Indones. J. Electr., 24 (2021), 167–177. https://doi.org/10.11591/ijeecs.v24.i1.pp167-177 doi: 10.11591/ijeecs.v24.i1.pp167-177
    [95] M. Decuyper, S. Bonte, K. Deblaere, R. V. Holen, Automated MRI based pipeline for segmentation and prediction of grade, IDH mutation and 1p19q co-deletion in glioma, Comput. Med. Imaging Graph, 88 (2021), 101831. https://doi.org/10.1016/j.compmedimag.2020.101831
    [96] C. M. Lo, Y. C. Chen, R. C. Weng, K. L. C. Hsieh, Intelligent glioma grading based on deep transfer learning of MRI radiomic features, Appl. Sci., 9 (2019), 4926. https://doi.org/10.3390/app9224926 doi: 10.3390/app9224926
    [97] G. S. Tandel, A. Tiwari, O. Kakde, Performance optimisation of deep learning models using majority voting algorithm for brain tumour classification, Comput. Biol. Med., 135 (2021). https://doi.org/10.1016/j.compbiomed.2021.104564
    [98] M. A. Naser, M. J. Deen, Brain tumor segmentation and grading of lower-grade glioma using deep learning in MRI images, Comput. Biol. Med., 121 (2020). https://doi.org/10.1016/j.compbiomed.2020.103758
    [99] W. Ayadi, W. Elhamzi, I. Charfi, M. Atri, Deep CNN for brain tumor classification, Neural Process. Lett., 53 (2021), 671–700. https://doi.org/10.1007/s11063-020-10398-2 doi: 10.1007/s11063-020-10398-2
    [100] Y. Xie, F. Zaccagna, L. Rundo, C. Testa, R. Agati, R. Lodi, et al., Convolutional neural network techniques for brain tumor classification (from 2015 to 2022): Review, challenges, and future perspectives, Diagnostics, 12 (2022), 1850. https://doi.org/10.3390/diagnostics12081850 doi: 10.3390/diagnostics12081850
    [101] P. C. Tripathi, S. Bag, A computer-aided grading of glioma tumor using deep residual networks fusion, Comput. Methods Programs Biomed., 215 (2022). https://doi.org/10.1016/j.cmpb.2021.106597
    [102] S. Gull, S. Akbar, S. M. Naqi, A deep learning approach for multi-stage classification of brain tumor through magnetic resonance images, Int. J. Imaging Syst. Technol., 33 (2023), 1745–1766. https://doi.org/10.1002/ima.22897 doi: 10.1002/ima.22897
    [103] G. S. Tandel, A. Tiwari, O. G. Kakde, N. Gupta, L. Saba, J. S. Suri, Role of ensemble deep learning for brain tumor classification in multiple magnetic resonance imaging sequence data, Diagnostics, 13 (2023), 481. https://doi.org/10.3390/diagnostics13030481 doi: 10.3390/diagnostics13030481
    [104] S. V. Rubio, M. T. García-Ordás, O. García-Olalla Olivera, H. Alaiz-Moretón, M. I. González-Alonso, J. A. Benítez-Andrades, Survival and grade of the glioma prediction using transfer learning, PeerJ Comput. Sci., 9 (2023), 1723. https://doi.org/10.7717/peerj-cs.1723 doi: 10.7717/peerj-cs.1723
    [105] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, et al., Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions, J. Big Data, 8 (2021). https://doi.org/10.1186/s40537-021-00444-8
    [106] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, ] Dropout: a simple way to prevent neural networks from overfitting, J. Mach. Learn. Res., 15 (2014), 1929–1958. http://jmlr.org/papers/v15/srivastava14a.html
    [107] R. C. Moore, J. DeNero, L1 and L2 regularization for multiclass hinge loss models, in Proceedings of the Symposium on Machine Learning in Speech and Natural Language Processing, 2011.
    [108] S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in Proceedings of the 32nd International Conference on Machine Learning, (2015), 448–456. https://doi.org/10.48550/arXiv.1502.03167.
    [109] Z. Khazaee, M. Langarizadeh, M. E. S. Ahmadabadi, Developing an artificial intelligence model for tumor grading and classification, based on mri sequences of human brain gliomas, Int. J. Cancer Manage., 15 (2022). https://doi.org/10.5812/ijcm.120638
    [110] D. R. Sarvamangala, R. V. Kulkarni, Convolutional neural networks in medical image understanding: a survey, Evol. Intell., 15 (2022), 1–22. https://doi.org/10.1007/s12065-020-00540-3 doi: 10.1007/s12065-020-00540-3
    [111] M. Versaci, G. Angiulli, F. LaForesta, F. Laganà, Palumbo, A. Annunziata, Intuitionistic fuzzy divergence for evaluating the mechanical stress state of steel plates subject to bi-axial loads, Integr. Comput. Aided Eng., (2024), 1–17. https://doi.org/10.3233/ica-230730
    [112] W. Luo, D. Phung, T. Tran, S. Gupta, S. Rana, C. Karmakar, et al., Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view, J. Med. Internet Res., 18 (2016). https://doi.org/10.2196/jmir.5870.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2183) PDF downloads(177) Cited by(0)

Figures and Tables

Figures(8)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog