Processing math: 100%
Research article Special Issues

An analytic pricing formula for timer options under constant elasticity of variance with stochastic volatility

  • Received: 14 November 2023 Revised: 14 December 2023 Accepted: 18 December 2023 Published: 25 December 2023
  • MSC : 91G20, 91G60

  • Timer options, which were first introduced by Société Générale Corporate and Investment Banking in 2007, are financial securities whose payoffs and exercise are determined by a random time associated with the accumulated realized variance of the underlying asset, unlike vanilla options exercised at the prescribed maturity date. In this paper, taking account of the correlation between the underlying asset price and volatility, we investigate the pricing of timer options under the constant elasticity of variance (CEV) model, proposed by Cox and Ross [10], taking advantage of the approach of asymptotic analysis. Additionally, we validate the pricing precision of the approximate formula for timer options using the Monte Carlo method. We conduct numerical experiments based on our corrected prices and analyze price sensitivities concerning various model parameters, with a focus on the value of elasticity.

    Citation: Sun-Yong Choi, Donghyun Kim, Ji-Hun Yoon. An analytic pricing formula for timer options under constant elasticity of variance with stochastic volatility[J]. AIMS Mathematics, 2024, 9(1): 2454-2472. doi: 10.3934/math.2024121

    Related Papers:

    [1] Baoye Song, Shumin Tang, Yao Li . A new path planning strategy integrating improved ACO and DWA algorithms for mobile robots in dynamic environments. Mathematical Biosciences and Engineering, 2024, 21(2): 2189-2211. doi: 10.3934/mbe.2024096
    [2] Jian Si, Xiaoguang Bao . A novel parallel ant colony optimization algorithm for mobile robot path planning. Mathematical Biosciences and Engineering, 2024, 21(2): 2568-2586. doi: 10.3934/mbe.2024113
    [3] Yuzhuo Shi, Huijie Zhang, Zhisheng Li, Kun Hao, Yonglei Liu, Lu Zhao . Path planning for mobile robots in complex environments based on improved ant colony algorithm. Mathematical Biosciences and Engineering, 2023, 20(9): 15568-15602. doi: 10.3934/mbe.2023695
    [4] Zhen Yang, Junli Li, Liwei Yang, Qian Wang, Ping Li, Guofeng Xia . Path planning and collision avoidance methods for distributed multi-robot systems in complex dynamic environments. Mathematical Biosciences and Engineering, 2023, 20(1): 145-178. doi: 10.3934/mbe.2023008
    [5] Tian Xue, Liu Li, Liu Shuang, Du Zhiping, Pang Ming . Path planning of mobile robot based on improved ant colony algorithm for logistics. Mathematical Biosciences and Engineering, 2021, 18(4): 3034-3045. doi: 10.3934/mbe.2021152
    [6] Xuewu Wang, Bin Tang, Xin Zhou, Xingsheng Gu . Double-robot obstacle avoidance path optimization for welding process. Mathematical Biosciences and Engineering, 2019, 16(5): 5697-5708. doi: 10.3934/mbe.2019284
    [7] Zhenao Yu, Peng Duan, Leilei Meng, Yuyan Han, Fan Ye . Multi-objective path planning for mobile robot with an improved artificial bee colony algorithm. Mathematical Biosciences and Engineering, 2023, 20(2): 2501-2529. doi: 10.3934/mbe.2023117
    [8] Ping Li, Liwei Yang . Conflict-free and energy-efficient path planning for multi-robots based on priority free ant colony optimization. Mathematical Biosciences and Engineering, 2023, 20(2): 3528-3565. doi: 10.3934/mbe.2023165
    [9] Jinzhuang Xiao, Xuele Yu, Keke Sun, Zhen Zhou, Gang Zhou . Multiobjective path optimization of an indoor AGV based on an improved ACO-DWA. Mathematical Biosciences and Engineering, 2022, 19(12): 12532-12557. doi: 10.3934/mbe.2022585
    [10] Chikun Gong, Yuhang Yang, Lipeng Yuan, Jiaxin Wang . An improved ant colony algorithm for integrating global path planning and local obstacle avoidance for mobile robot in dynamic environment. Mathematical Biosciences and Engineering, 2022, 19(12): 12405-12426. doi: 10.3934/mbe.2022579
  • Timer options, which were first introduced by Société Générale Corporate and Investment Banking in 2007, are financial securities whose payoffs and exercise are determined by a random time associated with the accumulated realized variance of the underlying asset, unlike vanilla options exercised at the prescribed maturity date. In this paper, taking account of the correlation between the underlying asset price and volatility, we investigate the pricing of timer options under the constant elasticity of variance (CEV) model, proposed by Cox and Ross [10], taking advantage of the approach of asymptotic analysis. Additionally, we validate the pricing precision of the approximate formula for timer options using the Monte Carlo method. We conduct numerical experiments based on our corrected prices and analyze price sensitivities concerning various model parameters, with a focus on the value of elasticity.





    [1] F. Black, M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ., 81 (1973), 637–654.
    [2] S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud., 6 (1993), 327–343. https://doi.org/10.1093/rfs/6.2.327 doi: 10.1093/rfs/6.2.327
    [3] J. P. Fouque, G. Papanicolaou, R. Sircar, K. Sølna, Multiscale stochastic volatility for equity, interest rate, and credit derivatives, Cambridge University Press, 2011.
    [4] J. Hull, A. White, The pricing of options on assets with stochastic volatilities, J. Financ., 42 (1987), 281–300. https://doi.org/10.1111/j.1540-6261.1987.tb02568.x doi: 10.1111/j.1540-6261.1987.tb02568.x
    [5] L. O. Scott, Option pricing when the variance changes randomly: Theory, estimation, and an application, J. Financ. Quant. Anal., 22 (1987), 419–438. https://doi.org/10.2307/2330793 doi: 10.2307/2330793
    [6] M. Chesney, L. Scott, Pricing European currency options: A comparison of the modified Black-Scholes model and a random variance model, J. Financ. Quant. Anal., 24 (1989), 267–284. https://doi.org/10.2307/2330812 doi: 10.2307/2330812
    [7] R. Schöbel, J. Zhu, Stochastic volatility with an Ornstein-Uhlenbeck process: An extension, Rev. Financ., 3 (1999), 23–46. https://doi.org/10.1023/A:1009803506170 doi: 10.1023/A:1009803506170
    [8] B. Dupire, Pricing with a smile, Risk, 7 (1994), 18–20.
    [9] E. Derman, I. Kani, Riding on a smile, Risk, 7 (1994), 32–39.
    [10] J. C. Cox, S. A. Ross, The valuation of options for alternative stochastic processes, J. Financ. Econ., 3 (1976), 145–166. https://doi.org/10.1016/0304-405X(76)90023-4 doi: 10.1016/0304-405X(76)90023-4
    [11] Y. Tian, Z. Zhu, G. Lee, F. Klebaner, K. Hamza, Calibrating and pricing with a stochastic-local volatility model, J. Deriv., 22 (2015), 21–39. https://doi.org/10.3905/jod.2015.22.3.021 doi: 10.3905/jod.2015.22.3.021
    [12] E. Ghysels, A. C. Harvey, E. Renault, 5 Stochastic volatility, Handb. Stat., 14 (1996), 119–191. https://doi.org/10.1016/S0169-7161(96)14007-4
    [13] A. W. V. Stoep, L. A. Grzelak, C. W. Oosterlee, The Heston stochastic-local volatility model: Efficient Monte Carlo simulation, Int. J. Theor. Appl. Fin., 17 (2014), 1450045. https://doi.org/10.1142/S0219024914500459 doi: 10.1142/S0219024914500459
    [14] Z. Cui, J. L. Kirkby, D. Nguyen, A general valuation framework for SABR and stochastic local volatility models, SIAM J. Financ. Math., 9 (2018), 520–563. https://doi.org/10.1137/16M1106572 doi: 10.1137/16M1106572
    [15] L. B. Andersen, V. V. Piterbarg, Moment explosions in stochastic volatility models, Financ. Stoch., 11 (2007), 29–50. https://doi.org/10.1007/s00780-006-0011-7 doi: 10.1007/s00780-006-0011-7
    [16] R. Lord, R. Koekkoek, D. V. Dijk, A comparison of biased simulation schemes for stochastic volatility models, Quant. Financ., 10 (2010), 177–194. https://doi.org/10.1080/14697680802392496 doi: 10.1080/14697680802392496
    [17] S. Y. Choi, J. P. Fouque, J. H. Kim, Option pricing under hybrid stochastic and local volatility, Quant. Financ., 13 (2013), 1157–1165. https://doi.org/10.1080/14697688.2013.780209 doi: 10.1080/14697688.2013.780209
    [18] Z. Cui, J. L. Kirkby, D. Nguyen, Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations, Eur. J. Oper. Res., 290 (2021), 1046–1062. https://doi.org/10.1016/j.ejor.2020.09.008 doi: 10.1016/j.ejor.2020.09.008
    [19] P. Carr, D. Madan, Towards a theory of volatility trading, Volat. New Estim. Tech. Pric. Deriv., 29 (1998), 417–427. https://doi.org/10.1017/CBO9780511569708.013 doi: 10.1017/CBO9780511569708.013
    [20] A. Badescu, Z. Cui, J. P. Ortega, Closed-form variance swap prices under general affine GARCH models and their continuous-time limits, Ann. Oper. Res., 282 (2019), 27–57. https://doi.org/10.1007/s10479-018-2941-9 doi: 10.1007/s10479-018-2941-9
    [21] K. Demeterfi, E. Derman, M. Kamal, A guide to volatility and variance swaps, J. Deriv., 6 (1999), 9–32. https://doi.org/10.3905/jod.1999.319129 doi: 10.3905/jod.1999.319129
    [22] S. P. Zhu, G. H. Lian, A closed-form exact solution for pricing variance swaps with stochastic volatility, Math. Financ., 21 (2011), 233–256. https://doi.org/10.1111/j.1467-9965.2010.00436.x doi: 10.1111/j.1467-9965.2010.00436.x
    [23] W. Zheng, Y. K. Kwok, Closed form pricing formulas for discretely sampled generalized variance swaps, Math. Financ., 24 (2014), 855–881. https://doi.org/10.1111/mafi.12016 doi: 10.1111/mafi.12016
    [24] A. Issaka, Variance swaps, volatility swaps, hedging and bounds under multi-factor Heston stochastic volatility model, Stoch. Anal. Appl., 38 (2020), 856–874. https://doi.org/10.1080/07362994.2020.1730903 doi: 10.1080/07362994.2020.1730903
    [25] Y. Xi, H. Y. Wong, Discrete variance swap in a rough volatility economy, J. Futures Markets, 41 (2021), 1640–1654. https://doi.org/10.1002/fut.22242 doi: 10.1002/fut.22242
    [26] O. E. Euch, M. Rosenbaum, The characteristic function of rough Heston models, Math. Financ., 29 (2019), 3–38. https://doi.org/10.1111/mafi.12173 doi: 10.1111/mafi.12173
    [27] A Neuberger, Volatility trading, Institute of Finance and Accounting: London Business School, Working Paper, 1990.
    [28] N. Sawyer, SG CIB launches timer options, Risk, 20 (2007), 6.
    [29] A. Bick, Quadratic-variation-based dynamic strategies, Manag. Sci., 41 (1995), 722–732. https://doi.org/10.1287/mnsc.41.4.722 doi: 10.1287/mnsc.41.4.722
    [30] C. Li, Managing volatility risk innovation of financial derivatives, stochastic models and their analytical implementation, Doctoral dissertation, Columbia University, 2010.
    [31] D. Saunders, Pricing timer options under fast mean-reverting stochastic volatility, Can. Appl. Math. Q., 17 (2009), 737–753.
    [32] L. Z. J. Liang, D. Lemmens, J. Tempere, Path integral approach to the pricing of timer options with the Duru-Kleinert time transformation, Phys. Rev. E, 83 (2011), 056112. https://doi.org/10.1103/PhysRevE.83.056112 doi: 10.1103/PhysRevE.83.056112
    [33] C. Bernard, Z. Cui, Pricing timer options, J. Comput. Financ., 15 (2011), 1–37. https://doi.org/10.21314/JCF.2011.228
    [34] M. Li, F. Mercurio, Closed-form approximation of perpetual timer option prices, Int. J. Theor. Appl. Fin., 17 (2014), 1450026. https://doi.org/10.1142/S0219024914500265 doi: 10.1142/S0219024914500265
    [35] J. Ma, D. Deng, Y. Lai, Explicit approximate analytic formulas for timer option pricing with stochastic interest rates, North Am. J. Econ. Financ., 34 (2015), 1–21. https://doi.org/10.1016/j.najef.2015.07.002 doi: 10.1016/j.najef.2015.07.002
    [36] C. Li, Bessel processes, stochastic volatility, and timer options, Math. Financ., 26 (2016), 122–148. https://doi.org/10.1111/mafi.12041
    [37] J. Zhang, X. Lu, Y. Han, Pricing perpetual timer option under the stochastic volatility model of Hull-White, ANZIAM J., 58 (2017), 406–416. https://doi.org/10.21914/anziamj.v58i0.11281 doi: 10.21914/anziamj.v58i0.11281
    [38] Z. Cui, J. L. Kirkby, G. Lian, D. Nguyen, Integral representation of probability density of stochastic volatility models and timer options, Int. J. Theor. Appl. Fin., 20 (2017), 1750055. https://doi.org/10.1142/S0219024917500558 doi: 10.1142/S0219024917500558
    [39] X. Wang, S. J. Wu, X. Yue, Pricing timer options: Second-order multiscale stochastic volatility asymptotics, ANZIAM J., 63 (2021), 249–267. https://doi.org/10.21914/anziamj.v63.15291 doi: 10.21914/anziamj.v63.15291
    [40] J. L. Kirkby, J. P. Aguilar, The return barrier and return timer option with pricing under Levy processes, Expert Syst. Appl., 233 (2023), 120920. https://doi.org/10.1016/j.eswa.2023.120920 doi: 10.1016/j.eswa.2023.120920
    [41] B. Bock, S. Y. Choi, J. H. Kim, The pricing of European options under the constant elasticity of variance with stochastic volatility, Fluct. Noise Lett., 12 (2013), 1350004. https://doi.org/10.1142/S0219477513500041 doi: 10.1142/S0219477513500041
    [42] J. H. Kim, M. K. Lee, S. Y. Sohn, Investment timing under hybrid stochastic and local volatility, Chaos Soliton. Fract., 67 (2014), 58–72. https://doi.org/10.1016/j.chaos.2014.06.007 doi: 10.1016/j.chaos.2014.06.007
    [43] S. Y. Choi, J. H. Kim, Equity-linked annuities with multiscale hybrid stochastic and local volatility, Scand. Actuar. J., 2016 (2016), 466–487. https://doi.org/10.1080/03461238.2014.955048 doi: 10.1080/03461238.2014.955048
    [44] S. Y. Choi, J. H. Kim, J. H. Yoon, Foreign exchange rate volatility smiles and smirks, Appl. Stoch. Model. Bus., 37 (2021), 628–660. https://doi.org/10.1002/asmb.2602 doi: 10.1002/asmb.2602
    [45] J. P. Fouque, G. Papanicolaou, K. R. Sircar, Mean-reverting stochastic volatility, Int. J. Theor. Appl. Fin., 3 (2000), 101–142. https://doi.org/10.1142/S0219024900000061 doi: 10.1142/S0219024900000061
    [46] H. Geman, Y. F. Shih, Modeling commodity prices under the CEV model, J. Altern. Invest., 11 (2009), 65–84. https://doi.org/10.3905/JAI.2009.11.3.065 doi: 10.3905/JAI.2009.11.3.065
    [47] B. Øksendal, Stochastic differential equations: An introduction with applications, 6 Eds., Springer, 2010.
    [48] M. Ha, D. Kim, J. H. Yoon, Valuing of timer path-dependent options, Math. Comput. Simul., 215 (2024), 208–227. https://doi.org/10.1016/j.matcom.2023.08.010 doi: 10.1016/j.matcom.2023.08.010
    [49] A. Lipton, Mathematical methods for foreign exchange: A financial engineer's approach, World Scientific, 2001. https://doi.org/10.1142/4694
    [50] J. P. Fouque, M. J. Lorig, A fast mean-reverting correction to Heston's stochastic volatility model, SIAM J. Financ. Math., 2 (2011), 221–254. https://doi.org/10.1137/090761458 doi: 10.1137/090761458
  • This article has been cited by:

    1. Liwei Yang, Lixia Fu, Ping Li, Jianlin Mao, Ning Guo, An Effective Dynamic Path Planning Approach for Mobile Robots Based on Ant Colony Fusion Dynamic Windows, 2022, 10, 2075-1702, 50, 10.3390/machines10010050
    2. Qian Wang, Junli Li, Liwei Yang, Zhen Yang, Ping Li, Guofeng Xia, Distributed Multi-Mobile Robot Path Planning and Obstacle Avoidance Based on ACO–DWA in Unknown Complex Terrain, 2022, 11, 2079-9292, 2144, 10.3390/electronics11142144
    3. Pranshav Gajjar, Virensinh Dodia, Siddharth Mandaliya, Pooja Shah, Vijay Ukani, Madhu Shukla, 2022, Chapter 19, 978-3-031-23094-3, 262, 10.1007/978-3-031-23095-0_19
    4. Xingcheng Pu, Xinlin Song, Ling Tan, Yi Zhang, Improved ant colony algorithm in path planning of a single robot and multi-robots with multi-objective, 2023, 1864-5909, 10.1007/s12065-023-00821-7
    5. Xiaoling Meng, Xijing Zhu, Autonomous Obstacle Avoidance Path Planning for Grasping Manipulator Based on Elite Smoothing Ant Colony Algorithm, 2022, 14, 2073-8994, 1843, 10.3390/sym14091843
    6. Sai Zhang, Li Tang, Yan-Jun Liu, Formation deployment control of multi-agent systems modeled with PDE, 2022, 19, 1551-0018, 13541, 10.3934/mbe.2022632
    7. Jie Zhang, Xiuqin Pan, 2022, Chapter 1, 978-3-031-23584-9, 3, 10.1007/978-3-031-23585-6_1
    8. Zhen Yang, Junli Li, Liwei Yang, Qian Wang, Ping Li, Guofeng Xia, Path planning and collision avoidance methods for distributed multi-robot systems in complex dynamic environments, 2022, 20, 1551-0018, 145, 10.3934/mbe.2023008
    9. Nour Abujabal, Raouf Fareh, Saif Sinan, Mohammed Baziyad, Maamar Bettayeb, A comprehensive review of the latest path planning developments for multi-robot formation systems, 2023, 0263-5747, 1, 10.1017/S0263574723000322
    10. Yiqi Xu, Qiongqiong Li, Xuan Xu, Jiafu Yang, Yong Chen, Research Progress of Nature-Inspired Metaheuristic Algorithms in Mobile Robot Path Planning, 2023, 12, 2079-9292, 3263, 10.3390/electronics12153263
    11. Wenjie Ning, Li Ma, Zhichuang Wang, Fangyuan Hou, 2024, Chapter 33, 978-981-97-3327-9, 393, 10.1007/978-981-97-3328-6_33
    12. Semonti Banik, Sajal Chandra Banik, Sarker Safat Mahmud, Path Planning Approaches in Multi‐robot System: A Review, 2024, 2577-8196, 10.1002/eng2.13035
    13. Georgios Karamitsos, Dimitrios Bechtsis, Naoum Tsolakis, Dimitrios Vlachos, 2024, Chapter 5, 978-3-031-58918-8, 139, 10.1007/978-3-031-58919-5_5
    14. Liwei Yang, Ping Li, Song Qian, He Quan, Jinchao Miao, Mengqi Liu, Yanpei Hu, Erexidin Memetimin, Path Planning Technique for Mobile Robots: A Review, 2023, 11, 2075-1702, 980, 10.3390/machines11100980
    15. Bilal Gurevin, Furkan Gulturk, Muhammed Yildiz, Ihsan Pehlivan, Trung Thanh Nguyen, Fatih Caliskan, Baris Boru, Mustafa Zahid Yildiz, A Novel GUI Design for Comparison of ROS-Based Mobile Robot Local Planners, 2023, 11, 2169-3536, 125738, 10.1109/ACCESS.2023.3327705
    16. Zhen Zhou, Chenchen Geng, Buhu Qi, Aiwen Meng, Jinzhuang Xiao, Research and experiment on global path planning for indoor AGV via improved ACO and fuzzy DWA, 2023, 20, 1551-0018, 19152, 10.3934/mbe.2023846
    17. Mohammed Baziyad, Nour AbuJabal, Raouf Fareh, Tamer Rabie, Ibrahim Kamel, Maamar Bettayeb, 2023, A Direction for Swarm Robotic Path Planning Technique Using Potential Field Concepts and Particle Swarm Optimization, 979-8-3503-8239-6, 7, 10.1109/IIT59782.2023.10366467
    18. Shuai Wu, Ani Dong, Qingxia Li, Wenhong Wei, Yuhui Zhang, Zijing Ye, Application of ant colony optimization algorithm based on farthest point optimization and multi-objective strategy in robot path planning, 2024, 167, 15684946, 112433, 10.1016/j.asoc.2024.112433
    19. Yongrong Cai, Haibin Liu, Mingfei Li, Fujie Ren, A Method of Dual-AGV-Ganged Path Planning Based on the Genetic Algorithm, 2024, 14, 2076-3417, 7482, 10.3390/app14177482
    20. Shuai Wu, Qingxia Li, Wenhong Wei, Zijing Ye, 2023, Research on Mobile Robot Path Planning in Angle-Guided Ant Colony Optimization Algorithm, 979-8-3503-0375-9, 7070, 10.1109/CAC59555.2023.10450803
    21. Nour AbuJabal, Tamer Rabie, Mohammed Baziyad, Ibrahim Kamel, Khawla Almazrouei, Path Planning Techniques for Real-Time Multi-Robot Systems: A Systematic Review, 2024, 13, 2079-9292, 2239, 10.3390/electronics13122239
    22. Nour Ayman Abujabal, Tamer Rabie, Ibrahim Kamel, 2023, Path Planning Techniques for Multi-robot Systems: A Systematic Review, 979-8-3503-8239-6, 1, 10.1109/IIT59782.2023.10366472
    23. Cuicui Cai, Chaochuan Jia, Yao Nie, Jinhong Zhang, Ling Li, A path planning method using modified harris hawks optimization algorithm for mobile robots, 2023, 9, 2376-5992, e1473, 10.7717/peerj-cs.1473
    24. Shuai Wu, Qingxia Li, Wenhong Wei, Application of Ant Colony Optimization Algorithm Based on Triangle Inequality Principle and Partition Method Strategy in Robot Path Planning, 2023, 12, 2075-1680, 525, 10.3390/axioms12060525
    25. Meltem Eyuboglu, Gokhan Atali, A novel collaborative path planning algorithm for 3-wheel omnidirectional Autonomous Mobile Robot, 2023, 169, 09218890, 104527, 10.1016/j.robot.2023.104527
    26. Wenteng Wang, 2024, Chapter 4, 978-981-97-3209-8, 39, 10.1007/978-981-97-3210-4_4
    27. Haobo Feng, Qiao Hu, Zhenyi Zhao, Xinglong Feng, Chuan Jiang, A varied-width path planning method for multiple AUV formation, 2025, 199, 03608352, 110746, 10.1016/j.cie.2024.110746
    28. Luis E. Ruiz-Fernandez, Javier Ruiz-Leon, David Gomez-Gutierrez, Rafael Murrieta-Cid, Decentralized multi-robot formation control in environments with non-convex and dynamic obstacles based on path planning algorithms, 2025, 1861-2776, 10.1007/s11370-024-00582-x
    29. Yong Li, Neng Long, 2024, Path Planning for Mobile Robots Based on the Improved Adaptive Ant Colony Algorithm, 979-8-3503-6860-4, 1761, 10.1109/CAC63892.2024.10865367
    30. Wenyan Zhu, Wenzheng Cai, Hoiio Kong, Optimal Path Planning Based on ACO in Intelligent Transportation, 2025, 26663074, 10.1016/j.ijcce.2025.02.006
    31. Huiliao Yang, Bo Zhang, Chang Xiao, 2025, Chapter 44, 978-981-96-2227-6, 470, 10.1007/978-981-96-2228-3_44
    32. Guangping Qiu, Jizhong Deng, Jincan Li, Weixing Wang, Hybrid Clustering-Enhanced Brain Storm Optimization Algorithm for Efficient Multi-Robot Path Planning, 2025, 10, 2313-7673, 347, 10.3390/biomimetics10060347
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1594) PDF downloads(95) Cited by(1)

Article outline

Figures and Tables

Figures(4)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog