Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js
Research article Special Issues

Stability analysis of switching systems with all modes unstable based on a Φ-dependent max-minimum dwell time method

  • This paper applies stable and unstable switching instants to study switching systems with unstable modes under time-dependent switching signals. A new Lyapunov function is proposed to study the properties of switching instant using different Φ-dependent max-minimum dwell time methods. After that, the global exponential stability conditions for nonlinear and linear switching systems are derived and stable switching is used to compensate for unstable switching and unstable modes. The relevant results are extended to the controller design of linear switching systems. Finally, a simulation verifies the effectiveness of the results of this paper.

    Citation: Qiang Yu, Yuanyang Feng. Stability analysis of switching systems with all modes unstable based on a Φ-dependent max-minimum dwell time method[J]. AIMS Mathematics, 2024, 9(2): 4863-4881. doi: 10.3934/math.2024236

    Related Papers:

    [1] Qiang Yu, Na Xue . Asynchronously switching control of discrete-time switched systems with a Φ-dependent integrated dwell time approach. AIMS Mathematics, 2023, 8(12): 29332-29351. doi: 10.3934/math.20231501
    [2] Guojie Zheng, Taige Wang . The moment exponential stability of infinite-dimensional linear stochastic switched systems. AIMS Mathematics, 2023, 8(10): 24663-24680. doi: 10.3934/math.20231257
    [3] Yueli Huang, Jin-E Zhang . Asymptotic stability of impulsive stochastic switched system with double state-dependent delays and application to neural networks and neural network-based lecture skills assessment of normal students. AIMS Mathematics, 2024, 9(1): 178-204. doi: 10.3934/math.2024011
    [4] Gengjiao Yang, Fei Hao, Lin Zhang, Lixin Gao . Stabilization of discrete-time positive switched T-S fuzzy systems subject to actuator saturation. AIMS Mathematics, 2023, 8(6): 12708-12728. doi: 10.3934/math.2023640
    [5] Jiaojiao Li, Yingying Wang, Jianyu Zhang . Event-triggered sliding mode control for a class of uncertain switching systems. AIMS Mathematics, 2023, 8(12): 29424-29439. doi: 10.3934/math.20231506
    [6] Ruofeng Rao, Xiaodi Li . Input-to-state stability in the meaning of switching for delayed feedback switched stochastic financial system. AIMS Mathematics, 2021, 6(1): 1040-1064. doi: 10.3934/math.2021062
    [7] Han Geng, Huasheng Zhang . A new H control method of switched nonlinear systems with persistent dwell time: H fuzzy control criterion with convergence rate constraints. AIMS Mathematics, 2024, 9(9): 26092-26113. doi: 10.3934/math.20241275
    [8] Huijuan Li . Input-to-state stability for discrete-time switched systems by using Lyapunov functions with relaxed constraints. AIMS Mathematics, 2023, 8(12): 30827-30845. doi: 10.3934/math.20231576
    [9] Cheng-Xiu Qiang, Jian-Ping Sun, Ya-Hong Zhao . Exponential stability analysis for nonlinear time-varying perturbed systems on time scales. AIMS Mathematics, 2023, 8(5): 11131-11150. doi: 10.3934/math.2023564
    [10] Yakufu Kasimu, Gulijiamali Maimaitiaili . Non-fragile H filter design for uncertain neutral Markovian jump systems with time-varying delays. AIMS Mathematics, 2024, 9(6): 15559-15583. doi: 10.3934/math.2024752
  • This paper applies stable and unstable switching instants to study switching systems with unstable modes under time-dependent switching signals. A new Lyapunov function is proposed to study the properties of switching instant using different Φ-dependent max-minimum dwell time methods. After that, the global exponential stability conditions for nonlinear and linear switching systems are derived and stable switching is used to compensate for unstable switching and unstable modes. The relevant results are extended to the controller design of linear switching systems. Finally, a simulation verifies the effectiveness of the results of this paper.



    Switching systems are a special class of hybrid systems consisting of finite or infinite subsystems and are adjusted by switching signals. Compared to general systems, switching systems can better describe many practical situations with multi-mode interactions, such as flight control systems [1], communication networks [2], power electronic systems [3], mobile robots [4], and multi-agent systems [5]. In the last decades, there have been many results on the stability of switching systems. In most of them, the system stability is related to the switching signals that can be divided into time-dependent or/and state-dependent switching. Compared to state-dependent switching, time-dependent ones can avoid partitioning the state space and prevent the Zeno phenomenon. This reduces the design difficulty and makes the conclusions more general. Therefore, this article investigates the stability of switching systems with time-dependent switching.

    As we know, in the reference [6], the dwell time (DT) method was proposed to design time-dependent switching signals in the stability analysis of switching systems, requiring a long enough time interval between two consecutive switching instants to counteract the instability caused by the switching behavior. In the references [7,8,9], the DT method played a very important role in the stability analysis of systems for all stable models. Later in the reference [10], the DT method was extended to the average dwell time (ADT) method, which relaxed the requirements of DT. Then, the generalization of ADT, named mode-dependent average dwell time (MDADT), was proposed in the reference [11], which is, to some extent, more applicable than ADT because it takes into account the differences between subsystems and allows different subsystems to have different ADT. Recently, the paper [12] proposed a new concept of Φ-dependent average dwell time (ΦDADT) for switching systems, which groups different subsystems and is a unified form of ADT and MDADT. This is because they can both be considered as two corollaries of the new method. Moreover, the switching designs under different Φ are very different, and each has its advantages. In general, we can take every possible Φ to obtain stable signals for all kinds of dwell time methods, which is more flexible and less conservative than the existing results.

    As for the case with stable and unstable modes in the reference [13], by limiting the total dwell time and activation times of unstable modes, the ADT was used to achieve the stability of switching systems. In the reference [14], the improved stability criterion for discrete-time switching systems with unstable modes was obtained by combining the multiple Lyapunov function method with the limit inferior switching strategy for dealing with stable modes and the limit optimal switching strategy for dealing with unstable modes. In the reference [15], the ΦDADT method was extended to impulse switching singular systems with stable and unstable subsystems and proposed a new conclusion on the stability of switching systems. However, the above results all consider switching behavior as a factor leading to system instability while ignoring the contribution of switching behavior to system stability.

    For the case where all modes are unstable, in the reference [16], the maximum-minimum dwell time (MMDT) switching was provided for switching systems with all modes unstable (SSUS). After that, for the positive linear switching system, the contribution of the discretized Lyapunov function to the SSUS was further boosted in the reference [17] by constraining the proportion of unstable switching instant. Next, the stability of partially unstable switching behaviors in SSUS was studied in the reference [18]. Based on the reference [18], the reference[19] utilized singular perturbation parameters to control the ratio of stable switching instant to achieve exponential stabilization of the odd perturbation switching system.

    In addition, a new mean dwell time called bounded maximum average dwell time (BMADT) was presented in the reference [20], and the exponential stability of SSUS was obtained by BMADT. The switching behavior with stable nature is beneficial for the system's stability, but the existing results do not consider the information on the switching instant when constructing the Lyapunov function. By introducing the DT information into the piecewise Lyapunov function, the stability criteria for switching linear system relative to MMDT was established in the reference [21]. In the reference [22], the stabilizing switching dependent average dwell time (SSDADT) method was proposed to ensure the system stability by introducing switching instant information and constructing a Lyapunov function that decays at stable switching instant. In the reference [23], from the coordination performance of switching signals, the stability criterion was established by the mode-partition-dependent average dwell time (MPDADT) method and the piecewise Lyapunov function approach. However, there are fewer published studies on the unstable switching behavior caused by the ΦDADT approach, which inspires this paper.

    In this paper, the stability of SSUS is investigated by the coordinated performance of the switching signals. A new stability criterion is constructed by a new switching frame named Φ-dependent max-minimum dwell time (ΦDMDT) and a segmented Lyapunov function approach. The contributions of this paper are as follows: First, a new frame called ΦDMDT is proposed, which considers the unstable switching behavior caused by Φ-dependent DT and unstable modes. Second, a new segmented piece-wise Lyapunov function approach is provided for the stability problem of SSUSs, then the global exponential stability conditions for linear and nonlinear switching systems are given by the new switching frame and the new approach. Here the state divergence generated by the unstable model and unstable switching instant is balanced by the stable switching instant. Third, the parameters are divided and the DT for different periods is studied separately, which increases the flexibility of unstable switching behavior and reduces conservativeness.

    The rest is organized as follows. Section 2 gives the preliminary knowledge. Section 3 introduces the stability criteria of nonlinear and linear switching systems with all modes unstable by using the ΦDMDT method. Section 4 gives the simulation experiment of the main results, and Section 5 is the conclusion of this paper.

    The symbols of this paper are stated in Table 1.

    Table 1.  Symbols used in the paper.
    Symbol The denotation of the symbol
    R (R+) the set of real numbers (positive real numbers)
    N (N+) the set of natural numbers (positive integers)
    Rn the space of n dimensional real vectors
    Rn+ the set of n dimensional positive vectors
    Rn×n the set of n×n real matrices
    Euclidean norm
    max (min) the maximum (minimum) value
    T transposition
    υi the ith component of the vector υ
    υ0 (0) υi>0 (0), i=1,,n
    equivalent to
    imply

     | Show Table
    DownLoad: CSV

    Consider the following switching nonlinear system described by

    ˙x(t)=fδ(t)(x(t)) (2.1)

    where fδ(t)() are smooth nonlinear functions from Rn to Rn and fδ(t)(0)=0, x(t)Rn is the system state. A continuous from the right piecewise constant function of time δ(t):[0,+)IN={1,2,,N}, NN is the number of modes. For a switching sequence t0<t1<<tk<, while tk is the k th switching instant. When t[tk,tk+τMΦi], the δ(tk) subsystem is activated. τktktk1 is the DT between switching instants tk1 and tk, k=1,2. This paper assumes that no state jumps occur at the switching instants and that a finite number of switches occur on every bounded time interval. Let S={1,2,,s}, where sN and sN, and Φ:INS is a surjection operator. Set Φi={pINΦ(p)=iS}.

    Definition 1. In the time span [t0,t], let τjtjtj1 be the corresponding DT of the j th switching, tj[t0,t], and τjΦi denotes the DT of switching signal δ(t) with δ(tj)Φi, tj[t0,t]. There exists two positive integers τMΦi and τmΦi, such that

    τMΦi=supjΦi{τj}, (2.2)
    τmΦi=infjΦi{τj}. (2.3)

    Let S[τmΦi,τMΦi] denote the set of switching signals satisfying

    τmΦi (2.4)

    T_{\Phi _{i} } \left (t_{0}, t \right) denotes the total running time of the \Phi _{i} subsystems family over the interval \left [t_{0}, t \right] . For \tau_{v\Phi _{i} } > \tau_{u\Phi _{i} } > 0 , as shown in Figure 1, let N_{\tau_{u\Phi _{i}} } \left (t_{0}, t \right) be the number of switching instants t_{j} belonging to the \Phi _{i} subsystems family in the time span \left [t_{0}, t \right] such that \tau_{m\Phi _{i}} < t_{j} -t_{j-1} < \tau_{u\Phi _{i}} , and let N_{\tau_{v\Phi _{i}} } \left (t_{0}, t \right) be the number of switching instants t_{j} belonging to the \Phi _{i} subsystems family in the time span \left [t_{0}, t \right] such that \tau_{u\Phi _{i}} < t_{j} -t_{j-1} < \tau_{v\Phi _{i}} . Further, let \mathcal{S} _{\left [\tau_{m\Phi _{i}}, \tau_{M\Phi _{i}} \right] }^{\left \{ \tau_{u\Phi _{i}}, \tau_{v\Phi _{i}}, c \right \} } stand for the switching signals satisfying (2.4) and the following condition

    \begin{equation} N_{\tau_{u\Phi _{i}} } \left ( t_{0} , t \right ) \leqslant c \left ( t-t_{0} \right ) , 0\leqslant c\leqslant \frac{1}{\tau_{M\Phi _{i}}} \end{equation} (2.5)

    and

    \begin{equation} N_{\tau_{v\Phi _{i}} } \left ( t_{0} , t \right ) \leqslant c \left ( t-t_{0} \right ) , 0\leqslant c\leqslant \frac{1}{\tau_{M\Phi _{i}}}. \end{equation} (2.6)
    Figure 1.  The relationship between stages \tau _{m_{\Phi _{i} } } , \tau _{u_{\Phi _{i} } } , \tau _{v_{\Phi _{i} } } , and \tau _{M_{\Phi _{i} } } in the \Phi _{i} th-stage.

    Additionally, N_{\Phi _{i}} (t_{0}, t) is the total number of the switching instants belonging to the \Phi _{i} subsystems family in the time span \left [t_{0}, t \right] . Two constants \tau_{M\Phi _{i}} and \tau_{m\Phi _{i}} are called to be the \Phi DMDT for \delta \left (t _{j} \right) .

    Definition 2. [18] If a function f:\mathbb{R_{+}}\to \mathbb{R_{+}} is continuous, zero at the origin, and strictly increasing, then it is called a class \mathcal{K} function. If a class {\mathcal{K}} function is also unbounded, it is called the class \mathcal{K}_{\infty} function.

    Definition 3. [21] A switching system (2.1) under certain switching signal \delta \left (t \right) is said to be globally exponentially stable, if the trajectory of the system means

    \begin{equation} \|x(t)\| \leqslant \kappa\left\|x\left(t_{0}\right)\right\| e^{-\lambda^{*}\left(t-t_{0}\right)}, \forall t \geqslant t_{0}, x\left ( t_{0} \right ) \in \mathbb{R}^{n} \end{equation} (2.7)

    for positive scalars \kappa, \lambda ^{*} .

    In this section, we will discuss the stability problem of the switching system with all subsystems unstable.

    Theorem 1. For given positive constants \lambda _{i} > 0 , 0 < \mu _{1i} < 1 , \mu _{1i} < \mu _{2i} < \mu _{3i} , \mu _{3i} \geqslant 1 , 0\leqslant\tau_{m\Phi _{i}}\leqslant\tau_{u\Phi _{i}}\leqslant\tau_{v\Phi _{i}}\leqslant\tau_{M\Phi _{i}} , 0\leqslant c < \frac{1}{\tau_{M\Phi _{i}} } , \Phi _{i} = \left \{ p\in \mathfrak{I_{\mathcal{N} } }\mid \Phi (p) = i\in \mathfrak{S} \right \} , if there exists positive-definite functions V_{1p} \left (t, x \right), V_{2p} \left (t, x \right), V_{3p} \left (t, x \right), V_{4p} \left (t, x \right) , and functions \alpha _{1}, \alpha _{2} \in \mathcal{K}_{\infty} , such that for \forall p, q \in \mathfrak{I}_{\mathcal{N}}, p \neq q ,

    \begin{equation} \alpha_{1}\|x\|^{2} \leqslant V_{p}(t, x) \leqslant \alpha_{2}\|x\|^{2}, \forall t \geqslant t_{0}, \end{equation} (3.1)
    \begin{equation} \frac{\mathrm{d} V_{p}(t, x)}{\mathrm{d} t} \leqslant \lambda_{i} V_{p}(t, x), \forall t \in\left[t_{n-1}, t_{n}\right), \end{equation} (3.2)
    \begin{equation} \begin{aligned} V_{1q}\left(t_{n}^{+}, x\right) \leqslant &\; \mu_{1 i}\left [ V_{1p}\left(t_{n}^{-}, x\right) +\tau _{u\Phi _{i} } V_{2p}\left(t_{n}^{-}, x\right) \right.\left.+\left ( \tau _{v\Phi _{i} }-\tau _{u\Phi _{i} }\right ) V_{3p}\left(t_{n}^{-}, x\right) \right.\\ &\left.+\left ( t-t_{k}- \tau _{v\Phi _{i} }\right ) V_{4p}\left(t_{n}^{-}, x\right) \right ], t \in\left[t_{k}+\tau_{v \Phi_{i}}, t_{k}+\tau_{M \Phi_{i}}\right], \end{aligned} \end{equation} (3.3)
    \begin{equation} \begin{aligned} V_{1q}\left(t_{n}^{+}, x\right) \leqslant \mu_{2 i}\left [ V_{1 p}\left(t_{n}^{-}, x\right) +\tau _{u\Phi _{i} } V_{2 p}\left(t_{n}^{-}, x\right) +\left ( t-t_{k}- \tau _{u\Phi _{i} }\right )V_{3 p}\left(t_{n}^{-}, x\right)\right ] , t \in\left[t_{k}+\tau_{u \Phi_{i}}, t_{k}+\tau_{v \Phi_{i}}\right), \end{aligned} \end{equation} (3.4)
    \begin{equation} \begin{aligned} V_{1q}\left(t_{n}^{+}, x\right) \leqslant \mu_{3 i}\left [V_{1 p}\left(t_{n}^{-}, x\right)+\left ( t-t_{k}\right )V_{2 p}\left(t_{n}^{-}, x\right)\right ], t \in\left[{t_{k}}, t_{k}+\tau_{u \Phi_{i}}\right), \end{aligned} \end{equation} (3.5)
    \begin{equation} \ln \mu _{1i}+c\tau_{M\Phi _{i}}(\ln\mu _{2i}+\ln\mu _{3i} -2\ln\mu _{1i})+\lambda _{\mathrm{max}}\tau_{M\Phi _{i}} < 0 \end{equation} (3.6)

    where

    \begin{equation} \begin{aligned} V_{p}\left(t, x\right) & = \begin{cases} \begin{aligned} V_{1p}&\left(t_{n}^{-}, x\right) +\tau _{u\Phi _{i} } V_{2p}\left(t_{n}^{-}, x\right) +\left ( \tau _{v\Phi _{i} }-\tau _{u\Phi _{i} }\right ) V_{3p}\left(t_{n}^{-}, x\right) \\+&\left ( t-t_{k}- \tau _{v\Phi _{i} }\right ) V_{4p}\left(t_{n}^{-}, x\right), t \in\left[t_{k}+\tau_{v \Phi_{i}}, t_{k}+\tau_{M \Phi_{i}}\right], \end{aligned} \\\begin{aligned} V_{1 p}\left(t_{n}^{-}, x\right) +\tau _{u\Phi _{i} } V_{2 p}\left(t_{n}^{-}, x\right) +\left ( t-t_{k}- \tau _{u\Phi _{i} }\right )V_{3 p}\left(t_{n}^{-}, x\right), t \in\left[t_{k}+\tau_{u \Phi_{i}}, t_{k}+\tau_{v \Phi_{i}}\right), \end{aligned} \\\begin{aligned}V_{1p}\left(t_{n}^{-}, x\right)+\left ( t-t_{k}\right )V_{2 p}\left(t_{n}^{-}, x\right), t \in\left[{t_{k}}, t_{k}+\tau_{u \Phi_{i}}\right)\end{aligned} \end{cases} \end{aligned} \end{equation} (3.7)

    and {\lambda _{\mathrm{max} } = \underset{i\in \mathfrak{S} }{\mathrm{max}}\lambda _{i}} , then the switching system (2.1) is globally exponentially stable for any switching signal \delta \left (t \right) \in \mathcal{S} _{\left [\tau_{m\Phi _{i}}, \tau_{M\Phi _{i}} \right] }^{\left \{ \tau_{u\Phi _{i}}, \tau_{v\Phi _{i}}, c \right \} } .

    Proof. Choose the piece-wise Lyapunov function as V(t, x) = V_{\delta \left (t \right) } \left (t, x \right) . Suppose that {t_{k}+}\tau_{v\Phi _{i}} \leqslant t \leqslant {t_{k}+}\tau_{M\Phi _{i}} . It can be obtained from (3.2)–(3.5) that

    \begin{equation} \begin{aligned} V(t, x) \leqslant e^{\lambda_{i}\left(t-t_{n-1}\right)} V_{\delta\left(t_{n-1}^{+}\right)}\left(t_{n-1}^{+}, x\left(t_{n-1}^{+}\right)\right) \leqslant \mu_{1 i} e^{\lambda_{i}\left(t-t_{n-1}\right)} V_{\delta\left(t_{n-1}^{-}\right)}\left(t_{n-1}^{-}, x\left(t_{n-1}^{-}\right)\right). \end{aligned} \end{equation} (3.8)

    Similarly, for {t_{k}+}\tau_{u \Phi _{i}} \leqslant t < {t_{k}+}\tau_{v\Phi _{i}} and {t_{k}} \leqslant t < {t_{k}+}\tau_{u\Phi _{i}} , it can be respectively obtained that

    \begin{equation} \begin{aligned} V(t, x) \leqslant e^{\lambda_{i}\left(t-t_{n-1}\right)} V_{\delta\left(t_{n-1}^{+}\right)}\left(t_{n-1}^{+}, x\left(t_{n-1}^{+}\right)\right) \leqslant \mu_{2 i} e^{\lambda_{i}\left(t-t_{n-1}\right)} V_{\delta\left(t_{n-1}^{-}\right)}\left(t_{n-1}^{-}, x\left(t_{n-1}^{-}\right)\right) \end{aligned} \end{equation} (3.9)

    and

    \begin{equation} \begin{aligned} V(t, x) \leqslant e^{\lambda_{i}\left(t-t_{n-1}\right)} V_{\delta\left(t_{n-1}^{+}\right)}\left(t_{n-1}^{+}, x\left(t_{n-1}^{+}\right)\right) \leqslant \mu_{3 i} e^{\lambda_{i}\left(t-t_{n-1}\right)} V_{\delta\left(t_{n-1}^{-}\right)}\left(t_{n-1}^{-}, x\left(t_{n-1}^{-}\right)\right). \end{aligned} \end{equation} (3.10)

    Therefore, when {t_{k}} \leqslant t \leqslant {t_{k}+}\tau_{M\Phi _{i}} , it can be inferred from (3.8)–(3.10) that

    \begin{equation} \begin{aligned} &\; V(t, x) \\\leqslant&\; { \prod\nolimits_{p = 1}^{\mathfrak{I_{\mathcal{N} } }}} \mu _{1i} ^{{N_{\Phi _{i} }(t_{0}, t)}-N_{\tau_{v\Phi _{i}} }(t_{0}, t)-N_{\tau_{u\Phi _{i}} }(t_{0}, t) }\times\mu _{2i}^{N_{\tau_{v\Phi _{i}} }(t_{0}, t)}\mu _{3i}^{N_{\tau_{u\Phi _{i}} }(t_{0}, t)} e^{\lambda _{i}T_{\Phi _{i} }(t_{0}, t ) } V(t_{0}, x(t_{0} ) )\\ \leqslant&\; { \prod\nolimits_{p = 1}^{\mathfrak{I_{\mathcal{N} } }}} exp({\ln\mu _{1i} ^{{N_{\Phi _{i} }(t_{0}, t)}-N_{\tau_{v\Phi _{i}} }(t_{0}, t)-N_{\tau_{u\Phi _{i}} }(t_{0}, t) } }+{\ln\mu _{2i}^{N_{\tau_{v\Phi _{i}} }(t_{0}, t)}}+{\ln\mu _{3i}^{N_{\tau_{u\Phi _{i}} }(t_{0}, t)}}+{\lambda _{i}T_{\Phi _{i} }(t_{0}, t ) }) V(t_{0}, x(t_{0}))\\ \leqslant&\; exp \left({ \sum\nolimits_{p = 1}^{\mathfrak{I_{\mathcal{N} } }}}\left(N_{\Phi_{i}}\left(t_{0}, t\right)-N_{\tau_{v \Phi_{i}}}\left(t_{0}, t\right)-N_{\tau_{u \Phi_{i}}}\left(t_{0}, t\right)\right) \times\ln \mu_{1 i}+N_{\tau_{v \Phi_{i}}}\left(t_{0}, t\right) \ln \mu_{2 i}\right. \\ &\left.+N_{\tau_{u \Phi_{i}}}\left(t_{0}, t\right) \ln \mu_{3 i}+\lambda_{i} T_{\Phi_{i}}\left(t_{0}, t\right)\right) V\left(t_{0}, x\left(t_{0}\right)\right)\\ \leqslant&\; exp \left({ \sum\nolimits_{p = 1}^{\mathfrak{I_{\mathcal{N} } }}} N_{\Phi_{i}}\left(t_{0}, t\right) \ln \mu_{1 i}+N_{\tau_{v \Phi_{i}}}\left(t_{0}, t\right)\times\left(\ln \mu_{2 i}-\ln \mu_{1 i}\right)+N_{\tau_{u \Phi_{i}}}\left(t_{0}, t\right)\left(\ln \mu_{3 i}-\ln \mu_{1 i}\right)\right. \\&\left.+\lambda_{i} T_{\Phi_{i}}\left(t_{0}, t\right)\right) V\left(t_{0}, x\left(t_{0}\right)\right). \end{aligned} \end{equation} (3.11)

    Because of (2.5), (2.6), and

    \begin{equation} N_{\Phi _{i} }\left(t_{0}, t\right) \geqslant \frac{t-t_{0}}{\tau_{M\Phi _{i}} }-1 \end{equation} (3.12)

    the following holds

    \begin{equation} \begin{aligned}&\; N_{\Phi _{i} }\left(t_{0}, t\right) \ln \mu _{1i} +N_{\tau_{v\Phi _{i}}}\left(t_{0}, t\right)\left(\ln \mu _{2i} -\ln \mu _{1i} \right)+{N_{\tau_{u\Phi _{i}} }(t_{0}, t)}(\ln\mu _{3i} -\ln \mu _{1i})+\lambda_{i} T_{\Phi _{i} }(t_{0}, t ) \\ \leqslant&\; \left(\frac{\ln \mu _{1i} }{\tau_{M\Phi _{i}} }+c \left(\ln \mu _{2i}+\ln \mu _{3i}-2\ln \mu _{1i}\right) \right)\left(t-t_{0}\right)+\lambda_{i} T_{\Phi _{i} }(t_{0}, t ) -\ln \mu _{1i} \\ \leqslant&\; \left(\frac{\ln \mu _{1i} }{\tau_{M\Phi _{i}} }+c \left(\ln \mu _{2i}+\ln \mu _{3i}-2\ln \mu _{1i}\right)+\lambda_{\mathrm{max}} \right)\times\left(t-t_{0}\right)-\ln \mu _{1i}. \end{aligned} \end{equation} (3.13)

    Combining Eqs (3.1), (3.11), and (3.13), we can obtain

    \begin{equation} \|x\| \leqslant \kappa\left\|x\left(t_{0}\right)\right\| e^{-\lambda\left(t-t_{0}\right)} \end{equation} (3.14)

    where \kappa = \sqrt{\frac{\alpha_{2} }{\alpha_{1}\mu _{1i} } } , \lambda = - { \sum_{p = 1}^{\mathfrak{I_{\mathcal{N} } }}}\frac{\ln \mu _{1i}+c\tau_{M\Phi _{i}}(\ln\mu _{2i}+\ln\mu _{3i} -2\ln\mu _{1i})+\lambda _{\mathrm{max}}\tau_{M\Phi _{i}} }{2\tau_{M\Phi _{i}}} .

    Remark 1. When V_{2 p} = V_{3 p} = V_{4 p} , Lyapunov functions can be uniformly written in the form of V_{p}(t, x) = V_{1 p}\left(t_{n}^{-}, x\right)+\left(t-t_{k}\right) V_{2 p}\left(t_{n}^{-}, x\right), t \in\left[{t_{k}}, t_{k}+\tau_{M \Phi_{i}}\right] . On the basis of V_{2 p} = V_{3 p} = V_{4 p} , if we further take \mathfrak{S} = \{1\} , the result of the reference [21] can be obtained, which shows it can be seen as a corollary of this article.

    Remark 2. The relationships between this article and the literature [12] and [15] can be summarized as follows. On the one hand, they all introduce the idea of subsystem classification \Phi into the study of switching system stability. On the other hand, both [12] and [15] are based on the ADT method to propose the \Phi DADT method that is only applicable to the subsystems being stable or partially stable, while this paper is based on the MMDT method to put forward the \Phi DMDT method, which can handle the situations where all subsystems are unstable.

    Consider the linear case of the system (2.1)

    \begin{equation} \dot{x}(t) = A_{\delta(t)} x \end{equation} (3.15)

    where A_{p} , p \in \mathfrak{I}_{\mathcal{N}} , is a matrix with appropriate dimension, and the globally exponentially stable is stated as the following theorem.

    Theorem 2. For given positive constants \lambda_{i} > 0 , \alpha \ge 0 , 0 < \mu _{1i} < 1 , \mu _{1i} < \mu _{2i} < \mu _{3i} , \mu _{3i} \geqslant 1 , 0\leqslant\tau_{m\Phi _{i}}\leqslant\tau_{u\Phi _{i}}\leqslant\tau_{v\Phi _{i}}\leqslant\tau_{M\Phi _{i}} , 0\le c < \frac{1}{\tau _{M\Phi _{i}} } , \Phi _{i} = \left \{ p\in \mathfrak{I_{\mathcal{N} } }\mid \Phi (p) = i\in \mathfrak{S} \right \} , if there exists positive definite matrices P_{p} , Q_{p} , R_{p} and S_{p} , \forall p, q \in \mathfrak{I}_{\mathcal{N}}, p \neq q , such that (3.6) holds and

    \begin{equation} \phi_{p} < 0, \end{equation} (3.16)
    \begin{equation} e^{\alpha \tau_{m\Phi _{p}}} \phi_{p}+h_{n} \psi_{p}+h_{n} \omega _{p}+h_{n} \xi _{p} < 0, h_{n}\in [\tau _{m\Phi _{i}}, \tau _{M\Phi _{i}}], \end{equation} (3.17)
    \begin{equation} \begin{aligned}P_{q} \leqslant &\; \mu _{1i} \left [P_{p}+\tau_{u\Phi _{i} } e^{-\alpha \tau_{u\Phi _{i} }} Q_{p}+\left ( \tau_{v\Phi _{i} }-\tau_{u\Phi _{i} } \right ) e^{-\alpha \left ( \tau_{v\Phi _{i} }-\tau_{u\Phi _{i} } \right )} R_{p}\right. \\ &\left.+\left ( t-t_{k} -\tau_{v\Phi _{i} } \right ) e^{-\alpha \left ( t-t_{k} -\tau_{v\Phi _{i} } \right )} S_{p}\right ], t \in\left[t_{k}+\tau_{v \Phi_{i}}, t_{k}+\tau_{M \Phi_{i}}\right], \end{aligned} \end{equation} (3.18)
    \begin{equation} \begin{aligned} P_{q} \leqslant &\; \mu _{2i} \left [P_{p}+\tau_{u\Phi _{i} } e^{-\alpha \tau_{u\Phi _{i} }} Q_{p}+\left ( t-t_{k} -\tau_{u\Phi _{i} } \right ) e^{-\alpha \left ( t-t_{k} -\tau_{u\Phi _{i} } \right )} R_{p}\right ], t \in\left[t_{k}+\tau_{u \Phi_{i}}, t_{k}+\tau_{v \Phi_{i}}\right), \end{aligned} \end{equation} (3.19)
    \begin{equation} \begin{aligned}P_{q} \leqslant \mu _{3i} \left [ P_{p}+\left ( t-t_{k} \right ) e^{-\alpha \left ( t-t_{k} \right )} Q_{p}\right ], t \in\left[{t_{k}}, t_{k}+\tau_{u \Phi_{i}}\right) \end{aligned} \end{equation} (3.20)

    for \forall p \in \mathfrak{I}_{\mathcal{N}} , where

    \begin{equation} \begin{aligned} \phi_{p} = P_{p} A_{p}+A_{p}^{\mathrm{T}} P_{p}+e^{-\alpha \tau_{m\Phi _{i} } } Q_{p}+e^{-\alpha \tau_{m\Phi _{i} } } R_{p}+e^{-\alpha \tau_{m\Phi _{i} } } S_{p}-\lambda_{i} P_{p}, \end{aligned} \end{equation} (3.21)
    \begin{equation} \psi_{p} = Q_{p} A_{p}+A_{p}^{\mathrm{T}} Q_{p}-(\alpha +\lambda_{i} ) Q_{p}, \end{equation} (3.22)
    \begin{equation} \omega _{p} = R_{p} A_{p}+A_{p}^{\mathrm{T}} R_{p}-(\alpha +\lambda_{i} ) R_{p}, \end{equation} (3.23)
    \begin{equation} \xi _{p} = S_{p} A_{p}+A_{p}^{\mathrm{T}} S_{p}-(\alpha +\lambda_{i} ) S_{p}, \end{equation} (3.24)
    \begin{equation} h_{n} = t_{n+1}-t_{n} \end{equation} (3.25)

    then the switching linear system (3.15) is globally exponentially stable for any switching signal \delta (t)\in \mathcal{S} _{[\tau _{m\Phi _{i}}, \tau _{M\Phi _{i}}] }^{\left \{ \tau_{u\Phi _{i}}, \tau_{v\Phi _{i}}, c \right \} } .

    Proof. For t\in\left[{t_{k}}, t_{k}+\tau_{M \Phi_{i}}\right] , p \in \mathfrak{I}_{\mathcal{N}} , construct the piece-wise Lyapunov function of the switching linear system (3.15) as

    \begin{equation} \begin{aligned} V_{p}\left(t, x\right) & = \begin{cases} \begin{aligned} x^{\mathrm{T} } &P_{p}x +\tau _{u\Phi _{i} } e^{-\alpha \tau _{u\Phi _{i} } } x^{\mathrm{T} } Q_{p}x +\left ( \tau _{v\Phi _{i} }-\tau _{u\Phi _{i} }\right )e^{-\alpha \left ( \tau _{v\Phi _{i} }-\tau _{u\Phi _{i} }\right )} x^{\mathrm{T} } R_{p}x \\+&\left ( t-t_{k}- \tau _{v\Phi _{i} }\right )e^{-\alpha \left ( t-t_{k}- \tau _{v\Phi _{i} }\right )} x^{\mathrm{T} } S_{p}x, t \in\left[t_{k}+\tau_{v \Phi_{i}}, t_{k}+\tau_{M \Phi_{i}}\right], \end{aligned} \\\begin{aligned} x^{\mathrm{T} } P_{p}x +\tau _{u\Phi _{i} } e^{-\alpha \tau _{u\Phi _{i} } } x^{\mathrm{T} } Q_{p}x +&\left ( t-t_{k}- \tau _{u\Phi _{i} }\right )e^{-\alpha \left ( t-t_{k}- \tau _{u\Phi _{i} }\right )} x^{\mathrm{T} } R_{p}x, \\& \quad \quad \quad t \in\left[t_{k}+\tau_{u \Phi_{i}}, t_{k}+\tau_{v \Phi_{i}}\right), \end{aligned} \\\begin{aligned} x^{\mathrm{T} } &P_{p}x+\left ( t-t_{k}\right )e^{-\alpha \left ( t-t_{k}\right )} x^{\mathrm{T} } Q_{p}x, t \in\left[{t_{k}}, t_{k}+\tau_{u \Phi_{i}}\right).\end{aligned} \end{cases} \end{aligned} \end{equation} (3.26)

    When {t_{k}+}\tau_{v \Phi _{i}} \leqslant t \leqslant {t_{k}+}\tau_{M\Phi _{i}} , the derivative of V_{p} (t, x) is

    \begin{equation} \begin{aligned} &\; \frac{\mathrm{d} V_{p}(t, x)}{\mathrm{d} t}\\ = &\; 2 x^{\mathrm{T}} P_{p} \dot{x} +e^{-\alpha \tau _{u\Phi _{i} }} x^{\mathrm{T}} Q_{p} x+2\tau _{u\Phi _{i} } e^{-\alpha \tau _{u\Phi _{i} }} x^{\mathrm{T}} Q_{p} \dot{x} -\alpha \tau _{u\Phi _{i} } e^{-\alpha \tau _{u\Phi _{i} }} x^{\mathrm{T}} Q_{p} x +e^{-\alpha \left ( \tau _{v\Phi _{i} }-\tau _{u\Phi _{i} }\right )} x^{\mathrm{T}} R_{p} x \\ & + 2\left ( \tau _{v\Phi _{i} }-\tau _{u\Phi _{i} }\right ) e^{-\alpha \left ( \tau _{v\Phi _{i} }-\tau _{u\Phi _{i} }\right )} x^{\mathrm{T}} R_{p} \dot{x} -\alpha \left ( \tau _{v\Phi _{i} }-\tau _{u\Phi _{i} }\right ) e^{-\alpha \left ( \tau _{v\Phi _{i} }-\tau _{u\Phi _{i} }\right )} x^{\mathrm{T}} R_{p} x +e^{-\alpha \left ( t-t_{k}- \tau _{v\Phi _{i} }\right )} x^{\mathrm{T}} S_{p} x\\&+2\left ( t-t_{k}- \tau _{v\Phi _{i} }\right ) e^{-\alpha \left ( t-t_{k}- \tau _{v\Phi _{i} }\right )} x^{\mathrm{T}} S_{p} \dot{x} -\alpha \left ( t-t_{k}- \tau _{v\Phi _{i} }\right ) e^{-\alpha \left ( t-t_{k}- \tau _{v\Phi _{i} }\right )} x^{\mathrm{T}} S_{p} x. \end{aligned} \end{equation} (3.27)

    By simple calculation, it is easy to show that

    \begin{equation} \begin{aligned} &\; \frac{\mathrm{d} V_{p}(t, x)}{\mathrm{d} t}-\lambda_{i} V_{p}(t, x)\\ = &\; x^{\mathrm{T}} \left \{ P_{p} A_{p}+A_{p}^{\mathrm{T}} P_{p}+e^{-\alpha \tau _{u\Phi _{i} } } Q_{p}+e^{-\alpha \left ( \tau _{v\Phi _{i} }-\tau _{u\Phi _{i} }\right ) } R_{p}+e^{-\alpha \left ( t-t_{k}- \tau _{v\Phi _{i} }\right ) } S_{p}-\lambda_{i} P_{p}\right .\\ &\left .+\tau _{u\Phi _{i} } e^{-\alpha \tau _{u\Phi _{i} }}\times\left[Q_{p} A_{p}+A_{p}^{\mathrm{T}} Q_{p}-(\alpha +\lambda_{i} ) Q_{p}\right]\right .\\ &\left .+\left ( \tau _{v\Phi _{i} }-\tau _{u\Phi _{i} }\right ) e^{-\alpha \left ( \tau _{v\Phi _{i} }-\tau _{u\Phi _{i} }\right )}\times\left[R_{p} A_{p}+A_{p}^{\mathrm{T}} R_{p}-(\alpha +\lambda_{i} ) R_{p}\right] \right .\\ &\left .+\left ( t-t_{k}- \tau _{v\Phi _{i} }\right ) e^{-\alpha \left ( t-t_{k}- \tau _{v\Phi _{i} }\right )}\times\left[S_{p} A_{p}+A_{p}^{\mathrm{T}} S_{p}-(\alpha +\lambda_{i} ) S_{p}\right] \right \} x \\ \leqslant &\; \frac{\left(t_{n+1}-t\right)}{h_{n}} x^{\mathrm{T}} \phi_{p} x+\frac{ \left ( t-t_{n} \right ) e^{-\alpha \left ( t-t_{n} \right )}}{h_{n}} \times x^{\mathrm{T}}\left(e^{\alpha \tau_{m\Phi _{i} }} \phi_{p}+h_{n} \psi_{p}+h_{n} \omega _{p}+h_{n} \xi _{p}\right) x. \end{aligned} \end{equation} (3.28)

    Similarly, when {t_{k}+}\tau_{u\Phi _{i}} \leqslant t < {t_{k}+}\tau_{v\Phi _{i}} and {t_{k}} \leqslant t < {t_{k}+}\tau_{u\Phi _{i}} , it can be respectively obtained that

    \begin{equation} \begin{aligned} &\; \frac{\mathrm{d} V_{p}(t, x)}{\mathrm{d} t}-\lambda_{i} V_{p}(t, x)\\ = &\; x^{\mathrm{T}} \left \{ P_{p} A_{p}+A_{p}^{\mathrm{T}} P_{p}+e^{-\alpha \tau _{u\Phi _{i} } } Q_{p}+e^{-\alpha \left ( t-t_{k}- \tau _{u\Phi _{i} }\right ) } R_{p}-\lambda_{i} P_{p}\right .\\ &\left .+\tau _{u\Phi _{i} } e^{-\alpha \tau _{u\Phi _{i} }}\times\left[Q_{p} A_{p}+A_{p}^{\mathrm{T}} Q_{p}-(\alpha +\lambda_{i} ) Q_{p}\right]\right .\\ &\left .+\left ( t-t_{k}- \tau _{u\Phi _{i} }\right ) e^{-\alpha \left ( t-t_{k}- \tau _{u\Phi _{i} }\right )}\times\left[R_{p} A_{p}+A_{p}^{\mathrm{T}} R_{p}-(\alpha +\lambda_{i} ) R_{p}\right] \right \} x \\ \leqslant &\; \frac{\left(t_{n+1}-t\right)}{h_{n}} x^{\mathrm{T}} \phi_{p} x+\frac{ \left ( t-t_{n} \right ) e^{-\alpha \left ( t-t_{n} \right )}}{h_{n}} \times x^{\mathrm{T}}\left(e^{\alpha \tau_{m\Phi _{i} }} \phi_{p}+h_{n} \psi_{p}+h_{n} \omega _{p}+h_{n} \xi _{p}\right) x \end{aligned} \end{equation} (3.29)

    and

    \begin{equation} \begin{aligned} &\; \frac{\mathrm{d} V_{p}(t, x)}{\mathrm{d} t}-\lambda_{i} V_{p}(t, x)\\ = &\; x^{\mathrm{T}} \left \{ P_{p} A_{p}+A_{p}^{\mathrm{T}} P_{p}+e^{-\alpha \left ( t-t_{k} \right ) } Q_{p}-\lambda_{i} P_{p}+\left ( t-t_{k} \right ) e^{-\alpha \left ( t-t_{k} \right )}\left[Q_{p} A_{p}+A_{p}^{\mathrm{T}} Q_{p}-(\alpha +\lambda_{i} ) Q_{p}\right]\right \} x \\ \leqslant &\; \frac{\left(t_{n+1}-t\right)}{h_{n}} x^{\mathrm{T}} \phi_{p} x+\frac{ \left ( t-t_{n} \right ) e^{-\alpha \left ( t-t_{n} \right )}}{h_{n}} \times x^{\mathrm{T}}\left(e^{\alpha \tau_{m\Phi _{i} }} \phi_{p}+h_{n} \psi_{p}+h_{n} \omega _{p}+h_{n} \xi _{p}\right) x. \end{aligned} \end{equation} (3.30)

    It is worth noting that

    \begin{equation} \frac{\mathrm{d} V_{p}(t, x)}{\mathrm{d} t}-\lambda _{i} V_{p}(t, x) < 0 \end{equation} (3.31)

    holds for any t \in\left[{t_{k}}, t_{k}+\tau_{M \Phi_{i}}\right] , if (3.16) and (3.17) hold. On the other hand, it is easy to obtain (3.3)–(3.5) from (3.18)–(3.20), then the proof ends according to Theorem 1.

    As a special case of 0 < \tau _{m\Phi _{i} } \leqslant \tau_{u\Phi _{i} }\leqslant \tau_{v\Phi _{i} }\leqslant \tau _{M\Phi _{i} } , it is easy to prove the following corollary when \tau _{m\Phi _{i} } = \tau_{u\Phi _{i} } = \tau_{v\Phi _{i} } .

    Corollary 1. For given positive constants \lambda_{i} > 0 , \alpha\geqslant0 , 0 < \mu _{1i} < 1 , 0 < \tau _{m\Phi _{i} } \leqslant \tau _{M\Phi _{i} } , \Phi _{i} = \left \{ p\in \mathfrak{I_{\mathcal{N} } }\mid \Phi (p) = i\in \mathfrak{S} \right \} , if there exists positive definite matrices P_{p} and Q_{p} , \forall p, q \in \mathfrak{I}_{\mathcal{N}}, p \neq q , such that (3.16) and (3.17) hold and

    \begin{equation} P_{q} \leqslant \mu _{1i} \left(P_{p}+\tau_{m\Phi _{i} } e^{-\alpha \tau_{M\Phi _{i} }} Q_{p}\right), \end{equation} (3.32)
    \begin{equation} \ln \mu _{1i}+\lambda _{i}\tau_{M\Phi _{i}} < 0 \end{equation} (3.33)

    then the switching linear system (3.15) is globally exponentially stable for any switching signal \delta (t)\in \mathcal{S}_{[\tau _{m\Phi _{i} }, \tau _{M\Phi _{i} }]} .

    Remark 3. The condition (3.33) shows that 0 < \lambda _{i} < -\frac{\mathrm{ln}\mu_{1i}}{\tau_{M\Phi _{i} }} . Introduce a lower bound of \lambda _{i} such that

    \begin{equation} -\frac{\beta \mathrm{ln}\mu_{1i}}{\tau_{M\Phi _{i} }} < \lambda _{i} < -\frac{\mathrm{ln}\mu_{1i}}{\tau_{M\Phi _{i} }} \end{equation} (3.34)

    for a given scalar \beta \in \left (0, 1 \right) , then the condition of Corollary 3.1 is improved as that: For given constants \alpha \geqslant 0, 0 < \beta < 1, 0 < \mu _{1i} < 1, 0 < \tau _{m\Phi _{i} } \leqslant \tau _{M\Phi _{i} } , if there exists positive definite matrices P_{p} and Q_{p} , \forall p\in \mathfrak{I_{\mathcal{N} } } , such that Eqs (3.32)–(3.34) hold with

    \begin{equation} \phi_{r p} = P_{p} A_{p}+A_{p}^{\mathrm{T}} P_{p}+e^{-\alpha \tau_{m\Phi _{i}}} Q_{p}+\frac{\beta \ln \mu _{1i}}{\tau_{M\Phi _{i}}} P_{p} < 0, \end{equation} (3.35)
    \begin{equation} e^{\alpha \tau_{m \Phi_{i}}} \phi_{r p}+ h_{n}\left(Q_{p} A_{p}+A_{p}^{\mathrm{T}} Q_{p}-\alpha Q_{p}+\frac{\beta \ln \mu _{1i}}{\tau_{M \Phi_{i}}} Q_{p}\right) < 0. \end{equation} (3.36)

    This operation provides a new degree of freedom to the parameter \lambda _{i} while avoiding the nonlinear coming from \lambda_{i} P_{p} . For the given \alpha , \beta , \mu _{1i} , \tau_{M\Phi _{i}} , the admissible minimal dwell time \underline{\tau_{m\Phi _{i}}} can be estimated by

    \begin{equation} \underset{\tau_{m\Phi _{i}}\leqslant\tau_{M\Phi _{i}}}{\min} \underline{\tau_{m\Phi _{i}}}, \quad \text {s.t. (3.32)–(3.36). } \end{equation} (3.37)

    This inference derives linear condition by introducing the information of switching instants into the Lyapunov function in form as \left (t-t_{k} \right) e^{-\alpha \left (t-t_{k} \right) } Q_{p} .

    Example 1. In this section, simulations are performed with the highly maneuverable aircraft technology (HiMAT) as an example, thus verifying the effectiveness and practicality of the method in this paper. Considering the short-period motion characteristics of the aircraft, a longitudinal short-period linear model is used to construct the switching system and the corresponding data are obtained from [24,25]. For more clarity, three operating points are selected within the flight envelope. Therefore, it is reasonable to assume that three linear modes can describe the dynamic behavior of the HiMAT vehicle at the three operating points, as shown in Table 2.

    Table 2.  Three operating points of HiMAT vehicle.
    Operating point Mach Altitude Angle of attack
    1 0.6 20000 ft 4.55 deg
    2 0.9 35000 ft 4.89 deg
    3 1.3 27000 ft 5.36 deg

     | Show Table
    DownLoad: CSV

    Based on this data, the no-fault delta operator switching linear system can be described as

    \begin{equation} \dot{x}(t) = A_{\delta(t)} x+B_{\delta(t)} u. \end{equation} (4.1)

    The state of the linearized HiMAT dynamics is x(t) = (g, h)^{T} , with g and h denoting the angle of attack and pitch rate, respectively. The control input is u(t) = (\Theta _{e}, \Theta _{c})^{T} , where \Theta _{e} and \Theta _{c} are the elevon and carnard input, respectively. Assuming the control input u(t) = (0, 0) , the switching law determines the alternating operation of the three operating points of the vehicle. Thus, the problem can be simplified by considering the linear switching systems (3.15) with the following parameters: \mathfrak{I_{\mathcal{N} } } = \left \{ 1, 2, 3 \right \} , A_{1} = \begin{bmatrix} -1.9 & 0.6 \\ 0.6 & -0.1 \end{bmatrix} , A_{2} = \begin{bmatrix} 0.1 & -0.9 \\ 0.1 & -1.4 \end{bmatrix} , A_{3} = \begin{bmatrix} 0.3 & -0.2 \\ 2.1 & -1.7 \end{bmatrix} , and x(t_{0}) = \begin{bmatrix} 5 & -3 \end{bmatrix}^{\mathrm{T} } . It is clear that all subsystems are unstable. The state response of each mode is shown in Figure 2. Letting \alpha = 0.1 , a feasible solution of Eqs (3.33) and (3.16)–(3.20) is obtained by applying the Matlab linear matrix inequality (LMI) toolbox. By dividing different subsystem families, the following cases are obtained.

    Figure 2.  State response of each mode.

    Case 1: \mathfrak{S} = \{1\} , \Phi_{1} = \{1, 2, 3\} ;

    Case 2: \mathfrak{S} = \{1, 2\} , \Phi_{1} = \{1, 2\} , \Phi_{2} = \{3\} ;

    Case 3: \mathfrak{S} = \{1, 2\} , \Phi_{1} = \{1, 3\} , \Phi_{2} = \{2\} ;

    Case 4: \mathfrak{S} = \{1, 2\} , \Phi_{1} = \{1\} , \Phi_{2} = \{2, 3\} ;

    Case 5: \mathfrak{S} = \{1, 2, 3\} , \Phi_{1} = \{1\} , \Phi_{2} = \{2\} ; \Phi_{3} = \{3\} .

    Among them, Cases 1 and 5 correspond to the results of the DT and mode-dependent DT methods, respectively.

    Next, the following conclusions can be drawn from Figures 38 and Tables 37:

    Figure 3.  The state response of the system under the signals 1(a) and 1(b), respectively.
    Figure 4.  The state response of the system under the signal 2.
    Figure 5.  The state response of the system under the signal 3.
    Figure 6.  The state response of the system under the signal 4.
    Figure 7.  The state response of the system under the signal 5.
    Figure 8.  Stability regions under different \beta and \tau conditions.
    Table 3.  \mathfrak{S} = \{1\} , \Phi_{1} = \{1, 2, 3\} .
    \delta \tau _{m\Phi _{1} }=0.49 , \tau _{u\Phi _{1} }=0.57 , \tau _{v\Phi _{1} }=0.62 , \tau _{M\Phi _{1} }=0.67
    \tau \left [\tau _{m\Phi _{i} }, \tau _{u\Phi _{i} } \right) \left [\tau _{u\Phi _{i} }, \tau _{v\Phi _{i} } \right) \left [\tau _{v\Phi _{i} }, \tau _{M\Phi _{i} } \right]
    \mu \mu _{11} =0.68 \mu _{21} =0.95 \mu _{31} =1.42
    \lambda \lambda _{1} = 0.57
    P_{1} \begin{bmatrix} 23.1455&-1.0184\\ * &24.6775 \end{bmatrix} \begin{bmatrix} 18.0000&-3.4430\\ * &15.4327 \end{bmatrix} \begin{bmatrix} 12.2816&-4.7228\\ * &4.5930 \end{bmatrix}
    P_{2} \begin{bmatrix} 47.4731&-15.6408\\ * &26.6013 \end{bmatrix} \begin{bmatrix} 33.2016&-11.5852\\ * &16.4465 \end{bmatrix} \begin{bmatrix} 22.6673&-10.2381\\ * &6.3310 \end{bmatrix}
    P_{3} \begin{bmatrix} 50.9908&-7.9662\\ * &13.9737 \end{bmatrix} \begin{bmatrix} 32.9636&-6.1425\\ * &10.3295 \end{bmatrix} \begin{bmatrix} 19.1526&-6.2937\\ * &4.1589 \end{bmatrix}
    Q_{1} \begin{bmatrix} 43.7268&-14.1297\\ * &6.9276 \end{bmatrix} \begin{bmatrix} 44.7904&-15.2723\\ * &7.4147 \end{bmatrix} \begin{bmatrix} 60.7108&-22.6981\\ * &9.3635 \end{bmatrix}
    Q_{2} \begin{bmatrix} 4.9875&4.0591\\ * &16.8078 \end{bmatrix} \begin{bmatrix} 5.7717&5.1066\\ * &14.3445 \end{bmatrix} \begin{bmatrix} 10.3258&1.3298\\ * &2.0830 \end{bmatrix}
    Q_{3} \begin{bmatrix} 7.6333&-12.8279\\ * &22.9404 \end{bmatrix} \begin{bmatrix} 10.1925&-14.0171\\ * &22.3963 \end{bmatrix} \begin{bmatrix} 27.0090&-18.0787\\ * &14.6216 \end{bmatrix}
    R_{1} \begin{bmatrix} 11.2592&-2.8717\\ * &3.3432 \end{bmatrix} \begin{bmatrix} 8.0780&-2.5442\\ * &1.9918 \end{bmatrix} \begin{bmatrix} 0.5563&-0.2376\\ * &0.1062 \end{bmatrix}
    R_{2} \begin{bmatrix} 4.3474&0.9650\\ * &11.1927 \end{bmatrix} \begin{bmatrix} 2.5397&0.3567\\ * &6.1008 \end{bmatrix} \begin{bmatrix} 0.0414&-0.0334\\ * &0.1254 \end{bmatrix}
    R_{3} \begin{bmatrix} 6.6895&-5.2996\\ * &6.8285 \end{bmatrix} \begin{bmatrix} 4.2319&-3.7296\\ * &4.6057 \end{bmatrix} \begin{bmatrix} 0.0580&-0.0363\\ * &0.0289 \end{bmatrix}
    S_{1} \begin{bmatrix} 11.2592&-2.8717\\ * &3.3432 \end{bmatrix} \begin{bmatrix} 7.8090&-2.4543\\ * &1.9411 \end{bmatrix} \begin{bmatrix} 0.5246&-0.2241\\ * &0.1002 \end{bmatrix}
    S_{2} \begin{bmatrix} 7.0833&3.5152\\ * &20.0495 \end{bmatrix} \begin{bmatrix} 4.0294&0.5394\\ * &8.4653 \end{bmatrix} \begin{bmatrix} 0.5454&-0.6141\\ * &0.7593 \end{bmatrix}
    S_{3} \begin{bmatrix} 6.3717&-3.5740\\ * &3.7721 \end{bmatrix} \begin{bmatrix} 4.3078&-2.3080\\ * &1.8567 \end{bmatrix} \begin{bmatrix} 0.0377&-0.0225\\ * &0.0192 \end{bmatrix}

     | Show Table
    DownLoad: CSV
    Table 4.  \mathfrak{S} = \{1, 2\} , \Phi_{1} = \{1, 2\} , \Phi_{2} = \{3\} .
    \delta \tau _{m\Phi _{1} }=0.65 , \tau _{u\Phi _{1} }=0.71 , \tau _{v\Phi _{1} }=0.75 , \tau _{M\Phi _{1} }=0.78
    \tau _{m\Phi _{2} }=0.39 , \tau _{u\Phi _{2} }=0.44 , \tau _{v\Phi _{2} }=0.52 , \tau _{M\Phi _{2} }=0.55
    \tau \left [\tau _{m\Phi _{i} }, \tau _{u\Phi _{i} } \right) \left [\tau _{u\Phi _{i} }, \tau _{v\Phi _{i} } \right) \left [\tau _{v\Phi _{i} }, \tau _{M\Phi _{i} } \right]
    \mu \mu _{11} =0.6, \\ \mu _{12} =0.7 \mu _{21} =1.1, \\ \mu _{22} =1.3 \mu _{31} =1.5, \\ \mu _{32} =1.4
    \lambda \lambda _{1} = 0.65 , \lambda _{2} = 0.64
    P_{1} \begin{bmatrix} 1.8030&0.0519\\ * &1.9026 \end{bmatrix} \begin{bmatrix} 35.4538&-0.9615\\ * &31.2897 \end{bmatrix} \begin{bmatrix} 32.9410&-10.7097\\ * &9.5317 \end{bmatrix}
    P_{2} \begin{bmatrix} 4.3456&-1.6147\\ * &2.2093 \end{bmatrix} \begin{bmatrix} 75.6495&-27.1008\\ * &39.2251 \end{bmatrix} \begin{bmatrix} 83.3425&-38.1635\\ * &24.0705 \end{bmatrix}
    P_{3} \begin{bmatrix} 3.4673&-0.5049\\ * &0.9682 \end{bmatrix} \begin{bmatrix} 72.6041&-10.2586\\ * &19.8556 \end{bmatrix} \begin{bmatrix} 70.5578&-23.2847\\ * &12.7411 \end{bmatrix}
    Q_{1} \begin{bmatrix} 2.5740&-0.6251\\ * &0.4084 \end{bmatrix} \begin{bmatrix} 60.7027&-13.7958\\ * &7.1664 \end{bmatrix} \begin{bmatrix} 162.6794&-54.2278\\ * &20.8942 \end{bmatrix}
    Q_{2} \begin{bmatrix} 0.6059&0.0989\\ * &0.9366 \end{bmatrix} \begin{bmatrix} 11.2718&3.1598\\ * &18.7407 \end{bmatrix} \begin{bmatrix} 45.2944&3.4210\\ * &3.9775 \end{bmatrix}
    Q_{3} \begin{bmatrix} 0.6441&-1.0339\\ * &1.8021 \end{bmatrix} \begin{bmatrix} 15.7046&-24.2426\\ * &41.4485 \end{bmatrix} \begin{bmatrix} 104.1536&-62.2539\\ * &43.6225 \end{bmatrix}
    R_{1} \begin{bmatrix} 0.7493&-0.1605\\ * &0.2963 \end{bmatrix} \begin{bmatrix} 15.0934&-3.7218\\ * &5.1203 \end{bmatrix} \begin{bmatrix} 2.5914&-1.1278\\ * &0.5088 \end{bmatrix}
    R_{2} \begin{bmatrix} 0.5724&0.0004\\ * &0.8522 \end{bmatrix} \begin{bmatrix} 9.4656&0.4454\\ * &15.7757 \end{bmatrix} \begin{bmatrix} 0.7519&-1.3915\\ * &3.0789 \end{bmatrix}
    R_{3} \begin{bmatrix} 0.4958&-0.3777\\ * &0.5543 \end{bmatrix} \begin{bmatrix} 9.5314&-7.2156\\ * &10.1955 \end{bmatrix} \begin{bmatrix} 0.1622&-0.0990\\ * &0.0747 \end{bmatrix}
    S_{1} \begin{bmatrix} 0.7493&-0.1605\\ * &0.2963 \end{bmatrix} \begin{bmatrix} 13.6225&-3.3477\\ * &5.0301 \end{bmatrix} \begin{bmatrix} 2.2158&-0.9644\\ * &0.4354 \end{bmatrix}
    S_{2} \begin{bmatrix} 0.6275&0.2973\\ * &1.7646 \end{bmatrix} \begin{bmatrix} 11.0030&5.0564\\ * &31.3379 \end{bmatrix} \begin{bmatrix} 1.5357&-2.9132\\ * &5.9531 \end{bmatrix}
    S_{3} \begin{bmatrix} 0.5196&-0.3495\\ * &0.4397 \end{bmatrix} \begin{bmatrix} 9.6860&-5.7207\\ * &8.1551 \end{bmatrix} \begin{bmatrix} 0.1505&-0.0912\\ * &0.0690 \end{bmatrix}

     | Show Table
    DownLoad: CSV
    Table 5.  \mathfrak{S} = \{1, 2\} , \Phi_{1} = \{1, 3\} , \Phi_{2} = \{2\} .
    \delta \tau _{m\Phi _{1} }=0.58 , \tau _{u\Phi _{1} }=0.63 , \tau _{v\Phi _{1} }=0.66 , \tau _{M\Phi _{1} }=0.69
    \tau _{m\Phi _{2} }=1.05 , \tau _{u\Phi _{2} }=1.17 , \tau _{v\Phi _{2} }=1.25 , \tau _{M\Phi _{2} }=1.33
    \tau \left [\tau _{m\Phi _{i} }, \tau _{u\Phi _{i} } \right) \left [\tau _{u\Phi _{i} }, \tau _{v\Phi _{i} } \right) \left [\tau _{v\Phi _{i} }, \tau _{M\Phi _{i} } \right]
    \mu \mu _{11} =0.73, \\ \mu _{12} =0.5 \mu _{21} =1.1, \\ \mu _{22} =1.3 \mu _{31} =1.5, \\ \mu _{32} =1.46
    \lambda \lambda _{1} = 0.45 , \lambda _{2} = 0.52
    P_{1} \begin{bmatrix} 25.1826&5.0234\\ * & 46.4133 \end{bmatrix} \begin{bmatrix} 0.7806&0.0539\\ * & 1.1895 \end{bmatrix} \begin{bmatrix} 92.8432&-34.6199\\ * & 31.7638 \end{bmatrix}
    P_{2} \begin{bmatrix} 72.0757&-24.2516\\ * & 39.5019 \end{bmatrix} \begin{bmatrix} 2.5068&-0.8700\\ * & 1.2439 \end{bmatrix} \begin{bmatrix} 110.9377&-52.8871\\ * & 34.2876 \end{bmatrix}
    P_{3} \begin{bmatrix} 86.6261&-13.5677\\ * & 14.9473 \end{bmatrix} \begin{bmatrix} 2.4189&-0.3971\\ * & 0.4561 \end{bmatrix} \begin{bmatrix} 97.3575&-29.5522\\ * & 15.5354 \end{bmatrix}
    Q_{1} \begin{bmatrix} 41.6405&-14.3029\\ * & 7.9802 \end{bmatrix} \begin{bmatrix} 1.5272&-0.5695\\ * & 0.2678 \end{bmatrix} \begin{bmatrix} 256.1535&-106.5029\\ * & 46.3996 \end{bmatrix}
    Q_{2} \begin{bmatrix} 7.6862&4.6802\\ * & 18.3632 \end{bmatrix} \begin{bmatrix} 0.3157&0.2196\\ * & 0.6849 \end{bmatrix} \begin{bmatrix} 47.6677&1.0352\\ * & 18.9710 \end{bmatrix}
    Q_{3} \begin{bmatrix} 10.5528&-13.8201\\ * & 21.2454 \end{bmatrix} \begin{bmatrix} 0.3258&-0.4712\\ * & 0.7143 \end{bmatrix} \begin{bmatrix} 120.1687&-73.7954\\ * & 51.5851 \end{bmatrix}
    R_{1} \begin{bmatrix} 13.6659&-3.3204\\ * & 4.4454 \end{bmatrix} \begin{bmatrix} 0.4175&-0.1063\\ * & 0.1208 \end{bmatrix} \begin{bmatrix} 90.0255&-26.1669\\ * & 7.6379 \end{bmatrix}
    R_{2} \begin{bmatrix} 5.9166&-0.0680\\ * & 9.4563 \end{bmatrix} \begin{bmatrix} 0.2020&-0.0048\\ * & 0.2804 \end{bmatrix} \begin{bmatrix} 0.1141&-0.0802\\ * & 0.1034 \end{bmatrix}
    R_{3} \begin{bmatrix} 10.4183&-7.1803\\ * & 8.8115 \end{bmatrix} \begin{bmatrix} 0.3034&-0.2159\\ * & 0.2686 \end{bmatrix} \begin{bmatrix} 0.6266&-0.6588\\ * & 0.7310 \end{bmatrix}
    S_{1} \begin{bmatrix} 13.6659&-3.3204\\ * & 4.4454 \end{bmatrix} \begin{bmatrix} 0.4040&-0.1004\\ * & 0.1195 \end{bmatrix} \begin{bmatrix} 90.0962&-26.1791\\ * & 7.6375 \end{bmatrix}
    S_{2} \begin{bmatrix} 8.7216&7.9675\\ * & 35.0883 \end{bmatrix} \begin{bmatrix} 0.2739&0.2216\\ * & 0.9458 \end{bmatrix} \begin{bmatrix} 0.9355&-0.7122\\ * & 0.5871 \end{bmatrix}
    S_{3} \begin{bmatrix} 9.6164&-5.1749\\ * & 5.9313 \end{bmatrix} \begin{bmatrix} 0.2925&-0.1577\\ * & 0.1613 \end{bmatrix} \begin{bmatrix} 0.2516&-0.2539\\ * & 0.2926 \end{bmatrix}

     | Show Table
    DownLoad: CSV
    Table 6.  \mathfrak{S} = \{1, 2\} , \Phi_{1} = \{1\} , \Phi_{2} = \{2, 3\} .
    \delta \tau _{m\Phi _{1} }=0.42 , \tau _{u\Phi _{1} }=0.46 , \tau _{v\Phi _{1} }=0.56 , \tau _{M\Phi _{1} }=0.61
    \tau _{m\Phi _{2} }=0.54 , \tau _{u\Phi _{2} }=0.68 , \tau _{v\Phi _{2} }=0.74 , \tau _{M\Phi _{2} }=0.82
    \tau \left [\tau _{m\Phi _{i} }, \tau _{u\Phi _{i} } \right) \left [\tau _{u\Phi _{i} }, \tau _{v\Phi _{i} } \right) \left [\tau _{v\Phi _{i} }, \tau _{M\Phi _{i} } \right]
    \mu \mu _{11} =0.7, \\ \mu _{12} =0.6 \mu _{21} =1.1, \\ \mu _{22} =0.9 \mu _{31} =1.3, \\ \mu _{32} =1.2
    \lambda \lambda _{1} = 0.58 , \lambda _{2} = 0.62
    P_{1} \begin{bmatrix} 14.2412&-0.9687\\ * & 12.7752 \end{bmatrix} \begin{bmatrix} 12.0771&-1.3657\\ * & 9.7231 \end{bmatrix} \begin{bmatrix} 0.1492&-0.0140\\ * & 0.0578 \end{bmatrix}
    P_{2} \begin{bmatrix} 25.7962&-8.3240\\ * & 15.2188 \end{bmatrix} \begin{bmatrix} 20.6336&-6.5373\\ * & 10.8676 \end{bmatrix} \begin{bmatrix} 0.1965&-0.0523\\ * & 0.0536 \end{bmatrix}
    P_{3} \begin{bmatrix} 30.8084&-4.0040\\ * & 8.0691 \end{bmatrix} \begin{bmatrix} 23.6927&-3.3149\\ * & 6.6102 \end{bmatrix} \begin{bmatrix} 0.2553&-0.0292\\ * & 0.0405 \end{bmatrix}
    Q_{1} \begin{bmatrix} 30.4620&-9.5505\\ * & 4.6947 \end{bmatrix} \begin{bmatrix} 30.2020&-9.3917\\ * & 5.1282 \end{bmatrix} \begin{bmatrix} 0.6383&-0.1429\\ * & 0.0538 \end{bmatrix}
    Q_{2} \begin{bmatrix} 2.9149&1.4889\\ * & 8.8800 \end{bmatrix} \begin{bmatrix} 2.3365&1.6878\\ * & 7.5598 \end{bmatrix} \begin{bmatrix} 0.0582&0.0632\\ * & 0.0770 \end{bmatrix}
    Q_{3} \begin{bmatrix} 3.1889&-4.5924\\ * & 9.5792 \end{bmatrix} \begin{bmatrix} 2.6112&-3.9970\\ * & 8.4352 \end{bmatrix} \begin{bmatrix} 0.0446&-0.0517\\ * & 0.1337 \end{bmatrix}
    R_{1} \begin{bmatrix} 7.2379&-1.8822\\ * & 1.6869 \end{bmatrix} \begin{bmatrix} 5.7849&-1.6328\\ * & 1.0970 \end{bmatrix} \begin{bmatrix} 0.0191&-0.0076\\ * & 0.0034 \end{bmatrix}
    R_{2} \begin{bmatrix} 2.8166&0.4395\\ * & 6.3467 \end{bmatrix} \begin{bmatrix} 2.1749&0.5789\\ * & 4.7941 \end{bmatrix} \begin{bmatrix} 0.0060&0.0027\\ * & 0.0060 \end{bmatrix}
    R_{3} \begin{bmatrix} 3.3693&-2.7784\\ * & 3.7029 \end{bmatrix} \begin{bmatrix} 2.7576&-2.4861\\ * & 3.2929 \end{bmatrix} \begin{bmatrix} 0.0324&-0.0170\\ * & 0.0097 \end{bmatrix}
    S_{1} \begin{bmatrix} 7.2379&-1.8822\\ * & 1.6869 \end{bmatrix} \begin{bmatrix} 5.7105&-1.6113\\ * & 1.0821 \end{bmatrix} \begin{bmatrix} 0.0179&-0.0071\\ * & 0.0032 \end{bmatrix}
    S_{2} \begin{bmatrix} 4.1120&2.2650\\ * & 12.8642 \end{bmatrix} \begin{bmatrix} 3.3561&1.5102\\ * & 7.6711 \end{bmatrix} \begin{bmatrix} 0.0264&0.0061\\ * & 0.0059 \end{bmatrix}
    S_{3} \begin{bmatrix} 3.5775&-2.0192\\ * & 2.8210 \end{bmatrix} \begin{bmatrix} 2.9734&-1.6497\\ * & 2.0698 \end{bmatrix} \begin{bmatrix} 0.0176&-0.0085\\ * & 0.0047 \end{bmatrix}

     | Show Table
    DownLoad: CSV
    Table 7.  \mathfrak{S} = \{1, 2, 3\} , \Phi_{1} = \{1\} , \Phi_{2} = \{2\} ; \Phi_{3} = \{3\} .
    \delta \tau _{m\Phi _{1} }=0.39 , \tau _{u\Phi _{1} }=0.43 , \tau _{v\Phi _{1} }=0.51 , \tau _{M\Phi _{1} }=0.57
    \tau _{m\Phi _{2} }=0.84 , \tau _{u\Phi _{2} }=0.92 , \tau _{v\Phi _{2} }=1.01 , \tau _{M\Phi _{2} }=1.11
    \tau _{m\Phi _{3} }=0.23 , \tau _{u\Phi _{3} }=0.29 , \tau _{v\Phi _{3} }=0.35 , \tau _{M\Phi _{3} }=0.38
    \tau \left [\tau _{m\Phi _{i} }, \tau _{u\Phi _{i} } \right) \left [\tau _{u\Phi _{i} }, \tau _{v\Phi _{i} } \right) \left [\tau _{v\Phi _{i} }, \tau _{M\Phi _{i} } \right]
    \mu \mu _{11} =0.7, \\ \mu _{12} =0.6, \\ \mu _{13} =0.8 \mu _{21} =0.9, \\ \mu _{22} =1.1, \\ \mu _{23} =0.9 \mu _{31} =1.2, \\ \mu _{32} =1.4, \\ \mu _{33} =1.1
    \lambda \lambda _{1} = 0.62 , \lambda _{2} = 0.46 , \lambda _{3} = 0.58
    P_{1} \begin{bmatrix} 170.2179&-26.9700\\ * & 114.8395 \end{bmatrix} \begin{bmatrix} 81.9472&-18.0570\\ * & 49.1218 \end{bmatrix} \begin{bmatrix} 0.5667&-0.2133\\ * & 0.2024 \end{bmatrix}
    P_{2} \begin{bmatrix} 339.0560&-129.4043\\ * & 171.8188 \end{bmatrix} \begin{bmatrix} 161.2581&-63.8093\\ * & 73.4982 \end{bmatrix} \begin{bmatrix} 1.0658&-0.4673\\ * & 0.2870 \end{bmatrix}
    P_{3} \begin{bmatrix} 248.5446&-45.5923\\ * & 76.7228 \end{bmatrix} \begin{bmatrix} 121.5331&-26.1927\\ * & 40.0762 \end{bmatrix} \begin{bmatrix} 0.9123&-0.3153\\ * & 0.2129 \end{bmatrix}
    Q_{1} \begin{bmatrix} 304.5953&-96.3485\\ * & 46.1145 \end{bmatrix} \begin{bmatrix} 212.5213&-68.0405\\ * & 30.9250 \end{bmatrix} \begin{bmatrix} 2.7818&-1.0215\\ * & 0.4200 \end{bmatrix}
    Q_{2} \begin{bmatrix} 30.3074&13.9767\\ * & 67.1472 \end{bmatrix} \begin{bmatrix} 19.6843&15.5687\\ * & 46.7836 \end{bmatrix} \begin{bmatrix} 0.3409&0.1537\\ * & 0.0751 \end{bmatrix}
    Q_{3} \begin{bmatrix} 72.6087&-96.0867\\ * & 144.0311 \end{bmatrix} \begin{bmatrix} 52.2238&-61.5195\\ * & 85.7181 \end{bmatrix} \begin{bmatrix} 1.3211&-0.8988\\ * & 0.7293 \end{bmatrix}
    R_{1} \begin{bmatrix} 74.6952&-20.5649\\ * & 17.3008 \end{bmatrix} \begin{bmatrix} 39.6596&-12.2920\\ * & 7.8771 \end{bmatrix} \begin{bmatrix} 0.0303&-0.0133\\ * & 0.0062 \end{bmatrix}
    R_{2} \begin{bmatrix} 25.2725&0.9295\\ * & 43.0587 \end{bmatrix} \begin{bmatrix} 11.5189&0.6762\\ * & 18.6364 \end{bmatrix} \begin{bmatrix} 0.0034&-0.0014\\ * & 0.0030 \end{bmatrix}
    R_{3} \begin{bmatrix} 37.5371&-35.2715\\ * & 45.1790 \end{bmatrix} \begin{bmatrix} 19.1271&-17.6947\\ * & 21.5690 \end{bmatrix} \begin{bmatrix} 0.0061&-0.0044\\ * & 0.0036 \end{bmatrix}
    S_{1} \begin{bmatrix} 74.6952&-20.5649\\ * & 17.3008 \end{bmatrix} \begin{bmatrix} 32.9758&-10.5545\\ * & 7.2031 \end{bmatrix} \begin{bmatrix} 0.0276&-0.0122\\ * & 0.0058 \end{bmatrix}
    S_{2} \begin{bmatrix} 38.1771&31.6006\\ * & 137.2085 \end{bmatrix} \begin{bmatrix} 15.7266&6.7316\\ * & 37.4554 \end{bmatrix} \begin{bmatrix} 0.0552&-0.0333\\ * & 0.0222 \end{bmatrix}
    S_{3} \begin{bmatrix} 35.3095&-26.7339\\ * & 36.0276 \end{bmatrix} \begin{bmatrix} 17.1981&-12.6850\\ * & 15.0303 \end{bmatrix} \begin{bmatrix} 0.0039&-0.0027\\ * & 0.0022 \end{bmatrix}

     | Show Table
    DownLoad: CSV

    (Ⅰ) In Case 1, by comparing Figures 3(a) and 3(b), it can be seen that compared with the DT method, the MMDT method allows for shorter DTs, thereby reducing conservatism and increasing design flexibility, and the results corresponding to the MMDT method are shown in Table 3.

    (Ⅱ) In Cases 2–5, due to the superiority of the MMDT method, we have uniformly used this method. The results are shown in Tables 47 and the corresponding system's state response under switching signals is shown in Figures 47. The convergence curve explains the validity of our results.

    (Ⅲ) In the reference [21], when \alpha = 0 , its allowed DT region gradually increases with the increase of \beta value. Based on this, according to (3.37), Figure 8 illustrates the minimum DT when \beta = 0.5, 0.8, 0.9, and 0.99 are taken under Case 1. Taking \beta = 0.5 as an example, take the appropriate \tau _{u} and \tau _{v} between \tau _{m} and \tau _{M} , and different Lyapunov functions are selected under different DTs to further reduce conservatism. Compared to reference [21], this paper not only considers the case under the \Phi -dependent DT method but also makes the method more flexible and convenient by constructing a new segmented Lyapunov function.

    (Ⅳ) The examples in Tables 37 provide some switching signals that can only be obtained through the criteria in the corresponding Tables. That is to say, the stability criteria for each table is different, so they are not comparable to each other.

    Under the assumption that all modes are unstable, this paper studies the stabilization of switching systems using time-dependent switching signals. Several stability conditions are proposed in the framework of DT switching, using the stability characteristics of switching behavior to compensate for unstable modes and state divergence caused by unstable switching instant and providing a new solution to stability control problems. Finally, the effectiveness of the proposed method is verified by simulation.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    Supported by Fundamental Research Program of Shanxi Province (202103021224249) and Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province (20220023).

    The authors declare no conflict of interest.



    [1] X. Huang, Q. Wang, Y. Wang, Y. Hou, C. Dong, Adaptive augmentation of gain-scheduled controller for aerospace vehicles, J. Syst. Eng. Electron., 24 (2013), 272–280. http://doi.org/10.1109/JSEE.2013.00034 doi: 10.1109/JSEE.2013.00034
    [2] A. Kruszewski, W. Jiang, E. Fridman, J. P. Richard, A. Toguyeni, A switched system approach to exponential stabilization through communication network, IEEE T. Contr. Syst. T., 20 (2012), 887–900. http://doi.org/10.1109/TCST.2011.2159793 doi: 10.1109/TCST.2011.2159793
    [3] J. Li, X. Guo, C. Chen, Q. Su, Robust fault diagnosis for switched systems based on sliding mode observer, Appl. Math. Comput., 341 (2019), 193–203. https://doi.org/10.1016/j.amc.2018.08.036 doi: 10.1016/j.amc.2018.08.036
    [4] T. C. Lee, Z. Jiang, Uniform asymptotic stability of non-linear switched systems with an application to mobile robots, IEEE T. Automat. Contr., 53 (2008), 1235–1252. http://doi.org/10.1109/TAC.2008.923688 doi: 10.1109/TAC.2008.923688
    [5] H. Yang, B. Jiang, V. Cocquempot, H. Zhang, Stabilization of switched nonlinear systems with all unstable modes: Application to multi-agent systems, IEEE T. Automat. Contr., 56 (2011), 2230–2235. http://doi.org/10.1109/TAC.2011.2157413 doi: 10.1109/TAC.2011.2157413
    [6] A. S. Morse, Supervisory control of families of linear set-point controllers—Part I. Exact matching, IEEE T. Automat. Contr., 41 (1996), 1413–1431. https://doi.org/10.1109/9.539424 doi: 10.1109/9.539424
    [7] S. An, R. C. Ma, J. Fu, Dwell-time-based control synthesis of switched positive systems with all unstabilizable subsystems, Int. J. Robust Nonlin., 32 (2022), 2420–2441. https://doi.org/10.1002/rnc.5965 doi: 10.1002/rnc.5965
    [8] R. McCloy, J. Bao, Contraction-based control of switched nonlinear systems using dwell times and switched contraction metrics, IEEE Contr. Syst., 6 (2021), 1382–1387. http://doi.org/10.1109/LCSYS.2021.3097044 doi: 10.1109/LCSYS.2021.3097044
    [9] W. Xiang, J. Lam, J. Shen, Stability analysis and L1-gain characterization for switched positive systems under dwell-time constraint, Automatica, 85 (2017), 1–8. https://doi.org/10.1016/j.automatica.2017.07.016 doi: 10.1016/j.automatica.2017.07.016
    [10] J. P. Hespanha, A. S. Morse, Stability of switched systems with average dwell-time, In: Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, AZ, USA, 1999, 2655–2660. http://doi.org/10.1109/CDC.1999.831330
    [11] X. Zhao, L. Zhang, P. Shi, M. Liu, Stability and stabilization of switched linear systems with mode-dependent average dwell time, IEEE T. Automat. Contr., 57 (2012), 1809–1815. http://doi.org/10.1109/TAC.2011.2178629 doi: 10.1109/TAC.2011.2178629
    [12] Q. Yu, G. Zhai, Stability analysis of switched systems under \Phi-dependent average dwell time approach, IEEE Access, 8 (2020), 30655–30663. http://doi.org/10.1109/ACCESS.2020.2971267 doi: 10.1109/ACCESS.2020.2971267
    [13] G. Zhai, B. Hu, K. Yasuda, A. N. Michel, Stability analysis of switched systems with stable and unstable subsystems: An average dwell time approach, In: Proceedings of the 2000 American Control Conference. ACC, Chicago, IL, USA, 2001, 1055–1061. http://doi.org/10.1109/ACC.2000.878825
    [14] Q. Yu, J. Yan, A limit \Phi-dependent ADT technique for stability analysis of discrete-time switched systems with unstable modes, IEEE Access, 8 (2020), 121319–121329. http://doi.org/10.1109/ACCESS.2020.3006470 doi: 10.1109/ACCESS.2020.3006470
    [15] Q. Yu, Y. Li, Stabilization and control of switched singular systems with impulse under a new average dwell time strategy, Asian J. Contr., 24 (2022), 2565–2580. https://doi.org/10.1002/asjc.2671 doi: 10.1002/asjc.2671
    [16] W. Xiang, J. Xiao, Stabilization of switched continuous-time systems with all modes unstable via dwell time switching, Automatica, 50 (2014), 940–945. https://doi.org/10.1016/j.automatica.2020.109150 doi: 10.1016/j.automatica.2020.109150
    [17] Z. Zhou, Y. Wang, W. Yang, M. Hu, Exponential stability of switched positive systems with all modes being unstable, Int. J. Robust Nonlin., 30 (2020), 4600–4610. https://doi.org/10.1002/rnc.5005 doi: 10.1002/rnc.5005
    [18] Y. Wang, H. R. Karimi, D. Wu, Conditions for the stability of switched systems containing unstable subsystems, IEEE T. Circuits-II., 66 (2019), 617–621. http://doi.org/10.1109/TCSII.2018.2852766 doi: 10.1109/TCSII.2018.2852766
    [19] W. Yang, Y. Wang, C. Wen, Y. Hou, J. Daafouz, Exponential stability of singularly perturbed switched systems with all modes being unstable, Automatica, 113 (2020), 108800. https://doi.org/10.1016/j.automatica.2019.108800 doi: 10.1016/j.automatica.2019.108800
    [20] X. Mao, H. Zhu, W. Chen, H. Zhang, New results on stability of switched continuous-time systems with all subsystems unstable, ISA Tran., 87 (2019), 28–33. https://doi.org/10.1016/j.isatra.2018.11.042 doi: 10.1016/j.isatra.2018.11.042
    [21] C. Jin, R. Wang, Q. Wang, Stabilization of switched systems with time-dependent switching signal, J. Franklin I., 357 (2020), 13552–13568. https://doi.org/10.1016/j.jfranklin.2020.10.007 doi: 10.1016/j.jfranklin.2020.10.007
    [22] C. Jin, Q. Wang, R. Wang, D. Wu, Improved ADT method for the switched nonlinear system: Stability analysis and application, IEEE T. Circuits-II., 69 (2022), 3580–3584. http://doi.org/10.1109/TCSII.2022.3169148 doi: 10.1109/TCSII.2022.3169148
    [23] C. Jin, Q. Wang, R. Wang, D. Wu, Stabilization of switched systems with unstable modes via mode-partition-dependent ADT, J. Franklin I., 360 (2023), 1308–1326. https://doi.org/10.1016/j.jfranklin.2022.10.015 doi: 10.1016/j.jfranklin.2022.10.015
    [24] Y. Hou, C. Dong, Q. Wang, Adaptive control scheme for Limear uncertain switched systems, AIAA J., 2008, 6784. https://doi.org/10.2514/6.2008-6784 doi: 10.2514/6.2008-6784
    [25] H. Hu, B. Jiang, H. Yang, Reliable guaranteed-cost control of delta operator switched systems with actuator faults: mode-dependent average dwell-time approach, IET Control Theory A., 10 (2016), 17–23. https://doi.org/10.1049/iet-cta.2015.0364 doi: 10.1049/iet-cta.2015.0364
  • This article has been cited by:

    1. Han Geng, Huasheng Zhang, A new H_{\infty} control method of switched nonlinear systems with persistent dwell time: H_{\infty} fuzzy control criterion with convergence rate constraints, 2024, 9, 2473-6988, 26092, 10.3934/math.20241275
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1366) PDF downloads(56) Cited by(1)

Figures and Tables

Figures(8)  /  Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog