Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Nonlinear Jordan triple derivable mapping on -type trivial extension algebras

  • The aim of the paper was to give a description of nonlinear Jordan triple derivable mappings on trivial extension algebras. We proved that every nonlinear Jordan triple derivable mapping on a 2-torsion free -type trivial extension algebra is a sum of an additive derivation and an additive antiderivation. As an application, nonlinear Jordan triple derivable mappings on triangular algebras were characterized.

    Citation: Xiuhai Fei, Cuixian Lu, Haifang Zhang. Nonlinear Jordan triple derivable mapping on -type trivial extension algebras[J]. Electronic Research Archive, 2024, 32(3): 1425-1438. doi: 10.3934/era.2024066

    Related Papers:

    [1] Fei Ma, Min Yin, Yanhui Teng, Ganglian Ren . Nonlinear generalized semi-Jordan triple derivable mappings on completely distributive commutative subspace lattice algebras. Electronic Research Archive, 2023, 31(8): 4807-4817. doi: 10.3934/era.2023246
    [2] Xiuhai Fei, Haifang Zhang . Additivity of nonlinear higher anti-derivable mappings on generalized matrix algebras. Electronic Research Archive, 2023, 31(11): 6898-6912. doi: 10.3934/era.2023349
    [3] Ying Hou, Liangyun Chen, Keli Zheng . Super-bimodules and $ \mathcal{O} $-operators of Bihom-Jordan superalgebras. Electronic Research Archive, 2024, 32(10): 5717-5737. doi: 10.3934/era.2024264
    [4] Xueru Wu, Yao Ma, Liangyun Chen . Abelian extensions of Lie triple systems with derivations. Electronic Research Archive, 2022, 30(3): 1087-1103. doi: 10.3934/era.2022058
    [5] Ying Hou, Liangyun Chen . Constructions of three kinds of Bihom-superalgebras. Electronic Research Archive, 2021, 29(6): 3741-3760. doi: 10.3934/era.2021059
    [6] Kailash C. Misra, Sutida Patlertsin, Suchada Pongprasert, Thitarie Rungratgasame . On derivations of Leibniz algebras. Electronic Research Archive, 2024, 32(7): 4715-4722. doi: 10.3934/era.2024214
    [7] Hongliang Chang, Yin Chen, Runxuan Zhang . A generalization on derivations of Lie algebras. Electronic Research Archive, 2021, 29(3): 2457-2473. doi: 10.3934/era.2020124
    [8] Lin Shen, Shu Wang, Yongxin Wang . The well-posedness and regularity of a rotating blades equation. Electronic Research Archive, 2020, 28(2): 691-719. doi: 10.3934/era.2020036
    [9] Dongdong Ruan, Xiaofeng Wang . A high-order Chebyshev-type method for solving nonlinear equations: local convergence and applications. Electronic Research Archive, 2025, 33(3): 1398-1413. doi: 10.3934/era.2025065
    [10] Hongze Zhu, Chenguang Zhou, Nana Sun . A weak Galerkin method for nonlinear stochastic parabolic partial differential equations with additive noise. Electronic Research Archive, 2022, 30(6): 2321-2334. doi: 10.3934/era.2022118
  • The aim of the paper was to give a description of nonlinear Jordan triple derivable mappings on trivial extension algebras. We proved that every nonlinear Jordan triple derivable mapping on a 2-torsion free -type trivial extension algebra is a sum of an additive derivation and an additive antiderivation. As an application, nonlinear Jordan triple derivable mappings on triangular algebras were characterized.



    Let R be a commutative ring with identity, A a unital algebra over R, and Δ:AA be an additive (resp., without assumption of additivity) mapping. For any X,YA, denote the Jordan product of X,Y by XY=XY+YX. Recall that Δ is an additive derivation (resp., nonlinear derivable mapping) if Δ(XY)=Δ(X)Y+XΔ(Y) for all X,YA. It is an additive antiderivation (resp., nonlinear antiderivable mapping) if Δ(XY)=Δ(Y)X+YΔ(X) for all X,YA. It is said an additive Jordan derivation (resp., nonlinear Jordan derivable mapping) if Δ(XY)=Δ(Y)X+YΔ(X) for all X,YA. Obviously, every additive derivation or additive antiderivation is a Jordan derivation. However, the inverse statement is not true in general (see [1]). In the study of additive Jordan derivations, one of the most important problems is the following:

    Problem A What conditions can imply additive Jordan derivation is an additive derivation.

    In past decades, many mathematicians studied this problem and obtained abundant results. We refer the readers to [1,2,3,4,5,6,7,8,9,10] and references therein for more details and the importance of this problem.

    Similar to Problem A, another important and meaningful problem naturally arises, as follows:

    Problem B What conditions can imply a nonlinear Jordan derivable mapping is an additive derivation.

    For example, [11,12] studied nonlinear Jordan derivable mappings.

    In this paper, we say Δ is an additive Jordan triple derivation (resp., nonlinear Jordan triple derivable mapping) on A, if Δ is an additive mapping (resp., without assumption of additivity mapping) and satisfies

    Δ(XYZ)=Δ(X)YZ+XΔ(Y)Z+XYΔ(Z)

    for all X,Y,ZA.

    With the deepening of research, many research achievements have been obtained about additive Jordan triple derivations and nonlinear Jordan triple derivable mappings, for example, [13,14,15,16,17]. Specifically, in [10] Theorem 1.1 we proved that every additive Jordan triple derivation on a 2-torsion free -type trivial extension algebra is a sum of an additive derivation and an additive anti-derivation, and in [18] Theorem 2.1 we proved that every nonlinear local Jordan triple derivable mapping on triangular algebras is an additive derivation. In this article, our main purpose is to further generalize the research conclusions of references [10] and [18]. We obtained that every nonlinear Jordan triple derivable mapping on a 2-torsion free -type trivial extension algebra is a sum of an additive derivation and an additive antiderivation.

    For the convenience of reading, we introduce the concepts and properties of trivial extension algebra as follows:

    Let R be a commutative ring with identity, A a unital algebra over R, and M an A-bimodule. The direct product AM together with the pairwise addition, scalar product, and the algebra multiplication defined by

    (a,m)(b,n)=(ab,an+mb)(a,bA,m,nM)

    is an R-algebra with a unity (1,0), denoted by

    T=AM={(a,m):aA,mM}

    which is called a trivial extension algebra.

    An important example of trivial extension algebra is the triangular algebra, which was introduced by Cheung in [19]. Let A and B be unital algebras over a commutative ring R and M be a unital (A,B)-bimodule, which is faithful as both a left A-module and a right B-module, then the R-algebra

    U=Tri(A,M,B)={(am0b):aA,mM,bB}

    under the usual matrix operations is called a triangular algebra. Basic examples of triangular algebras are upper triangular matrix algebras and nest algebras.

    It is well known that every triangular algebra can be viewed as a trivial extension algebra. Indeed, denote by AB direct product as an R-algebra, and M is viewed as an AB-bimodule with the module action given by (a,b)m=am and m(a,b)=mb for all (a,b)AB and mM. The triangular algebra U is isomorphic to trivial extensions algebra T=(AB)M. However, a trivial extension algebra dose not necessarily have a triangular algebra. For more details about triangular algebras and trivial extension algebras, we refer the readers to [20,21,22,23] and references therein.

    The following notations will be used in our paper. Let R be a commutative ring with identity, A a unital algebra over R, and M an A-bimodule. T=AM is a 2-torsion free trivial extension algebra (i.e., for any XT, if 2X={0} implies X=0); denoted by 1 and 0, they are the unity and zero of T=AM, respectivly.

    We say T=AM is a -type trivial extension algebra, if A has a nontrivial idempotent element e and f=1e such that

    (i) eMf=M;

    (ii) exeM={0} implies exe=0,xA;

    (iii) Mfxf={0} implies fxf=0,xA;

    (iv) exfye=0=fxeyf=0,x,yA.

    In order to prove our main conclusion, denoted by P1=(e,0) and P2=(f,0),

    Tij=PiTPj( 1ij2).

    It is clear that the trivial extension algebra T may be represented as

    T=P1TP1+P1TP2+P2TP1+P2TP2=T11+T12+T21+T22.

    For any element AT, A may be represented as A=A11+A12+A21+A22, where AijTij(1ij2).

    In order to prove our main conclusion Theorem 2.1, we need to cite Lemma 0.1 from [10] as follows:

    Lemma 1.1 Let T be a -type trivial extension algebra and 1ij2, then

    (i) for any A11T11, if A11T12=0, then A11=0;

    (ii) for any A22T22, if T12A22=0, then A22=0;

    (iii) AijBji=0, AijTij,BjiTji.

    The main result of this paper is the following Theorem 2.1.

    Theorem 2.1 Let T=AM be a 2-torsion free -type trivial extension algebra and Δ be a nonlinear Jordan triple derivable mapping on T, then there exist an additive derivation D and an additive antiderivation φ on T, respectively, such that

    Δ(A)=D(A)+φ(A)

    for all AT.

    In order to prove Theorem 2.1, we introduce Lemmas 2.2–2.5, and prove that Lemmas 2.2–2.5 hold. We assume that T is a 2-torsion free -type trivial extension algebra and Δ is a nonlinear Jordan triple derivable mapping on T.

    Lemma 2.2 For any AiiTii,AijTij (1ij2),

    (i) Δ(0)=0;

    (ii) Δ(Pi)=PiΔ(Pi)Pj+PjΔ(Pi)Pi and Δ(P1)=Δ(P2);

    (iii) Δ(P1)Aij=0 and Δ(P2)Aij=0;

    (iv) Δ(Aij)=PiΔ(Aij)Pj+PjΔ(Aij)Pi;

    (v) PjΔ(Aii)Pj=0,PiΔ(Aii)Pj=AiiΔ(Pi) and PjΔ(Aii)Pi=Δ(Pi)Aii.

    proof (i) For any X,Y,ZT, it follows that Δ is a nonlinear Jordan triple derivable mapping on T where

    Δ(XYZ)=Δ(X)YZ+XΔ(Y)Z+XYΔ(Z). (2.1)

    Therefore, taking X=Y=Z=0 in Eq (2.1), we get Δ(0)=0.

    (ii) Taking X=Y=Pi,Z=Pj (1ij2) in Eq (2.1), by the property of 2-torsion freeness of T, we have

    0=Δ(PiPiPj)=Δ(Pi)PiPj+PiΔ(Pi)Pj+PiPiΔ(Pj)=(Δ(Pi)Pi+PiΔ(Pi))Pj+(PiΔ(Pi)+Δ(Pi)Pi)Pj+2PiΔ(Pj)+2Δ(Pj)Pi=2PiΔ(Pi)Pj+2PjΔ(Pi)Pi+2PiΔ(Pj)+2Δ(Pj)Pi=PiΔ(Pi)Pj+PjΔ(Pi)Pi+PiΔ(Pj)+Δ(Pj)Pi.

    Multiplying the above equation by Pi from both sides, we obtain PiΔ(Pj)Pi=0.

    Next, we show that PjΔ(Pj)Pj=0 (1j2). For any A12T12, taking X=P1,Y=A12,Z=P1 in Eq (2.1), we get from Lemma 1.1 (iii) and P2Δ(P1)P2=0 that

    Δ(A12)=Δ(P1A12P1)=Δ(P1)A12P1+P1Δ(A12)P1+P1A12Δ(P1)=(Δ(P1)A12+A12Δ(P1))P1+(P1Δ(A12)+Δ(A12)P1)P1+A12Δ(P1)+Δ(P1)A12=A12Δ(P1)P1+P1Δ(P1)A12+A12Δ(P1)+2P1Δ(A12)P1+Δ(A12)P1+P1Δ(A12)+A12Δ(P1)+Δ(P1)A12=P1Δ(P1)A12+2P1Δ(A12)P1+Δ(A12)P1+P1Δ(A12)+Δ(P1)A12. (2.2)

    Multiplying the above Eq (2.2) from the left by P1 and from the right by P2, we have

    2P1Δ(P1)A12=0.

    This yields from the property of 2-torsion freeness of T that

    P1Δ(P1)P1A12=0.

    Therefore, by the Lemma 1.1 (i), we get P1Δ(P1)P1=0. Similarly, we show P2Δ(P2)P2=0 holds. Thus, we get Δ(Pi)=PiΔ(Pi)Pj+PjΔ(Pi)Pi (1ij2).

    Taking X=Pi,Y=Pj,Z=Pi (1ij2) in Eq (2.1), we have

    0=Δ(PiPjPi)=Δ(Pi)PjPi+PiΔ(Pj)Pi+PiPjΔ(Pi)=(Δ(Pi)Pj+PjΔ(Pi))Pi+(PiΔ(Pj)+Δ(Pj)Pi)Pj=PiΔ(Pi)Pj+PjΔ(Pi)Pi+PiΔ(Pj)Pj+PjΔ(Pj)Pi=Δ(Pi)+Δ(Pj).

    Therefore, Δ(P1)=Δ(P2).

    (iii) For any A12T12 and A21T21, we get from Δ(P1)=P1Δ(P1)P2+P2Δ(P1)P1 and Lemma 1.1 (iii) that

    Δ(P1)A12=(P1Δ(P1)P2+P2Δ(P1)P1)A12=(P1Δ(P1)P2+P2Δ(P1)P1)A12+A12(P1Δ(P1)P2+P2Δ(P1)P1)=(P2Δ(P1)P1)A12+A12(P2Δ(P1)P1)=0

    Similarly, we get that Δ(P1)A21=0. Furthermore, since Δ(P1)=Δ(P2), we get Δ(P2)A12=0=Δ(P2)A21.

    (iv) For any AijTij, taking X=Pi,Y=Aij,Z=Pj (1ij2) in Eq (2.1), then it follows from Lemma 1.1 (iii) and Lemma 2.2 (ii)(iii) that

    Δ(Aij)=Δ(PiAijPj)=Δ(Pi)AijPj+PiΔ(Aij)Pj+PiAijΔ(Pj)=PiΔ(Aij)Pj=PiΔ(Aij)Pj+PjΔ(Aij)Pi.

    (v) For any A11T11, taking X=P2,Y=A11,Z=P2 in Eq (2.1), we get from Lemma 2.2 (ii) that

    0=Δ(P2A11P2)=Δ(P2)A11P2+P2Δ(A11)P2+P2A11Δ(P2)=(Δ(P2)A11+A11Δ(P2))P2+(P2Δ(A11)+Δ(A11)P2)P2=P2Δ(P2)A11+A11Δ(P2)P2+P2Δ(A11)+Δ(A11)P2+2P2Δ(A11)P2=Δ(P2)A11+A11Δ(P2)+P2Δ(A11)+Δ(A11)P2+2P2Δ(A11)P2=Δ(P1)A11A11Δ(P1)+P2Δ(A11)+Δ(A11)P2+2P2Δ(A11)P2.

    This implies that

    P2Δ(A11)P2=0,P1Δ(A11)P2=A11Δ(P1) and P2Δ(A11)P1=Δ(P1)A11.

    Similarly, for any A22T22, we get that

    P1Δ(A22)P1=0,P1Δ(A22)P2=Δ(P2)A22 and P2Δ(A22)P1=A22Δ(P2).

    The proof is completed.

    Lemma 2.3 For all A11,B11T11,A12,B12T12,A21,B21T21,A22,B22T22,

    (i) Δ(A11+A12)=Δ(A11)+Δ(A12);

    (ii) Δ(A12+A22)=Δ(A12)+Δ(A22);

    (iii) Δ(A11+A21)=Δ(A11)+Δ(A21);

    (iv) Δ(A21+A22)=Δ(A21)+Δ(A22);

    (v) Δ(A12+B12)=Δ(A12)+Δ(B12);

    (vi) Δ(A21+B21)=Δ(A21)+Δ(B21);

    (vii) Δ(A12+A21)=Δ(A12)+Δ(A21);

    (viii) Δ(A11+B11)=Δ(A11)+Δ(B11);

    (ix) Δ(A22+B22)=Δ(A22)+Δ(B22).

    Proof (i) For any A11T11,A12T12, since P1(A11+A12)P2=A12, taking X=P1,Y=A11+A12,Z=P2 in Eq (2.1), then by Lemma 1.1 (iii) and Lemma 2.2, we get

    Δ(A12)=Δ(P1(A11+A12)P2)=Δ(P1)(A11+A12)P2+P1Δ(A11+A12)P2+P1(A11+A12)Δ(P2)=Δ(P1)A11P2+P1Δ(A11+A12)P2+2A11Δ(P2)=(Δ(P1)A11+A11Δ(P1))P2+P1Δ(A11+A12)P2+P2Δ(A11+A12)P1+2A11Δ(P2)+2Δ(P2)A11=P1Δ(A11)P2+P2Δ(A11)P1+P1Δ(A11+A12)P2+P2Δ(A11+A12)P12P1Δ(A11)P22P2Δ(A11)P1=P1Δ(A11+A12)P2+P2Δ(A11+A12)P1P1Δ(A11)P2P2Δ(A11)P1.

    Therefore, we get

    P1Δ(A11+A12)P2+P2Δ(A11+A12)P1=Δ(A12)+P1Δ(A11)P2+P2Δ(A11)P1. (2.3)

    Next, we show P2Δ(A11+A12)P2=0 and P1Δ(A11+A12)P1=P1Δ(A11)P1.

    Indeed, taking X=P2,Y=A11+A12,Z=P2 in Eq (2.1), then by Lemma 1.1 (iii) and Lemma 2.2, we get

    Δ(A12)=Δ(P2(A11+A12)P2)=Δ(P2)(A11+A12)P2+P2Δ(A11+A12)P2+P2(A11+A12)Δ(P2)=Δ(P2)A11P2+P2Δ(A11+A12)P2+A12Δ(P2)=(Δ(P2)A11+A11Δ(P2))P2+P2Δ(A11+A12)+Δ(A11+A12)P2+2P2Δ(A11+A12)P2=P1Δ(A11)P2P2Δ(A11)P1+P2Δ(A11+A12)+Δ(A11+A12)P2+2P2Δ(A11+A12)P2.

    It follows from Lemma 2.2 (iv) and the property of 2-torsion freeness of T that, we get

    P2Δ(A11+A12)P2=0. (2.4)

    On the one hand, for any B12T12, taking X=A11+A12,Y=B12,Z=P1 in Eq (2.1), then by Lemma 1.1 (iii), Lemma 2.2, and P2Δ(A11+A12)P2=0, we get

    Δ(A11B12)=Δ((A11+A12)B12P1)=Δ(A11+A12)B12P1+(A11+A12)Δ(B12)P1+(A11+A12)B12Δ(P1)=(Δ(A11+A12)B12+B12Δ(A11+A12))P1+(A11Δ(B12)+Δ(B12)A11)P1+A11B12Δ(P1)=P1Δ(A11+A12)B12+B12Δ(A11+A12)+A11Δ(B12)+Δ(B12)A11=P1Δ(A11+A12)B12+A11Δ(B12)+Δ(B12)A11.

    On the other hand, taking X=A11,Y=B12,Z=P2 in Eq (2.1), then by Lemma 1.1 (iii) and Lemma 2.2, we get

    Δ(A11B12)=Δ(A11B12P2)=Δ(A11)B12P2+A11Δ(B12)P2+A11B12Δ(P2)=(Δ(A11)B12+B12Δ(A11))P2+(A11Δ(B12)+Δ(B12)A11)P2+A11B12Δ(P2)=Δ(A11)B12P2+(A11Δ(B12)+Δ(B12)A11)P2=Δ(A11)B12+A11Δ(B12)+Δ(B12)A11. (2.5)

    Comparing the above two equations, we get (P1Δ(A11+A12)P1P1Δ(A11)P1)B12=0; thus, by Lemma 1.1 (i), we get

    P1Δ(A11+A12)P1=P1Δ(A11)P1. (2.6)

    Therefore, by Eqs (2.3) and (2.4), (2.6), and Lemma 2.2 (iv)(v), we get

    Δ(A11+A12)=P1Δ(A11+A12)P1+P1Δ(A11+A12)P2+P2Δ(A11+A12)P1+P2Δ(A11+A12)P2=P1Δ(A11)P1+P1Δ(A11)P2+P2Δ(A11)P1+Δ(A12)=Δ(A11)+Δ(A12).

    Similarly, we show that (ii)(iv) hold.

    (v) For any A12,B12T12, since (P1+A12)(B12+P2)P2=A12+B12, taking X=P1+A12,Y=B12+P2,Z=P2 in Eq (2.1), then by Lemma 1.1 (iii), Lemma 2.2, and Lemma 2.3 (i), we get

    Δ(A12+B12)=Δ((P1+A12)(B12+P2)P2)=Δ(P1+A12)(B12+P2)P2+(P1+A12)Δ(B12+P2)P2+(P1+A12)(B12+P2)Δ(P2)=(Δ(P1)+Δ(A12))(B12+P2)P2+(P1+A12)(Δ(B12)+Δ(P2))P2+(A12+B12)Δ(P2)=(Δ(P1)+Δ(A12))P2+(Δ(B12)+Δ(P2))P2=Δ(P1)+Δ(A12)+Δ(B12)+Δ(P2)=Δ(A12)+Δ(B12).

    Similarly, we can show that (vi) holds.

    (vii) For any A12T12,A21T21, by Lemma 1.1 (iii), we have (P1+A12)(A21+P2)P2=A12+A21. Taking X=P1+A12,Y=A21+P2,Z=P2 in Eq (2.1), then by Lemma 1.1 (iii), Lemma 2.2, and Lemma 2.3 (i),(iv), we get

    Δ(A12+A21)=Δ((P1+A12)(A21+P2)P2)=Δ(P1+A12)(A21+P2)P2+(P1+A12)Δ(A21+P2)P2+(P1+A12)(A21+P2)Δ(P2)=(Δ(P1)+Δ(A12))(A21+P2)P2+(P1+A12)(Δ(A21)+Δ(P2))P2+(A12+A21)Δ(P2)=(Δ(P1)+Δ(A12))P2+(Δ(A21)+Δ(P2))P2=Δ(P1)+Δ(A12)+Δ(A21)+Δ(P2)=Δ(A12)+Δ(A21).

    (viii) For all A11,B11T11,B12T12, then by Lemma 2.2 (v), we get

    Δ(A11+B11)=P1Δ(A11+B11)P1+(A11+B11)Δ(P1)+Δ(P1)(A11+B11)=P1Δ(A11+A11)P1+(A11Δ(P1)+B11Δ(P1))+(Δ(P1)A11+Δ(P1)B11)=P1Δ(A11+A11)P1+P1Δ(A11)P2+P2Δ(A11)P1+P1Δ(B11)P2+P2Δ(B11)P1. (2.7)

    Next, we show P1Δ(A11+B11)P1=P1Δ(A11)P1+P1Δ(B11)P1.

    Indeed, for any Y12T12, it follows from Eq (2.5) that

    Δ((A11+B11)Y12)=Δ(A11+B11)Y12+(A11+B11)Δ(Y12)+Δ(Y12)(A11+B11).

    On the other hand, by Eq (2.5) and Lemma 2.3 (v), we get

    Δ((A11+B11)Y12)=Δ(A11Y12+B11Y12)=Δ(A11Y12)+Δ(B11Y12)=Δ(A11)Y12+A11Δ(Y12)+Δ(Y12)A11+Δ(B11)Y12+B11Δ(Y12)+Δ(Y12)B11.

    Comparing the above two equations, we get (Δ(A11+B11)Δ(A11)Δ(B11))Y12=0, which yields from Lemma 1.1 (i) that

    P1Δ(A11+B11)P1=P1Δ(A11)P1+P1Δ(B11)P1. (2.8)

    Therefore, by the Lemma 2.2 (v) and Eqs (2.7) and (2.8), we have Δ(A11+B11)=Δ(A11)+Δ(B11). Similarly, we can show that (ix) holds. The proof is completed.

    Lemma 2.4 For all A11T11,A12T12,A21T21,A22T22,

    (i) Δ(A11+A12+A21)=Δ(A11)+Δ(A12)+Δ(A21);

    (ii) Δ(A12+A21+A22)=Δ(A12)+Δ(A21)+Δ(A22).

    Proof (i) For any A11T11,A12T12,A21T21, since P1(A11+A12+A21)P2=A12+A21, taking X=P1,Y=A11+A12+A21,Z=P2 in Eq (2.1), then by Lemma 1.1 (iii), Lemma 2.2, and Lemma 2.3 (vii), we have

    Δ(A12)+Δ(A21)=Δ(A12+A21)=Δ(P1(A11+A12+A21)P2)=Δ(P1)(A11+A12+A21)P2+P1Δ(A11+A12+A21)P2+P1(A11+A12+A21)Δ(P2)=Δ(P1)A11P2+P1Δ(A11+A12+A21)P2+P2Δ(A11+A12+A21)P1+(2A11+A12+A21)Δ(P2)=Δ(P1)A11+A11Δ(P1)+P1Δ(A11+A12+A21)P2+P2Δ(A11+A12+A21)P1+2A11Δ(P2)+2Δ(P2)A11=P1Δ(A11+A12+A21)P2+P2Δ(A11+A12+A21)P1P1Δ(A11)P2P2Δ(A11)P1.

    Therefore, we get

    Δ(A11+A12+A21)=P1Δ(A11+A12+A21)P1+P1Δ(A11+A12+A21)P2+P2Δ(A11+A12+A21)P1+P2Δ(A11+A12+A21)P2=P1Δ(A11+A12+A21)P1+P2Δ(A11+A12+A21)P2+P1Δ(A11)P2+P2Δ(A11)P1+Δ(A12)+Δ(A21). (2.9)

    Next, we show P2Δ(A11+A12+A21)P2=0 and P1Δ(A11+A12+A21)P1=P1Δ(A11)P1.

    Since P2(A11+A12+A21)P2=A12+A21, taking X=P2,Y=A11+A12+A21,Z=P2 in Eq (2.1), then by Lemma 1.1 (iii), we get

    Δ(A12)+Δ(A21)=Δ(A12+A21)=Δ(P2(A11+A12+A21)P2)=Δ(P2)(A11+A12+A21)P2+P2Δ(A11+A12+A21)P2+P2(A11+A12+A21)Δ(P2)=Δ(P2)A11P2+2P2Δ(A11+A12+A21)P2+P2Δ(A11+A12+A21)+Δ(A11+A12+A21)P2+(A12+A21)Δ(P2)=Δ(P2)A11+A11Δ(P2)+2P2Δ(A11+A12+A21)P2+P2Δ(A11+A12+A21)+Δ(A11+A12+A21)P2.

    Multiplying the above equation by P2 from both sides and by Lemma 2.2 (iv), we obtain 4P2Δ(A11+A12+A21)P2=0. Therefore, by the property of 2-torsion freeness of T, we get

    P2Δ(A11+A12+A21)P2=0. (2.10)

    Following, we show P1Δ(A11+A12+A21)P1=P1Δ(A11)P1. Indeed, for any Y12T12, it follows from Lemma 1.1 (iii) that (A11+A12+A21)Y12P2=A11Y12. Taking X=A11+A12+A21,Y=Y12,Z=P2 in Eq (2.1), then by Lemma 1.1 (iii) and P2Δ(A11+A12+A21)P2=0, we get

    Δ(A11Y12)=Δ((A11+A12+A21)Y12P2)=Δ(A11+A12+A21)Y12P2+(A11+A12+A21)Δ(Y12)P2+(A11+A12+A21)Y12Δ(P2)=(Δ(A11+A12+A21)Y12+Y12Δ(A11+A12+A21))P2+(A11Δ(Y12)+Δ(Y12)A11)P2+A11Y12Δ(P2)=P2Δ(A11+A12+A21)Y12+Δ(A11+A12+A21)Y12+Y12Δ(A11+A12+A21)P2+(A11Δ(Y12)+Δ(Y12)A11)=Δ(A11+A12+A21)Y12+Y12Δ(A11+A12+A21)P2+A11Δ(Y12)+Δ(Y12)A11=Δ(A11+A12+A21)Y12+A11Δ(Y12)+Δ(Y12)A11.

    On the other hand, by Eq (2.5), we get

    Δ(A11Y12)=Δ(A11)Y12+A11Δ(Y12)+Δ(Y12)A11.

    Comparing the above two equations, we get (Δ(A11+A12+A21)Δ(A11))Y12=0. Thus, by Lemma 1.1 (i), we get

    P1Δ(A11+A12+A21)P1=P1Δ(A11)P1. (2.11)

    Therefore, we obtain from Eqs (2.9)–(2.11) and Lemma 2.2 (v) that Δ(A11+A12+A21)=Δ(A11)+Δ(A12)+Δ(A21). Similarly, we get (ii). The proof is completed.

    Lemma 2.5 For all A11T11,A12T12,A21T21,A22T22, we get Δ(A11+A12+A21+A22)=Δ(A11)+Δ(A12)+Δ(A21)+Δ(A22).

    Proof For any A11T11,A12T12,A21T21,A22T22, since P1(A11+A12+A21+A22)P1=4A11+A12+A21, taking X=P1,Y=A11+A12+A21+A22,Z=P1 in Eq (2.1), then by Lemma 1.1 (iii) and Lemma 2.2, we have

    Δ(4A11+A12+A21)=Δ(P1(A11+A12+A21+A22)P1)=Δ(P1)(A11+A12+A21+A22)P1+P1Δ(A11+A12+A21+A22)P1+P1(A11+A12+A21+A22)Δ(P1)=Δ(P1)(A11+A22)P1+2P1Δ(A11+A12+A21+A22)P1+P1Δ(A11+A12+A21+A22)+Δ(A11+A12+A21+A22)P1+(2A11+A12+A21)Δ(P1)=Δ(P1)A11+A11Δ(P1)+Δ(P1)A22+A22Δ(P1)+4P1Δ(A11+A12+A21+A22)P1+P1Δ(A11+A12+A21+A22)P2+P2Δ(A11+A12+A21+A22)P1+2A11Δ(P1)+2Δ(P1)A11=3P1Δ(A11)P2+3P2Δ(A11)P1P1Δ(A22)P2P2Δ(A22)P1+4P1Δ(A11+A12+A21+A22)P1+P1Δ(A11+A12+A21+A22)P2+P2Δ(A11+A12+A21+A22)P1.

    On the other hand, by Lemma 2.3 (viii) and Lemma 2.4 (i), we have

    Δ(4A11+A12+A21)=Δ(4A11)+Δ(A12)+Δ(A21)=4Δ(A11)+Δ(A12)+Δ(A21)=4P1Δ(A11)P1+4P1Δ(A11)P2+4P2Δ(A11)P1+P1Δ(A12)P2+P2Δ(A12)P1+P1Δ(A21)P2+P2Δ(A21)P1.

    Comparing the above two equations, we get

    P1Δ(A11+A12+A21+A22)P1=P1Δ(A11)P1, (2.12)

    and

    P1Δ(A11+A12+A21+A22)P2+P2Δ(A11+A12+A21+A22)P1=P1Δ(A11)P2+P2Δ(A11)P1+P1Δ(A12)P2+P2Δ(A12)P1+P1Δ(A21)P2+P2Δ(A21)P1+P1Δ(A22)P2+P2Δ(A22)P1. (2.13)

    Following, we show P2Δ(A11+A12+A21+A22)P2=P2Δ(A22)P2.

    Similarly, for any A11T11,A12T12,A21T21,A22T22, since P2(A11+A12+A21+A22)P2=A12+A21+4A22, taking X=P2,Y=A11+A12+A21+A22,Z=P2 in Eq (2.1), then by Lemma 1.1 (iii), Lemma 2.2, Lemma 2.3 (ix), and Lemma 2.4 (ii), we have

    P2Δ(A11+A12+A21+A22)P2=P2Δ(A22)P2. (2.14)

    Therefore, by Eqs (2.12)–(2.14) and Lemma 2.2, we have

    Δ(A11+A12+A21+A22)=P1Δ(A11+A12+A21+A22)P1+P1Δ(A11+A12+A21+A22)P2=P2Δ(A11+A12+A21+A22)P1+P2Δ(A11+A12+A21+A22)P2=P1Δ(A11)P1+P1Δ(A11)P2+P2Δ(A11)P1+P1Δ(A12)P2+P2Δ(A12)P1+P1Δ(A21)P2+P2Δ(A21)P1+P1Δ(A22)P2+P2Δ(A22)P1+P2Δ(A22)P2=Δ(A11)+Δ(A12)+Δ(A21)+Δ(A22).

    The proof is completed.

    Next, we show that Theorem 2.1 holds.

    Proof of Theorem 2.1 For any A,BT, let A=A11+A12+A21+A22 and B=B11+B12+B21+B22, where Aij,BijTij (1i,j2), by Lemma 2.3 (i)(ii), (viii)(ix), and Lemma 2.5, we obtain that

    Δ(A+B)=Δ((A11+A12+A21+A22)+(B11+B12+B21+B22))=Δ((A11+B11)+(A12+B12)+(A21+B21)+(A22+B22))=Δ(A11+B11)+Δ(A12+B12)+Δ(A21+B21)+Δ(A22+B22)=Δ(A11)+Δ(B11)+Δ(A12)+Δ(B12)+Δ(A21)+Δ(B21)+Δ(A22)+Δ(B22)=Δ(A11+A12+A21+A22)+Δ(B11+B12+B21+B22)=Δ(A)+Δ(B).

    Therefore, Δ is an additive mapping on T, and Δ is an additive Jordan triple derivation on T. By reference [10] Theorem 1.1, we get that there exist an additive derivation D and an additive antiderivation φ on T, respectively, such that

    Δ(A)=D(A)+φ(A)

    for all AT. The proof is completed.

    In the following, we will provide applications of Theorem 2.1.

    Because triangular algebra is a special type of -type trivial extension algebra, and if triangular algebra U is a 2-torsion free algebra, then by reference [10] Corollary 1.1, we get the following Corollary 2.6.

    Corollary 2.6 Let A and B be unital algebras over a commutative ring R and M be a unital (A,B)-bimodule, which is faithful as both a left A-module and a right B-module. Let U=Tri(A,M,B) be the 2-torsion free triangular algebra, and Δ be a nonlinear Jordan triple derivable mapping on U, then Δ is an additive derivation.

    Next, we give an application of Corollary 2.6 to certain special classes of triangular algebras, such as block upper triangular matrix algebras and nest algebras.

    Let R be a commutative ring with identity and let Mn×k(R) be the set of all n×k matrices over R. For n2 and mn, the block upper triangular matrix algebra Tˉkn(R) is a subalgebra of Mn(R) with the form

    (Mk1(R)Mk1×k2(R)Mk1×km(R)0Mk2(R)Mk2×km(R)00Mkm(R)),

    where ˉk=(k1,k2,,km) is an ordered m-vector of positive integers such that k1+k2++km=n.

    A nest of a complex Hilbert space H is a chain N of closed subspaces of H containing {0}, which is closed under arbitrary intersections and closed linear span. Denote by B(H) the algebra of all bounded linear operators on H. The nest algebra associated to N is the algebra

    AlgN={TB(H):TNN for all NN}.

    A nest N is called trivial if N={0,H}. It is clear that every nontrivial nest algebra is a triangular algebra and every finite dimensional nest algebra is isomorphic to a complex block upper triangular matrix algebra.

    Corollary 2.7 Let Tˉkn(R) be a 2-torsion free block upper triangular matrix algebra, and Δ be a nonlinear Jordan triple derivable mapping on Tˉkn(R), then Δ is an additive derivation.

    Corollary 2.8 Let N be a nontrivial nest of a complex Hilbert space H, AlgN be a nest algebra, and Δ be a nonlinear Jordan triple derivable mapping on AlgN, then Δ is an additive derivation.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by Talent Project Foundation of Yunnan Province (No.202105AC160089), Natural Science Foundation of Yunnan Province(No.202101BA070001198), and Basic Research Foundation of Yunnan Education Department(No.2021J0915).

    The authors declare there is no conflicts of interest.



    [1] D. Benkovič, Jordan derivations and anti-derivations on triangular matrices, Linear Algebra Appl., 397 (2005), 235–244. https://doi.org/10.1016/j.laa.2004.10.017 doi: 10.1016/j.laa.2004.10.017
    [2] I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc., 8 (1957), 1104–1110. https://doi.org/10.1090/S0002-9939-1957-0095864-2 doi: 10.1090/S0002-9939-1957-0095864-2
    [3] J. M. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc., 53 (1975), 321–324. https://www.ams.org/journals/proc/1975-053-02/S0002-9939-1975-0399182-5/S0002-9939-1975-0399182-5.pdf
    [4] M. Brešar, J. Vukman, Jordan derivations on semiprime rings, Bull. Austral. Math. Soc., 73 (1988), 321–322. https://doi.org/10.1090/S0002-9939-1988-0929422-1 doi: 10.1090/S0002-9939-1988-0929422-1
    [5] J. H. Zhang, Jordan derivations on nest algebras, Acta Math. Sinica (Chin. Ser.), 41 (1988), 205–212. https://doi.org/10.12386/A1998sxxb0057 doi: 10.12386/A1998sxxb0057
    [6] J. H. Zhang, W. Y. Yu, Jordan derivations of triangular algebras, Linear Algebra Appl., 419 (2006), 251–255. https://doi.org/10.1016/j.laa.2006.04.015 doi: 10.1016/j.laa.2006.04.015
    [7] H. Ghahramani, Jordan derivations on trivial extensions, Bull. Iranian Math. Soc., 39 (2013), 635–645. http://bims.iranjournals.ir/article_251.html
    [8] D. Bennis, B. Fahid, Derivations and the first cohomology group of trivial extension algebras, Mediterr. J. Math., 11 (2017), 150–171. https://doi.org/10.48550/arXiv.1604.02758 doi: 10.48550/arXiv.1604.02758
    [9] Y. B. Li, L. V. Wyk, F. Wei, Jordan derivations and anti-derivations of generalized matrix triangular matrices, Oper. Matrices, 7 (2013), 399–415. https://doi.org/10.7153/oam-07-23 doi: 10.7153/oam-07-23
    [10] X. H. Fei, H. F. Zhang, Jordan triple derivations on -type trivial extension algebras, Adv. Math. (China), (2023), 1–12. https://link.cnki.net/urlid/11.2312.O1.20231025.1731.002
    [11] F. Lu, Jordan derivable maps of prime rings, Comm. Algebra, 12 (2010), 4430–4440. https://doi.org/10.1080/00927870903366884 doi: 10.1080/00927870903366884
    [12] X. H. Fei, H. F. Zhang, Nonlinear Jordan derivable mappings of generalized matrix algebras by Lie product square-zero elements, J. Math., 9 (2021), 1–13. https://doi.org/10.1155/2021/2065425 doi: 10.1155/2021/2065425
    [13] M. Ashraf, A. Jabeen, Nonlinear Jordan triple derivable mappings of triangular algebras, Pac. J. Appl. Math., 7 (2016), 225–235. https://www.zhangqiaokeyan.com/journal-foreign-detail/070409512033.html
    [14] M. Fošner, D. Iliševi, On Jordan triple derivations and related mappings, Mediterr. J. Math., 5 (2008), 415–427. https://doi.org/10.1007/s00009-008-0159-9 doi: 10.1007/s00009-008-0159-9
    [15] X. H. Fei, H. F. Zhang, A class of nonlinear nonglobal Semi-Jordan triple derivable mappings on Triangular Algebras, J. Math., 8 (2021), 1–13. https://doi.org/10.1155/2021/4401874 doi: 10.1155/2021/4401874
    [16] M. Brešar, Mapping of semiprime rings, J. Algebra, 127 (1989), 218–228. https://doi.org/10.1016/0021-8693(89)90285-8
    [17] F. F. Zhao, C. J. Li, Nonlinear -Jordan triple derivations on von Neuman algebras, Math. Slovaca, 1 (2018), 163–170. https://doi.org/10.1515/ms-2017-0089 doi: 10.1515/ms-2017-0089
    [18] X. H. Fei, H. F. Zhang, Z. H Wang, A class of nonlinear local higher Jordan triple derivable mappings on on Triangular Algebras, Acta Math. Sin. Chinese Ser., 64 (2021), 839–856. https://doi.org/10.12386/A2021sxxb0070 doi: 10.12386/A2021sxxb0070
    [19] W. S. Cheung, Mappings on triangular algebras, Ph.D Thesis, University of Victoria, 2000. Available from: http://dspace.library.uvic.ca/bitstream/handle/1828/9349/Cheung_Wai-Shun_PhD_2000.pdf?sequence = 1 & isAllowed = y
    [20] G. F. Birkenmeier, J. K. Park, S. T. Rizvi, Extensions of Rings and Modules, Birkhauser, 2013. Available from: https://link.springer.com/book/10.1007/978-0-387-92716-9
    [21] I. Assem, D. Happel, O. Roldan, Representation finite trivial extension algebras, J. Pure Appl. Algebra, 33 (1984), 235–242. https://doi.org/10.1016/0022-4049(84)90058-6 doi: 10.1016/0022-4049(84)90058-6
    [22] I. Assem, J. Nehring, Domestic trivial extension of simply connected algebras, Tsukuba J. Math., 13 (1989), 31–72. https://doi.org/10.21099/tkbjm/1496161006 doi: 10.21099/tkbjm/1496161006
    [23] W. G. Bade, H. G. Dales, Z. A. Lykova, Algebraic and strong splittings of extensions of Banach algebras, Mem. Amer. Math. Soc., 37 (1999), 113–114. http://dx.doi.org/10.1090/memo/0656 doi: 10.1090/memo/0656
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1291) PDF downloads(106) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog